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Abstract

The aim of this work is to develop a pricing model for a kind of contract
that we term "in�ation indexed credit default swaps (IICDS)". IICDS' pay-
o�s are linked to in�ation, in that one of the legs of the swap is tied to the
in�ation rate. In particular, the structure exchanges consumer price index
(CPI) growth rate plus a �xed spread minus the relevant libor rate for a
protection payment in case of early default of the reference credit. This is
inspired by a real market payo� we manged in our work. The method we
introduce will be applied to our case but is in fact much more general and
may be envisaged in situations involving in�ation / credit / interest rate hy-
brids. The term IICDS itself can be associated to quite di�erent structures.
Many variables enter our IICDS valuation. We have the CPI, the nominal
and real interest rates, and the default modeling variables. For our pricing
purposes we need to choose a way of modeling such variables in a convenient
and practical fashion. Our choice fell on the familiar short rate model setting,
although frameworks based on recent market models for credit and in�ation
could be attempted in principle, for example by combining ideas on Credit
Default Swap Market Models (Schönbucher 2004, Brigo 2005) with ideas on
In�ation Market Models (Belgrade, Benhamou and Koehler 2004, Mercurio
2005). We discuss numerical methods such as Euler discretization and Monte
Carlo simulation for our pricing procedure based on gaussian and CIR short
rate models for rates and default intensity. We analyze the numerical results
in details and discuss the impact of correlation between the di�erent rates
on the valuation.





4



Contents

1 Introduction 7

2 An Overview of In�ation Modeling 9
2.1 In�ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 In�ation Modeling: General Framework . . . . . . . . . . . . . 10
2.3 Zero Coupon and Year-on-Year In�ation-Indexed Swaps . . . . 11
2.4 A short guide to the Hull-White interest rate model . . . . . . 14
2.5 The Jarrow-Yildirim model . . . . . . . . . . . . . . . . . . . 16
2.6 Pricing with the Jarrow-Yildirim/Hull-White model . . . . . . 19

2.6.1 Pricing of Year-on-year In�ation Indexed Swaps . . . . 19
2.6.2 Pricing of In�ation Indexed Caps and Floors . . . . . . 20

3 Introduction to credit risk 23
3.1 A brief overview on credit default swaps . . . . . . . . . . . . 23
3.2 Modeling the default time . . . . . . . . . . . . . . . . . . . . 25
3.3 A brief introduction to the Cox-Ingersoll-Ross model for the

intensity of default . . . . . . . . . . . . . . . . . . . . . . . . 29

4 In�ation-Indexed CDS pricing model 33
4.1 De�ning the contractual payo� . . . . . . . . . . . . . . . . . 33
4.2 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Pricing IICDS when the intensity of default is indepen-
dent from interest rates and the CPI . . . . . . . . . . 35

4.2.2 Pricing IICDS when the intensity of default is corre-
lated with interest rates and the CPI . . . . . . . . . . 39

4.2.3 Pricing the IICDS when ρλ,n = ρλ,r = ρλ,I 6= 0 . . . . . 40
4.2.4 Pricing the IICDS with several correlation patterns . . 41
4.2.5 Pricing the IICDS with higher volatility levels . . . . . 43

5 Conclusions 47

5





Chapter 1

Introduction

The aim of this work is to develop a pricing model for a recent type of credit
derivative contracts. Such contracts have their payo�s linked to some current
rate of in�ation. This is to say they have a particular �oating-to-�oating
interest rate structure in which one of the �oating legs is tied to the in�ation
rate. Meanwhile, being these credit derivatives, their whole contingent claim
depends on the creditworthiness of a third party. We will generally name
contracts of this kind "In�ation-Indexed Credit Default Swaps" or IICDS.

It will be clear that these contracts �nd their economic sense when two (or
more) parties agree on the following assumptions in interpreting the market:
the protection seller believes that the spread between in�ation and nominal
interest rates will rise but thinks this will not a�ect the overall economic
situation and that the credit quality of the contractual underlying economic
agent will not change substantially whilst the protection buyer thinks in�a-
tion will rise and that this may deteriorate the creditworthiness of economic
agents and of the underlying in particular. Usually the buyer of such con-
tracts has opened positions with one or more of such economic agents and
fears the possibility of a credit event a�ecting his wealth or current income.

Many variables enter the in�ation indexed credit default swap payo�s. We
have the Consumer Price Index (CPI), the nominal and real interest rates,
and the default modeling variables. For our pricing purposes we needed to
choose a way of modeling such variables in a convenient and practical fashion.
The choice of the best suited "technology" fell on the familiar short rate
model setting, although frameworks based on recent market models for credit
and in�ation could be attempted in principle, for example by combining ideas
on Credit Default Swap Market Models (Schonbucher 2004, Brigo 2005) with
ideas on In�ation Market Models (Benhamou 2004, Mercurio 2005).

We rely on the Jarrow-Yildirim and on the Hull-White models for the
nominal and the short rates, on the log-normal setting for the Consumer
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Price Index dynamics and on the Cox-Ingersoll-Ross model to determine the
stochastic intensity of default within the contract.

Our pricing procedure tries to de�ne the �xed δ spread that has to be
added to one of the legs to render the contract fair at inception time t = 0.
This will be done under di�erent assumptions on correlation patterns between
the previously outlined variables.

As usual the price of our derivative is given by the expected value of
its discounted payo�. Due to the complexity of the IICDS payo� there is no
analytical closed form solution to compute such expectation and so numerical
methods such as Euler discretization and Monte Carlo simulation will be
required in the pricing procedure.

In the following sections we will brie�y introduce the general framework.
We describe the methods used for modeling in�ation and for modeling de-
fault. In the last sections we will use the de�ned methods to assemble our
pricing model for IICDS's and to test it empirically. At last we present the
�nal conclusions.



Chapter 2

An Overview of In�ation
Modeling

2.1 In�ation
Over the last decades a generalized and constant rise in the prices of goods,
partly driven by the growing worldwide demand and partly due to the rise
of the cost of energetic resources, claimed the introduction of new types of
�nancial instruments.

These instruments have been de�ned so as to preserve individuals invested
wealth at a minimum guaranteed purchasing power throughout the years.

This minimum guaranteed purchasing power is achieved by linking the
payo�s o�ered by these instruments to the growth rate of prices, i.e. to
in�ation.

In�ation-indexed �nancial instruments are not new entries in the �nan-
cial industry: these products have been regularly issued for thirty years by
all kinds of institutions; what is actually new is the recent application this
in�ation-index feature has had on the world of derivative instruments and in
particular on hybrid products using Credit Default Swaps features.

The periodic in�ation rate is de�ned as the ratio between the values of
a given price index computed at two di�erent times. The most used price
indexes are the CPIs or Consumer Price Indexes. These are prices of baskets
of reference goods and the change in their value is the best proxy for the rate
of in�ation.

Since the evolution of CPI is random, to price in�ation-indexed deriva-
tives we must retrieve such evolution via stochastic models. In this work
we will refer to the Brigo-Mercurio (2006) short- rate reformulation of the
Jarrow-Yildirim (2003) model. The model is built on the Heath-Jarrow-

9



10 Marco Avogaro - Bocconi University Master Thesis with Prof. Damiano Brigo

Morton (1992) framework and is based on the foreign-currency analogy.
Here the evolution of instantaneous real and nominal rates is modeled

together with the evolution of the Consumer Price Index. Nominal rates are
interpreted as the domestic rates while real rates are interpreted as foreign
economy rates. The CPI is treated as the "exchange rate" between the
nominal and real economies.

2.2 In�ation Modeling: General Framework
According to the foreign-currency analogy of Jarrow-Yildirim (2003), the
evolution of in�ation is modeled via the following approach: nominal and
real rates are treated as domestic and foreign rates respectively and the CPI
is treated as if it were the "exchange rate" between associated markets.

If we denote by I(t) the value of the CPI index at time t, we have that, to
buy the reference basket of goods in t = 0, one has to spend I(0) monetary
units.

Computing the ratio between the value of the index at time t and at time
0 we obtain the total return of the CPI in [0, t]:

I(t)

I(0)
= 1 + in�ation rate between time 0 and t.

The ratio I(t)/I(0) can be interpreted as an exchange rate: multiplying a
given amount of "real currency" at time t by this ratio we obtain the corre-
sponding amount of "nominal currency" at time t. By taking the reciprocal
of such ratio one is asking which is the real amount with respect to time 0.
He is thus "exchanging" a nominal value into a real value at time t. Actually
this is very similar to the approach one uses when converting two di�erent
currencies. The only di�erence is that here we compare the nominal cost of
a basket of goods at some given time t with its initial cost making it into a
real value. In the FX market we instead exchange two di�erent currencies
at the same time making one currency in its value with respect to the other
currency.

It comes straightforward that setting I(0) = 1, it is possible to convert
nominal values to real values at a generic time t just dividing by the CPI
level at time t. This means that if an asset at time t has a nominal value of
X its value in real terms is X/I(t).
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2.3 Zero Coupon and Year-on-Year In�ation-
Indexed Swaps

Before resorting to the Jarrow and Yildirim (2003) model for pricing in�ation-
indexed model dependent derivatives, we shall take a short overview of the
most important in�ation-indexed swaps, such as zero coupon (ZC) in�ation-
indexed swaps and year-on-year (YY) in�ation-indexed swaps. This is nec-
essary because these contracts can be considered as calibration inputs of our
particular pricing model. ZCIIS are model independent derivatives and can
be priced by general no-arbitrage arguments while YYIIS involve some in-
terest rate modeling and will be our reason for introducing the short rate
framework.

A zero coupon in�ation-indexed swap is a contract that has a single cash
�ow occurrence at a �nal time in T years. In such contract, in fact, party A
pays to party B, at maturity, a �oating payo� equal to

N

[
I(T )

I0

− 1

]
, (2.1)

while party A receives, at maturity, from party B the �xed amount

N [(1 + K)T − 1], (2.2)

where K is a �xed interest rate and N is the contract notional.
A year-on-year in�ation-indexed swap is slightly di�erent from ZC swaps.

In this case we have a set of �xed payments from party B to party A at each
time Ti:

NφiK, (2.3)
where φi is the year fraction of the �xed leg over the interval [Ti−1, Ti]. Party
A, conversely, at each time Ti, pays the �oating amount

N

[
I(Ti)

I(Ti−1)
− 1

]
. (2.4)

In this case let ψi denote the year fraction of the �oating payment over the
time interval [Ti−1, Ti]. Actually, the CPI �xings typically do not coincide
with the payment scheduled T 's but can be displaced of a few weeks. Here
to simplify exposure we assume the two sets of dates to coincide. As for the
ZCIIS, K can be set to the �xed rate that renders the YY swap contract fair
at time 0.

The valuation of such contracts can be exploited via the usual no-arbitrage
pricing theory.
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Starting with the ZCIIS we can see that the �xed leg valuation is straight-
forward and needs no in-depth analysis: one simply discounts the known �nal
�xed payment with the nominal zero-coupon bond. The �oating leg valua-
tion, on the contrary, needs some attention.

From simple no-arbitrage considerations, the value of a ZCIIS at any
given time t is the risk-neutral expected value, with respect to �ltration Ft,
of its nominal discounted payo� at maturity:

ZCIIS(t, T, I0, N) = NEn

{
e−

R T
t n(u)du

[
I(T )

I0

− 1

]
|Ft

}
. (2.5)

One should recall that the usual risk neutral pricing measure we are using
features the nominal bank account as numeraire. The numeraire is thus
e
R T
0 n(u)du. To simplify the computation of such expectation we use a foreign-

currency analogy result. Supposing we are at time t, such result states that
the expected present value of a foreign payo� S(T ) (at maturity), discounted
back at t with the foreign interest rate and taken with respect to the foreign
risk-neutral probability f , multiplied by the exchange rate X at time t, is
equal to the expectation of the domestically discounted foreign payo� mul-
tiplied by the exchange rate at time T , taken with respect to the domestic
risk-neutral probability d.

In mathematical terms this looks like:

X(t)Ef

[
Df (t, T )S(T )|Ft

]
= Ed

[
Dd(t, T )S(T )X(T )|Ft

]
, (2.6)

where Df and Dd are stochastic discount factors. This analogy, applied to
our context, and considering a unit payo� X, yields the following result:

I(t)Er

[
Dr(t, T )|Ft

]
= En

[
Dn(t, T )I(T )|Ft

]
, (2.7)

which, given the usual de�nition of zero-coupon bond price, can be rewritten
as:

I(t)Pr(t, T ) = En

[
Dn(t, T )I(T )|Ft

]
. (2.8)

By plugging this result in (2.5), we obtain the following model independent
ZCIIS price:

ZCIIS(t, T, I0, It, N) = N

[
I(t)

I0

Pr(t, T )− Pn(t, T )

]
. (2.9)

Needless to say, at time 0 this equation simpli�es to

ZCIIS(0, T, N) = N

[
Pr(0, T )− Pn(0, T )

]
. (2.10)
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This is a �ne result since, as already said, the pricing formula is model
independent. This is like saying that no assumption on the future evolution of
interest rates is required to perform valuation. This conclusion is empirically
very helpful because it gives us an easy way for stripping real discount factors
from the term structure of nominal discount factors and zero-coupon swaps.
This stripping procedure is performed, at the present time, by equating the
value of the ZCIIS to zero. Remembering the �xed leg de�nition given in
(2.2) we obtain the following result by equating (2.10) to the nominal present
value of (2.2):

Pr(0, T ) = Pn(0, T )(1 + K(T ))T . (2.11)
The market quotes, with daily frequency, �xed values of K = K(T ) for dif-
ferent maturities that render the various ZCIIS fair in the considered date
t = 0. By substituting these values of K and the respective nominal dis-
count factors, in the above formula, it is straightforward to obtain the term
structure of real discount factors .

Albeit not so di�erent in their essence from the ZCIIS, year-on-year
in�ation-indexed swaps are not so easy to price and require, in performing
their valuation, another kind of approach.

According to (2.4), the value at time t of a single �oating payment of a
YYIIS, due in Ti > t, is:

Y Y IIS(t, Ti−1, Ti, ψi, N) = NψiEn

{
Dn(t, Ti)

[
I(Ti)

I(Ti−1)
− 1

]
|Ft

}
, (2.12)

where ψi is the usual year fraction of the �oating leg. Using the tower prop-
erty of conditional expectations and remembering the de�nition of Dn(t, T )
we can write such payo� as follows:

Y Y IIS(·) = NψiEn

{
e−

R Ti−1
t n(u)duEn

[
e
− R Ti

Ti−1
n(u)du

(
I(Ti)

I(Ti−1)
−1

)
|FTi−1

]
|Ft

}
.

(2.13)
Paying some attention to (2.13), one can see that the inner expectation is
nothing but a ZCIIS(Ti−1, Ti, I(Ti−1)) with unit nominal. By substituting
the homologous of formula (2.10), for time Ti−1, in (2.13) one obtains the
following structure for the YYIIS:

NψiEn{e−
R Ti−1

t n(u)du[Pr(Ti−1, Ti)− Pn(Ti−1, Ti)]|FTi−1
} (2.14)

= NψiEn{Dn(t, Ti−1)Pr(Ti−1, Ti)|Ft} −NψiPn(t, Ti).

Using the change of measure technique (i.e. applying Girsanov's theo-
rem) we can go from the nominal risk-neutral probability measure to the n
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Ti−1-forward probability measure. Such procedure justi�es taking Dn(t, Ti−1)
outside the expectation operator. This �nally yields:

NψiPn(t, Ti−1)ETi−1
n {Pr(Ti−1, Ti)|Ft} −NψiPn(t, Ti). (2.15)

Problems in the valuation of a YYIIS arise when in need to compute the
above expectation. This expectation is model-dependent and to evaluate it
we resort to the Jarrow and Yildirim (2003) model that is de�ned as a special
case of the Hull-White (1990) model.

2.4 A short guide to the Hull-White interest
rate model

In order to fully understand the Hull-White (1990) approach to the in�ation
dynamics derived by Jarrow and Yildirim (2003) it is useful to brie�y de�ne
the Hull and White model for the instantaneous short rate.

Such model improves the time homogeneous model for short rates de�ned
by Vasicek (1977). Such core model has in fact problems in retrieving the
exact �t to the current term structure of interest rates when this is taken as
an input, i.e. its calibration to market data returns parameters that make
such model �t to a limited number of term structure shapes. This is due to
the time invariance of the parameters in the Vasicek model.

A bad term structure interpolation, or more precisely, having the term
structure as an output rather than an input, a�ects the concrete applicability
of the model in pricing interest rate derivatives. To overcome such limitations
Hull and White (1990) proposed a modi�cation with time varying coe�cients
(hence abandoning the time homogeneous approach). The original formula-
tion contemplated by Hull and White was with three time varying coe�cients
but here we resort to a simpler case in which only the mean reverting coef-
�cient is free to vary across time. This adds in�nite degrees of freedom in
term structure �tting. The model we use is the following:

dr(t) = [θ(t)− ar(t)]dt + σdW (t). (2.16)

Here a and σ are positive constant coe�cients and the boundary condition
on the s.d.e is r(0) = r0. W is a Brownian motion under the risk neutral
probability. Notice that here, in exposing the Hull and White model, r is
the usual short rate, i.e. the nominal rate we denote by n when dealing with
in�ation.
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The term θ(t) leads to an exact �t of the initial term structure of interest
rates if it is chosen as follows:

θ(t) =
∂ fM(0, t)

∂ T
+ afM(0, t) +

σ2

2a
(1− e−2at), (2.17)

where

fM(0, T ) = −∂ lnPM(0, T )

∂T
, (2.18)

is the instantaneous forward rate derived from current market data.
With the Hull and White Vasicek extension for instantaneous short rates

we are thus able to model the fundamental rate r while gaining a perfect
�t to market data and keeping the analytical tractability guaranteed by the
gaussianity assumption on r. This comes with a cost, i.e. the non zero
probability of negative interest rates, as opposed to other models like the
Cox-Ingersoll-Ross (1985). It can be proved that such possibility is almost
negligible in practical applications.

Now we try and illustrate a simple application of the Hull and White
model in the valuation of a zero-coupon bond. As seen earlier, the price at
time t of a ZC with unit notional and maturity T , in a stochastic interest
rate setting, is nothing but the value of the following expectation:

P (t, T ) = E
[
D(t, T )|Ft

]
=

= E
[
exp

(
−

∫ T

t

r(s)ds

)
|Ft

]
.

Such expectation is easily computed once we know the distribution of the
random variable r and its complete speci�cation. In a gaussian framework
like ours, all we need at this point is the mean and variance of such random
variable. This is achieved thanks to our knowledge of the process r.

Starting from dr(t) and de�ning a derivative process Y = r(t)eat, we
apply Ito's lemma to �nd dY . Once we get this di�erential, we take the inte-
gral from time s to t and we switch variables again, obtaining the following
expression for r(t) (see Brigo-Mercurio (2001)):

r(t) = r(s)e−a(t−s) +

∫ t

s

e−a(t−s)θ(u)du + σ

∫ t

s

e−a(t−s)dW (u) (2.19)

= r(s)e−a(t−s) + α(t)− α(s)e−a(t−s) + σ

∫ t

s

e−a(t−s)dW (u), (2.20)
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with
α(t) = fM(0, t) +

σ2

2a2
(1− e−at)2. (2.21)

After some tedious algebra, we can �nally compute
∫ T

t
r(u)du and hence

come up with its distribution:
∫ T

t

r(u)du ∼ N

(
B(t, T )[r(t)−α(t)]+ln PM(0, t)

PM(0, T )
+

1

2
[V (0, T )−V (0, t)], V (t, T )

)
,

(2.22)
where

B(t, T ) =
1

a

[
1− e−a(T−t)

]
(2.23)

and
V (t, T ) =

σ2

a2

[
T − t +

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]
. (2.24)

Given that the integral of r is a normal random variable and given that we
know it can be found at the exponent in our payo� formulation, we can
easily �nd the expectation of the zero coupon bond value using the moment
generating function, i.e.:

E[eλX ] = eaλ+ 1
2
bλ2

, with X ∼ N(a, b). (2.25)

Applying such function and rearranging terms we get:

P (t, T ) = A(t, T )e−B(t,T )r(t), (2.26)

with

A(t, T ) =
PM(0, T )

PM(0, t)
exp

{
B(t, T )fM(0, t)− σ2

4a
(1− e−2a)B(t, T )2

}
. (2.27)

2.5 The Jarrow-Yildirim model
Before illustrating the model we introduce some notation.

As in Brigo-Mercurio (2006), nominal and real economy quantities are
respectively denoted with the subscripts n and r.

The instantaneous nominal and real forward rates, whose dynamics Jar-
row and Yildirim (2003) start from, are de�ned as follows:

fx(t, T ) = −∂ lnPx(t, T )

∂T
, x ∈ {n, r}. (2.28)
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Integrating both sides with respect to maturity, we have that the nominal
discount factor is:

Pn(t, T ) = E
[
Dn(t, T )|Ft

]
=

= exp

(
−

∫ T

t

fn(t, s)ds

)
,

and the real discount factor is

Pr(t, T ) = E
[
Dr(t, T )|Ft

]
=

= exp

(
−

∫ T

t

fr(t, s)ds

)
.

We then obtain the term structure of nominal discount factors as T →
Pn(t, T ) and that of real discount factors as T → Pr(t, T ) for T ≥ 0.

Jarrow and Yildirim (2003), in describing the evolution of nominal and
real instantaneous forward rates and to describe the evolution of the CPI, de-
�ne the following dynamics under the real world probability space (Ω,F , P ),
associated with �ltration F:

dfn(t, T ) = αn(t, T )dt + βn(t, T )dW P (t)
n (2.29)

dfr(t, T ) = αr(t, T )dt + βr(t, T )dW P (t)
r (2.30)

dI(t) = I(t)µ(t)dt + I(t)σI(t)dW P
I (t). (2.31)

with I(0) = I0 ≥ 0, and

fx(0, T ) = fM
x (0, T ), x ∈ {n, r}.

We de�ne

• (W P
n ,W P

r ,W P
I ) as a vectorial Brownian motion with correlations ρn,r,

ρr,I and ρn,I ;

• βn and βr are deterministic functions;

• αn, αr and µ are processes adapted to F ;

• σI(t) = σI is a constant with σI ≥ 0;

• fM
n (0, T ) and fM

r (0, T ) are the nominal and real instantaneous forward
rates observed in the market in t = 0 with maturity t = T .
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Here we move from the Jarrow-Yildirim (2003) model, built on the Heath-
Jarrow-Morton (1992) instantaneous forward rates framework, to the equiv-
alent Hull-White short rate model formulation. Furthermore, we model our
interest rate process directly under the risk neutral measure.

We implement a gaussian Hull-White stochastic model for the short rates,
as suggested in Brigo-Mercurio (2006), instead of a model for the instanta-
neous forward rates, to render calculations easier. To do so, we choose to
model instantaneous volatilities as the following deterministic functions of
time:

• βn(t, T ) = σne
−an(T−t),

• βr(t, T ) = σre
−ar(T−t),

with σ's and a's positive constants.
The equivalent instantaneous short rate formulation under the n-dynamics

of the nominal and real instantaneous rates and of the CPI is as follows:

dn(t) = [θn(t)− ann(t)]dt + σndWn(t) (2.32)
dr(t) = [θr(t)− ρr,IσIσr − arr(t)]dt + σrdWr(t) (2.33)
dI(t) = I(t)[n(t)− r(t)]dt + σII(t)dWI(t), (2.34)

with (Wn,Wr,WI) a vectorial Brownian motion, under the risk neutral
measure, with correlations ρn,r, ρr,I and ρn,I .

The terms θn(t) and θr(t) are the usual deterministic functions from the
Hull-White model used to exactly �t the input current term structure of
nominal and real rates. As from Brigo-Mercurio (2006) (see also (2.17) above)
these are de�ned as follows:

θx(t) =
∂ fx(0, t)

∂ T
+ axfx(0, t) +

σ2
x

2ax

(1− e−2axt), x ∈ {n, r} (2.35)

For a detailed proof see Brigo-Mercurio (2006).
We can now solve for I(t). By setting Y = lnI(t) and remembering Ito's

lemma we have that:

dY (t) =
∂ Y

∂ t
dt +

∂ Y

∂ I(t)
dI(t) +

1

2

∂2 Y

∂ I(t)2
< dI(t) >2 . (2.36)

By calculating the partial derivatives and substituting for the respective el-
ements we get:

dY (t) = [n(t)− r(t)]dt− 1

2
σ2

Idt + σIdWI(t) (2.37)
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Here we can �nally take the integral from t to T and with a second change
of variables we get the explicit process for I(T ):

I(T ) = I(t)e
R T

t [n(t)−r(t)]du− 1
2
σ2

I (T−t)+σI(WI(T )−WI(t)). (2.38)

I(T ) is log-normally distributed according to the gaussianity of the nominal
and real short rates and the Brownian motions in the exponential.

2.6 Pricing with the Jarrow-Yildirim/Hull-White
model

2.6.1 Pricing of Year-on-year In�ation Indexed Swaps
The �rst application of the Jarrow-Yildirim (2003) model is within the pricing
of the YYIIS we left un�nished in Section 2.3. Such contract had the following
structure:

NψiPn(t, Ti−1)ETi−1
n {Pr(Ti−1, Ti)|Ft} −NψiPn(t, Ti),

and our problem was the di�culty in computing ETi−1
n {Pr(Ti−1, Ti)|Ft}. To

compute such expectation we need to model the real rate under the nominal
Ti−1-forward probability measure so we must use the change of numeraire
technique once again. The Jarrow-Yildirim de�nition of the real instanta-
neous rate under the nominal probability as from Section 2.5 is:

dr(t) = [θr(t)− ρr,IσIσr − arr(t)]dt + σrdWr(t)

Applying the change of measure to such dynamics we get:

dr(t) = [θr(t)− ρr,IσIσr − arr(t)− ρn,rσrσnBn(t, Ti−1)]dt + σrdW Ti−1
r (t),

(2.39)
with W Ti−1 a Brownian motion under the nominal Ti−1-forward measure.Under
such measure, the expected value of Pr(Ti−1, Ti) is obtained after quite cum-
bersome calculations and (as in Brigo-Mercurio (2006)) is given by:

Pr(Ti−1, Ti) =
Pr(t, Ti)

Pr(t, Ti−1)
eC(t,Ti−1,Ti), (2.40)

with

C(t, Ti−1, Ti) = σrBr(Ti−1, Ti)

[
Br(t, Ti−1)

(
ρr,IσI − 1

2
σrBr(t, Ti−1)

+
ρn,rσn

an + ar

(1 + arBn(t, Ti−1))

)
− ρn,rσn

an + ar

Bn(t, Ti−1)

]
. (2.41)
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and Pr, Ar and Br as in Section 2.4:

Pr(t, T ) = Ar(t, T )e−Br(t,T )r(t),

Br(t, T ) =
1

a

[
1− e−ar(T−t)

]
,

Ar(t, T ) =
PM

r (0, T )

PM
r (0, t)

exp
{

Br(t, T )fM
r (0, t)− σ2

r

4ar

(1− e−2ar)Br(t, T )2

}
.

We now have all the elements we need for pricing a one period year-on-year
in�ation indexed swap; this is:

Y (t, Ti−1, Ti, ψi, N) = NψiPn(t, Ti−1)
Pr(t, Ti)

Pr(t, Ti−1)
eC(t,Ti−1,Ti) −NψiPn(t, Ti).

(2.42)
The value of the whole contract is the summation of all the payments and in
t = 0 this is:

Y (0, TM , Ψ, N) = Nψ1[Pr(0, T1)− Pn(0, T1)] (2.43)

+N

M∑
i=2

ψi

[
Pn(0, Ti−1)

Pr(0, Ti)

Pr(0, Ti−1)
eC(0,Ti−1,Ti) − Pn(0, Ti)

]

= N

M∑
i=1

ψiPn(0, Ti)

[
1 + τiFn(0, Ti−1, Ti)

1 + τiFr(0, Ti−1, Ti)
eC(0,Ti−1,Ti) − 1

]
,

where

Fx(t, Ti−1, Ti) =
1

τi

[
Px(t, Ti−1)

Px(t, Ti)
− 1

]
, x ∈ {n, r}. (2.44)

2.6.2 Pricing of In�ation Indexed Caps and Floors
Another contract related to our �nal pricing model is the In�ation Indexed
Cap. Here we take a brief overview of such contract and highlight its pricing
procedure via the Jarrow-Yildirim model. To simplify our treatment we start
from the core components of an In�ation Indexed Cap i.e. In�ation Indexed
Caplet or IIc. An IIc is a call option contract that pays in�ation, which, as
seen previously can be considered as the "rate of return" of the CPI index,
minus a prede�ned strike. Obviously the contingent claim pays out only if
such di�erence is positive. The payo� structure of the IIc is as follows:

Nψi

[(
I(Ti)

I(Ti−1)
−K

)+]
, (2.45)
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where notation retains our usual meaning and K = 1+k where k is the strike
level.

The price at time t of such payo� derives from no-arbitrage theory and is
equal to the present value of its expectation under the appropriate probability
measure. This is:

IIc(t, Ti−1, Ti, ψi, K, N) = NψiEn

[
e−

R Ti
t n(u)du

(
I(Ti)

I(Ti−1)
−K

)+

|Ft

]

= NψiPn(t, Ti)ETi
n

[(
I(Ti)

I(Ti−1)
−K

)+

|Ft

]
.

(2.46)

When pricing with the Jarrow-Jildirim model we know we have Gaussian
nominal and real interest rates that lead to a log-normally distributed CPI
and as a consequence, to log-normally distributed CPI ratios. This log-
normality of the Consumer Price Index holds when moving from the nominal
risk neutral probability measure Qn to the nominal forward measure QTi

n .
This is an important point since we need to price such contingent claim under
its appropriate probability measure QTi

n . Thanks to the previous property
we now can apply a useful result from probability to complete the contract
valuation. Setting I(Ti)/I(Ti−1) = X and, knowing that X is log-normally
distributed, we can compute its expectation and the variance of its logarithm.
This permits us to value the contingent claim. In fact, with E(X) = f and
Std[X] = s we have:

E[(X −K)+] = fΦ

( ln f
K

+ s2

2

s

)
−KΦ

( ln f
K
− s2

2

s

)
, (2.47)

where Φ is the CDF of a Standard Normal Gaussian RV.
Now, remembering the price of the YYIIS we can easily obtain the ex-

pected value of X, i.e.:

ETi
n

[
X =

I(Ti)

I(Ti−1)
|Ft

]
=

Pn(t, Ti−1)

Pn(t, Ti)

Pr(t, Ti)

Pr(t, Ti−1)
eC(t,Ti−1,Ti) = f.

For what concerns the variance of the logarithm of X we have:

VarTi
n =

[
ln I(Ti)

I(Ti−1)
|Ft

]
= V 2(t, Ti−1, Ti) = s2.

After some cumbersome calculations we have that such variance is (see Brigo-
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Mercurio (2006)):

V 2(t, Ti−1, Ti) =
σ2

n

2a3
n

(1− ean(Ti−Ti−1))2(1− e−2an(Ti−1−t)) + σ2
I (Ti − Ti−1)

+
σ2

r

2a3
r

(1− ear(Ti−Ti−1))2(1− e−2ar(Ti−1−t))− 2ρn,r
σnσr

anar(an + ar)

·(1− ean(Ti−Ti−1))(1− e−ar(Ti−Ti−1))(1− e−(an+ar)(Ti−1−t))

+
σ2

n

a2
n

[
Ti − Ti−1 +

2

an

e−an(Ti−Ti−1) − 1

2an

e−2an(Ti−Ti−1) − 3

2an

]

+
σr

a2
r

[
Ti − Ti−1 +

2

ar

e−ar(Ti−Ti−1) − 1

2ar

e−2ar(Ti−Ti−1) − 3

2ar

]

−2ρn,r
σnσr

anar

[
Ti − Ti−1 − 1− e−an(Ti−Ti−1)

an

− 1− e−ar(Ti−Ti−1)

ar

+
1− e−(an+ar)(Ti−Ti−1)

an + ar

]
+ 2ρn,I

σnσI

an

[
Ti − Ti−1 − 1− e−an(Ti−Ti−1)

an

]

−2ρr,I
σrσI

ar

[
Ti − Ti−1 − 1− e−ar(Ti−Ti−1)

ar

]
.

(2.48)

Here all notation maintains the previously given meaning.
Now by substituting the expectation and the variance of the logarithm

of X in formula (2.47), discounting with the appropriate discount factor and
remembering notional and year fractions, we obtain the price of the In�ation
Indexed Caplet. An In�ation Indexed Cap (IIC) is nothing but a stream of
In�ation Indexed Caplets.



Chapter 3

Introduction to credit risk

In recent times, policy regulators and institutions worldwide are stressing
the importance of introducing an e�cient counter-party risk management in
�nancial operations.

Attention to modeling the probability of default or the creditworthiness of
economic subjects has sharply increased also due to the latest bankruptcies
that shock �nancial communities at an international level with important
names such as Enron, Parmalat or Worldcom involved, to name just a few.
This led to a higher level of analysis and foreseeing in the investment pro-
cedures and a willingness to hedge the possibility of mishaps deriving from
counter-party risk.

In the meanwhile banks, �nancial institutions and any other corporation
have been struggling to align themselves to the International Accounting
Standards that obliges �rms to mark-to-market their �nancial investments
almost on a daily basis.

This particular environment has been a fertilizer to the development and
di�usion of credit derivatives. Such instruments have recently become ex-
tremely popular in the �nancial industry.

3.1 A brief overview on credit default swaps
Counter-party risk is an intrinsic component of almost any type of economic
transaction: it is the risk that a subject, who owes us money on the basis of
a contractual agreement, does not respect the obligation to pay it back. This
can be due to its deteriorating economic situation or even, which is the worst
case, to its default. One could argue that, due to its central importance
within any kind of contractual agreement, credit risk should have its own
price and such price should enter in the contract valuation. Credit derivatives

23
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try to determine such price and o�er signi�cant insight on the dynamics
underlying the credit risk framework. They are also instruments that allow
to hedge the default risk.

A CDS is a contract between two or more subjects. One subject (pro-
tection buyer) pays a certain periodical rate, generally �xed at inception,
and the other subject (protection seller) pays protection in case of a pre-
determined credit event. The periodical payments stop in case of default.
The credit event that triggers the protection payo� could be represented
by payment delay or default of a third entity (the "reference" credit) on a
contractual obligation.

A simpli�ed stylized credit default swap, with unit nominal, protecting
from time Tα to time Tβ, has the following payo� structure composed by the
premium leg (�rst summation) and the protection leg (second summation):

Πα,β(t) =

β∑
i=α+1

Dn(t, Ti)ψi1{τ≥Ti}R

−
β∑

i=α+1

Dn(t, Ti)1{Ti−1<τ≤Ti}LGD, (3.1)

where

• [Tα, Tβ] is the interval when protection against default is considered

• Tα+1, Tα+2, ..., Tβ are the times when the premium payments R are con-
sidered.

• Dn(t, T ) is the nominal stochastic discount factor.

• 1{�} is the indicator function which is 1 if the statement between curly
brackets is true and 0 otherwise.

• τ is the default time of the reference credit.

• R is the �xed rate that renders the contract fair at time 0.

• LGD is the Loss Given Default or percentage value of the nominal
payment due by the protection seller. This usually is computed as
LGD=1-RR. RR is the recovery rate, i.e. the percentage of the initial
nominal investment that one recovers after default.

We can summarize the previous contract, a postponed CDS, as a contract
paying protection, to the protection buyer, if a third entity defaults, versus
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a �xed premium rate R paid to the protection seller. In this formulation
the LGD is not paid at the moment of default but is postponed to the �rst
Ti following default. This feature simpli�es the contract since there is no
accrual-interest on the premium leg, due to the fact that all payments are
made at the same instant.

At this point we can introduce the value of a CDS at time t with starting
date Tα and maturity Tβ. This is simply the expected value of its payo� Π:

CDSα,β(t, R, LGD) = E[Πα,β(t)|Gt]. (3.2)

Here the Gt σ-algebra is di�erent from the usual default-free Ft σ-algebra.
The �ltration Gt in fact is the complete set of information including default
status up to time t, i.e. wether the �rm has defaulted or not up to time t,
and if so when exactly. In mathematical terms:

Gt = Ft ∨ σ({τ < u}, u ≤ t). (3.3)

Most of times conditioning on Ft is still preferable and it is made possible
by using the �ltration switching formula (more on this later).

Valuation of a credit default swap, in a stochastic interest-rate framework,
depends on the assumptions one makes on the rate dynamics and on the time
of default τ .

3.2 Modeling the default time
We de�ned default as the event in which an obligor cannot face its contractual
liabilities. In mathematical terms, default is described via the default time τ .
This random instant of time is modeled in several ways but the most used are
structural models and reduced form models (also known as intensity models
in certain contexts).

Structural models, also called �rm value models, are based on Merton's
seminal work (1974). This approach is based on an elementary equation
describing a �rms value.

It is known that the value of an economic entity is the sum of its assets
and of its debts. If its liabilities are larger than its assets the �rm faces hard
times in paying the debt back and so entails in a default event. The original
formulation by Merton imposes a log-normal dynamic for the value of the
�rms assets and if this erratic value falls below the �xed debt level at a �nal
time T then the credit event is triggered.

First passage time models (Black and Cox, 1976) are a bit more sophis-
ticated since default time can arrive at an earlier stage rather than at a
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�nal time T . These models use the same framework of barrier option pric-
ing models; this is because bankruptcy is triggered whenever the random
value of assets hits from above the debt threshold. Such threshold can be
itself stochastic or, in simpler approaches, �xed (even if it still can be time
varying). These model are with no doubt more realistic than the usual struc-
tural models because they face situations that can happen in the real world:
an example could be a contractual covenant that forces the �rm to declare
bankruptcy as soon as an interest or capital payment is not honored.

A second interesting feature of structural models derives from the as-
sumption of log-normality in value dynamics. Log-normal dynamics in fact
are the same as equity dynamics in the Black-Scholes (1973) model, for which
several option formulas are available. Also, if the �rms value is assumed to be
observable, default comes less at a surprise with respect to intensity models.

In our context we prefer the reduced form (i.e. intensity) model frame-
work. These models lack the economic interpretability of structural models,
but such cost is greatly o�set buy their main feature: we can describe de-
fault time τ using the same technology used in the interest rate modeling
environment.

Intensity models start from the idea of describing the default time by
means of the Poisson statistic law. The default time τ is nothing but the
�rst jump of a Poisson process. This amounts to saying that default is an
exogenous component independent of market data. The simplest Poisson
process is the "time homogeneous Poisson process": such process {Kt, t ≥ 0}
is a right continuous, unit-jump increasing process with initial value K0 = 0
and stationary independent increments. If one lets τ be the �rst jump time
of process Kt, then the probability that such process is di�erent from 0 at
any time t is de�ned as follows:

Q(Kt 6= 0) = Q(τ ≤ t) = 1− e−γt, (3.4)

with γ > 0. Other properties of Poisson processes are:

• limt→0Q(Kt ≥ 2)/t = 0, meaning that as the interval of time shrinks
there is no probability of having more than one jump.

• limt→0Q(Kt = 1)/t = γ so γ is the instantaneous jump probability.

• γt is the mean and the variance of the process Kt.

In a " time homogeneous" Poisson process, times between jumps (τ1 −
0, τ2 − τ1, ...) are identical and independently (i.i.d.) distributed as expo-
nential random variables with, in our case, parameter γ and mean (1/γ).
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Since we are interested in the �rst jump we only need its distribution, that
is exponentialRV(γ). According to the previous statements:

Q(τ ∈ [t, t + dt]|τ ≥ t) =
Q(τ ∈ [t, t + dt])

Q(τ > t)
' γdt, for small dt, (3.5)

i.e. γdt is the probability of having the �rm defaulting in time interval
[t, t + dt), given it has not defaulted up to time t.

Simple reduced form models rely on this framework to describe the prob-
ability of having a credit event in a given period. In such default models, γ
is the intensity of default. As said before, with γτ ∼ exponentialRV(1), we
have that:

• The probability of surviving up to time t is Q(τ > t) = e−γt.

• The probability of defaulting between time t and time t + dt (i.e. in a
small time interval) is:

Q(τ ∈ [t, t + dt]|τ ≥ t) =
Q(τ > t)−Q(τ > t + dt)

Q(τ > t)
= 1− e−γdt ' γdt,

(3.6)
for small values of dt.

• The probability of defaulting in a generic interval (u, t] is:

Q(u < τ ≤ t) = e−γu − e−γt. (3.7)

We can see from the above equations that the mathematical structure of
such probabilities of survival/default resembles, quite closely, the mathemat-
ical structure of deterministic discount factors:

Q(τ > t) = e−γt → P (0, t) = e−rt.

As said previously, this is an important analogy because we can model said
probabilities using the same framework we used to model discount factors
and, in general, interest rates.

An important consideration is due on the meaning of the time-invariant
constant γ; this can be seen as a credit spread that has to be applied to the
risk free rate to obtain the price of a defaultable bond.

Another Poisson process used in intensity models is the "time inhomoge-
neous" process. In such models the intensity of default γ is no longer constant
but varies across time. We then must de�ne the cumulated intensity function
also called Hazard function:

Γ(t) =

∫ t

0

γ(u)du. (3.8)
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In this case, the time between jumps (τ1 − 0, τ2 − τ1, ...) is no longer i.i.d.
due to time varying γ. We still have that the probability of surviving default
from time 0 to time t is:

Q(τ < t) = e−
R t
0 γ(u)du = e−Γ(t), (3.9)

due to the fact that now Γ(τ) = ξ ∼ exponentialRV(1), with ξ independent
from all default free market information. For such reason we get default time
τ by inverting this last expression and obtaining:

Γ−1(ξ) = τ. (3.10)

The fact that the default time is exponential suggests an easy way to simulate
it.

The mathematical formulas of survival probabilities up to any given date
t, or in any time interval [u, t) or again in any short interval [t, t + dt] are as
stated before. The only di�erence is at the exponent where γt is substituted
with

∫ t

0
γ(u)du.

Even in "time inhomogeneous" intensity models we �nd analogies with
the interest rate framework, in particular with the deterministic short rate
r(t) approach:

Q(τ > t) = e−
R t
0 γ(u)du → P (0, t) = e−

R t
0 r(u)du.

Time varying γ allows to reproduce an entire term structure of credit spreads.
The basic Poisson-based reduced form model is the Cox process. Such

model does not only introduce time-varying intensity but allows for it to be
stochastic. This is the default intensity process we will use to implement the
in�ation indexed CDS pricing model.

Keeping up with the Brigo and Mercurio (2006) notation, let us introduce
the random intensity λt>0 that follows the di�usion law:

dλ(t) = a(t, λt)dt + σ(t, λt)dWλ(t). (3.11)

This generic process for λt is continuous and Ft-adapted (i.e. λt is known
given the default-free market information up to time t). This means than all
the randomness in the stochastic intensity is introduced by the default-free
market. This does not have to be confused with the randomness of τ due to
ξ, that is independent of λ.

For such double stochasticity in λ and ξ, the Cox process is also known
as "doubly-stochastic" Poisson process.

As with the "time inhomogeneous" process, also the Cox process follows
a Poisson law and here the cumulated intensity of default is given by:

Λ(τ) = ξ ∼ exponentialRV(1). (3.12)
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If λ > 0, which we assume from now on, the default time τ is the inverse of
such hazard function, we have in fact:

Λ−1(ξ) = τ. (3.13)

As for the previous processes, knowing the distribution of ξ yields an easy
approach in simulating such exponential variable and, as a straightforward
consequence, in simulating τ .

• First simulate ξ in scenario i as ξi = −ln(1−ui) where u ∼ Uniform[0, 1].

• Get the general default time τi in scenario i by inverting Λ, i.e. com-
puting Λ−1(ξi) = τi.

Having the default time described by a Cox process provides us with the
following survival probability:

Q(τ > t) = Q
(

ξ >

∫ t

0

λ(u)du

)
= E

[
Q(ξ >

∫ t

0

λ(u)du|Ft)

]
= E

[
e−

R t
0 λ(u)du

]
.

(3.14)
Once again we clearly see the analogy with discount factors in the stochastic
short rate setting:

Q(τ > t) = E
[
e−

R t
0 λ(u)du

]
→ P (0, t) = E

[
e−

R t
0 r(u)du

]
.

Here the stochasticity of λ allows not only for a term structure of credit
spreads but also for a volatility of such term structure.

In our pricing model we consider a CIR process for λt. In the following
section we give a sketchy introduction to such process.

3.3 A brief introduction to the Cox-Ingersoll-
Ross model for the intensity of default

In a setting where the stochastic intensity is a random variable we have the
following formula for a defaultable zero-coupon bond:

PD(t, T ) = E[D(t, T )1{τ>T}]. (3.15)

For sake of explanation, we consider the short rate n(t) as independent of
the stochastic intensity λ so we have:

PD(t, T ) = E[D(t, T )]E[1{τ>T}]. (3.16)
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The expectation of the indicator function is nothing but the risk neutral
probability, for the �rm that issued the bond, of surviving up to payment
date T . This is Q(τ > t), and in a stochastic intensity framework, has
the mathematical formulation E [e−

R t
0 λ(u)du]. Keeping such things in mind,

together with the stochastic discount factor formula, we have the following
equivalent expression for the defaultable bond:

PD(t, T ) = E
[
e−(

R t
0 n(u)du+

R t
0 λ(u)du)

]

= E
[
e−

R t
0 n(u)du

]
E

[
e−

R t
0 λ(u)du

]

= E
[
e−

R t
0 n(u)du

]
Q(τ > t). (3.17)

To compute the second expectation we need to know the distribution of the
random variable λ. The distribution of λ depends on the process we assign
to such random variable: this is where we resort to the Cox-Ingersoll-Ross
(1985) process.

As previously said, λ is the stochastic intensity of default. The cumulated
intensity Λ(t) =

∫ t

0
λ(s)ds has to be inverted in order to retrieve τ , according

to (3.13). Λ needs to be invertible. For this to happen, we must have values
of λ belonging to the positive part of the R axis, hence we need a process
that retains positivity. The CIR or square root process is the most tractable
short-rate process through which we can guarantee the positivity of λ.

The CIR process has the following formulation under the risk-neutral
measure:

dλ(t) = k[µ− λ(t)]dt + ν
√

λ(t)dW (t), λ(0) = λ0. (3.18)
We need k, µ, ν, λ0 to be positive constants and we need to impose the
following condition to ensure that the process remains strictly positive:

µ >
ν2

2k
.

The process λ, in the CIR framework, features a non-central χ2 distribution
and has the following mean and variance:

E(λ(t)|Fs) = λ(s)e−k(t−s) + µ

(
1− e−k(t−s)

)
, (3.19)

Var(λ(t)|Fs) = λ(s)
ν2

k

(
e−k(t−s) − e−2k(t−s)

)
+ µ

ν2

2k

(
1− e−k(t−s)

)2

.

(3.20)
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As seen before, the survival probability Q(τ > t) is the expected value of
minus the exponential integrated λ function:

Q(τ > t) = E
[
e−

R t
0 λ(u)du

]
. (3.21)

Given that we now λ's distribution, we can compute such expectation and,
after, we get:

Q(τ > t) = A(t, T )e−B(t,T )λ(t), (3.22)
as in Vasicek but with:

A(t, T ) =

[
2hexp{(k + h)(T − t)/2}

2h + (h + k)(exp{(T − t)h} − 1)

]2kµ/ν2

, (3.23)

B(t, T ) =
2(exp{(T − t)h} − 1)

2h + (h + k)(exp{(T − t)h} − 1)
, (3.24)

h =
√

k2 + 2ν2. (3.25)
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Chapter 4

In�ation-Indexed CDS pricing
model

In the previous sections our e�ort was focused on illustrating the main the-
oretical insights needed to build and understand our in�ation-indexed credit
derivative pricing model.

In this chapter we �nally describe the payo� of our contract and introduce
the pricing model. We will try to practically compute the value of the CDS
under several assumptions. The main task is, in fact, to obtain the �xed
spread δ that renders the contract fair, at an hypothetical time t = 0, under
di�erent correlation structures between rates and the stochastic intensity of
default. We will not compute the price of the In�ation-Indexed CDS at a
time di�erent from t = 0 due to the recent introduction of such contracts
and hence to the lack of liquid data that can provide us with quoted values
of δ. This is an experimental �eld in the derivatives industry and so we are
committed in de�ning a correct theoretical framework more than in e�cient
pricing procedures.

4.1 De�ning the contractual payo�
The �rst step in building a suitable and e�cient pricing model is to correctly
de�ne the derivative contract payo�.

The contract we analyze is an In�ation-Indexed credit default swap. We
assume it to be a postponed CDS in the sense that all the protection and
premium payments are due at the generic time Ti, i.e. the end point of a
payment period. More precisely, if default occurs at an instant τ between
Ti−1 and Ti the protection payment LGD (Loss Given Default) occurs in Ti.
This simpli�es the payo� since no accrual term has to be included.

33
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The one-period In�ation-Indexed CDS payo� at a generic time t is as
follows:

• It has a premium leg that pays quarterly the annual in�ation rate,
de�ned as the ratio between the CPI at the beginning and at the end
of two subsequent times minus one, plus the sought δ spread that makes
the contract fair, as long as the third party does not default; discounted
at time t this is:

ΠPremium leg
Ti−1,Ti

(t) = NψiDn(t, Ti)

([
I(Ti)

I(Ti−1)
− 1

]+

+ δ

)
1{τ>Ti}, (4.1)

where N is the contractual notional amount, I(T ) is, as seen previously,
the CPI level at time T , 1{•} is the indicator function, ψi the premium
leg year fraction and Dn the nominal stochastic discount factor. As
can be seen from the above leg, the in�ation rate to be payed is �oored
at zero.

• It has a protection leg in which the Loss Given Default (LGD) on the
notional amount is payed if the �rm encounters a credit event during
the contractual period. This contract features a protection leg that has
also a three month LIBOR payment towards the protection buyer, i.e.:

ΠProtection leg
Ti−1,Ti

(t) = NφiDn(t, Ti)L(Ti−1, Ti)1{τ>Ti}
+NLGDDn(t, Ti)1{Ti−1<τ≤Ti} (4.2)

Here φi is the protection leg year fraction and the whole leg is dis-
counted at time t by the the usual Dn.

Fixing the initial date Tα and the �nal date Tβ we get the total discounted
payo� by summing the whole set of payments. Such total discounted payo�
as seen by the protection seller (premium legs minus protection legs) is:

ΠTα,Tβ
(t) = N

β∑
i=α+1

ψiDn(t, Ti)

([
I(Ti)

I(Ti−1)
− 1

]+

+ δ

)
1{τ>Ti}

−N

( β∑
i=α+1

φiDn(t, Ti)L(Ti−1, Ti)1{τ>Ti} + LGD
β∑

i=α+1

Dn(t, Ti)1{Ti−1<τ≤Ti}

)
.(4.3)

As for any contingent claim, the value of the IICDS at time t is the risk
neutral expectation of its discounted payo� at maturity. We must condition
such expectation, as previously said, not to the default-free �ltration Ft but
to the complete Gt �ltration which includes default monitoring, since this
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is the actual information we observe in the market at valuation time. This
gives us the following value of our contingent claim:

IICDSTα,Tβ
(t) = E

[
ΠTα,Tβ

(t)|Gt

]
(4.4)

It is still possible to resort to the usual default-free information set by
using the �ltration switching formula:

E(ΠTα,Tβ
(t)|Gt) =

1{τ>t}
Q(τ > t|Ft)

E(ΠTα,Tβ
(t)|Ft). (4.5)

For a detailed proof see Brigo and Mercurio (2006). Such change of �ltration
although, at t = 0, is not needed explicitly.

4.2 Pricing
Due to the recent introduction of such contracts and to their over the counter
nature, calibration of the model parameters to market data happens to be
excessively cumbersome. We therefore resort to Jarrow-Yildirim (2003) and
to Brigo-Mercurio (2006) for providing some possible dynamics parameters.
This is in line with our initial purpose of de�ning a theoretical approach and
pointing out speci�c features in the valuation procedure such as correlation
patterns rather than having precise price estimates.

In all our di�erent fair δ spread estimates we will consider the following
start and maturity dates: Tα = 0 and Tβ = 5 years. The premium leg and
the protection leg have both a three month stylized payment frequency so
we have the following year fractions: φi = ψi = 0.25.

4.2.1 Pricing IICDS when the intensity of default is in-
dependent from interest rates and the CPI

In this section our aim is de�ning the correct δ spread that renders the IICDS
fair at time zero when the intensity of default λ is independent of nominal
and real short interest rates and is also independent of the CPI level. This
means that ρI,λ = ρr,λ = ρn,λ = 0. We have the following price for the IICDS
at time t = 0, which we set to zero in order to �nd the fair δ:

IICDS0,5(0) = E[Π0,5(0)|F0] = 0.
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Remembering that the total discounted payo� is the sum of the premium leg
and of the protection leg, we can equate their expectations and obtain:

NE
[ 20∑

i=1

ψiDn(0, Ti)

([
I(Ti)

I(Ti−1)
− 1

]+

+ δ

)
1{τ>Ti}|F0

]

= NE
[ 20∑

i=1

φiDn(0, Ti)L(Ti−1, Ti)1{τ>Ti} + LGD
20∑
i=1

Dn(0, Ti)1{Ti−1<τ≤Ti}|F0

]
.

As usual we have that:
• Dn(0, Ti) is the stochastic nominal discount factor.

• I(Ti) is the CPI level at time Ti.

• δ is the sought �xed spread that renders the contract fair in t = 0.

• 1• is the indicator function tied to the default event.

• L(Ti−1, Ti) is the LIBOR rate resetting in Ti−1 for Ti.

• LGD is the Loss Given Default percentage for a unit notional.

• N is the contract notional while ψi and φi are respectively the protection
and premium leg year fractions.

The summations go from 1 to 20 because 20 is the number of quarterly
periods in the contract (5 years). We also have T0 = 0.

Remembering that there is no dependence structure between the rates
and the intensities of default we can solve, via simple algebra, the above
equation for the spread δ. We can use the tower property of conditional
expectations to compute the expectations of the indicator functions and this
gives us the probabilities of survival. We then factor the expectations in the
payo� obtaining the following expression:

δ(0, 5y) =

[( 20∑
i=1

[Pn(0, Ti−1)− Pn(0, Ti)]

−
20∑
i=1

φiPn(0, Ti)E
[(

I(Ti)

I(Ti−1)
− 1

)+

|F0

])
Q(τ > Ti)

+ LGD
20∑
i=1

Pn(0, Ti)Q(Ti−1 < τ ≤ Ti)

]
\
( 20∑

i=1

φiPn(0, Ti)Q(τ > Ti)

)
.

(4.6)
The terms at the numerator on the right hand side are, respectively:
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• A defaultable annuity paying the three month Libor rate .

• An in�ation indexed defaultable cap.

• A term including the LGD payment if the credit event occurs

The term at the denominator on the right hand side is a defaultable annuity
paying the year fraction term. Our aim is now to quantify such δ in case
of no correlation between the rates, the CPI and the default intensities. We
have to value the single components of the above equation using the interest
rate models seen in the previous chapters. The �rst term, as said previously,
is a simple annuity on the three month Libor rate that is paid if no default
occurs during the contract life. The valuation of the annuity is fairly simple
considering that at time t = 0 we know the entire term structure of the
nominal discount factors Pn(0, Ti). This is true also for the term including
the LGD payment and for the annuity at the denominator of formula (4.6)
whose valuations are straightforward. With respect to the de�nition of all
the probabilities of survival that appear in the equation, we must remember
we are in a stochastic default intensity framework. We must then resort to
formula (3.22) which is based on the CIR model. Concerning the valuation of
the in�ation indexed cap, we must implement formula (2.47) seen in Chapter
2. In our work we practically tested the pricing model by developing a
program written in the MatLab environment. Such program implements all
the previously seen models and returns the value of δ that sets to zero the
NPV of the contract at time t = 0. This is obviously done implementing the
analytical equation seen in formula (4.6). The last passage before empirical
testing is to �x the parameter values. For this aim we use data from the
Jarrow and Yildirim paper and from Brigo-Mercurio. For the parameters of
the interest rate models seen in Section (2.5) we have:

n0 r0 an ar σn

0.045 0.024 0.03398 0.04339 0.00566

σr σI ρn,r ρn,I ρr,I

0.00299 0.00874 0.01482 0.06084 −0.32127

The Loss Given Default is set at 0.6 (sixty percent) of the unit notional.
For the parameters of the intensity of default model seen in Section (3.3) we
have:

λ0 k µ ν

0.035 0.35 0.045 0.15
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As previously said the parameters of the di�usion process for the intensity
of default, i.e. the λ parameters are taken from Brigo-Mercurio (2006). Such
parameters should be calibrated for each �rm from its bonds or from CDS's
that have the �rm as underlying defaultable entity. All the parameters for
the intensity of default model have been checked to guarantee positivity of
the model. The intensity levels corresponding to these parameter values are
quite high and ideally correspond to names with low rating. Clearly, these
are the cases where the default risk contribution is more relevant.

Along with the analytical model we built a Monte Carlo pricing model,
programmed in MatLab code as well. Such model will be used later on, when
pricing will be done with correlation patterns di�erent from zero between
interest rates and default intensities. Now we will use the Monte Carlo
procedure just once to verify the soundness of our analytical model. We
will compare the values of δ for both the analytical formula and the Monte
Carlo method, taking into account the 95 percent con�dence window for the
Monte Carlo result. Such con�dence interval is built around the value of the
NPV rather than being expressed in δ terms. The numerical Monte Carlo
fair value of δ has been obtained through a "trial and error" approach. That
is, one inserts a value for δ and the program yields the NPV of the contract
with the related con�dence window.

Analytical Monte Carlo
δ 0.0631 0.0629

NPV 0 3.4376E− 5
95% C. I. Radius N/A 5.7786E− 4

Here δ is an annual rate so the equivalent quarterly rate is 0.0154. The
number of Monte Carlo paths is 30000, leading to high precision of the pricing
results and to a narrow con�dence interval.

From the table above it can be seen that there is a slight misalignment be-
tween the δ obtained with the analytical pricing procedure and the δ yielded
by the numerical program. This is possibly due to the discretization error of
the Euler scheme implemented by our simulator. Nevertheless, we reduced
the discretization step to as little as one day to gain as much precision as
possible. We can say that in a large number of runs the delta of the analytical
model is inside the con�dence interval for the delta of the simulation model.

In the following paragraphs we will take a look at what happens to the
price when correlation patterns between rates and default intensity change
to more realistic non-null values.
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4.2.2 Pricing IICDS when the intensity of default is cor-
related with interest rates and the CPI

In this section our aim is to price the in�ation-indexed credit default swap
when there is a non-null correlation between rates and the CPI with the
intensity of default, i.e. with any of ρI,λ, ρr,λ, ρn,λ di�erent from zero. We
will set correlations to di�erent �xed values and analyze how the price of the
contract reacts to such variations of the dependence structure.

We still consider the value of the contract at time t = 0 so we have the
following discounted premium and protection legs payo� expectation:

E
[ 20∑

i=1

ψiDn(0, Ti)

([
I(Ti)

I(Ti−1)
− 1

]+

+ δ

)
1{τ>Ti}|F0

]

−E
[ 20∑

i=1

φiDn(0, Ti)L(Ti−1, Ti)1{τ>Ti} + LGD
20∑
i=1

Dn(0, Ti)1{Ti−1<τ≤Ti}|F0

]
= 0.

In case of non zero correlation we cannot price the IICDS with analytical
closed form equations since we cannot factor the expectations. This is due
to the fact that the variables inside the payo� expectation are no longer
independent. Therefore there is no way of separating their expected values
and of computing them one by one under their speci�c probability measure.
For such reason we must resort to numerical methods. We must simulate the
trajectories of r, n, I, and λ to obtain the paths of the probability of default,
of in�ation, of the discount factors and of the LIBOR rate. Once we have a
large number of simulated payo�s as functions of these simulated variables
we can take the sample mean over the number of scenarios and obtain a
Monte Carlo approximation of the expected payo� value, hence of the price
of the IICDS.

We use the mathematical framework provided above to de�ne �nite ap-
proximations of the variables we must simulate. This is because we have no
analytical solution for their joint transition densities, i.e. no way of solving
the stochastic di�erential equations when correlation is taken into account.

We use a simple Euler scheme for the stochastic di�erential equations ap-
proximation and run a plain vanilla Monte Carlo simulation with a one-day
time step to reduce the discretization error. We calculate the Monte Carlo
standard error and provide the 95% con�dence radius of each simulation for
the construction of the con�dence intervals. To allow for the S.D.E.'s to
be correlated we use the Cholesky factorization of the variance-covariance
matrix of instantaneous shocks. We have the following discretized di�er-
ential equations under the n-bank account numeraire (nominal risk neutral
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measure):

n(ti) = n(ti−1) + [θn(t)− ann(ti−1)](ti − ti−1) + σn

√
(ti − ti−1)Wn(i),

r(ti) = r(ti−1) + [θr(t)− ρr,IσIσr − arr(ti−1)](ti − ti−1) + σr

√
(ti − ti−1)Wr(i),

I(ti) = I(ti−1) + I(ti−1)[n(ti−1)− r(ti−1)](ti − ti−1) + σII(ti−1)
√

(ti − ti−1)WI(i),

λ(ti) = λ(ti−1) + k[µ− λ(ti−1)]dt + ν
√

λ(ti−1)
√

(ti − ti−1)Wλ(i),

where each W is a normal standard random variable and ∆t = (ti − ti−1) =
One Day. The time step is very short to reduce discretization errors. We
clearly recognize the structure of the S.D.E.'s seen in the previous chapters.

The W shocks are correlated. As said earlier, we allow for correlation be-
tween the four variables using the Cholesky decomposition of the variance-
covariance matrix so, when implementing the Monte Carlo simulator with
MatLab, the equations used to perform the joint simulation and based on
independent shocks are more complex than the ones seen above. This is
due to the fact they have the Cholesky terms inside and more than one ran-
dom disturbance per equation. Every variable after the �rst, in fact, has at
least one random disturbance in common with the other variables. The four
correlated shocks are thus triangularly obtained from the four independent
shocks, in the classical Cholesky setup.

The numerical pricing procedure computes the values of the single random
variables, from which the contract depends, by implementing the mathemat-
ical models previously seen. In practice it computes the expectation of each
payo� subcomponent and returns the NPV of the derivative contract. As an-
ticipated, the δ is computed with a trial and error procedure. One inserts a
value for δ in the program and the program computes the net present value; if
this is zero the inserted δ is e�ectively the fair spread, otherwise one changes
δ in the right direction and tries again. Along with the NPV estimate the
program returns a Monte Carlo standard error for every simulation. This
can be used to build con�dence intervals for the NPV estimate. We now use
the Monte Carlo simulator to determine the soundness of our mathematical
model and to compute the price of the IICDS for several correlation patterns.
Remaining model parameter values are the same as for the analytical model
in Section 4.2.1.

We �nd 30000 paths are a good tradeo� between computational e�ciency,
estimate precision and therefore con�dence interval width.

4.2.3 Pricing the IICDS when ρλ,n = ρλ,r = ρλ,I 6= 0

In this paragraph we start pricing the fair spread for an In�ation Indexed
Credit Default Swap when correlations between interest rates, CPI and in-
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tensity of default have values other than zero. The �rst step will be testing
the price when correlations are equal to each other. This is done with the
highest possible correlation level and with the lowest possible correlation level
keeping the matrix positive semi-de�nite. The maximum and the minimum
equivalent levels attained for the three correlations are respectively 0.51 and
of -0.51. If correlations were shifted at higher or lower levels the eigenvalues
of the correlation matrix would become negative. The following table shows
the values obtained for δ along with the NPV and the standard errors for the
construction of the con�dence intervals.

Correlation Level δ NPV St.err.
ρλ,n = ρλ,r = ρλ,I = 0.51 0.0625 1.0032E− 4 3.4166E− 4

ρλ,n = ρλ,r = ρλ,I = −0.51 0.0629 −1.6660E− 4 2.4553E− 4

As usual, δ is an annual rate.
As we can see, the contract is not very sensitive to homogeneous changes

in the correlation patters: the percentage di�erence between the two deltas
is in fact only 0.64. If correlations move with the same intensities in the same
direction, the value of the contract is not deeply a�ected. Notice also that
the fair spread is the same as in case of zero correlations seen previously.
This suggests that the fair spread is not that sensitive to correlations when
the remaining parameters of the dynamical model (default-free volatilities
and correlations) are chosen as we did. Now we try and investigate whether
relaxing the assumption

ρλ,n = ρλ,r = ρλ,I

suggests a stronger in�uence of correlations.

4.2.4 Pricing the IICDS with several correlation pat-
terns

In this section we will price the IICDS when correlations assume di�erent
values between each other. This will give us a hint on how the price of
the derivative is a�ected by changes in the dependence patterns between the
relevant variables. The aim is to see how the price reacts when extreme values
are given to the correlations. These values are always the highest possible
absolute values that maintain positivity of the eigenvalues of the correlation
matrix. As usual the number of paths cycled by our numerical model are
30000 and the δ's are expressed as annualized rates.
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Correlation Level δ NPV St.err.
ρλ,n = 0.9

ρλ,r = ρλ,I = 0 0.0623 −2.0190E− 4 3.7620E− 4
ρλ,n = −0.9

ρλ,r = ρλ,I = 0 0.0632 −5.9796E− 5 1.9613E− 4

ρλ,r = 0.9
ρλ,n = ρλ,I = 0 0.0628 −3.5164E− 5 3.1305E− 4

ρλ,r = −0.9
ρλ,n = ρλ,I = 0 0.0628 −4.7853E− 5 2.8735E− 4

ρλ,I = 0.9
ρλ,n = ρλ,r = 0 0.0628 3.0429E− 5 2.8319E− 4

ρλ,I = −0.9
ρλ,n = ρλ,r = 0 0.0628 −8.8742E− 6 3.1391E− 4

ρλ,n = 0
ρλ,r = ρλ,I = 0.58 0.0628 1.8421E− 4 3.0012E− 4

ρλ,n = 0
ρλ,r = ρλ,I = −0.58 0.0628 −2.5609E− 4 3.0298E− 4

ρλ,r = 0
ρλ,n = ρλ,I = 0.58 0.0625 1.7589E− 4 3.4228E− 4

ρλ,r = 0
ρλ,n = ρλ,I = −0.58 0.063 −8.4842E− 5 2.4945E− 4

ρλ,I = 0
ρλ,n = ρλ,r = 0.58 0.06235 −2.0554E− 4 3.5574E− 4

ρλ,I = 0
ρλ,n = ρλ,r = −0.58 0.0631 −7.3537E− 5 2.2896E− 4

ρλ,n = 0.45
ρλ,r = ρλ,I = −0.45 0.06265 −5.5987E− 5 3.4348E− 4

ρλ,n = −0.45
ρλ,r = ρλ,I = 0.45 0.0629 −2.4441E− 4 2.5361E− 4

ρλ,r = 0.45
ρλ,n = ρλ,I = −0.45 0.063 −1.8242E− 4 2.6846E− 4

ρλ,r = −0.45
ρλ,n = ρλ,I = 0.45 0.0626 −2.1037E− 4 3.2767E− 4

ρλ,I = 0.45
ρλ,n = ρλ,r = −0.45 0.0631 2.1032E− 4 2.3746E− 4

ρλ,I = −0.45
ρλ,n = ρλ,r = 0.45 0.0626 −1.2263E− 4 3.5451E− 4
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As we can see from the tables above, the price of our derivative is quite
insensitive to changes in correlation patterns. The only sensitive impact on
prices is seen when the correlation between the nominal interest rate and the
intensity of default varies (�rst two rows of the table). This is mainly due
to the fact that the nominal interest rate is our chosen numeraire and we
take expectations under its probability measure. Both the Libor rate and
the stochastic discount factor Dn depend on n so as soon as we move its
correlation we obtain an impact on the level of the In�ation Indexed Credit
Default Swap price. In the following paragraph we will see if it is possible
to enhance the e�ects of correlation patterns on the contract price. We will
do this by stressing the volatility levels of nominal and real interest rates
and the volatility level of the Consumer Price Index, to further highlight the
impact of diversi�ed correlation.

4.2.5 Pricing the IICDS with higher volatility levels
As seen in the previous section, the price of the IICDS is not heavily a�ected
by changes in the correlation between variables. This could be due to the fact
that the volatility levels of nominal and real rates and of the CPI are relatively
low, so that their randomness is limited anyway and correlations have little
importance in general. Our aim in this paragraph is to see if a change in
volatility levels can sensibly a�ect the impact of correlation patterns on the
price of the IICDS, given that higher volatilities imply more randomness.
We will set σnew

n = 3 ∗ σn = 0.01698 that corresponds to a percentage initial
volatility of 37.73%. For the real interest rate volatility we set σnew

r = 3∗σr =
0.00897 that is a percentage volatility of 37.37%. The CPI volatility is set to
σnew

I = 0.1. In the following table we synthesize our results.
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Correlation Level δ NPV St.err.
ρλ,n = 0.9

ρλ,r = ρλ,I = 0 0.0435 −4.5675E− 4 6.4410E− 4
ρλ,n = −0.9

ρλ,r = ρλ,I = 0 0.0463 1.2458E− 4 2.5938E− 4

ρλ,r = 0.9
ρλ,n = ρλ,I = 0 0.045 1.2323E− 4 5.1373E− 4

ρλ,r = −0.9
ρλ,n = ρλ,I = 0 0.0451 2.7970E− 4 4.8593E− 4

ρλ,I = 0.9
ρλ,n = ρλ,r = 0 0.045 −6.7976E− 5 4.2555E− 4

ρλ,I = −0.9
ρλ,n = ρλ,r = 0 0.045 3.9552E− 4 5.5795E− 4

ρλ,n = 0
ρλ,r = ρλ,I = 0.58 0.0449 −1.9420E− 5 4.6427E− 4

ρλ,n = 0
ρλ,r = ρλ,I = −0.58 0.0449 −3.7014E− 4 5.3223E− 4

ρλ,r = 0
ρλ,n = ρλ,I = 0.58 0.0441 4.1515E− 4 5.5975E− 4

ρλ,r = 0
ρλ,n = ρλ,I = −0.58 0.0458 1.6281E− 4 4.1666E− 4

ρλ,I = 0
ρλ,n = ρλ,r = 0.58 0.0441 −4.2116E− 4 6.0374E− 4

ρλ,I = 0
ρλ,n = ρλ,r = −0.58 0.0459 1.5397E− 4 3.5409E− 4

ρλ,n = 0.45
ρλ,r = ρλ,I = −0.45 0.0443 3.4874E− 4 5.9528E− 4

ρλ,n = −0.45
ρλ,r = ρλ,I = 0.45 0.0456 −2.9193E− 4 3.6917E− 4

ρλ,r = 0.45
ρλ,n = ρλ,I = −0.45 0.0455 3.6805E− 4 4.4454E− 4

ρλ,r = −0.45
ρλ,n = ρλ,I = 0.45 0.0443 1.1667E− 4 5.3894E− 4

ρλ,I = 0.45
ρλ,n = ρλ,r = −0.45 0.0456 −2.7172E− 4 3.4538E− 4

ρλ,I = −0.45
ρλ,n = ρλ,r = 0.45 0.0443 −3.5922E− 4 6.0728E− 4
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As can be seen by the table above, an increase in volatilities has a sensible
impact on the fair spread of the derivative that goes from a 6 to a 4 percent
level. By converse a rise in the volatilities does not a�ect in an evident way
the impact of the correlation patterns on the IICDS price. We can see that
the most evident impact of a change in correlation with normal volatilities
in Section 4.2.4 is about 1.12%. The impact of correlation when volatilities
of rates are multiplied by 3 and that of the CPI by more than ten times
brings to a maximum impact of correlation around 6.44% (�rst two rows of
the table). Moreover, the most sensitive changes are, as before, those given
by a variation in the correlation between the nominal interest rate and the
intensity of default.

It is clear at this point that variations in the correlation between inter-
est rates, the CPI and the intensity of default have a moderate impact on
the price of the IICDS. A heavier impact can be seen when changes in the
volatility levels are taken into account, in that the contract value seems to
be more sensitive to volatilities than to correlations, as is to be expected.
However we must point out the fact that market volatilities nowadays are
more similar to the enhanced volatilities than to the Jarrow-Yildirim (2003)
volatilities used previously. This means that a maximum variation of 6.44%
in the fair spread, given by a change in the correlation pattern, becomes more
signi�cant and that surely such level of variation must be taken into account
by a market maker or a trader of such contracts.
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Chapter 5

Conclusions

In this work we de�ned and priced the payo� structure of a recent type of
hybrid in�ation-credit derivative, i.e. the In�ation Indexed Credit Default
Swap. For such aim we used a combination of theoretical models to de�ne the
core stochastic variables underlying the contract payo�. To model in�ation
we used the Jarrow-Yildirim framework. We explained how this model is
based on the foreign-currency analogy: the evolution of instantaneous real
and nominal rates is modeled along with the evolution of the Consumer Price
Index in a FX/interest rates framework. Nominal rates are interpreted as
the domestic rates while real rates are interpreted as foreign economy rates.
Here the CPI index is the "exchange rate" between the nominal and real
economies. The interest rates have been modeled in a Hull-White (1990)
stochastic setting while the CPI was given a log-normal di�usion process.

To model the credit component we used a doubly stochastic reduced form
model with intensity of default λ following a CIR di�usion process. By taking
the expectation of the indicator functions under the n risk neutral measure
we obtained the probabilities of survival that were necessary to price our
derivative.

Once the theoretical framework was de�ned we empirically tested our
pricing model with a Monte Carlo numerical procedure and with an analyt-
ical model for the simpli�ed case of null correlation between rates, CPI and
default intensity. This gave us the possibility to test how various correlation
patterns a�ected the price of the derivative. This was done with di�erent
levels of volatilities for the nominal and real interest rates and for the CPI.

We have found that using the volatilities from the Jarrow-Yildirim (2003)
paper, the impact of variations of the correlation patterns on the price of the
IICDS are quite low. The maximum price variation is in the order of 1.12%.
When we considerably increased the volatilities (300 percent for the real
and nominal rates volatilities and about 1000 percent for the CPI volatility)
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the impact of correlation variations in the price of the derivative are more
relevant but still moderate, amounting to 6.44 percent at most.

It is clear from the results of our work that the price of these new hybrid
derivatives, mixing in�ation modeling with credit, is relatively insensitive to
variations in the correlation structures between default and interest rates,
although the impact can become relevant for higher and probably more re-
alistic volatilities. Ours is a quite rough approach and much of the work
was done to de�ne the payo� structures and implement a signi�cant pricing
model rather than giving a precise valuation under a �ne-tuned calibrated
model. Subsequent useful studies could be done to provide a more complete
insight on the intensities of variations in the variable parameters and how
these can be used to eventually hedge a portfolio of such credit derivatives.
Adding jumps in the intensities process could also add realism in the default
dynamics.
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