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Inner Products, Metrics and Projections Spaces of densities

Spaces of probability densities I

Consider a parametric family of probability densities

S = {p(·, θ), θ ∈ Θ ⊂ Rm}.

let S1/2 be the space of square roots

S1/2 = {
√

p(·, θ), θ ∈ Θ ⊂ Rm}.

If S (or S1/2 respectively) is a subset of a function space having an L2

structure (and hence an inner product, a norm and a metric), then we
may ask whether the map

p(·, θ) 7→ θ, (
√

p(·, θ) 7→ θ respectively)

taking values in Rm is a Chart of a m-dimensional manifold (?) S
(S1/2).
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Inner Products, Metrics and Projections Spaces of densities

Spaces of probability densities II

The topology and differential structure we should consider in the chart
is the topology in L2, but depending on whether we take S or S1/2 the
topology and differential structures are different.

S : d2(p1,p2) = ‖p1 − p2, ‖

where ‖ · ‖ denotes the norm of the Hilbert space L2 (L2 direct
distance).

S1/2 : dH(
√

p1,
√

p2) = ‖
√

p1 −
√

p2, ‖

where ‖ · ‖ denotes the norm of the Hilbert space L2 (Hellinger
distance).
For the first definition, more restrictive, we need to assume densities in
S to be square integrable. This is the case for example if they are
integrable and bounded.
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Inner Products, Metrics and Projections Spaces of densities

Spaces of probability densities III

S and S1/2: Not submanifolds of L2 manifolds

Despite being subsets of L2, neither the set of square roots of all
densities nor the set of all densities themselves are locally
homeomorphic to L2, hence they are not infinite dimensional manifolds
modeled on L2. Indeed, any open set of L2 contains functions which
are negative in a set with positive Lebesgue measure. There is no
open set of L2 which contains only positive functions such as the
functions of the space of all densities or their square roots.

S and S1/2: Not submanifolds of L2 vector subspaces
Furthermore, such spaces are not vector spaces, and hence while
they have a metric coming from the L2 norm, they cannot be equipped
with a norm themselves, and are not normed spaces.
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Inner Products, Metrics and Projections Manifolds, Charts and Tangent Vectors

Tangent vectors, metrics and projection I

If ϕ : θ 7→ p(·, θ), (θ 7→
√

p(·, θ) respectively)

is the inverse of the chart (we work only with the single coordinate
chart (S, ϕ−1) and (S1/2, ϕ−1) respectively) then

{∂ϕ(·, θ)

∂θ1
, · · · , ∂ϕ(·, θ)

∂θm
}

is a set of linearly independent vectors in L2(λ). Then, according to the
chain rule, we compute the following Fréchet derivatives:

Dp(, θ(h))|h=0 =
m∑

k=1

∂p(, θ)

∂θk
θ̇k (0)(

D
√

p(, θ(h))|h=0 =
m∑

k=1

∂
√

p(, θ)

∂θk
θ̇k (0) respectively

)
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Inner Products, Metrics and Projections Manifolds, Charts and Tangent Vectors

Tangent vectors, metrics and projection II

We obtain that a basis for the tangent vector space at p(·, θ) (
√

p(·, θ)
respectively) to the space S (S1/2) is:

Tp(·,θ)S = span
{
∂p(·, θ)

∂θ1
, · · · , ∂p(·, θ)

∂θm

}
. (1)

(
T√p(·,θ)S

1/2 = span

{
∂
√

p(·, θ)

∂θ1
, · · · ,

∂
√

p(·, θ)

∂θm

} )
. (2)

If ϕ is the inverse of a chart, these vectors are actually linearly
independent, and they indeed form a basis of the tangent vector
space. One has to be careful, because if this were not true, the
dimension of the above spanned space could drop.
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Inner Products, Metrics and Projections Manifolds, Charts and Tangent Vectors

Tangent vectors, metrics and projection III

The inner product of any two basis elements is defined, according to
the L2 inner product

〈∂p(·, θ)

∂θi

∂p(·, θ)

∂θj
〉 = 1

4

∫
∂p(x , θ)

∂θi

∂p(x , θ)

∂θj
dx = 1

4 γij(θ) .

(
〈
∂
√

p(·, θ)

∂θi

∂
√

p(·, θ)

∂θj
〉 = 1

4

∫
1

p(x , θ)

∂p(x , θ)

∂θi

∂p(x , θ)

∂θj
dx = 1

4 gij(θ)

)
.

γ(θ): direct L2 matrix, associated to the metric d2;
g(θ): the famous Fisher information metric associated with dH ,
see for example [1], [2] and [29]
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Inner Products, Metrics and Projections Manifolds, Charts and Tangent Vectors

Tangent vectors, metrics and projection IV

The two different matrices define different metrics and differential
structures:

d2(p(·, θ),p(·, θ + dθ))2 = (dθ)T γ(θ) (dθ),

dH(
√

p(·, θ),
√

p(·, θ + dθ))2 = (dθ)T g(θ) (dθ),
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Inner Products, Metrics and Projections Manifolds, Charts and Tangent Vectors

Tangent vectors, metrics and projection V

Example: The Normal family in canonical param θ and g(θ)

The Gaussian family may be defined as a particular exponential family,
represented with canonical parameters θ, given by

{p(x , θ) = exp(θ1x + θ2x2 − ψ(θ)), θ2 < 0}

where one has easily ψ(θ) = 1
2 ln

(
π
−θ2

)
− θ2

1
4θ2

and the Fisher metric is

g(θ) =

[
−1/(2θ2) θ1/(2θ2

2)
θ1/(2θ2

2) 1/(2θ2
2)− θ2

1/(2θ3
2)

]
The familiar representation of Gaussian densities is in terms of mean
and variance, given respectively by

µ = −θ1/(2θ2), v = σ2 = (1/θ2 − θ2
1/θ

2
2)/2
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Inner Products, Metrics and Projections Manifolds, Charts and Tangent Vectors

Tangent vectors, metrics and projection VI

Example: The Normal family in expectation param µ, v and g(µ, v)

We may consider the Fisher metric for the Gaussian family of densities
in the parameters µ and v . These are related to the so called
expectation parameters µ and v + µ2. With this coordinate system the
Fisher metric is much simpler and the matrix is diagonal, resulting in

g(µ, v) =
1
v

[
1 0
0 1/(2v)

]
This can be derived either by applying the change of coordinates
formula, or from the metrics Eq. directly, with the parameters θ1, θ2
replaced by µ, v .
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Inner Products, Metrics and Projections Manifolds, Charts and Tangent Vectors

Tangent vectors, metrics and projection VII

Example: The Normal family in canonical param θ and γ(θ)

γ(θ) =
1
8

√
2√
−θ2π

[
1 θ1

−θ2
θ1
−θ2

3
4

1
(−θ2)

+ θ1
2

θ2
2

]
and, as expected, it is different from the Fisher metric seen earlier.

Example: The Normal family in expectation param µ, v and γ(µ, v)

We may consider the L2 metric for the Gaussian family in the
coordinates µ, v . The L2 metric is

γ(µ, v) =
1

8v
√

vπ

[
1 0
0 3

4v

]
and it is different from g(µ, v) , although it is still a diagonal matrix.
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Inner Products, Metrics and Projections Projection

Projections

Next, we introduce the orthogonal projection between any linear
subspace V of L2 containing our finite dimensional tangent vector
space and the tangent vector space itself.

Πγ
θ : L2(λ) ⊇ V −→ span{∂p(·, θ)

∂θ1
, · · · , ∂p(·, θ)

∂θm
}

Πγ
θ [v ] =

m∑
i=1

[
m∑

j=1

hij(θ) 〈v , ∂p(·, θ)

∂θj
〉] ∂p(·, θ)

∂θi
.


Π

g
θ : L2(λ) ⊇ V −→ span{

∂
√

p(·, θ)

∂θ1
, · · · ,

∂
√

p(·, θ)

∂θm
}

Π
g
θ [v ] =

m∑
i=1

[
m∑

j=1

4g ij(θ) 〈v ,
∂
√

p(·, θ)

∂θj
〉]
∂
√

p(·, θ)

∂θi
.


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Nonlinear Projection Filtering Nonlinear filtering problem

The nonlinear filtering problem for diffusion signals I

dXt = ft (Xt ) dt + σt (Xt ) dWt , X0, (signal)

dYt = bt (Xt ) dt + dVt , Y0 = 0 (noisy observation)
(3)

These are Itô SDE’s. We shall use both Itô and Stratonovich (Str)
SDE’s. Str SDE’s are necessar to deal with stochastic calculus on
manifolds, since second order Itô terms not clear in terms of
manifolds [18]).

Nonlinear filtering problem
The nonlinear filtering problem consists in finding the conditional
probability distribution πt of the state Xt given the observations up to
time t , i.e. πt (dx) := P[Xt ∈ dx | Yt ], where Yt := σ(Ys , 0 ≤ s ≤ t). We
assume that for all t ≥ 0, the probability distribution πt has a density pt
w.r.t. the Lebesgue measure.
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Nonlinear Projection Filtering Nonlinear filtering problem

The nonlinear filtering problem for diffusion signals II

Then {pt , t ≥ 0} satisfies the Str SPDE:

dpt = L∗t pt dt − 1
2

pt [|bt |2−Ept{|bt |2}] dt +
d∑

k=1

pt [bk
t −Ept{bk

t }] ◦ dY k
t .

with the forward diffusion operator L∗t defined by

L∗t φ = −
n∑

i=1

∂

∂xi
[f i

t φ] +
1
2

n∑
i,j=1

∂2

∂xi∂xj
[aij

t φ]
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Nonlinear Projection Filtering Projection Filters

Projection filter in the metrics h (L2) and g (Fisher) I

This equation can be projected according to either the L2 direct metric
(leading to γ(θ)) or, by deriving the analogous equation for

√
pt ,

according to the Hellinger metric (leading to the Fisher metric g(θ)).
First let us project with γ(θ).

dp(·, θt ) = Πγ
θt

[
L∗t p(·, θt ) −

1
2

p(·, θt ) [|bt |2 − Ep(·,θt ){|bt |2}]
]

dt +

+
d∑

k=1

Πγ
θt

[
d∑

k=1

p(·, θt ) [bk
t − Ep(·,θt ){b

k
t }]

]
◦ dY k

t (4)

OTOH the lhs can be written with the chain rule

dp(·, θt ) =
m∑

j=1

∂p(·, θ)

∂θj
◦ dθj(t)
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Nonlinear Projection Filtering Projection Filters

Projection filter in the metrics h (L2) and g (Fisher) II

so that we obtain after straightforward calculations (Projection Filter in
L2 direct metric γ(θ))

dθi
t = [

m∑
j=1

γ ij(θt )

∫
L∗t p(x , θt )

∂p(x , θt )

∂θj
dx ] dt

− [
m∑

j=1

γ ij(θt )

∫
1
2
|bt (x)|2 ∂p(x , θt )

∂θj
dx ] dt

+
d∑

k=1

[
m∑

j=1

γ ij(θt )

∫
bk

t (x)
∂p(x , θt )

∂θj
dx ] ◦ dY k

t , θi
0 .
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Nonlinear Projection Filtering Projection Filters

Projection filter in the metrics h (L2) and g (Fisher) III

Instead, using the Hellinger distance and the Fisher metric with
projection Πg we obtain

dθi
t = [

m∑
j=1

g ij(θt )

∫ L∗t p(x , θt )

p(x , θt )

∂p(x , θt )

∂θj
dx ] dt

− [
m∑

j=1

g ij(θt )

∫
1
2
|bt (x)|2 ∂p(x , θt )

∂θj
dx ] dt

+
d∑

k=1

[
m∑

j=1

g ij(θt )

∫
bk

t (x)
∂p(x , θt )

∂θj
dx ] ◦ dY k

t , θi
0 .

(5)

Notice the differences in the equations stemming from the different
metric and the different projection of the diffusion term.
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Choice of the family Exponential Families

Choosing the family: Exponential I

In past literature and in several papers in Bernoulli, IEEE Automatic
Control etc, B. Hanzon and LeGland have developed a theory for the
projection filter using the Fisher metric g and

Definition
(Exponential Families) Let {c1, · · · , cm} be scalar functions such that
{1, c1, · · · , cm} are linearly independent, and assume the convex set

Θ0 := {θ ∈ Rm : ψ(θ) = log
∫

exp[θT c(x)] dx <∞} ,

to have non–empty interior. Then

S = {p(·, θ) , θ ∈ Θ}, p(x , θ) := exp[θT c(x)− ψ(θ)] ,

where Θ ⊆ Θ0 is open, is an exponential family.
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Choice of the family Exponential Families

Choosing the family: Exponential II

Exponential Families and Hellinger/Fisher dH/g(θ) work well together:

The tangent space has a simple structure: square roots do not
complicate issues thanks to the exponential structure.
The Fisher matrix has a simple structure: ∂2

θi ,θj
ψ(θ) = gij(θ)

The structure of the projection Πg is simple for exp families
Special exp family makes filter correction step exact
One can define both a local and global fitlering error through dH

We have an alternative parameterization in η = Eθ[c], expectation
parameters, η = ∂θψ(θ).
Projection filter in expectation parameters coincides with classical
approximate filter: assumed density filter
Theory and numerical examples of exponential projection filtering
have been developed in [7], [8], [10], [11], [12], [13], [14].
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Choice of the family Exponential Families

Choosing the family: Exponential III

However, exponential families do not couple as well with the
metric γ(θ). The projection becomes more cumbersome and the
filter equations are not as easy.

Is there some important family for which the metric γ(θ) is
preferable to the classical Fisher metric g(θ), in that the metric,
the tangent space and the filter equations are simpler?

Family: Exponential Family?
Metric:

Hellinger/Fisher dH , g(θ) Good (not good?)
DirectL2 d2, γ(θ) (Not good) Good

The answer is affirmative, and this is the mixture family.
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Choice of the family Mixture Families

Mixture families I

We define a simple mixture family as follows. Suppose we are given
m + 1 fixed squared integrable probability densities, say
q = [q1,q2, . . . ,qm+1]T . Suppose we define the following space of
probability densities:

SM(q) = {θ1q1+θ2q2+· · ·+θmqm+(1−θ1−· · ·−θm)qm+1, θi ≥ 0 for all i ,

θ1 + · · ·+ θm < 1}

Define the transformation

θ̂(θ) := [θ1, θ2, . . . , θm,1− θ1 − θ2 − . . .− θm]T

for all θ. We will often write θ̂ instead of θ̂(θ).

SM(q) = {θ̂(θ)T q, θi ≥ 0 for all i , θ1 + · · ·+ θm < 1}
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Choice of the family Mixture Families

Mixture families II

While for exponential families the Hellinger / Fisher is ideal, for mixture
families it is not. The calculation of the Fisher information matrix g(θ) is
less immediate, and the related projection is more convoluted.

Instead, if we consider the L2 / γ(θ) distance, the metric γ(θ) itself and
the related projection become very simple. Indeed,

∂p(·, θ)

∂θi
= qi − qm+1

and

γij(θ) =

∫
(qi(x)− qm(x))(qj(x)− qm(x))dx NO inline numeric integr
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Choice of the family Mixture Families

Mixture families III

The L2 metric does not depend on the specific point θ of the manifold.
The same holds for the tangent space at p(·, θ), which is given by

Tp(·,θ)S = span{q1 − qm+1,q2 − qm+1, · · · ,qm − qm+1}

Also the L2 projection becomes particularly simple:

Πθ[v ] =
m∑

i=1

[
m∑

j=1

hij 〈v ,qj − qm+1〉] (qi − qm+1) . (6)

Apply the L2 metric and the related structure to the projection of the
infinite dimensional filter onto the mixture family.
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Mixture Projection Filter

Mixture Projection Filter I

The mixture family + metric γ(θ) lead to a Projection filter that is
the same as approximate filtering via Galerkin methods [4].
Beard, R. and Gunther, J. (1997). Galerkin
Approximations of the Kushner Equation in
Nonlinear Estimation. Brigham Young Univ.

See the paper in arXiv for the details. Summing up:

Family: Exponential Basic Mixture
Metric:

Hellinger dH Good Not so Good
Fisher g(θ) ∼ADF

Direct L2 d2 Not so Good Good
γ(θ) (∼Galerkin)
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Mixture Projection Filter

Mixture Projection Filter II
However, despite the simplicity above, the mixture family has an
important drawback: for all θ,

min
i

mean of qi ≤ mean of p(·, θ) ≤ max
i

mean of qi

As a consequence of this, we are going to enrich our family to a
mixture where some of the parameters are also in the core
densities q.
Specifically, we consider a mixture of GAUSSIAN DENSITIES with
MEANS AND VARIANCES in each component not fixed. Means
and variances are to be considered as parameters. So for
example for a mixture of two Gaussians we have 5 parameters.

θpN (µ1,v1)(x) + (1− θ)pN (µ2,v2)(x), param. θ, µ1, v1, µ2, v2

We are now going to illustrate the Gaussian mixture projection
filter (GMPF) in a fundamental example.
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Numerical Implementation

Numerical Implementation

The starting point for a numerical implementation is the finite
dimensional stochastic SDE given earlier:

dθi
t = [

m∑
j=1

γ ij(θt )

∫
L∗t p(x , θt )

∂p(x , θt )

∂θj
dx ] dt

− [
m∑

j=1

γ ij(θt )

∫
1
2
|bt (x)|2 ∂p(x , θt )

∂θj
dx ] dt

+
d∑

k=1

[
m∑

j=1

γ ij(θt )

∫
bk

t (x)
∂p(x , θt )

∂θj
dx ] ◦ dY k

t .
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Numerical Implementation

Solving a stochastic differential equation

Writing the SDE more symbollically we have:

γdθ = H1(θ)dt + H2(θ) ◦ dY

γ is on the right to emphasize that one shouldn’t invert γ.
So long as we can compute H1(θ) and H2(θ) and the matrix γ we
can solve this using an appropriate numerical scheme.
Since this is a Stratonovich equation we use the Euler–Heun
scheme.
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Numerical Implementation

Computing the coefficients

dθi
t = [

m∑
j=1

γ ij(θt )

∫
L∗t p(x , θt )

∂p(x , θt )

∂θj
dx ] dt

− [
m∑

j=1

γ ij(θt )

∫
1
2
|bt (x)|2 ∂p(x , θt )

∂θj
dx ] dt

+
d∑

k=1

[
m∑

j=1

γ ij(θt )

∫
bk

t (x)
∂p(x , θt )

∂θj
dx ] ◦ dY k

t

A point on our manifold is represented by a density function p.
Tangent vectors are represented by the functions ∂p

∂θi

Once we know these functions, the coefficients can be computed
using the following operations on functions: addition,
differentiation, multiplication, integration.
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A point on our manifold is represented by a density function p.
Tangent vectors are represented by the functions ∂p

∂θi

Once we know these functions, the coefficients can be computed
using the following operations on functions: addition,
differentiation, multiplication, integration.
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Numerical Implementation Software abstractions

The FunctionRing abstraction

Choose an in memory representation of a function.

Implement code to manipulate these functions.

FunctionRing
Function add( Function x, Function y )
Function multiply( Function x, Function y )
Function differentiate( Function x)
Real integrate( Function x )
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Numerical Implementation Software abstractions

Representing the Manifold

The Manifold maps a set of parameter values θ to a Function in
our FunctionRing
The Manifold can tell us the tangent vectors ∂p

∂θi
at a given point

Manifold
Function probabilityDensity( θ )
Function[] tangentVectors( θ )

Mathematically the Manifold abstraction corresponds to a
parameterization of the manifold
The results are sensitive to the choice of parameterization
Our abstraction allows us to change the manifold or
parameterization at different time steps.
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Numerical Implementation Software abstractions

L2Projection engine

The end result is a general program which given choices of
FunctionRing
Manifold
Coefficients for the filtering equation in the FunctionRing
Initial state θ
Measurements Y

is able to compute the evolution of θ.
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Numerical Implementation Software abstractions

Example Manifold and FunctionRing

Data:
FunctionRing R given by linear combinations of polynomials and
Gaussians times polynomials.
Manifold given by mixtures of Gaussians
Coefficients for the filtering equation in the FunctionRing

In this case all integrals can be performed analytically.
Approximate coefficients outside the function ring using Taylor
series.
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Numerical Implementation The quadratic sensor

The quadratic sensor

Consider the quadratic sensor

dXt = σdWt

dYt = X 2dt + σdVt .

The measurements tell us nothing about the sign of X
Once it seems likely that the state has moved past the origin, the
distribution will become nearly symmetrical
We expect a bimodal distribution
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Numerical Implementation The quadratic sensor

Simulation for the Quadratic Sensor
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Numerical Implementation The quadratic sensor

L2 residuals for the quadratic sensor
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Numerical Implementation The quadratic sensor

Lévy residuals for the quadratic sensor
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Numerical Implementation Cubic sensors

Cubic sensors
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Qualitatively similar results up to a stopping time

As one approaches the boundary γij becomes singular
The solution is to dynamically change the parameterization and
even the dimension of the manifold.
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Conclusions and References

Conclusion I

Approximate filtering can be achieved by mathematically rigorous
projection methods on the space of densities
Manifold structure depending on an overarching L2 structure
Two different metrics: direct L2 and Hellinger/Fisher (L2 on √.)
Fisher works well with exponential families:

good for conditional signal with thin tails
multimodality,
correction step exact,
simplicity of implementation
equivalence with Assumed Density Filters

Direct L2 works well with mixture families
even simpler filter equations, no inline numerical integration
equivalence with Galerkin methods
suited also for fat tailed conditional distributions and extreme
multimodality (quadratic sensor tests, L2 global filter error)

D. Brigo and J. Armstrong (IC and KCL) Projection Filters AHOI, Imperial 2013 49 / 58



Conclusions and References

Thanks

With Thanks to the organizing committee and Almut Veraart in
particular for your kind invitation.

Thank you for your kind attention.

Questions and comments very welcome
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