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Abstract

In this paper we are concerned with the distributional difference of forward swap rates
between the lognormal forward–Libor model (LFM) or “Libor market model” and the
lognormal forward-swap model (LSM) or “swap market model”, the two fundamental
models for interest-rate derivatives. To measure this distributional difference, we resort
to a “metric” in the space of distributions, the well known Kullback-Leibler information
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(KLI). We explain how the KLI can be used to measure the distance of a given distribution
from the lognormal (exponential) family of densities, and then apply this to our models’
comparison. The volatility of (i.e. standard deviation associated with) the projection
of the LFM swap-rate distribution onto the lognormal family is compared to a industry
synthetic swap volatility approximation obtained via “freezing the drift” techniques in
the LFM. Finally, for some instantaneous covariance parameterizations of the LFM we
analyze how the above distance changes according to the parameter values and to the
parameterizations themselves, in an attempt to characterize the situations where LFM
and LSM are really distributionally close, as is assumed by the market.

1 Introduction

In this paper we are concerned with the difference between two of the most popular and promis-

ing interest rate models: the two main market–models. The importance of such models is

due to their agreement with well-established market formulae for two basic derivative prod-

ucts. Indeed, the lognormal forward–Libor model (LFM) or “Libor market model” (Miltersen,

Sandman and Sondermann (1997), and Brace, Gatarek and Musiela (1997)), prices caps with

Black’s cap formula, which is the standard formula employed in the cap market. Moreover,

the lognormal forward-swap model (LSM) or “swap market model” (Jamshidian (1997)), prices

swaptions with Black’s swaption formula, which again is the standard formula employed in

the swaption market. Since the cap and swaption markets are the two main markets in the

interest-rate world, it is important for a model to be compatible with such markets formulae.

Recently, many works have investigated the LIBOR market model properties, calibration, ap-

proximated lognormality under different measures, and other issues, see for example Brigo and

Mercurio (2001), Matsumoto (2001), Rebonato (2003), Sidenius (2000).

Before market models were introduced, Black’s formula for either caps or swaptions was

based on mimicking the Black and Scholes model for stock options under some simplifying

and inexact assumptions on interest rates distributions. The introduction of market models

provided a new and rigorous derivation of Black’s formulae. However, even with full rigor given

separately to the caps and swaptions classic formulae, the LFM and LSM are not compatible.

Roughly speaking, if forward Libor rates are lognormal each under its measure, as assumed by

the LFM, forward swap rates cannot be lognormal at the same time under the relevant swap

measure, as assumed by the LSM instead. There exists a number of empirical works in the

literature showing that forward swap rates obtained by lognormal forward Libor rates are not

far from being lognormal themselves under the appropriate measures. We refer to the paper

of Brace, Dun and Barton (1998) for such analysis, where “closeness” of the two models is

analysed based on standard statistical techniques for assessing the deviation from normality

of a certain set of data. Moreover, in Chapter 8 of Brigo and Mercurio (2001) some problems

related to this matter have been investigated numerically, showing that lognormality almost
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holds for the swap rate in the LIBOR model.

Here we propose instead the use of a “metric” in the space of distributions as a measure of

the difference between the two models. We consider the forward rate dynamics under the ap-

propriate forward measures for the LFM. As we said before, we know that in this setup caps are

priced in agreement with Black’s cap market formula, provided one chooses a geometric Brow-

nian martingale dynamics for the relevant forward rates, and cap pricing is almost automatic,

the degree of automatism depending on the particular instantaneous volatility parameterization

chosen in the forward rates dynamics. A fundamental part of the LFM specification which has

a relevant impact on the forward swap rates coming from this model is the choice of the in-

stantaneous covariance structure in the forward rates dynamics, i.e. of instantaneous volatility

and correlation. We illustrate some possible parametric choices for both of these structures.

We then derive the LFM forward rates dynamics under the swap measure. We simulate such

a forward rate dynamics under the swap measure, and compute the resulting swap rate as an

algebraic expression in the forward rates thus generated. In this way we simulate the swap rate

under the swap measure in the LFM. Similarly, we introduce the LSM and show how swaptions

are priced in agreement with Black’s swaptions formula under the swap measure, implying a

lognormal distribution for the forward swap rate, and point out the theoretical incompatibility

between the LFM and LSM. We take the distance of the simulated LFM swap rate distribution

from the family of lognormal distributions, where the LSM swap rate distribution lies, as a

measure of the distributional distance between the LFM and LSM.

We also report an approximated formula which allows to deduce LSM instantaneous volatil-

ities from LFM instantaneous covariances. This formula is rather handy and popular among

practitioners, and is based on ignoring drifts and on freezing coefficients in suitable stochastic

differential equations for the forward swap rates.

We then introduce the Kullback–Leibler information (KLI) and explain how it can be used

to measure the distance of a given distribution from an exponential family. We plan to use

this distance to understand how closeness between LFM and LSM changes according to the

particular volatility and correlation parameterizations which are chosen for the LFM instan-

taneous covariance. For each parameterization considered, we also analyze how the distance

changes with volatility parameters, correlation parameters, time to maturity, and tenor (length

of the underlying swap). Finally, in all these different situations, we compare the approximated

formula for swap volatilities based on “ignoring the drift” and “freezing the coefficients” to

a volatility based on the KLI. This KLI volatility is obtained via the lognormal distribution

which is closest (in the KLI sense) to the true swap–rate distribution of the LFM.

In the paper we report the first results we obtained in this investigation.



Damiano Brigo and Jan Liinev: Distributional distance between LIBOR and Swap market models 4

2 The Libor market model (LFM)

Let t = 0 be the current time. Consider a set E = {T0, . . . , TM} of adjacent expiry-maturity

pairs of dates for a family of spanning forward rates. We shall denote by {τ0, . . . , τM} the

corresponding year fractions, meaning that τi is the year fraction associated with the expiry-

maturity pair Ti−1, Ti for i > 0, and τ0 is the year fraction from settlement to T0.

Consider the generic forward (LIBOR) rate Fk(t) := F (t; Tk−1, Tk), which is ”alive” up to

time Tk−1, where it coincides with the spot (LIBOR) rate Fk(Tk−1) := L(Tk−1, Tk), where in

general L(S, T ) is the spot (LIBOR) rate prevailing at time S for the maturity T .

Consider now the probability measure Qk associated to the numeraire P (·, Tk), i.e. to the

price of the zero-coupon bond whose maturity coincides with the maturity of the forward rate.

Qk is often called the forward adjusted measure for maturity Tk. Since

Fk(t)P (t, Tk) = (P (t, Tk−1)− P (t, Tk))/τk.

is the price of a tradable asset, Fk follows a martingale under Qk. The lognormal forward-Libor

model (LFM) assumes the following driftless geometric Brownian dynamics for Fk under Qk:

dFk(t) = σk(t) Fk(t)dZ
k
k (t), t ≤ Tk−1, (1)

where Zk
k (t) is a standard Brownian motion under Qk, the upper index denoting the measure,

and σk(t) is a deterministic function representing the instantaneous volatility at time t for the

forward LIBOR rate Fk. In case we write Fk’s dynamics under a measure Qi with i 6= k, Fk

does not follow a martingale under Qi and a drift term appears, yielding a SDE with unknown

distributional properties. For the details see for example Chapter 6 of Brigo and Mercurio

(2001).

We will often consider piecewise constant instantaneous volatilities,

σk(t) = σk,β(t), where β(t) = m if t ∈ (Tm−2, Tm−1].

The noises in the dynamics of different forward rates are assumed to be instantaneously corre-

lated according to

dZi(t) dZj(t) = d〈Zi, Zj〉t = ρi,j dt.

Clearly, lower indices denote components. Upper indices are omitted when the measure is clear

from the context or is irrelevant.

A few general remarks are now in order. First, as we said before, we will often assume that

the forward rate Fk(t) has instantaneous volatility that is piecewise constant: In particular, the

instantaneous volatility of Fk(t) is constant in each “expiry-maturity” time interval (associated

to any other forward rate) Tm−2 < t ≤ Tm−1 where it is ”alive”.

Under this assumption, it is possible to organize instantaneous volatilities in a matrix as

follows:
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TABLE 1

Instant. Vols Time: t ∈ (0, T0] (T0, T1] (T1, T2] . . . (TM−2, TM−1]

Fwd Rate:F1(t) σ1,1 Dead Dead . . . Dead

F2(t) σ2,1 σ2,2 Dead . . . Dead
... . . . . . . . . . . . . . . .

FM(t) σM,1 σM,2 σM,3 . . . σM,M

A possibly good structure is the following separable piecewise constant (SPC) formulation:

σk(t) = σk,β(t) := Φkψk−β(t)−1 (2)

for all t. This formulation collapses to two special cases. If all Φ’s are equal to one, this

form implies that instantaneous volatilities σi(t) depend only on the time-to-expiry Ti−1 − t,

σi,β(t) := ψi−β(t)−1. We refer to this case as to the “time-to-expiry homogeneous piecewise

constant” (TEHPC) formulation. If all ψ’s collapse to one, instead, each forward rate has

constant volatility σi(t) = Φi, and we call this the “time-homogeneous piecewise constant”

(THPC) formulation. These two extreme cases imply rather different evolutions in time for the

term structure of volatilities, and the general SPC formulation usually ranges in-between, see

again Chapter 6 of Brigo and Mercurio (2001) for the details.

Alternatively to PC volatilities, we may resort to a parametric linear-exponential (LE)

formulation.

LE formulation

σi(t) = Φi ψ(Ti−1 − t; a, b, c, d) =: Φi

(
[a(Ti−1 − t) + d]e−b(Ti−1−t) + c

)
. (3)

This parametric form leads to the same qualitative behaviour as the SPC one. In particular, it

leads qualitatively to the same extreme cases as before when all Φ’s are equal to one (“time-

to-expiry homogeneous linear exponential” (TEHLE) formulation) or when a, b, d vanish with

c = 1 (again the THPC formulation).

2.1 Caps and floors

Caps are collections of caplets. A Ti−1–caplet payoff pays at time Ti the amount

(Fi(Ti−1)−K)+.

A Ti−1–caplet is thus a contract which pays at time Ti the difference between the Ti–maturity

spot rate which has reset at time Ti−i and a strike rate K, if this difference is positive, and
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zero otherwise. Since in the LFM Fi follows a geometric Brownian motion under Qi, the above

expectation is computed immediately as a classical Black price. It follows that caps are priced

easily in terms of instantaneous volatilities of the rates F . In particular, the volatility parameter

vTi−1−caplet

√
Ti−1 entering Black’s formula for the above caplet is the square root of the following

average percentage variance

v2
Ti−1−caplet =

1

Ti−1

∫ Ti−1

0

σi(t)
2dt, (4)

multiplied by the expiry time Ti−1, which is straightforwardly computed on the basis of the

parametric form chosen, be it PC or LE. For more details see Brigo and Mercurio (2001).

3 The swap market model (LSM)

Assume a unit notional. A (prototypical) interest rate swap (IRS) is a contract that exchanges

payments between two differently indexed legs. At every instant Tj in a prespecified set of

dates Tα+1, ..., Tβ the fixed leg pays out an amount corresponding to a fixed interest rate K,

τjK ,

whereas the floating leg pays an amount corresponding to the interest rate Fi(Ti−1) resetting

at the previous instant Ti−1 for the maturity given by the current payment instant Ti.

In this setting the floating leg rate resets at dates Tα, Tα+1, . . . , Tβ−1 and pays at dates

Tα+1, . . . , Tβ.

The discounted payoff of our IRS at a time t < Tα can be expressed either as

β∑
i=α+1

D(t, Ti) τi(Fi(Ti−1)−K),

or as

D(t, Tα)

β∑
i=α+1

P (Tα, Ti) τi(Fi(Tα)−K), (5)

both expressions leading to the same risk-neutral expectation, giving the t-price of our IRS:

β∑
i=α+1

P (t, Ti)τi(Fi(t)−K) =

β∑
i=α+1

[P (t, Ti−1)− (1 + τiK)P (t, Ti)] .

From this formula we notice that, as is well known, neither volatility nor correlation of rates

affect the value of an IRS.

The forward swap rate corresponding to the above IRS at time t is the particular value of

the fixed-leg rate K that makes the contract fair, i.e. that makes its present value at time t

equal to zero. We obtain, after straightforward manipulations,
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Sα,β(t) =
1−∏β

j=α+1
1

1+τj Fj(t)∑β
i=α+1 τi

∏i
j=α+1

1
1+τj Fj(t)

so that the forward swap rate can be expressed in terms of spanning forward rates.

As an alternative expression we may write, through elementary manipulations

Sα,β(t) =

β∑
i=α+1

wi(t) Fi(t), (6)

wi(t) = wi(Fα+1(t), Fα+2(t), . . . , Fβ(t)) =
τi

∏i
j=α+1

1
1+τj Fj(t)∑β

k=α+1 τk

∏k
j=α+1

1
1+τj Fj(t)

.

This last expression is important because it can lead to useful approximations as follows. For-

mula (6) suggests that forward swap rates can be interpreted as weighted averages of spanning

forward rates. However, notice carefully that the weights w’s depend on the F ’s, so that we

do not have a weighted average in strict sense. Based on empirical studies which show the

variability of the w’s to be small compared to the variability of the F ’s, one can approximate

the w’s by their (deterministic) initial values w(0) and obtain

Sα,β(t) ≈
β∑

i=α+1

wi(0) Fi(t) . (7)

This can be helpful for example in estimating the absolute volatility of swap rates from the

absolute volatility of forward rates.

Finally, notice that the IRS discounted payoff (5) for K different from the swap rate can be

expressed also in terms of swap rates as

D(t, Tα) (Sα,β(Tα)−K)

β∑
i=α+1

τiP (Tα, Ti). (8)

A swaption is an option to enter an IRS at a future time Tα. Clearly, this right will be

exercised only when the swap rate at the exercise time Tα is larger than the IRS fixes rate

(strike) K, so that the resulting IRS will have positive value. Consequently, the swaption

payoff can be written as

D(t, Tα) (Sα,β(Tα)−K)+

β∑
i=α+1

τiP (Tα, Ti). (9)

A numeraire under which the above swap rate follows a martingale is

Cα,β(t) =

β∑
i=α+1

τiP (t, Ti).
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Indeed, the product Cα,β(t) Sα,β(t) = P (t, Tα) − P (t, Tβ) gives the price of a tradable asset

which, expressed in C units, coincides with our forward swap rate. Therefore, when choosing

C as numeraire, the forward swap rate Sα,β(t) evolves according to a martingale under the

related measure Qα,β. Such measure is usually termed the “swap measure”. The lognormal

forward-swap model (LSM) assumes the following geometric-Brownian driftless dynamics for a

forward-swap rate Sα,β(t) under its swap measure Qα,β:

d Sα,β(t) = σ(α,β)(t)Sα,β(t) dWα,β
t ,

where Wα,β is a standard Brownian motion under Qα,β. We denote by v2
α,β(T ) the average

percentage variance of the forward swap rate in the interval 0, T times the interval length:

v2
α,β(T ) =

∫ T

0

(σ(α,β)(t))2 dt .

When pricing a swaption (for example at time t = 0), this model is particularly conve-

nient, since it yields a lognormal distribution for S and thus the well-known Black formula for

swaptions, structurally analogous to the Black formula for caps:

Ẽ
(
D(0, Tα) (Sα,β(Tα)−K)+ Cα,β(Tα)

)
= Cα,β(0)Eα,β(Sα,β(Tα)−K)+

= Cα,β(0) Black(K, Sα,β(0), vα,β(Tα))

where “Black” denotes the core of Black’s formula.

4 LFM vs LSM swap-rate distributions under the swap

measure

We have seen in the previous section how one can price swaptions with the LSM, basically

resorting to Black’s formula. Now we consider instead pricing of swaptions with the LFM, and

try to quantify the difference between the two models. The LSM swaption formula is based on

a lognormal distribution for the swap rate Sα,β(Tα) coming from the LSM dynamics under the

swap measure Qα,β. In order for a comparison of distributions to make sense, we need both

distributions under the same measure. Therefore we need the dynamics of forward Libor rates

F under the LSM numeraire Cα,β(t). By applying the change of numeraire technique, we see

that

dFk(t) = σk(t)Fk(t)
(
µα,β

k (t)dt + dZk(t)
)

, (10)

µα,β
k (t) =

β∑
j=α+1

(2 · 1(j≤k) − 1)τj
P (t, Tj)

Cα,β(t)

max(k,j)∑

i=min(k+1,j+1)

τiρk,iσi(t)Fi(t)

1 + τiFi(t)
,
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where the Z’s are now Brownian motions under Qα,β. This is a closed set of SDEs when k

ranges from α + 1 to β, since the terms

P (t, Tj)

Cα,β(t)

can be easily expressed as suitable functions of the spanning forward rates

Fα+1(t), . . . , Fβ(t) .

By substituting the above forward rates into the previously derived algebraic expression

defining swap rates in terms of forward rates,

Sα,β(t) =
1−∏β

j=α+1
1

1+τj Fj(t)∑β
i=α+1 τi

∏i
j=α+1

1
1+τj Fj(t)

(11)

we obtain the LFM swap rate under the swap measure.

As an alternative to the LFM swap rate given by Equations (11,10) under the swap measure,

we have seen earlier the LSM swap rate under the swap measure stemming from the

lognormal dynamics

d Sα,β(t) = σ(α,β)(t)Sα,β(t) dWα,β
t . (12)

Now, when computing the swaption price as the discounted expectation

Ẽ
(
D(0, Tα) (Sα,β(Tα)−K)+ Cα,β(Tα)

)
= Cα,β(0)Eα,β[(Sα,β(Tα)−K)+]

we have two possibilities: We can do this either with the LFM given by Equations (11,10) or

with the LSM given by Equation (12). The result is not the same.

Remark 4.1. While the swap rate coming from the LSM dynamics (12) is lognormally dis-

tributed, the swap rate coming from the LFM dynamics (11,10) is not lognormal. This results

in the two models being theoretically incompatible.

Based on this remark, a quantity apt to measure the distance between the two models is

the distance of the distribution of the LFM swap rate from the family of lognormal densities

in which the distribution of the LSM swap rate lies.

In order to study this distance we need the distribution of the swap rate (11) under the

swap measure obtained via simulation of (10). Therefore we now explain how the Monte Carlo

simulation of equation (10) can be achieved.

Incidentally, while keeping in mind (11), notice carefully that the above expectation leading

to the swaption price depends on the joint distribution of spanning forward rates, so that

terminal correlations between different forward rates have an heavy impact on swaptions prices.

In order to simulate S through (11), we need to generate p realizations of these spanning

forward rates according to the dynamics (10). The simulated F ’s allow us to evaluate the LFM
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swap rate S in each realization and back out its quantiles and therefore its distribution under

the swap measure, although we will eventually use entropy estimators rather than empirical

density reconstruction in order to estimate our distributional distance.

Since the dynamics (10) does not lead to a distributionally known process, we need to

discretize such dynamics with a sufficiently (but not too) small time step ∆t in order to reduce

the random inputs to the distributionally known (Gaussian independent) shocks Z(t + ∆t) −
Z(t).

In doing so taking logs can be helpful: By Itô’s formula

d ln Fk(t) = (σk(t) µα,β
k (t)− 1

2
σk(t)

2) dt + σk(t) dZk(t) . (13)

This last equation has the advantage that the diffusion coefficient is deterministic. As a conse-

quence, the naive Euler scheme coincides with the more sophisticated Milstein scheme, so that

the discretization

ln F∆t
k (t + ∆t) = ln F∆t

k (t) + (σk,β(t) µα,β
k (t)− 1

2
σ2

k,β(t)) ∆t (14)

+

∫ t+∆t

t

σk(t) dZk(t)

leads to an approximation of the true process such that there exists a δ0 with

Eα,β{| ln F∆t
k (Tα)− ln Fk(Tα)|} ≤ C(Tα)(∆t)1 for all ∆t ≤ δ0

where C(Tα) is a positive constant (strong convergence of order 1, Klöden and Platen (1995)).

Recall that the (vector) integral term is normally distributed and easy to simulate, according

to ∫ t+∆t

t

diag(σ(t)) dZ(t) ∼ N (0, Σ(t)), Σ(t)i,j =

∫ t+∆t

t

ρi,jσi(u)σj(u)du.

Moreover, from the properties of Brownian motion, integrals on adjacent discretization intervals

are independent, thus making the simulation immediate.

A possible problem concerns the instantaneous correlation matrix. Clearly, the full correla-

tion matrix ρ features M (M − 1)/2 parameters (where M = β − α is the number of forward

rates), which can be a large number. Therefore, a parsimonious parametric form has to be

found for ρ, based on a reduced number of parameters.

We start by reducing the number of noise factors. In general, one can choose an orthogonal

(full rank) M × n matrix and replace dZ by BdW , where W is a n dimensional standard

Brownian motion (in particular, dWdW ′ = Idt).

In doing so, we move from a noise correlation structure

dZdZ ′ = ρ dt

(where ρ in general is a M ×M full rank matrix) to

BdW (BdW )′ = BdWdW ′B′ = BB′dt.
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Therefore, our new instantaneous noise-correlation matrix is B ×B′ whose rank is n.

We define

ρB = B ×B′.

A parametric form has to be chosen for B. Rebonato (1998) suggests the following general

form for the i-th row of B:

bi,1 = cos θi,1 (15)

bi,k = cos θi,k sin θi,1 · · · sin θi,k−1, 1 < k < n,

bi,n = sin θi,1 · · · sin θi,n−1,

for i = 1, 2, . . . , M . Notice that with this parameterization clearly ρB is positive semidefinite

and its diagonal terms are ones. It follows that ρB is a possible correlation matrix. The

number of parameters in this case is M × (n− 1), even though there is a canonical form under

which (M − n/2)× (n− 1) angles suffice, as pointed out for example in Rapisarda, Brigo and

Mercurio (2002).

We will focus in this paper on a simple two-factor structure, n = 2, consisting of M param-

eters. This is obtained as

bi,1 = cos θi,1 bi,2 = sin θi,1 . (16)

We drop the second subscript for θ.

In such a case

ρB
i,j = bi,1bj,1 + bi,2bj,2 = cos(θi − θj), (17)

which we will use in the following. This structure consists of M parameters θ1, . . . , θM .

Whichever correlation parameterization is chosen, the following step consists of calibrating

the model to swaption prices, thus deducing the ρB from swaptions pricing. We will not deal

with swaptions calibration in this paper, referring instead the interested reader to Brigo and

Mercurio (2001).

Since here we are interested in expressing the distributional difference between the swap

rates in the LSM and LFM, we need a method to measure the distance between distributions.

This will be dealt with in two sections. Before facing this task, we report a formula connecting

caplet volatilities to swaptions volatilities. This approximated formula is often used in practice

to bridge the gap in-between the LFM and LSM without resorting to Monte Carlo simulations.

Recall the forward swap rate dynamics underlying the LSM, i.e. leading to Black’s formula

for swaptions:

d Sα,β(t) = σ(α,β)(t)Sα,β(t) dWα,β
t .
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A crucial role in the LSM is played by the Black swap (squared) volatility (multiplied by time

Tα)

v2
α,β(Tα) =

∫ Tα

0

σ2
α,β(t)dt =

∫ Tα

0

(d ln Sα,β(t))(d ln Sα,β(t)) =

∫ Tα

0

d〈ln Sα,β, ln Sα,β〉t

entering Black’s formula for swaptions. It is possible to compute, under a number of approxi-

mations, an analogous quantity in the LFM.

Recall from Formula (7) that forward swap rates can be approximated as a weighted average

of forward rates with constant frozen weights. By differentiating this equation, substituting the

F ’s dynamics, taking quadratic variations, doing some more freezing and finally integrating,

one finds the following approximation for v2
α,β(Tα) to be put in Black’s formula for evaluating

swaptions:

(vLFM

α,β )2 =

∫ Tα

0

(d ln Sα,β(t))(d ln Sα,β(t)) =

∫ Tα

0

〈ln Sα,β, ln Sα,β〉t (18)

=

β∑
i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j

Sα,β(0)2

∫ Tα

0

σi(t)σj(t) dt

(for a derivation and references see again Brigo and Mercurio (2001)).

Formula (18) is obtained under a number of approximations, and at first one would imagine

its quality to be rather poor. However, it turns out that the approximation is not at all bad.

A slightly more sophisticated version of this procedure has been pointed out for example by

Hull and White (1999), but the differences between the two formulae are negligible in most

situations. For a derivation and some numerical Monte Carlo tests see for example Chapter 8

of Brigo and Mercurio (2001).

5 Distance between distributions: The Kullback Leibler

information

In this section we introduce briefly the Kullback-Leibler information and we explain its impor-

tance for our problem, see also Brigo and Hanzon (1998). Suppose we are given the space H

of all the densities of probability measures on the real line equipped with its Borel field, which

are absolutely continuous w.r.t. the Lebesgue measure. Then define

D(p1, p2) := Ep1{log p1 − log p2} ≥ 0, p1, p2 ∈ H, (19)

where in general

Ep{φ} =

∫
φ(x)p(x)dx, p ∈ H.

The above quantity is the well-known Kullback-Leibler information (KLI). Its non-negativity

follows from the Jensen inequality. It gives a measure of how much the density p2 is displaced
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w.r.t. the density p1. We remark the important fact that D is not a distance: in order to be a

metric, it should be symmetric and satisfy the triangular inequality, which is not the case.

However, the KLI features many properties of a distance in a generalized geometric setting

(see for instance Amari (1985)). For example, it is well-known that the KLI is infinitesimally

equivalent to the Fisher information metric around every point of a finite–dimensional manifold

of densities such as EM(c) defined below. For this reason, we will refer to the KLI as to a

“distance” even if it is not a metric.

Consider a finite dimensional manifold of exponential probability densities such as

EM(c) = {p(·, θ) : θ ∈ Θ ⊂ IRm}, Θ open in IRm, (20)

p(·, θ) = exp[θ1c1(·) + ... + θmcm(·)− ψ(θ)],

expressed w.r.t the expectation parameters η defined by

ηi(θ) = Ep(·,θ){ci} = ∂θi
ψ(θ), i = 1, .., m (21)

(see for example Amari (1985), Brigo (1999) or Brigo, Hanzon and Le Gland (1999) for more

details on the geometry of exponential families).

We define p(x; η(θ)) := p(x, θ) (the semicolon/colon notation identifies the parameteriza-

tion).

Now suppose we are given a density p ∈ H, and we want to approximate it by a density

of the finite dimensional manifold EM(c). It seems then reasonable to find a density p(·, θ) in

EM(c) which minimizes the Kullback Leibler information D(p, .). Compute

min
θ

D(p, p(·, θ)) = min
θ
{Ep[log p− log p(·, θ)]}

= Ep log p−max
θ
{θ1Epc1 + ... + θmEpcm − ψ(θ)}

= Ep log p−max
θ

V (θ),

V (θ) := θ1Epc1 + ... + θmEpcm − ψ(θ).

It follows immediately that a necessary condition for the minimum to be attained at θ∗ is

∂θi
V (θ∗) = 0, i = 1, ...,m

which yields

Epci − ∂θi
ψ(θ∗) = Epci − Ep(·,θ∗)ci = 0, i = 1, .., m

i.e. Epci = ηi(θ
∗), i = 1, ..,m. This last result indicates that according to the Kullback Leibler

information, the best approximation of p in the manifold EM(c) is given by the density of

EM(c) which shares the same ci expectations (ci-moments) as the given density p. This means

that in order to approximate p we only need its ci moments, i = 1, 2, ..,m.

The above discussion provides also a way to compute the distance of the density p from the

exponential family EM(c) as the distance between p and its projection p(·, θ∗) onto EM(c) in
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the KL sense. We have

D(p, EM(c)) = Ep log p − (θ∗1Epc1 + ... + θ∗mEpcm − ψ(θ∗)) (22)

= Ep log p − (θ∗1η1(θ
∗) + ... + θ∗mηm(θ∗)− ψ(θ∗)).

One can look at the problem from the opposite point of view. Suppose we decide to approximate

the density p by taking into account only its m ci–moments. It can be proved (see Kagan,

Linnik, and Rao (1973), Theorem 13.2.1) that the maximum entropy distribution which shares

the c–moments with the given p belongs to the family EM(c).

Summarizing: If we decide to approximate by using c–moments, then entropy analysis

supplies arguments to use the family EM(c); and if we decide to use the approximating family

EM(c), Kullback–Leibler says that the “closest” approximating density in EM(c) shares the

c–moments with the given density.

This moments-matching characterization of the projected density for exponential families is

the main reason why we resort to the KLI as a “distance” between distribution. Alternatively,

we might use the Hellinger distance, which is defined, for two densities p1, p2 ∈ H as

H(p1, p2) := 2− 2

∫ √
p1(x)p2(x)dx, (23)

from which we see that the HD takes values in [0, 2] and is a real metric. It is well-known,

however, that the KLI is infinitesimally equivalent to the Hellinger distance around every point

of a finite–dimensional manifold of densities such as EM(c) defined above. For this reason one

refers to the KLI as to a ”distance” even if it is not a metric. Indeed, consider the two densities

p(·, θ) and p(·, θ + dθ) of EM(c). By expanding in Taylor series, we obtain easily

K(p(·, θ), p(·, θ + dθ)) = −
m∑

i=1

Ep(·,θ){∂ log p(·, θ)
∂θi

} dθi

−
m∑

i,j=1

Ep(·,θ){∂2 log p(·, θ)
∂θi∂θj

} dθi dθj + O(|dθ|3)

which is the same expression we obtain by expanding H(p(·, θ), p(·, θ + dθ)). Given this first-

order relationship, we expect that the Hellinger distance would lead us to the same results as

the KLI, since the KLI distances we will find are rather small.

6 Distance of the LFM swap rate from the lognormal

family of distributions

Since under the swap measure the LSM dynamics for the swap rate follows a (driftless) geometric

Brownian motion, we consider here the SDE describing a general geometric Brownian motion

dSt = µ(t)St dt + σ(t) St dWt , S0 = s0
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whose solution is

St = s0 exp

[∫ t

0

(µ(u)− 1
2
σ2(u))du +

∫ t

0

σ(u)dWu

]
,

so that

log St ∼ N
(

log s0 +

∫ t

0

(µ(u)− 1
2
σ2(u))du,

∫ t

0

σ2(u)du

)
. (24)

The probability density pSt of St, at any time t, is therefore given by

pSt(x) = p(x, θ(t)) = exp

{
θ1(t) ln

x

s0

+ θ2(t) ln2 x

s0

− ψ(θ1(t), θ2(t))

}
,

θ1(t) =

∫ t

0
µ(u) du∫ t

0
σ2(u)du

− 3

2
, θ2(t) = − 1

2
∫ t

0
σ2(u)du

, ψ(θ1(t), θ2(t)) = −(θ1(t) + 1)2

4θ2(t)
+ 1

2
ln

(−π s2
0

θ2(t)

)
,

where x > 0, and is clearly in the exponential class, with c1(x) = ln(x/s0), c2 = c2
1. We will

denote by L the related exponential family EM(c). As concerns the expectation parameters

for this family, they are readily computed as follows:

η1 = Eθ ln(x/s0) = ∂θ1ψ(θ1, θ2) = −θ1 + 1

2θ2

η2 = Eθ ln2(x/s0) = ∂θ2ψ(θ1, θ2) =

(
θ1 + 1

2θ2

)2

− 1

2θ2

.

As for the Gaussian family, in this particular family the θ parameters can be computed back

from the η parameters by inverting the above formulae:

θ1 =
η1

η2 − η2
1

− 1 , (25)

θ2 = − 1

2(η2 − η2
1)

,

ψ(θ1, θ2) = 1
2

[
η2

1

η2 − η2
1

+ ln(2π(η2 − η2
1)s

2
0)

]
.

We can now compute the distance of a density p from the lognormal family L by applying

formula (22):

D(p,L) = Ep ln p − (θ∗1η1(θ
∗) + θ∗2η2(θ

∗)− ψ(θ∗)),

where, as previously seen, minimizing the distance implies finding the parameters θ∗ such that

η1(θ
∗) = Ep ln(x/s0), η2(θ

∗) = Ep ln2(x/s0) .

By substituting (25), omitting the argument θ∗ and simplifying, we obtain

D(p,L) = Ep ln p + 1
2

+ η1 + 1
2
ln(2π(η2 − η2

1)s
2
0) .



Damiano Brigo and Jan Liinev: Distributional distance between LIBOR and Swap market models 16

Actually, the s0 term is kind of redundant when computing the distance. We can thus resort

to the simpler moments

η̄1(θ̄
∗) = Ep ln(x), η̄2(θ̄

∗) = Ep ln2(x) ,

and compute the distance as

D(p,L) = Ep ln p + 1
2

+ η̄1 + 1
2
ln(2π(η̄2 − η̄1

2)) . (26)

As noticed before, the LSM swap–rate density under the swap measure belongs to the

family L: Such density is given by p(·, θ(Tα)) above when taking s0 = Sα,β(0), µ(t) = 0 and

σ(t) = σα,β(t).

Now consider instead the LFM swap rate under the swap measure, obtained once again

through (11) and (10). This second swap rate will not be lognormally distributed. Let pα,β

denote the probability density of the LFM swap rate Sα,β(Tα) under the swap measure Qα,β.

We plan to compute numerically the distance of the LFM swap density pα,β from the log-

normal exponential family L where the LSM swap density lies. But we also plan to verify

the volatility–approximation provided by the quantity vLFM
α,β as follows: The density p(·, θ∗) =

p(·; η(θ∗)) represents the lognormal density which is closest (in the Kullback-Leibler sense) to

the swap-rate density pα,β implied by the LFM under the swap measure. Incidentally, we can

compute the terminal volatility implied by this lognormal density as

vKLI

α,β =
√

η2(θ∗)− η1(θ∗)2 =
√

η̄2 − η̄2
1 .

This is the best approximation of the volatility of the swap rate based on the lognormal ap-

proximation. It can be interesting to compare such best approximation to the much handier

approximation vLFM
α,β considered earlier in (18).

Recall that vLFM
α,β is obtained by “ignore the drifts” and “freeze stochastic coefficients” ar-

guments, whereas vKLI
α,β is obtained by minimizing the distance from the lognormal densities.

Should the two results be close, this would represent a further confirmation of the validity of

the industry formula vLFM
α,β .

Now we proceed by applying formula (26) according to the following scheme:

1. Simulate p realizations of the forward rates

Fα+1(Tα), Fα+2(Tα), . . . , Fβ(Tα)

under the swap measure Qα,β through the discretized dynamics (14) with a sufficiently

small time step;

2. Compute p realizations of the swap rate Sα,β(Tα) of the LFM under the swap measure

Qα,β through (11) applied to each realization of the forward rates F vector obtained in

the previous point;
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3. Based on the simulated Sα,β(Tα), compute firstly

η̄1 = Eα,β ln(Sα,β(Tα)), η̄2 = Eα,β ln2(Sα,β(Tα)) , vKLI

α,β =
√

η̄2 − η̄1
2 ,

and secondly an approximation of

Ep ln p :=

∫
(ln pα,β(x))pα,β(x)dx .

This quantity is the opposite of entropy and can be estimated from the simulated Sα,β(Tα)’s

through an entropy estimator. For example, Vasicek’s (1976) estimator reads, in our case,

HV (q, p) = −1

p

p∑
i=1

ln

[
p

2q
(Sα,β(Tα)[i+q] − Sα,β(Tα)[i−q])

]
,

where Sα,β(Tα)[j] is the j-th order statistics from our sample. We set Sα,β(Tα)[j] =

Sα,β(Tα)[1] for j < 1 and Sα,β(Tα)[j] = Sα,β(Tα)[p] for j > p.

This estimator converges to the desired integral in probability as

p →∞, q →∞, q/p → 0.

However, in our numerical simulations we considered a different type of entropy estimator.

We used the plug-in estimate of entropy based on a cross-validation density estimate,

proposed by Ivanov and Rozhkova (1981). For an overview of entropy estimators see for

example Dudewicz and van der Meulen (1987). The estimator we used can be briefly

summarized as follows. Let S1
α,β(Tα), . . . , Sp

α,β(Tα) be i.i.d. sample of swap rates with

unknown probability density function pα,β(x), and consider

pp,i
α,β(Si

α,β(Tα)) =
1

pap

∑

j 6=i

K

(
Si

α,β(Tα)− Sj
α,β(Tα)

ap

)
,

where {ap} satisfies the condition that ap → 0, pap → ∞, and K is a kernel function.

Note that we used Gaussian kernel in our computations. The estimator of Ivanov and

Rozhkova (1981) can be written in the following form:

HIR(p) = −1

p

p∑
i=1

{
ln pp,i

α,β(Si
α,β(Tα))

}
I[Si

α,β(Tα)∈Ap], (27)

where with the set Ap one typically excludes the small and the tail values of pp,i
α,β(Si

α,β(Tα)).

Ivanov and Rozhkova (1981) showed that under certain conditions on K, pα,β, ap and Ap,

HIR(p) converges with probability 1 to the desired integral as p → ∞. We also tried

some alternative estimators, such as (4) and (6) in Miller (2003). This did not change

our numerical results significantly.
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4. With the quantities obtained from the previous point apply formula (26) and obtain

D(pα,β,L).

5. Compute vLFM
α,β through formula (18) and compare this to vKLI

α,β obtained above.

It is interesting to plot D(pα,β,L) and the difference |vKLI
α,β − vLFM

α,β |, as α and β change,

and also analyze these quantities in the different formulations of instantaneous volatilities and

correlations. For each formulation, which are the parameters to which the distance is more

sensitive?

7 Monte Carlo tests for measuring KLI

In this section we numerically test how the KLI “distance” between a simulated swap rate

density and the family of lognormal densities changes for different parameterizations. We will

consider a family of forward rates whose expiry/maturity pairs are T0 = 1y, T1 = 2y up to

T18 = 19y, and our initial input is

F0÷9(0) = [4.69 5.01 5.60 5.84 6.00 6.13 6.28 6.27 6.29 6.23]/100

F10÷19(0) = [6.30 6.36 6.43 6.48 6.53 6.40 6.30 6.18 6.07 5.94]/100,

F0(0) being the initial one-year spot rate. These values are consistent with the volatility and

correlation values below, in that all such initial inputs will reflect a possible calibration of the

LFM to caps and swaptions. The corresponding swap rates we consider are S5,10(0) = 0.06238,

S10,15(0) = 0.06411 S15,20(0) = 0.06191, S5,15(0) = 0.06312, S10,20(0) = 0.06318, S5,20(0) =

0.06283. We adopt the LE formulation (3) for instantaneous volatilities; in some cases we

will let it collapse to the TEHLE and THPC formulations respectively. For instantaneous

correlations we resort to the angle form (17) in the parameters θ = [ θ1 . . . θ19]. The values of

the parameters a, b, c, d and the values of the θ’s in the general case of the full LE formulation

have been built so as to reflect possible joint calibrations of the LFM to caplets and swaptions.

Such values are reported in points (2.a–c) below. For a discussion on which forms are to be

preferred from the point of view of realistic behaviour of future volatilty structures (typically

the forms of cases (2.a–c) below) see chapter 6 of Brigo and Mercurio (2001). A short map of

our sets of testing parameters is given in the following.

(1.a) Constant instantaneous (THPC) volatilities, typical rank-two correlations.

LE formulation with a = 0, b = 0, c = 1, d = 0. This is actually the THPC formulation,

since the ψ-part of the LE formulation is collapsed to one. We set

Φ1÷9 = [ 0.1490 0.1589 0.1533 0.1445 0.1356 0.1267 0.1215 0.1176 0.1138 ],

Φ10÷19 = [ 0.1106 0.1076 0.1046 0.1017 0.0989 0.0978 0.0974 0.0969 0.0965 0.0961 ].
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The correlation angles are taken as

θ1÷9 = [ 0.0147 0.0643 0.1032 0.1502 0.1969 0.2239 0.2771 0.2950 0.3630 ],

θ10÷19 = [ 0.3810 0.4217 0.4836 0.5204 0.5418 0.5791 0.6496 0.6679 0.7126 0.7659 ].

This set of angles implies positive and decreasing instantaneous correlations when moving

away from the “1” diagonal entries along columns.

(1.b) Constant instantaneous (THPC) volatilities, perfect correlation.

LE formulation with a, b, c, d and Φ’s as in (1.a) and θ = [ 0 0 . . . 0 0 ], implying that all

instantaneous correlations are set to one.

(1.c) Constant inst. (THPC) volatilities, some negative rank-two correlations

LE formulation with a, b, c, d and Φ’s as in (1.a) and θ = [ θ1÷9, θ10÷19 ], where

θ1÷9 = [ 0 0.0000 0.0013 0.0044 0.0096 0.0178 0.0299 0.0474 0.0728 ],

θ10÷19 = [ 0.1100 0.1659 0.2534 0.3989 0.6565 1.1025 1.6605 2.0703 2.2825 2.2260 ].

These parameters θ imply some negative correlations while maintaining a decreasing

correlation pattern when moving away from the diagonal in the resulting correlation

matrix.

(2.a) Humped and expiry-adjusted (LE) instantaneous volatilities depending only on time to

expiry, typical rank-two correlations.

LE formulation with a = 0.1908, b = 0.9746, c = 0.0808, d = 0.0134 and θ as in (1).

This is the “most normal” situation, in that it reflects a joint calibration to caplets and

swaptions volatilities. The parameters Φ’s are, in our case:

Φ1÷9 = [ 1.0500 1.0900 1.1025 1.1025 1.0913 1.0669 1.0624 1.0611 1.0544 ],

Φ10÷19 = [ 1.0475 1.0386 1.0270 1.0132 0.9975 0.9979 1.0033 1.0079 1.0119 1.0152 ].

(2.b) Humped and maturity-adjusted (LE) instantaneous volatilities depending only on time to

expiry, perfect correlation.

LE formulation with a, b, c, d and Φ’s as in (2.a) and θ = [ 0 0 . . . 0 0 ].

(2.c) Humped and maturity-adjusted (LE) instantaneous volatilities depending only on time to

expiry, some negative rank-two correlations.

LE formulation with a, b, c, d and Φ’s as in (2.a) and θ as in (1.c).

We now present the results obtained in evaluating the KLI for swap rates through the Monte

Carlo method with antithetic shocks and with 2×100000 paths.
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In the tables, we denote by KLI the estimated value of (26) and by absdiff the absolute

differences |vKLI
α,β − vLFM

α,β |. First we would like to have a feeling for what it means to have a

KLI distance of 0.006 between two distributions. We may resort to the KLI distance of two

lognormals, which is easily computed analytically. Indeed, if we call θ1, θ2 the parameters of

the first lognormal density (with corresponding expectation parameters η1 and η2) and θ̂1, θ̂2

the parameters of the second lognormal density (with corresponding expectation parameters η̂1

and η̂2), it is easy to compute the KLI distance as (θ̂1− θ1)η̂1 + (θ̂2− θ2)η̂2 + ψ(θ)−ψ(θ̂). If we

take for example η1 = η̂1 = 0.06 (same mean) and then η2 = 0.04, η̂2 = 0.0404, corresponding

to θ1 = 0.6484, θ2 = −27.4725, θ̂1 = 0.6304, θ̂2 = −27.1739, we find a KLI distance of 0.00606,

comparable in size to our distances above. Compute the standard deviations (volatilities) of

the two distributions according to
√

η2 − η2
1. One has

√
η2 − η2

1 = 0.1908,
√

η̂2 − η̂2
1 = 0.1918.

Recall that the two lognormal densities have the same mean of 0.06. Therefore, in a lognormal

world with the mean fixed at 0.06, a KLI distance of 0.006 would amount to an absolute

difference in volatility of about 0.001 for volatilities ranging around 0.19. This amounts to a

percentage difference in standard deviations of 0.55%. This gives a feeling for the size of the

distributional discrepancy our distances imply in the worst case we obtain from our simulations.

Before presenting our final results, a remark is in order on the accuracy of the KLI “dis-

tances” obtained by simulation. Typically, the standard error ranges about 3E−5 with 200000

paths for the first distance 0.0001857 in Table (1), and for all other cases varies roughly in the

same proportion with respect to the distance, so that for example the distance of 0.0068614 of

Table (3) has a standard error of about 1E-3, and so on. Every time the standard error makes

the distance pattern uncertain we add a question mark in the summary tables.

Fortunately, this happens only in five of the eighteen cases we analyzed, namely (i) in case

(1.a) with ↑ β, (ii) in case (1.c) with ↑ (α, β), (iii) in case (2.a) with ↑ (α, β), (iv) in case (2.a)

with ↑ β and (v) in case (2.c) with ↑ (α, β).

Now let us consider our test results, starting from Table 1 for case (1.a).

Swap KLI vKLI
α,β/

√
Tα vLFM

α,β /
√

Tα absdiff

S5,10(5) 0.0001857 0.12376 0.12360 0.00016

S10,15(10) 0.0000357 0.10516 0.10512 0.00004

S15,20(15) 0.0000638 0.09705 0.09682 0.00023

S5,10(5) 0.0001857 0.12376 0.12360 0.00016

S5,15(5) 0.0002088 0.11466 0.11509 0.00043

S5,20(5) 0.0003604 0.10951 0.10985 0.00034

S5,20(5) 0.0003604 0.10951 0.10985 0.00034

S10,20(10) 0.0001105 0.10150 0.10116 0.00034

S15,20(15) 0.0000638 0.09705 0.09682 0.00023

Table 1: Results for case (1.a)
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First consider distances from the lognormal family for S5,10(5), S10,15(10), and S15,20(15) re-

spectively (increasing maturity Tα, constant tenor Tβ − Tα, denoted “↑ (α, β)”). The distance

first decreases and then increases, displaying a “V” shape when plotted for example against

α. This is interesting and might be due to the shape of the instantaneous volatility functions

σ(t) in this formulation. If not for particular shapes of volatilities, one would expect instead

the distance to increase with the maturity, since the more the “non-lognormal dynamics” goes

on, the more it is likely that one moves away from the lognormal distribution. Then con-

sider S5,10(5), S5,15(5), and S5,20(5) (increasing tenor, constant maturity, denoted “↑ β”). The

distance increases this time, as expected, although the first two distances differ less than the

standard error, so that we may not exclude a ”V” shape a priori. Anyway, an increasing

pattern is to be expected: if the tenor increases we are adding more forward rates to form

the swap rate, and intuitively we move farther away from the lognormal family. Consider

also S5,20(5), S10,20(10), and S15,20(15) (increasing maturity, decreasing tenor, denoted “↑ α”).

The distance decreases, as is partly expected by the fact that at the final time we are adding

less forward rates, even though the dynamics is propagated for longer times. Finally consider

S10,15(10) and S10,20(10) (again increasing tenor, constant maturity). This time the distance

increases, as expected.

At this point, as from (1.b), we set all correlations to one and recompute all distances.

Table 2 shows our results in this case. The only pattern that has changed qualitatively concerns

increasing maturity and decreasing tenor, denoted “↑ α”, which is now V-shaped instead of

decreasing as before. Enlarging instantaneous correlation between far rates has caused the

distance to increase with maturity in the final step.

Swap KLI vKLI
α,β/

√
Tα vLFM

α,β /
√

Tα absdiff

S5,10(5) 0.0002073 0.12405 0.12380 0.00025

S10,15(10) 0.0000178 0.10504 0.10530 0.00026

S15,20(15) 0.0001339 0.09741 0.09701 0.00040

S5,10(5) 0.0002073 0.12405 0.12380 0.00025

S5,15(5) 0.0002814 0.11552 0.11583 0.00031

S5,20(5) 0.0003917 0.11124 0.11143 0.00019

S5,20(5) 0.0003917 0.11124 0.11143 0.00019

S10,20(10) 0.0000370 0.10220 0.10186 0.00034

S15,20(15) 0.0001339 0.09741 0.09701 0.00040

Table 2: Results for case (1.b)

Lowering now correlations again, including some negative entries in the correlation matrix,

according to (1.c), gives us the results of Table 3. We see that negative correlations give the

same qualitative results as positive correlations in (1.a), with the exception of the first pattern

“↑ (α, β)” which is now decreasing or humped (uncertainty coming from the standard error
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size). At this point, with negative correlation, this pattern is more counter-intuitive. The only

reason for a decreasing distance of the swap rate distribution from the lognormal family when

propagating a “non lognormal dynamics” for longer times and with the same tenor is given

by lower σ(·) functions. Indeed, with the volatility formulation of cases (1.a)–(1.c) the term

structure of future volatilities decreases considerably in time, so that farther forward rates have

much lower volatilities than forward rates involved in “earlier” swap rates. For example, the

swap rate S15,20 involves F19, whose volatility in (1.a)–(1.c) is set to 0.0961, whereas earlier swap

rates may involve F2, whose volatility is much higher and set to 0.1589. So even if the dynamics

propagates for longer times, it does so with lower randomness, and this effect dominates the

other one.

Swap KLI vKLI
α,β/

√
Tα vLFM

α,β /
√

Tα absdiff

S5,10(5) 0.0001589 0.12402 0.12377 0.00025

S10,15(10) 0.0001126 0.10348 0.10343 0.00005

S15,20(15) 0.0000609 0.08767 0.08735 0.00032

S5,10(5) 0.0001589 0.12402 0.12377 0.00025

S5,15(5) 0.0002497 0.11370 0.11407 0.00037

S5,20(5) 0.0068614 0.08629 0.08720 0.00091

S5,20(5) 0.0068614 0.08629 0.08720 0.00091

S10,20(10) 0.0023644 0.07192 0.07161 0.00031

S15,20(15) 0.0000609 0.08767 0.08735 0.00032

Table 3: Results for case (1.c)

As a summary of patterns for the cases with constant instantaneous volatilities we display

in Table 4 the behavior of the distance for different correlation configurations (1.a)–(1.c).

Action Positive correlations Perfect correlations Some negative correl.

↑ (α, β) V shaped V shaped decreasing (humped?)

↑ β increasing (V-shaped?) increasing increasing

↑ α decreasing V shaped decreasing

Table 4: Distance patterns against (α, β), β and α respectively, for cases (1.a), (1.b), (1.c)

Now let us move to commenting our results for cases (2.a)–(2.c), given in Tables 5, 6, and 7.

These results are qualitatively analogous to the results of the corresponding cases (1.a)–

(1.c), with one strong exception and two weaker exceptions. The strong exception concerns the

pattern “↑ (α, β)” for the typical rank two correlations (case (2.a)), where we have an opposite

humped pattern with respect to the earlier V-shaped case. This is due to the different volatility

structure, that is now homogeneous with respect to time-to-maturity. Consider, however, that
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Swap KLI vKLI
α,β/

√
Tα vLFM

α,β /
√

Tα absdiff

S5,10(5) 0.00016634 0.11033 0.11017 0.00016

S10,15(10) 0.00017273 0.09541 0.09534 0.00007

S15,20(15) 0.00009037 0.08976 0.08969 0.00007

S5,10(5) 0.00016634 0.11033 0.11017 0.00016

S5,15(5) 0.00041173 0.09778 0.09803 0.00025

S5,20(5) 0.00047629 0.09306 0.09320 0.00014

S5,20(5) 0.00047629 0.09306 0.09320 0.00014

S10,20(10) 0.00023379 0.08921 0.08895 0.00026

S15,20(15) 0.00009037 0.08976 0.08969 0.00007

Table 5: Results for case (2.a)

Swap KLI vKLI
α,β/

√
Tα vLFM

α,β /
√

Tα absdiff

S5,10(5) 0.00021961 0.11052 0.11035 0.00017

S10,15(10) 0.00007206 0.09554 0.09552 0.00002

S15,20(15) 0.00015586 0.09003 0.08987 0.00016

S5,10(5) 0.00021961 0.11052 0.11035 0.00017

S5,15(5) 0.00044884 0.09848 0.09867 0.00019

S5,20(5) 0.00057553 0.09453 0.09457 0.00004

S5,20(5) 0.00057553 0.09453 0.09457 0.00004

S10,20(10) 0.00011407 0.08982 0.08957 0.00025

S15,20(15) 0.00015586 0.09003 0.08987 0.00016

Table 6: Results for case (2.b)

in this case we have uncertainty in the pattern due to the standard error, and that in fact the

pattern in (2.a) could be decreasing.

The first weaker exception concerns the pattern “↑ (α, β)” for the case with some negative

correlations (case (2.c)), where we have a humped pattern instead of a decreasing one, although

both patterns are uncertain, with the possibility of the patterns coinciding in a decreasing or

humped configuration. The second possible weaker exception is for ↑ β with positive correlation

(case (2.a)), where the two patterns coincide unless the standard error changes them in two

opposite configurations.

As a summary we display in Table 8 the behavior of the distance for different correlation

configurations in cases (2).

As an example for visualizing the distance of a swap rate density from the best approxi-

mating lognormal density in the KLI sense, we have chosen the two swap rates that lead to the

largest and to the smallest distance over all cases considered. We show in Figure 1 the Monte
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Swap KLI vKLI
α,β/

√
Tα vLFM

α,β /
√

Tα absdiff

S5,10(5) 0.00017029 0.11050 0.11032 0.00018

S10,15(10) 0.00017182 0.09392 0.09388 0.00004

S15,20(15) 0.00008607 0.08101 0.08078 0.00023

S5,10(5) 0.00017029 0.11050 0.11032 0.00018

S5,15(5) 0.00046520 0.09670 0.09721 0.00051

S5,20(5) 0.00635040 0.07363 0.07409 0.00046

S5,20(5) 0.00635040 0.07363 0.07409 0.00046

S10,20(10) 0.00265217 0.06370 0.06344 0.00026

S15,20(15) 0.00008607 0.08101 0.08078 0.00023

Table 7: Results for case (2.c)

Action Positive correlation Perfect correlation Some negative correl.

↑ (α, β) humped (decreasing?) V shaped humped (decreasing?)

↑ β increasing (humped?) increasing increasing

↑ α decreasing V shaped decreasing

Table 8: Distance patterns against (α, β), β and α respectively, for cases (2.a), (2.b), (2.c)

Carlo simulated densities for the swap rates S5,20(5) and S10,15(10) versus their lognormal KLI

projections in case the parameters are as in points (1.c) and (1.b) respectively.

We notice also that absdiff is always small, meaning that the industry approximation vLFM
α,β

is good since it is always close to vKLI
α,β , i.e. to the best one can do with a lognormal family.

8 Conclusions

Our KLI analysis confirms that swap rates associated with the LIBOR market model are close

to being log normal. This has been checked via a distributional distance obtained through

Monte Carlo simulation. Our analysis also confirms the goodness of the standard market

approximation for swaption volatilities in the LIBOR market model, based on freezing the drift

in the forward rate dynamics.
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Figure 1: Estimated density functions of S5,20(5) (case (1.c)) and S10,15(10) (case (1.b)) com-

pared to the best lognormal densities in KL sense.
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