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Abstract

We introduce a general class of analytically tractable models for the dynamics
of an asset price based on the assumption that the asset-price density is given by
the mixture of known basic densities. We consider the lognormal-mixture model as
a fundamental example, deriving explicit dynamics, closed form formulas for option
prices and analytical approximations for the implied volatility function. We then
introduce the asset-price model that is obtained by shifting the previous lognormal-
mixture dynamics and investigate its analytical tractability. We finally consider
specific examples of calibration to real market option data.

1 Introduction

As is widely known, the Black and Scholes (1973) model can not consistently price all
European options that are quoted in one specific market. The assumption of a constant
volatility that should be used to price any derivative security with the same underlying
asset fails to hold true in practice.

In real markets, the implied volatility curves typically have skewed or smiley shapes.
The term “skew” is used to indicate those structures where low-strikes implied volatilities
are higher than high-strikes implied volatilities. The term “smile” is used instead to denote
those structures with a minimum value around the underlying forward price.

If, for every fixed maturity, the implied volatilities were equal for different strikes but
different along the time-to-maturity dimension, we could use the following simple extension
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of the Black-Scholes model to exactly retrieve the market option prices:

dSt = µStdt + σtStdWt,

where σt is a time-dependent (deterministic) volatility function.
However, real financial markets display more complex volatility structures, so that

the extended Black-Scholes model does not lead to a satisfactory fitting of market data.
This issue can then be tackled by introducing a more articulated form of the volatility
coefficient in the stock-price dynamics. This is the approach we follow in this paper. We in
fact propose two different stock-price models by specifying the stock price dynamics under
a given forward-measure. The volatility σt we introduce is in both cases a function of time
t and the stock price St at the same time. By doing so, we are able to construct two models
that lead either to skews or to smiles in the term structure of implied volatilities.

Many researchers have tried to address the problem of a good, possibly exact, fitting of
market option data. We now briefly review the major approaches that have been proposed.

A first approach is based on assuming an alternative explicit dynamics for the stock-
price process that immediately leads to volatility smiles or skews. In general this approach
does not provide sufficient flexibility to properly calibrate the whole volatility surface. An
example is the general CEV process being analysed by Cox (1975) and Cox and Ross
(1976). A general class of processes is due to Carr et al. (1999). The first class of models
we propose also fall into this alternative explicit dynamics category, and while it adds
flexibility with respect to the previous known examples, it does not completely solve the
flexibility issue.

A second approach is based on the assumption of a continuum of traded strikes and goes
back to Breeden and Litzenberger (1978). Successive developments are due, among all, to
Dupire (1994, 1997) and Derman and Kani (1994, 1998) who derive an explicit expression
for the Black-Scholes volatility as a function of strike and maturity. This approach has the
major drawback that one needs to smoothly interpolate option prices between consecutive
strikes in order to be able to differentiate them twice with respect to the strike. Explicit
expressions for the risk-neutral stock price dynamics are also derived by Avellaneda et
al. (1997) by minimizing the relative entropy to a prior distribution, and by Brown and
Randall (1999) by assuming a quite flexible analytical function describing the volatility
surface.

Another approach, pioneered by Rubinstein (1994), consists of finding the risk-neutral
probabilities in a binomial/trinomial model for the stock price that lead to a best fitting
of market option prices due to some smoothness criterion. We refer to this approach as
to the lattice approach. Further examples are in Jackwerth and Rubinstein (1996) and
Britten-Jones and Neuberger (1999).

A last approach is given by what we may refer to as incomplete-market approach. It
includes stochastic-volatility models, such as those of Hull and White (1987), Heston (1993)
and Tompkins (2000a, 2000b), and jump-diffusion models, such as that of Prigent, Renault
and Scaillet (2000).

In general the problem of finding a risk-neutral distribution that consistently prices all
quoted options is largely undetermined. A possible solution is given by assuming a par-
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ticular parametric risk-neutral distribution depending on several, possibly time-dependent,
parameters and then use such parameters for the volatility calibration. An example of
this approach is the work by Shimko (1993). But the question remains of finding an asset
price dynamics consistent with the chosen parametric form of the risk-neutral density. The
models we propose addresses this question by finding a dynamics leading to a paramet-
ric risk-neutral distribution that is flexible enough for practical purposes. The resulting
process combines therefore the parametric risk-neutral distribution approach with the al-
ternative dynamics approach, providing explicit dynamics leading to flexible parametric
risk-neutral densities.

The major challenge that our models are able to face is the introduction of a forward-
measure distribution that leads i) to analytical formulas for European options, so that the
calibration to market data and the computation of Greeks can be extremely rapid, ii) to
explicit asset-price dynamics, so that exotic claims can be priced through a Monte Carlo
simulation and iii) to recombining lattices, so that instruments with early-exercise features
can be valued via backward calculation in the tree.

The paper is structured as follows. Section 2 proposes a general class of asset-price
models based on marginal densities that are given by the mixture of some basic densi-
ties. Section 3 considers the particular case of a mixture of lognormal densities and derives
closed form formulas for option prices and analytical approximations for the implied volatil-
ity function. Section 4 introduces the asset-price model that is obtained by shifting the
previous lognormal-mixture dynamics and investigate its analytical tractability. Section 5
considers specific examples of calibration to real market option data. Section 6 concludes
the paper.

2 A class of analytical models based on a given mix-

ture of densities

We propose a class of analytically tractable models for an asset-price dynamics that are
flexible enough to recover a large variety of market volatility structures. The asset under
consideration underlies a given option market and, as such, needs not be tradable itself.
Indeed, we can think of an exchange rate, a stock index, and even a forward Libor rate,
since caps and floors are nothing but options on Libor rates.

The diffusion processes we obtain follow from assuming a particular distribution for the
asset price S under a specific measure. Precisely, we fix a time T and denote by P (0, T )
the price at time 0 of a zero-coupon bond with maturity T . We then assume that the
T -forward risk-adjusted measure QT exists and that the marginal density of S under QT

is equal to the weighted average of the known densities of some given diffusion processes.
The dynamics of the asset price S under the forward measure QT is expressed by

dSt = µStdt + σ(t, St)StdWt, (1)

where µ is a constant, W is a QT -standard Brownian motion and σ is a well-behaved
deterministic function.
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The µ parameter is completely specified by the definition of QT . In fact, if the asset is
a stock paying a continuous dividend yield q and rates are deterministic, then µ = r − q,
where r is the time T (continuously compounded) risk-free rate. If the asset is an exchange
rate and rates are deterministic, then µ = r − rf , where rf is foreign risk-free rate for the
maturity T . If the asset is a forward rate spanning an interval [T0, T ], T0 < T , then µ = 0
due to the martingale property of forward rates under their corresponding measure.

The function σ, which is usually termed local volatility in the financial literature, must
be chosen so as to grant a unique strong solution to the SDE (1). In particular, we assume
that σ(·, ·) satisfies, for a suitable positive constant L, the linear-growth condition

σ2(t, y)y2 ≤ L(1 + y2) uniformly in t, (2)

which basically ensures existence of a strong solution.
Let us then consider N diffusion processes with dynamics given by

dSi
t = µSi

tdt + vi(t, S
i
t)dWt, i = 1, . . . , N, (3)

with initial value Si
0, and where vi(t, y)’s are real functions satisfying regularity conditions

to ensure existence and uniqueness of the solution to the SDE (3). In particular we assume
that, for suitable positive constants Li’s, the following linear-growth conditions hold

v2
i (t, y) ≤ Li(1 + y2) uniformly in t, i = 1, . . . , N, (4)

For each t, we denote by pi
t(·) the density function of Si

t , i.e., pi
t(y) = d(QT{Si

t ≤ y})/dy,
where, in particular, pi

0(y) is the δ-Dirac function centered in Si
0.

The problem we want to address is the derivation of the local volatility σ(t, St) such
that the QT -density of S satisfies

pt(y) :=
d

dy
QT{St ≤ y} =

N∑
i=1

λi
d

dy
QT{Si

t ≤ y} =
N∑

i=1

λip
i
t(y), (5)

where each Si
0 is set to S0, and λi’s are strictly positive constants such that

∑N
i=1 λi = 1.

Indeed, pt(·) is a proper QT -density function since, by definition,

∫ +∞

0

ypt(y)dy =
N∑

i=1

λi

∫ +∞

0

ypi
t(y)dy =

N∑
i=1

λiS0e
µt = S0e

µt.

Applying the Fokker-Planck equation

∂

∂t
pt(y) = − ∂

∂y
(µypt(y)) +

1

2

∂2

∂y2

(
σ2(t, y)y2pt(y)

)
,

with pt given by (5), to back out the diffusion coefficient σ, we end up with the following
SDE for the asset price under the forward measure QT :

dSt = µStdt +

√∑N
i=1 λiv

2
i (t, St)p

i
t(St)∑N

i=1 λiS2
t p

i
t(St)

StdWt. (6)
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This SDE, however, must be regarded as defining some candidate dynamics that leads to
the marginal density (5). A detailed derivation of (6) is in Brigo and Mercurio (2000a).

Let us now give for granted that the SDE (6) has a unique strong solution. Then,
remembering the definition (5), it is straightforward to derive the model option prices in
terms of the option prices associated to the basic models (3). Indeed, let us consider a
European option with maturity T , strike K and written on the asset. Then, if ω = 1 for a
call and ω = −1 for a put, the option value O at the initial time t = 0 is given by

O = P (0, T )ET
{
[ω(ST −K)]+

}

= P (0, T )

∫ +∞

0

[ω(y −K)]+
N∑

i=1

λip
i
T (y)dy

=
N∑

i=1

λiP (0, T )

∫ +∞

0

[ω(y −K)]+pi
T (y)dy

=
N∑

i=1

λiOi,

(7)

where ET denotes expectation under QT and Oi denotes the option price associated to (3).

Remark 2.1. The assumption that the asset marginal density is given by a mixture of
known basic densities finds now an easy justification. We notice, in fact, that, starting
from a general asset-price dynamics, it may be quite problematic to come up with analytical
formulas for European options. Here, instead, the use of analytically-tractable densities
pi immediately leads to explicit option prices for the process S. Moreover, the virtually
unlimited number of parameters in the asset-price dynamics can be quite helpful in achieving
a satisfactory calibration to market data.

We have seen above that a dynamics leading to a marginal density for the asset price
that is the convex combination of basic densities induces the same convex combination
among the corresponding option prices. Due to the linearity of the derivative operator,
the same convex combination applies also to all option Greeks. In particular this ensures
that starting from analytically tractable basic densities one finds a model that preserves
the analytical tractability.

3 The mixture-of-lognormals case

Let us now review the particular case considered by Brigo and Mercurio (2000a) where the
densities pi

t(·)’s are all lognormal. Precisely, we assume that, for each i,

vi(t, y) = σi(t)y, (8)

where all σi’s are deterministic functions of time that are bounded from above and below
by positive constants. Notice that if moreover σi’s are continuous and we take a finite
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time-horizon, then boundedness from above is automatic, and the only condition to be
required explicitly is boundedness from below by a positive constant. Then, the marginal
density of Si conditional on S0 is given by

pi
t(y) =

1

yVi(t)
√

2π
exp

{
− 1

2V 2
i (t)

[
ln

y

S0

− µt + 1
2
V 2

i (t)

]2
}

,

Vi(t) :=

√∫ t

0

σ2
i (u)du.

(9)

The case where the risk-neutral density is a mixture of lognormal densities has been orig-
inally studied by Ritchey (1990)1 and subsequently used by Melick and Thomas (1997),
Bhupinder (1998) and Guo (1998). However, their works are mainly empirical: They sim-
ply assumed such risk-neutral density and then studied the resulting fitting to option data.
Brigo and Mercurio (2000a), instead, developed the model from a theoretical point of view
and derived the specific asset-price dynamics that implies the chosen distribution.

The reason for considering the basic densities (9) is of course due to their analytical
tractability and obvious connection with the Black and Scholes (1973) model. Moreover,
as we show in the appendix, the log-returns ln(St)/ ln(S0), t > 0, are more leptokurtic than
in the Gaussian case, which may be a nice feature from a practical point of view. Finally,
as also reported in the above empirical studies, mixtures of lognormal densities work well
in many practical situations, when used to reproduce market volatility structures.

The following result has been proven by Brigo and Mercurio (2000a).

Proposition 3.1. Let us assume that each σi is also continuous and that there exists an
ε > 0 such that σi(t) = σ0 > 0, for each t in [0, ε] and i = 1, . . . , N . Then, if we set

ν(t, y) =

√√√√√√√

∑N
i=1 λiσ

2
i (t)

1
Vi(t)

exp

{
− 1

2V 2
i (t)

[
ln y

S0
− µt + 1

2
V 2

i (t)
]2

}

∑N
i=1 λi

1
Vi(t)

exp

{
− 1

2V 2
i (t)

[
ln y

S0
− µt + 1

2
V 2

i (t)
]2

} , (10)

for (t, y) > (0, 0) and ν(t, y) = σ0 for (t, y) = (0, S0), the SDE

dSt = µStdt + ν(t, St)StdWt, (11)

has a unique strong solution whose marginal density is given by the mixture of lognormals

pt(y) =
N∑

i=1

λi
1

yVi(t)
√

2π
exp

{
− 1

2V 2
i (t)

[
ln

y

S0

− µt + 1
2
V 2

i (t)

]2
}

. (12)

1Indeed, Ritchey (1990) assumed a mixture of normal densities for the density of the asset log-returns.
However, it can be easily shown that this is equivalent to assuming a mixture of lognormal densities for
the density of the asset price.
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Moreover, for (t, y) > (0, 0), we can write

ν2(t, y) =
N∑

i=1

Λi(t, y)σ2
i (t), (13)

where, for each (t, y) and i, Λi(t, y) ≥ 0 and
∑N

i=1 Λi(t, y) = 1. As a consequence

0 < σ̃ ≤ ν(t, y) ≤ σ̂ < +∞ for each t, y > 0, (14)

where

σ̃ := inf
t≥0

{
min

i=1,...,N
σi(t)

}
,

σ̂ := sup
t≥0

{
max

i=1,...,N
σi(t)

}
.

The above proposition provides us with the analytical expression for the diffusion coef-
ficient in the SDE (1) such that the resulting equation has a unique strong solution whose
marginal density is given by (5) with pi’s as in (9). Moreover, the square of the “local
volatility” ν(t, y) can be viewed as a weighted average of the squared “basic volatilities”
σ2

1(t), . . . , σ
2
N(t), where the weights are all functions of the lognormal marginal densities

(9). In particular, the “local volatility” ν(t, y) lies in the interval [σ̃, σ̂].
As we have already noticed, the pricing of European options under the asset-price model

(1) with (10) is quite straightforward.2 Indeed, we have the following.

Proposition 3.2. Consider a European option with maturity T , strike K and written on
the asset. The option value at the initial time t = 0 is then given by the following convex
combination of Black-Scholes prices

O = ωP (0, T )
N∑

i=1

λi

[
S0e

µT Φ

(
ω

ln S0

K
+

(
µ + 1

2
η2

i

)
T

ηi

√
T

)
−KΦ

(
ω

ln S0

K
+

(
µ− 1

2
η2

i

)
T

ηi

√
T

)]
,

(15)
where Φ is the normal cumulative distribution function, ω = 1 for a call and ω = −1 for
a put, and

ηi :=
Vi(T )√

T
=

√∫ T

0
σ2

i (t)dt

T
. (16)

The option price (15) leads to smiles in the implied volatility structure. An example of
the shape that can be reproduced in shown in Figure 1. Indeed, the volatility implied by the
option prices (15) has a minimum exactly at a strike equal to the forward asset price S0e

µT .
Given the above analytical tractability, we can easily derive an explicit approximation for

2We need also to remark that, under deterministic interest rates, we can actually prove the existence
of a unique risk-neutral measure, and hence forward measure.
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Figure 1: Volatility structure implied by the option prices (15), where we set µ = r = 0.035,
T = 1, N = 3, (σ1, σ2, σ3) = (0.5, 0.1, 0.2), (λ1, λ2, λ3) = (0.2, 0.3, 0.5) and S0 = 100.

the implied volatility as function of the option strike price. More precisely, defining the
moneyness m as

m := ln
S0

K
+ µT,

the Black-Scholes volatility that, for the given maturity T , is implied by the price (15) is
the function σ̂(m) that is implicitly defined by the equation

P (0, T )S0e
µT

[
Φ

(
m + 1

2
σ̂(m)2T

σ̂(m)
√

T

)
− e−mΦ

(
m− 1

2
σ̂(m)2T

σ̂(m)
√

T

)]

= P (0, T )S0e
µT

N∑
i=1

λi

[
Φ

(
m + 1

2
η2

i T

ηi

√
T

)
− e−mΦ

(
m− 1

2
η2

i T

ηi

√
T

)]
.

(17)

Proposition 3.3. The Black-Scholes volatility that is implied by the price (15) is given by

σ̂(m) = σ̂(0) +
1

2σ̂(0)T

N∑
i=1

λi

[
σ̂(0)

ηi

e
1
8(σ̂(0)2−η2

i )T − 1

]
m2 + o(m2), (18)

where σ̂(0) is the ATM-forward implied volatility, which is given by

σ̂(0) =
2√
T

Φ−1

(
N∑

i=1

λiΦ

(
1

2
ηi

√
T

))
. (19)
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Proof. The expression (18) is nothing but the second-order Taylor expansion of the function
σ̂ around 0, with the first and second derivatives in 0 that are calculated through repeated
application of Dini’s implicit function theorem. Some algebra then shows that the first
derivative in 0 is null and that (19) follows from (17).

The model (11) is quite appealing when pricing exotic derivatives. Notice, indeed, that
having explicit dynamics implies that the asset-price paths can be simulated by discretising
the associated SDE with a numerical scheme. Hence we can use Monte Carlo procedures
to price path-depending derivatives. Claims with early-exercise features can be priced with
grids or lattices that can be constructed given the explicit form of the asset-price dynamics.

4 Shifting the overall distribution

We now show how to construct an even more general model by shifting the process (11),
while preserving the correct drift. Precisely, we assume that the new asset-price process A
is obtained through the following affine transformation of the process S:

At = A0αeµt + St, (20)

where α is a real constant.3 By Ito’s formula, we immediately obtain that the asset-price
A evolves according to

dAt = µAtdt + ν
(
t, At − A0αeµt

)
(At − A0αeµt)dWt, (21)

where ν is defined by (10).
Some examples of the shapes that can be obtained for the density of At are shown in

Figure 2 for different values of the parameter α.
The model (21) for the asset price process preserves the analytical tractability of the

original process S. Indeed, the price at time 0 of a European call option with strike K,
maturity T and written on the asset is

P (0, T )ET
{
(AT −K)+

}
= P (0, T )ET

{
(A0αeµT + ST −K)+

}

= P (0, T )ET
{(

ST − [K − A0αeµT ]
)+

} (22)

Proposition 4.1. Assuming that K−A0αeµT > 0, the option price can be explicitly written
as

O = ωP (0, T )
N∑

i=1

λi

[
A0e

µT Φ

(
ω

ln A0

K +
(
µ + 1

2
η2

i

)
T

ηi

√
T

)
−KΦ

(
ω

ln A0

K +
(
µ− 1

2
η2

i

)
T

ηi

√
T

)]
,

(23)

3It is easy to prove that this is actually the most general affine transformation for which the drift rate
of A is µ.
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Figure 2: The density function p(x) of AT for the different values of α ∈ {−0.4,−0.2, 0, 0.2},
where we set A0 = 100, µ = 0.05, T = 0.5, N = 3, (η1(T ), η2(T ), η3(T )) = (0.25,0.09,0.04)
and (λ1, λ2, λ3) = (0.8,0.1,0.1).

where K = K−A0αeµT , A0 = A0(1−α), ω = 1 for a call and ω = −1 for a put. Moreover,
the Black-Scholes volatility that is implied by the price (23) is given by

σ̂(m) = σ̂(0) + α

∑N
i=1 λiΦ

(
−1

2
ηi

√
T

)
− 1

2
√

T√
2π

e−
1
8
σ̂(0)2T

m +
1

2

[
1

T (1− α)

N∑
i=1

λi

ηi

e
1
8(σ̂(0)2−η2

i )T

− 1

σ̂(0)T
+

α2

4
σ̂(0)T




∑N
i=1 λiΦ

(
−1

2
ηi

√
T

)
− 1

2
√

T√
2π

e−
1
8
σ̂(0)2T




2 ]
m2 + o(m2)

(24)

where σ̂(0) is the ATM-forward implied volatility, which is now given by

σ̂(0) =
2√
T

Φ−1

(
(1− α)

N∑
i=1

λiΦ

(
1

2
ηi

√
T

)
+

α

2

)
. (25)

Proof. The option price (23) immediately follows from (22) remembering (15). The expres-
sion (24) is the second-order Taylor expansion of the function σ̂ around 0, with the first
and second derivatives in 0 that are derived, after lengthy calculations, by means of Dini’s
implicit function theorem. The implied volatility (25) follows instead from the obvious
generalization of (17) to the case where the option price is (23).

We remark that for α = 0 the process A obviously coincides with S while preserving the
correct drift. The introduction of this new parameter has the effect that, decreasing α, the

10



variance of the asset-price at each time increases while maintaining the correct expectation.
See also Figure 2 for related examples. Indeed,

E(At) = A0e
µt

Var(At) = A2
0(1− α)2e2µt

(
N∑

i=1

λie
V 2

i (t) − 1

)
.

The parameter α affects the shape of the implied volatility surface in a twofold manner.
First, it concurs to determine the level of such surface in that changing α leads to an almost
parallel shift of the surface. Second, it moves the strike where the volatility is minimum.
Precisely, if α > 0 (< 0) the minimum is attained for strikes lower (higher) than the ATM
forward price. For related examples, we refer to Figure 3.
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Figure 3: Influence of α on implied volatility curves. Left: implied volatility curve for
A0 = 100, µ = 0.05, N = 2, T = 2, (η1(T ), η2(T )) = (0.35,0.1), (λ1, λ2) = (0.6,0.4),
α ∈ {0,−0.2,−0.4}, K ∈ [80, 120]; Right: implied volatility curve for A0 = 100, µ = 0.05,
N = 2, T = 2, (λ1, λ2) = (0.6,0.4), K ∈ [80, 120] in the three cases: a) (η1(T ), η2(T ))
= (0.35,0.1), α = 0; b)(η1(T ), η2(T )) = (0.1099,0.3553), α = −0.2; c)(η1(T ), η2(T )) =
(0.09809,0.2979), α = −0.4;

A large variety of skews for the implied volatility surface can be thus obtained. An
example of the volatility surface that is implied by the above option prices is displayed
in Figure 4. Notice, indeed, that one can easily find some σi’s, satisfying our technical
assumptions, that are consistent with the chosen ηi’s. Retrieving such σi’s is fundamental
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for the discretization of the asset price dynamics one needs to consider in order to price
exotic claims.
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Figure 4: Implied volatility surface for A0 = 100, µ = r = 0.05, N = 2, T :=
{0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}, (η1(t), η2(t)) = (0.35,0.1), for each t ∈ T , (λ1, λ2) =
(0.6,0.4), α = −0.5 and T varying in T .

The explicit option price (23) immediately leads to closed form formulas for the option
Greeks as well, since differentiating a linear combination yields the linear combination of
the single derivatives. For instance, the option Delta is easily computed as

N∑
i=1

λiP (0, T )eµT
[
(1− α)Φ

(
d1

(
A0(1− α), K − αA0e

µT , T, µ, ηi(T )
))− αΦ(d2)

]
,

d1,2(S, K, T, µ, V ) =
ln(S/K) + (µ± V 2/2)T

V
√

T
,

where d2’s arguments are the same as d1’s and have been omitted for brevity. Notice that
for α = 0 this is just a linear combination of Black and Scholes ∆’s.

4.1 Shifting each basic distribution

In order to achieve greater flexibility when trying to reproduce various volatility structures,
a possible extension of the model may consist in allowing each density pi

t to be shifted
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independently.
Assuming the dynamics

{
Si

t = βie
µt + X i

t

dX i
t = µX i

tdt + σi(t)X
i
tdWt

(26)

which leads to
dSi

t = µSi
tdt + σi(t)(S

i
t − βie

µt)dWt, (27)

we get the natural extension to Eq. (9)

pi
t(y) =

1

(y − βieµt)Vi(t)
√

2π
exp

[
− 1

2V 2
i (t)

(
ln

(
y − βie

µt

S0 − βi

)
− µt +

1

2
V 2

i (t)

)2
]

, y ≥ βie
µt

(28)
and the resulting dynamics for St is

dSt = µStdt +

√∑n
i=1 λiσ2

i (t)(St − βieµt)2pi
t(St)∑n

i=1 λipi
t(St)

dWt (29)

Eq. (23) is trivially extended to deal with individual shifts in the basis densities. It is still
to be verified that under the assumption of Eq. (26) the corresponding SDE for St has a
unique strong solution.

5 Applying the models in practice

We now briefly illustrate how to apply our previous models to the three fundamental
markets we consider: equity, exchange rate and interest rate markets.

If the asset is a stock or an index paying a continuous dividend yield q, we can assume
that interest rates are constant for all maturities and all equal to r > 0. Then every forward
measure coincides with the (assumed unique) risk-neutral measure, which has B(t) = ert

as numeraire, and the stock/index price dynamics, under such measure, is given by (21)
where we put µ = r − q. If the stock/index pays known discrete dividends, the general
methodology described by Musiela and Rutkowski (1998) can be applied. In this case, (21)
with µ = r defines the continuous part of the price dynamics and the option price formula
(23) holds as long as A0 is reduced by the present value of all future dividends. As to
the calibration to real market data, the pronounced skews that are commonly displayed in
stock/index markets can be retrieved by suitably playing with the parameters, especially α
(in the case of a common shift for the whole distribution) or the individual βi’s (for the most
general case treated in Section 4.1) which may assume highly negative values. However,
reproducing highly steep curves for very short maturities may be still problematic.

Suppose instead that the asset is a forward Libor rate. The forward Libor rate at time
t for the period that goes from expiry S to maturity T is defined by

F (t, S, T ) =
1

τ(S, T )

[
P (t, S)

P (t, T )
− 1

]
,

13



where τ(S, T ) is the year fraction from S to T . This is the fundamental quantity that
is modelled in the celebrated Libor market models for interest rates. The forward rate
dynamics we propose are then given by (21) where we put µ = 0, since F (·, S, T ) is a
martingale under the forward measure QT . Similarly to the equity market, also in the
interest rate market pronounced skews are often displayed. Once again the parameter α
plays a fundamental role in the calibration to market data.

5.1 The calibration to market data

The virtually unlimited number of parameters can render the model calibration to real
market data extremely accurate. However, when solving the optimization problem con-
sisting in minimizing the “distance” between model and market prices according to some
favorite criterion, the search for a global minimum can be quite cumbersome and inevitably
slow. Suppose you have 10 parameters and just 4 possible values for each of them. This
implies that more than one million different combinations of parameter values, hence ob-
jective function valuations, are considered. The use of a local-search algorithm can actually
speed up the calibration process. However, these algorithms usually provide quite different
answers according to the initial guess on the parameter values. In practice, therefore, it is
advisable to use a global search algorithm with few model parameters and then refine the
search with a local algorithm around the last solution being found.

Let us assume we have M option maturities T1 < T2 < . . . < TM . We set vi,j := ηi(Tj)
for i = 1, . . . , N and j = 1, . . . , M . The option price (23) only implicitly depends on
the functions σi’s since the quantities that directly affect it are the vi,j’s. The model
calibration, therefore, must be performed on these variables. The set of constraints vi,j+1 >
vi,j

√
Tj/Tj+1, for each i and j, must be then introduced to avoid imaginary values for the

functions σi’s. An additional constraint is on the parameter α, which must satisfy the
condition K > A0αeµT for each traded strike K.

To reduce the number of parameters we may assume that no changes occur along
the maturity dimension by setting vi,j = v̄i > 0, which is always consistent with some
admissible σi’s. The fitting quality however may worsen considerably. The choice made
in one of the following examples (calibrated on EUR/USD market data) is instead to
greatly reduce the number of fitting parameters by specifying a given parametric form for
functions ηi(t). This form is parsimonious but still flexible enough to achieve a very good
fitting quality.

As to the number of lognormal densities to choose, it is enough to set N = 2 or N = 3
in most practical applications.

5.2 An example of calibration

The fitting quality of the extended model (20) has been first investigated by Brigo and
Mercurio (2000b) through market data of the Italian MIB30 equity index. We here consider
a different example based on interest rates volatility data. Precisely, we use the caplet
volatilities that are stripped from the quoted in-the-money and out-of-the-money Euro
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cap/floor volatilities as of November 14th, 2000. We focus on the volatilities of the two-
year caplets with the underlying Libor rate resetting at 1.5 years. The underlying forward
rate is 5.32%, the considered strikes are 4%, 4.25%, 4.5%, 4.75%, 5%, 5.25%, 5.5%, 5.75%,
6%, 6.25%, 6.5% and the associated (mid) volatilities are 15.22%, 15.14%, 15.10%, 15.08%,
15.09%, 15.12%, 15.17%, 15.28%, 15.40%, 15.52%, 15.69%.

Setting N = 2 (the index density is a mixture of two lognormal densities), vi := ηi(1.5),
i = 1, 2, and λ2 = 1−λ1, we looked for the admissible values of λ1, v1, v2 and α minimizing
the squared percentage difference between model and market (mid) prices. We obtained
λ1 = 0.2412, λ2 = 0.7588, v1 = 0.1247, v2 = 0.1944 and α = 0.14725. The resulting
implied volatilities are plotted in Figure 5, where they are compared with the market mid
volatilities.
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Market volatilities    
Calibrated volatilities

Figure 5: Plots of the calibrated volatilities vs the market mid volatilities.

In this example we could obtain a satisfactory fitting to the considered market data
already with a mixture of two densities. Indeed, the fact that the implied volatility smile is
almost flat helped in achieving such a calibration result. However, as also shown in Brigo
and Mercurio (2000b), steeper curves may be well reproduced too. To this end, increasing
the number N of basic lognormal densities may be helpful to retrieve a larger variety of
implied volatility structures.

5.3 Calibration to a whole volatility surface: the EUR/USD rate
case

We consider here a different case, namely that of the EUR/USD market volatility structure
on May 17, 2001. The implied volatility surface as a function of time to maturity (T ) and
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option delta is reported in Fig. 6, upper part. It is customary in the FX market to quote
volatilities in terms of three parameters per maturity: ATM volatility (σATM), risk–reversal
(r), strangle parameter (s). A thorough treatment of these types of options can be found
in Malz (1997). Suffice it to say that a common assumption for a functional form that
interpolates the observed market prices of vanilla options is

σ(δ, T ) = σATM(T )− 2r(T )

(
δ − 1

2

)
+ 16s(T )

(
δ − 1

2

)2

, (30)

with

δ = e−rdT Φ

[
ln(St/X) + (rd − rf + σ2

2
)(T − t)

σ
√

T − t

]
(31)

being the delta of a call option. The relevant parameters (at–the–money volatility, risk–
reversal and strangle) for the two dates at hand are quoted in Table 1, along with estimates
of the bid/ask spread on the implied volatility on each maturity date. It is evident that

T σATM r s Bid/ask spread
O/N 13.50% 0.60% 0.29 % 2%-2.5%
1W 10.50% 0.60% 0.29% 2%-2.5%
2W 10.40% 0.40% 0.29% 1%-1.5%
1M 11.00% 0.40% 0.30% 0.35%-0.85%
2M 11.15% -0.05% 0.30% 0.30%-0.80%
3M 11.50% -0.05% 0.30% 0.30%-0.80%
6M 11.85% -0.10% 0.30% 0.30%-0.68%
9M 12.00% -0.14% 0.30% 0.30%-0.55%
1Y 12.05% -0.15% 0.30% 0.25%-0.45%
2Y 12.05% -0.15% 0.30% 0.25%-0.45%

Table 1: Market data for ATM implied vols, risk–reversal and strangle prices as of May
17, 2001.

short maturity options (with maturities ranging from one week to two weeks) are not very
liquid, a feature to be borne in mind when judging the results of calibration.

We have calibrated the model under the assumption of individual shifts depicted in
Section 4.1, and explored the effect of varying the number of basis densities N . In order
to accurately fit the market data, an appropriate choice for the integrated volatilities

ηi(T ) =
√

1
T

∫ T

0
σ2

i (s)ds of Eq. (16) must be made. We set

ηi(T ) = η(T ; ai, bi, ci, τi) = ai + bi

[
1− exp

(
−T

τi

)]
τi

T
+ ci exp

(
−T

τi

)
, (32)

a functional dependence already proposed by Nelson and Siegel (1987) in the context of
yield curve modelling. When calibrating the mixture of an n–component model, the vector
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Figure 6: The market implied volatility surface (above) and absolute difference in implied
volatility after calibration of the model with N = 3 (below) for the May 17, 2001 market
data.
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of optimization parameters x = (λ1, · · ·λn−1, β1, · · · βn, a1, · · · an, b1, · · · bn, c1, · · · cn, τ1, · · · τn)
has dimensionality 4n + n + (n− 1) = 6n− 1.

The calibration procedure consists in minimizing the function

F (x) =
1

ML

M∑

k=1

L∑
j=1

(
Πtheo(Tk, Kj;x)− Πmkt(Tk, Kj)

Πmkt(Tk, Kj)

)2

(33)

with respect to the parameter vector x. Here Πmkt(T, K) denotes the mid market price of a
European call option with maturity T and strike K, and Πtheo(T, K;x) is the corresponding
price given by the mixture of lognormal model for a choice of the parameter vector x. This
calibration differs from the former in that the model must now reproduce the volatility
smile structure of vanilla options across all quoted maturities, from overnight to two years.
The resulting root–mean–square error (square root of Eq. (33)) is 3 × 10−4 and 7 × 10−5

for calibrations based on two component and four component mixtures, respectively. A
plot of the difference between the market implied volatility and the corresponding model
volatility is given in Fig. 6, as a function of the option maturity (in years) and delta (which
is indirectly related to the strike of the option through Eq. (31)). The maximum error for
any maturity is well below the corresponding bid–ask spread of Table 1 already with only
three components in the density.
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Figure 7: The integrated volatilities ηi(T ) of Eqs. (16) and (32) after calibration of the
model with N = 3 on the May 17, 2001 market data. T is measured in years. Brackets
enclose the shift and weight parameter: (βi, λi) for each component.

In Fig. 7 we plot the ηi(T ) of Eq. (32) as functions of T measured in years from today.
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Each curve in the picture is labeled with the corresponding β and λ (shift parameter and
weight in the mixture, respectively). It is interesting to carefully examine the evolution of
these functions when the number of components in the mixture varies: in Fig. 8 the two
ηi only show a mild monotonic behaviour; adding a third component (Fig. 7) allows for
a greater flexibility of the model in properly fitting the short maturity end of the implied
volatility surface (usually the most difficult to reproduce) and this happens through a
low–weight basis density (17% weight) with a rapidly decreasing η(T ). An additional
component (see Fig. 9) does not change the general picture in a significant way.
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Figure 8: Same as in Fig. 7 with N = 2.

A final word should be spent on the density resulting from the mixture (Eq. (5)) when
the number of component densities pi

t varies. Careful inspection of Fig. 10 shows a process
of convergence of the resulting density (plotted for a one year horizon) as the number of
components is increased from one to four.

6 Conclusions

We have proposed asset-price models capable of reproducing quite general volatility struc-
tures. First we have introduced and explained the “lognormal-mixture” asset-price dy-
namics, and then we have extended this model by means of general transformations. All
models are analytically tractable, and explicit prices for European-style call options are
readily derived as linear combinations of Black-Scholes prices.
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Figure 9: Same as in Fig. 7 with N = 4.

Furthermore, once calibrated to the plain vanilla market, any of these models allows to
price exotic path-dependent claims through Monte Carlo simulation.

Very few existing models propose explicit asset-price dynamics that are consistent with
a given risk-neutral (forward) distribution. Moreover, the arbitrarily large number and
controllability of parameters render our model unique from this point of view. In fact,
choosing as many parameters as we like produces a large flexibility in the model calibration
to real option data, although one needs to beware of possible problems related to overfitting
and feasibility of the calibration process as far as the execution time is concerned.

Appendix

In this appendix, we calculate the skewness and kurtosis of the marginal distribution of
the log-process S̄t := ln(St)/ ln(S0), t > 0. As is easily shown, for each t > 0 the density
of S̄t is given by the mixture of normal densities:

p̄t(y) :=
d

dy
QT

{
ln

St

S0

≤ y

}

= S0e
ypt(S0e

y)

=
N∑

i=1

λi
1

Vi(t)
√

2π
exp

{
− 1

2V 2
i (t)

[
y − µt + 1

2
V 2

i (t)
]2

}
.
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Figure 10: The probability densities resulting from the mixture after calibration of the
model on the May 17, 2001 market data, for varying numbers N of basis densities of Eq.
(5). The solid line represents a single (non shifted) lognormal process density calibrated
to the whole implied volatility surface, the other lines refer to the shifted basis densities
for N = 1, · · · 4, as described in the legenda.

Using the fact that every (central) moment of a linear combination of densities is given by
the (same) linear combinations of the corresponding moments, we have:

ET{S̄t} = µt− 1

2
V2(t),

ET{S̄2
t } = µ2t2 + (1− µt)V2(t) +

1

4
V4(t),

ET{S̄3
t } = µ3t3 + 3µt

(
1− 1

2
µt

)
V2(t) +

3

4
(µt− 2)V4(t)− 1

8
V6(t),

ET{S̄4
t } = µ4t4 − 2µ2t2(µt− 3)V2(t) +

3

2

(
µ2t2 − 4µt + 2

)
V4(t)− 1

2
(µt− 3)V6(t) +

1

16
V8(t),

where

Vk(t) :=
N∑

i=1

λiV
k
i (t).

21



Tedious but straightforward calculations lead to the following expressions for the variance,
skewness and kurtosis of S̄t under QT :

VarT{S̄t} = V2(t) +
1

4
V4(t)− 1

4

(V2(t)
)2

SkewT{S̄t} =
12

(V2(t)
)2 − 2

(V2(t)
)3

+ 3V2(t)V4(t)− 12V4(t)− V6(t)

8
(
V2(t) + 1

4
V4(t)− 1

4

(V2(t)
)2

)3/2

KurtT{S̄t} =
48V4(t) + 24V6(t) + 24

(V2(t)
)3 − 48V2(t)V4(t)

16
(
V2(t) + 1

4
V4(t)− 1

4

(V2(t)
)2

)2

+
V8(t) + 6

(V2(t)
)2V4(t)− 3

(V2(t)
)4 − 4V2(t)V6(t)

16
(
V2(t) + 1

4
V4(t)− 1

4

(V2(t)
)2

)2

The above expressions are rather involved and difficult to study. Indeed, it may be helpful
to rearrange them as follows:

VarT{S̄t} =
N∑

i=1

λiV
2
i (t) +

1

4

N∑
i=1

λi

[
V 2

i (t)−
N∑

j=1

λjV
2
j (t)

]2

SkewT{S̄t} = −
12

∑N
i=1 λi

(
V 2

i (t)−∑N
j=1 λjV

2
j (t)

)2

+
∑N

i=1 λi

(
V 2

i (t)−∑N
j=1 λjV

2
j (t)

)3

8

[ ∑N
i=1 λiV 2

i (t) + 1
4

∑N
i=1 λi

(
V 2

i (t)−∑N
j=1 λjV 2

j (t)
)2

]3/2

= −
∑N

i=1 λi

(
V 2

i (t)−∑N
j=1 λjV

2
j (t)

)2(
12 + V 2

i (t)−∑N
j=1 λjV

2
j (t)

)

8

[ ∑N
i=1 λiV 2

i (t) + 1
4

∑N
i=1 λi

(
V 2

i (t)−∑N
j=1 λjV 2

j (t)
)2

]3/2

KurtT{S̄t} =
48

∑N
i=1 λiV

4
i (t) + 24

∑N
i=1 λiV

2
i (t)

(
V 2

i (t)−∑N
j=1 λjV

2
j (t)

)2

16

[ ∑N
i=1 λiV 2

i (t) + 1
4

∑N
i=1 λi

(
V 2

i (t)−∑N
j=1 λjV 2

j (t)
)2

]2

+

∑N
i=1 λi

(
V 2

i (t)−∑N
j=1 λjV

2
j (t)

)4

16

[ ∑N
i=1 λiV 2

i (t) + 1
4

∑N
i=1 λi

(
V 2

i (t)−∑N
j=1 λjV 2

j (t)
)2

]2

= 3 +

∑N
i=1 λi

(
V 2

i (t)−∑N
j=1 λjV

2
j (t)

)2 [
48 + 24Ui + U2

i − 3
∑N

j=1 λjU
2
j

]

16

[ ∑N
i=1 λiV 2

i (t) + 1
4

∑N
i=1 λi

(
V 2

i (t)−∑N
j=1 λjV 2

j (t)
)2

]2 ,
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where, in the last step, we have set Ui := V 2
i (t)−∑N

k=1 λkV
2
k (t).

We can easily see that a sufficient condition for the skewness to be negative is that
12 + V 2

i (t)−∑N
j=1 λjV

2
j (t) ≥ 0 for each i, whereas a sufficient condition for the kurtosis to

be larger than 3 is that 48+24Ui+U2
i −3

∑N
j=1 λjU

2
j ≥ 0 for each i. Indeed such conditions

are largely satisfied for realistic (non-pathological) values of the model parameters.
In order to deal with more user-friendly expressions, we can neglect all terms with

V α
1 (t)V β

2 (t) of non-minimum degree, which leads to the following approximations:

VarT{S̄t} ≈ V2(t) =
N∑

i=1

λiV
2
i (t)

SkewT{S̄t} ≈ 3

2

(V2(t)
)2 − V4(t)(V2(t)

)3/2
= −3

2

∑N
i=1 λi

(
V 2

i (t)−∑N
j=1 λjV

2
j (t)

)2

( ∑N
i=1 λiV 2

i (t)
)3/2

≤ 0

KurtT{S̄t} ≈ 3
V4(t)(V2(t)

)2 = 3 + 3

∑N
i=1 λi

(
V 2

i (t)−∑N
j=1 λjV

2
j (t)

)2

( ∑N
i=1 λiV 2

i (t)
)2 ≥ 3

Such approximations turn out to be accurate in most practical situations, and especially
for non-pathological values of the model parameters.

As an example, we finally consider the particular case of a mixture of two densities,
and set, therefore, N = 2, λ1 := λ and λ2 := 1− λ. We obtain:

VarT{S̄t} ≈ λV 2
1 (t) + (1− λ)V 2

2 (t)

SkewT{S̄t} ≈ −3

2

λ(1− λ)
(
V 2

1 (t)− V 2
2 (t)

)2

(
λV 2

1 (t) + (1− λ)V 2
2 (t)

)3/2

KurtT{S̄t} ≈ 3
λV 4

1 (t) + (1− λ)V 4
2 (t)(

λV 2
1 (t) + (1− λ)V 2

2 (t)
)2

from which it is immediate that, for given V1(t) and V2(t), KurtT{S̄t} is maximum for

λ = λ∗ :=
V 2

2 (t)

V 2
1 (t) + V 2

2 (t)

and the value of the maximum kurtosis is

KurtT{S̄t}|λ=λ∗ =

(
V 2

1 (t) + V 2
2 (t)

)2

4V 2
1 (t)V 2

2 (t)
.

Letting V1(t) and V2(t) vary as well, the maximum kurtosis can grow indefinitely (to
infinity).
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