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Welcome All! Inaugural lecture overview I
1 Randomness?

Probability and Stochastics

2 Stochastic and Ordinary Differential Equations
Local mean and local standard deviation
No randomness: Clockwork universe?

3 Chaos
Extreme sensitivity to initial conditions: practical unpredictability
Chaos, Randomness and Free Will

4 Is there anything truly random in Nature?
Ignorance? Coins and Dice, Statistical Mechanics, Economics
Quantum Mechanics: double slit experiment
QM: Interference? Of what? And with what?
QM: is this what true randomness should always look like?
Quantum Mechanics: A kinder version of Schroedinger’s Cat
Probability: Quantum or Classical?
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Welcome All! Inaugural lecture overview II
5 Randomness, Dynamics and Risk in Finance

Derivatives markets: context and beginnings
Derivatives: Option Pricing and Probability Measures
Problems with Derivatives Methodology Assumptions
Is trading, hedging and investing time really continuous?
Richer dynamics for random assets: Volatility smile modeling
Infinite dimensional objects: Interest rate curves random
dynamics
Modeling default risk random dynamics for many names
Emerging/neglected risks, Valuation Adjustments and CCPs
Nonlinearities, contagion and the end of Platonic pricing

6 Signal Processing
Stochastic Nonlinear Filtering
The projection filter
Rocket science
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Welcome All! Inaugural lecture overview III
7 Notes, references and further reading

Theories of Probability and Classical vs Quantum Probability
Stochastic Differential Equations
Chaos
Nonlinear filtering
Derivatives and No Arbitrage: Forerunners
Derivatives and No Arbitrage
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Randomness?

Randomness?

Ignorance/hidden variables randomness or true randomness?

Randomness in everyday life. Can’t predict much of what happens
Randomness can be our ignorance/incapability to model or
calculate phenomena, or real random processes in nature.
Pinpointing a true source of randomness in nature that is known to
current science can be quite difficult

How about the maths of randomness, whatever its source?
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Randomness? Probability and Stochastics

Probability: Interpretations, Calculus and Dynamics

What is probability? Interpretations and Calculus
Despite a variety of interpretations where probability is

A degree of entailment (Logical, Keynes...)
A degree of belief by an individual (subjective, De Finetti/Ramsey...)
A frequency (frequentist, von Mises...)
A propensity (Popper...)
. . .

... axioms probability calculations should follow have been fixed by
Kolmogorov (1933) and are almost universally agreed upon

Dynamics of randomness and probability: Stochastics
The evolution of randomness and probabilities in time is the work
of Stochastic Analysis. An example of Randomness in motion:
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Stochastic and Ordinary Differential Equations Local mean and local standard deviation

Stochastic vs deterministic differential equations

Randomness in motion: Examples
The future evolution of a financial asset, the future trajectory of a
rocket undergoing perturbations, the future evolution of a population,
the future position of a submarine probe, tides future levels...

A Stochastic Differential Eq. (SDE) looks like this (r = 5% growth rate):

dX (t)︸ ︷︷ ︸ = rX (t)︸ ︷︷ ︸ dt + σ X (t)︸ ︷︷ ︸ dWt︸︷︷︸
Change in X function of X Amplitude New

between t and t + dt in t , coefficient random
”MEAN of shock shock

CHANGE” (Volatility)

Let us suppose this is the future price of an asset with return 5% and
see how this varies with σ (or a future popolation toy model)
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Stochastic and Ordinary Differential Equations Local mean and local standard deviation

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt
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Stochastic and Ordinary Differential Equations Local mean and local standard deviation
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Stochastic and Ordinary Differential Equations Local mean and local standard deviation

dXt = 0.05Xtdt + σXtdWt , X0 = 100:
σ = 0.1 vs σ = 0.04
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Stochastic and Ordinary Differential Equations No randomness: Clockwork universe?

What if there is only the green line? Determinism?

The clockwork universe differential equations

Newton’s 2nd law, Force = mass x acceleration: here Xt =position(t).

d
dt

(
d
dt

position(t)
)

=
Force(position(t))

mass
, position(0),

d
dt

position(0)

Laplace (interestingly author of ”Théorie analytique des probabilités”):
”... an intelligence which could comprehend all the forces by which
nature is animated and the respective positions ... , this intelligence ...
would embrace in the same formula both the movements of the largest
bodies in the universe and those of the lightest atom; to it nothing
would be uncertain [...] Is everything preordained? Free Will?
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Chaos Extreme sensitivity to initial conditions: practical unpredictability

Deterministic but unpredictable? Chaos theory

Consider the following difference equation:

Xt+1 − Xt = 4Xt (1− Xt )− Xt , X0.

NO randomness: We don’t have random terms dWt like in previous
equations. Given Xt , the next Xt+1 is fully determined.

However, we may take slightly different initial conditions X0

X0 ∈ {99.399,99.4,99.401}

What happens for the three very close choices?
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Chaos Extreme sensitivity to initial conditions: practical unpredictability

Xt+1 = 4Xt(1− Xt), X0 =99.399, 99.4, 99.401
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Chaos Chaos, Randomness and Free Will

Saving free will: Randomness?

For almost identical starting points, the system can behave very
differently (example: simplified models of atmospheric weather).

Chaos: Practical unpredictability but still determinism
We are not capable of predicting the future of chaotic systems
because of the impossibility of perfectly measuring the initial condition
of a system [see also uncertainty principle in Quantum Mechanics
(QM)]. Still, in a deterministic universe the future is preordained even
though unknowable by computation. There would be no free will.a

aAssuming you think the notion of free will makes sense and that you are
an incompatibilist, ie you consider determinism and free will incompatible

Can Randomness help here?
If Nature were somehow truly random, then the future would not be
preordained but open to more outcomes.
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Is there anything truly random in Nature? Ignorance? Coins and Dice, Statistical Mechanics, Economics

Is randomness just our ignorance? I

In most mathematical models (and in our previous examples with
SDEs) randomness is a tool to model ignorance or incapability to
account for complex effects, too many particles, hidden variables...

Example: Dice throw
We don’t bother measuring the initial position of dice, the initial impulse
we apply, air resistance, etc, so it is unpredictable to us, but
randomness here and in related examples is due to our ignorance, or
to chaos, and not to any intrinsically random feature in nature.
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Is there anything truly random in Nature? Ignorance? Coins and Dice, Statistical Mechanics, Economics

Is randomness just our ignorance? II

Example: FTSE 100
The financial index in the future will depend on market participants
choices, macroeconomics, policies, market comovements... As all this
cannot be modeled properly, many effects are grouped into a random
term (like Wt ) that is supposed to account for our ignorance through
different scenarios. Stylized example finance: dXt = mXtdt + σXt dWt

m = 5%, σ = 10%,X0 = 100.
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Is there anything truly random in Nature? Ignorance? Coins and Dice, Statistical Mechanics, Economics

Is randomness just our ignorance? III

Statistical Mechanics (SM) (non-Quantum)
Micro level: Particles move according to deterministic and
time–symmetric laws (eg Newton’s, see earlier)
Ignorance: impossibility to know precisely initial positions and
speeds of the huge system of particles and to carry out the exact
calculations. So we resort to a probabilistic description.
Temperature, pressure, heat capacity, the entropy arrow of time...
all emerge through our statistical description.
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Is there anything truly random in Nature? Ignorance? Coins and Dice, Statistical Mechanics, Economics

Is randomness just ignorance? Not always (maybe)

Quantum Mechanics (QM)
Randomness intrinsic property of nature at the quantum scale
and not our ignorance on hidden ”classical” variables.

But... QM’s fundamental Randomness not accepted by all

If QM randomness is not fundamental (alternatives include Pilot wave /
global hidden variables or Many Worlds), we lose the only currently
known true source of randomness in nature.

Now let’s look at fundamental randomness in QM.
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Is there anything truly random in Nature? Quantum Mechanics: double slit experiment

Double slit experiment (John Bell’s summary)
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Is there anything truly random in Nature? Quantum Mechanics: double slit experiment

Double slit experiment: Closing one slit
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Is there anything truly random in Nature? Quantum Mechanics: double slit experiment

Glass screen, shoot 1 electron at the time. Particles?
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Is there anything truly random in Nature? Quantum Mechanics: double slit experiment

Double slit experiment: Closing the other slit
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Is there anything truly random in Nature? Quantum Mechanics: double slit experiment

Both slits open: If particles, we expect this
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Is there anything truly random in Nature? Quantum Mechanics: double slit experiment

Both slits open

What we get instead looks like ....
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Is there anything truly random in Nature? Quantum Mechanics: double slit experiment

Both slits open ... Interference?? WAVES???
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Is there anything truly random in Nature? Quantum Mechanics: double slit experiment

Both slits open: What we expect and what we get
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Is there anything truly random in Nature? QM: Interference? Of what? And with what?

Double slit experiment

Interference? Of what and with what? Waves?
If I shoot electrons one by one, what does each electron intefer with???

Unpredictable outcomes of measurements on the screen
We can only know the probability of an electron flaring up (particle-like)
in an area of the screen, but we cannot predict for sure where.

Intrinsic randomness?
Probabilities interference. The interference pattern will be
consistent with the theoretical probabilities prescribed by
Quantum Theory, Von Neumann axioms/ Born rule (VN-B).
A local ignorance interpretation is not possible (Bell, Aspect...
Non-local hidden variables possible (Pilot wave DeBroglie/Bohm).
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Is there anything truly random in Nature? QM: is this what true randomness should always look like?

Double slit experiment: What kind of Randomness?

Randomness and undefined positions before measurement
One is tempted to ask the question: is the electron going through
both slits at the same time, like a wave?

Interference: strange, true randomness. Quantities do not have a
defined (and unknown) position before measurement.
Is this what true randomness - not due to ignorance - should
always look like?
Interference disappears in both holes if we place a detector near
just one hole. Does the electron ”know” we are observing it?
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Is there anything truly random in Nature? QM: is this what true randomness should always look like?

Randomness and Measurement

Randomness and interference? The role of partial measurement
Placing a detector near just one of the holes with both holes open, the
picture goes back to the classical randomness (left), no interference.
Right: no detector. A partial measurement produces a change from
interfering to non-interfering random behaviour also in the distant hole.
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Is there anything truly random in Nature? Quantum Mechanics: A kinder version of Schroedinger’s Cat

Interference & no detectors: a particle does not have a defined
(hidden) position before measurement. If this indeterminacy is
amplified at macroscopic level through some device avoiding
decoherence/partial ”measurement”, we have a cat who is
simultaneously alert and asleep before we open (”measurement”) the
cat box.

Prof. D. Brigo (Imperial College London) Randomness, Dynamics and Risk 29 Jan 2014 87 / 157



Is there anything truly random in Nature? Quantum Mechanics: A kinder version of Schroedinger’s Cat

Prof. D. Brigo (Imperial College London) Randomness, Dynamics and Risk 29 Jan 2014 88 / 157



Is there anything truly random in Nature? Quantum Mechanics: A kinder version of Schroedinger’s Cat

Quantum vs Classical Probabilities

Why this digression on QM?
1 QM scale might show the ”only” objective randomness (well

everything is a quantum system, including our macro scale, but...)

2 Entanglement/non-locality: in two ”particles” that should not be
connected, due to light speed limits, one may respond instantly to
measurements happening to the other (EPR, Bell th., Aspect, etc).
This renders the probabilities quite special. Again, is this how
probabilities measuring true randomness should always be?

3 QM probability axioms (Von Neumann/Born 1932) at odds
with classical axiomatization (Kolmogorov 1933).

4 Formally, VN-B is more general than K in a number of ways,
reflecting non-commutative nature of QM (quantum probabs NOT
sub-additive, P(A or B) > P(A) + P(B) may happen, not
distributive, no Borel Cantelli...)
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Is there anything truly random in Nature? Probability: Quantum or Classical?

Classical and Quantum Probabilities

Quantum Probability rarely used in social sciences.

Social sciences work under a ”hidden variables/ignorance”
interpretation.

We now turn to finance and financial derivatives in
particular, and to signal processing, and we will work under
Kolmogorov’s standard axioms for probability.
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Randomness, Dynamics and Risk in Finance Derivatives markets: context and beginnings

Options and Derivatives

Derivatives outstanding notional as of June 2011 (BIS) is estimated at
708 trillions USD (US GDP 2011: 15 Trillions; World GDP: 79 Trillions)

708000 billions, 7.08×1014 USD (staggering, despite double counting)

Father of philosophy, science and... derivatives??
A lot to answer for
Beginnings? 580 BC: Thales purchases options
on the use of olive presses and makes a fortune
when the (random) future olives crop turns out to
be as abundant as he has predicted, with presses
in demand. Precursors of modern theory include
Bachelier (1900) and deFinetti (1931). Modern
theory started by Black Scholes Merton (1973).
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Randomness, Dynamics and Risk in Finance Derivatives: Option Pricing and Probability Measures

Derivative: Call Option paying max(S1year −S0,0) in 1y

Figure: A Gamble on the growth of an equity stock in 1y. Call Option.
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Randomness, Dynamics and Risk in Finance Derivatives: Option Pricing and Probability Measures

A basic derivative contract: Call Option

Gamble (call option) against bank on total growth of Stock S over 1y
We will receive from the bank, in one year:

max(S1year − S0,0)

S1year is in the future and random for us at the time of the gamble.
If the future price S1year of the stock in 1y has grown and is larger
than the value S0 today, we receive from the bank the difference.
If it has not grown, nothing happens.

Option price the bank will charge us?
We’ll be charged to enter this gamble, as we can only win or get into a
draw. But what price should be charged? Option pricing problem
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Randomness, Dynamics and Risk in Finance Derivatives: Option Pricing and Probability Measures

A basic derivative contract: Call Option

Randomness + dynamics:
stock price St follows SDE

dSt = mStdt + σStdW P
t , P

dSt = r Stdt + σStdW Q
t , Q

(you’re not seeing double!)

Black & Scholes BS unique price for 1y gamble Y = max(S1y − 100,0)
is the expectation of the future (discounted) ”random” Payoff Y .

But expected value (mean) under which probability measure? P or Q
BS formula depends on the volatility σ of the stock, and on the initial
value S0 today, but does NOT depend on the real local
mean/growth m. This is because the expectation is UNDER THE
PROBABILITY Q, where the local mean/growth is the risk free rate r .
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Randomness, Dynamics and Risk in Finance Derivatives: Option Pricing and Probability Measures

We live in world P.
Red Investor, perceiving a
high local mean/growth m
via his statistics under P,
should be willing to pay
a higher price for the
1y growth call option
w.r.t. Blue Investor,
who perceives a low m
via his statistics under P.

Right?

Wrong. Both have to pay the 1y growth gamble according to the green
scenarios, with local mean/growth the risk free rate r , in the risk neutral
world Q. Volatility σ is a key input of the option price, but not m.

This ensures the market is arbitrage free, or a ”fair game”.
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Randomness, Dynamics and Risk in Finance Derivatives: Option Pricing and Probability Measures

SDEs and Option Pricing: Black Scholes & Merton

Counterintuitive result?
Based on building a self financing trading strategy in S and cash up to
1y that perfectly mimics (replicates) the final payout (S1y − S0)+. The
initial price of this strategy does not depend on m.

A mathematical result has contributed to create new markets
Avoiding m and using r makes derivatives valuation more objective,
since m is very hard to estimate (if you could do that you would be a
billionaire). This has contributed to derivatives growth worldwide, used
today by banks and corporates for several purposes. However...
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Randomness, Dynamics and Risk in Finance Problems with Derivatives Methodology Assumptions

Sometimes the timing of the Nobel committee is funny, and we are not
talking about the peace Nobel prize. Warning: anecdotal

1997: Nobel award.

1998: the US Long-Term Capital Management hedge fund is bailed
out after a huge loss. Merton and Scholes had been in the fund board.
High use of leverage (derivatives). This leads us to...
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Randomness, Dynamics and Risk in Finance Problems with Derivatives Methodology Assumptions

Crisis

After Black Scholes 1973...
Market players introduced derivatives that may be much more complex
functionals of underlying assets and events than the above call option

Gamble/speculate/hedge/protect on anything?
Derivatives on different sectors: Foreign Exchange Rates, Interest
Rates, Default Events, Meteorology, Energy, population Longevity...

Aggressive market participants extrapolating the basic theory

The initial Black Scholes theory (Nobel award 1997) has often been
extrapolated beyond its limits to address new derivatives

I did work in all such areas, often criticizing simplistic market
methodology and the excessive extrapolation of the basic theory, and
introducing more appropriate and realistic models. A few examples:
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Randomness, Dynamics and Risk in Finance Is trading, hedging and investing time really continuous?

Continuous time?

Markets operate at discrete time. In 1998 we investigated this: Given
fixed discrete trading time grid (step can be a millisecond or even
smaller) T = [0 = t0, t1, t2, . . . , tn = T ], I can define µ such that

dSt = mStdt + σStdWt and dSt = µ(T , t ,St , v , σ)dt + vStdWt

are indistinguishable by historical estimation (under P) in T .

Indistinguishable underlying S, very different prices for (ST − K )+

If we price options such as (ST − K )+, by choosing suitable µ and v ,
prices in the 2 models can be arbitrarily different (no-arbitrage bounds).

Removing continuous observations, the price becomes arbitrary

Should we be at ease employing continuous time models?
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Randomness, Dynamics and Risk in Finance Richer dynamics for random assets: Volatility smile modeling

dS = rSdt +σSdW? Richer dynamics ? Volatility smile

Patterns of prices for (ST − K )+ across T and K ⇒ S could follow
dSt = µ(t ,St )dt + v(t ,St ) StdWt . We proved ∃! of S for a special v
such that the law of S is a mixture of basic laws (option prices are
linear combinations of basic prices). Market calibration across asset
classes. Fat tails. Link with random volatility-markovian projection
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Randomness, Dynamics and Risk in Finance Infinite dimensional objects: Interest rate curves random dynamics

Interest Rates: Term structure modeling

A number of financial derivatives, from simple bonds and swaps to
exotics, reference interest rates. Term structure modeling hard: we
model random dynamics of a whole (∞ dimensional) curve, and not
just one variable. Now multiple curves even at t = 0 (OIS/LIBOR).
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Randomness, Dynamics and Risk in Finance Modeling default risk random dynamics for many names

Credit Risk Modeling: Multiple Defaults

Collateralized Debt Obligations (CDO) allow to trade on a portion
(tranche) of the default loss of a pool of names (eg 125).
Industry models simplistic: Gaussian copula/base correlation

static
deterministic spreads, no spread volatility
inconsistent even on single tranches
may imply resurrection of defaulted names

Introduced no-arbitrage random dynamic loss model GPL
Generalized Poisson. Sectors defaults. Clusters. Systemic risk.
1st model calibrated consistently across tranches and maturities.
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Randomness, Dynamics and Risk in Finance Modeling default risk random dynamics for many names

Loss distribution of the calibrated GPL model, 2006.
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Randomness, Dynamics and Risk in Finance Modeling default risk random dynamics for many names

SEE ALSO THE MOVIE!!

0.05 0.1 0.15 0.2 0.25
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Loss

 

 
3y
5y
7y

Prof. D. Brigo (Imperial College London) Randomness, Dynamics and Risk 29 Jan 2014 103 / 157



Randomness, Dynamics and Risk in Finance Modeling default risk random dynamics for many names

Note also that CDOs had a lot of hostile press blaming quants and
mathematicians. No journalist noticed this model published 2006.
Notice the probability mode corresponding to a huge default in the
pool. This is the real tail / systemic risk, not fat tailed distributions.
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Randomness, Dynamics and Risk in Finance Emerging/neglected risks, Valuation Adjustments and CCPs

Valuation Adjustments: CVA, DVA, FVA... ”ma VA?”1

No defaults?
Black Scholes assumes no default of the parties in the trade. In one
month of 2008 eight financials defaulted: Fannie Mae, Freddie Mac,
Lehman, Washington Mutual, 3 Icelandic banks, ≈ Merrill Lynch.

No funding costs: Borrowing and lending happen at the risk free rate r

In implementing our self financing trading strategy to replicate the
option, cash can be borrowed or lent at the risk free rate r . Whether
we hold a positive or negative amount of cash or risky S, interest is r .

From 2002 I worked on removing the above unrealistic assumptions.

Credit risk not only (on CDS and) CDOs: most derivatives affected by
a Credit Valuation Adjustment (CVA) and Funding VA. Margining costs
and gap risk even under collateral or central clearing

1”Ma va?” means ”Really?!?” in Italian
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Randomness, Dynamics and Risk in Finance Nonlinearities, contagion and the end of Platonic pricing

The end of Platonic valuation?

Industry: CVA, FVA... but risks not really separable. Size:

See banks press releases. Citigrup CVA 2009 third quarter: 2.5$
billions gain. Recently, JPMorgan 1.5$ billions FVA cost?

Fundamental nonlinearities
In presence of collateral , credit risk and funding costs for the hedge
both the payout and the pricing operator become nonlinear: pricing
equations become recursive. Nonlinear PDEs and BSDEs.

Aggregation–dependence / asymmetry: The end of Platonic pricing?
The value of a portfolio of two assets is different from the sum of the
values of the two assets. No ”Platonic” Q. Pricing probability measure
is product dependent: every trade has specific measure. Price will also
depend on trading entities. Operational implications enormous.
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Signal Processing Stochastic Nonlinear Filtering

And finally... Signal Processing (Nonlinear filtering)

The filtering problem
Estimate a random signal from observations of this signal that are
perturbed by further randomness (noise).

Submarines, spacecrafts, satellites orbits, Re-entry trajectories, target
tracking, water level predictions, seismology, bioengineering,
econometrics, consistent mathematical finance under P and Q...

A simple example: cubic sensor
The signal is a random walk: dXt = σdWt

Observations are a cubic sensor plus random noise: dYt = X 3
t dt + dVt

Problem: Estimate Xt from the history of Y up to the given time t .
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Signal Processing The projection filter

Optimal filter for nolinear problems...

Nonlinearities make the stochastic analysis∞ dimensional.
I developed a finite dimensional approximate solution for the infinite
dimensional filtering problem using the differential geometric approach
to statistics.

Probability distributions have a helpful (differential) geometry.

This picture shows the∞-dimensional optimal filter (heavy numerical
methods for stochastic partial differential equations) vs a
4-dimensional projection filter for the cubic sensor, plus the local error.
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Signal Processing Rocket science

This is rocket science... finally!

Among filtering applications, the most well known might be...

NASA: Apollo 11. Moonlanding (1969)
”[...] The on-board computer that guided the descent of the Apollo 11
lunar module to the moon had a [21 dimensional] Kalman filter [and...]
was also communicating with a system of four Doppler radar stations
on Earth that were monitoring the module’s position. [...] If [radar
stations and onboard system] had disagreed too much [then] mission
aborted.”

Having reached the stars, this looks like a good place to stop!
However...
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I was just looking for an excuse to show this picture!!
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Lecture partly based on the following books
(2001-2013) and about 70 papers (1995-2014)
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Thank You
for Your
Attention!
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References and further reading I

Gillies, D. (2000). Philosophical Theories of Probability. Routledge.
This book illustrates the logical, subjective, frequency, propensity1,
propensity2, and intersubjective interpretations, among others.
Recommended. It does not deal with Quantum probability.

Quantum Mechanics is taught and presented in countless texts
and books. A classic we recommend:

Bohm, D. (1989). Quantum Theory. Dover (reprint of the classic
1951 book). This is a book that presents classic random-based
QM in the context of the development of physics, motivating
assumptions and ideas, and trying to develop as much intuition as
possible. It is a very good book. Many books on QM start with a list
of axioms on Hilbert spaces and self adjoint operators, without
explaining why one makes some modeling assumptions, but this
one looks also at the scientific cultural angle in introducing QM.
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Interestingly Bohm, after writing this book on the classical
probabilistic interpretation of QM in 1951 and receiving much
praise for it from mainstream physicists, after a meeting with
Einstein, decided to work on a deterministic interpretation of the
theory, the Pilot Wave interpretation (1952) that had been started
by De Broglie in the late twenties (1927 Solvay conference).
It is to be noted that Bohm contributed also to the advancement of
Physics and QM in toto, with Bohm Diffusion in plasmas (1949),
the Bohm version of the EPR experiment (that is the one that John
Bell used to develop ideas on his famous inequality) and the
Bohm-Aharonov effect (1959), and further Bohm’s discovery of
decoherence (1952). Bohm’s revival and further results on pilot
wave theory (1952 on) found much opposition that had more to do
with unfortunate marketing of science (the Copenhagen
interpretation group and especially Physicists of the caliber of
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Bohr, Heinsenberg, Pauli, Born, Oppenheimer, and many others...)
than with its own deficiencies. Bohm was also unlucky in that he
was targeted by McCarthysm. In 1949, the House Un-American
Activities Committee summoned Bohm but he refused to give
evidence against his colleagues on suspected communist
activities. Princeton University suspended him despite Bohm
having been acquitted. Einstein wanted Bohm to serve as his
assistant in Princeton but the university refused. Bohm left for
Brazil, University of Sao Paulo, and in the later years he moved a
few times, ending up finally in London!
Feynman was an exception to the hostility Bohm had to endure,
especially for his pilot wave theory. Feynman was a friend of Bohm
and held him in high esteem, even though he seemingly did not
like the Pilot Wave approach.
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Bohm persevered notwithstanding the environment hostility and
even threats. Many believed that it was impossible to have a
deterministic or ”hidden variables” theory for QM. ”Hidden
variables” hints at the idea that randomness is not fundamental in
QM but can be explained by variables that we are not able to
observe. It is a sort of ignorance interpretation, and interestingly
if DeBroglie/Bohm are right we lose the only currently known
potential source of authentic randomness in nature. We’d have
nothing random left in current science. The reason why Bohm’s
theory was ignored is also because of some impossibility proofs
for hidden variable theories that had been published many years
earlier (1932) by, among others, John von Neumann.
But how could Bohm’s deterministic but non-local theory in 1952
be right and consistent with experimental predictions of QM when
von Neumann had shown in 1932 hidden variable theories to be
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impossible? von Neumann had kept almost everyone in awe due
to his standing and reputation. Grete Hermann (1935) wrote about
a problem with the proof of von Neumann, but went largely
ignored. In 1966 John Bell published a refutation of von
Neumann’s claim, similar to Hermann’s, and this time the rebuttal
gained attention. Jeffrey Bub published a paper in 2010 claiming
that von Neumann’s proof was misunderstood, see also Belavkin
reference below. However the pilot wave theory stands as proof
that hidden variables are possible.
After the Pilot wave went ignored or opposed and even abused for
years, finally John S. Bell noticed it and started promoting it,
especially with his CERN report ”On the impossible Pilot Wave”,
later collected in the (recommended) book ”Speakable and
Unspeakable in Quantum Mechanics”. It is DeBroglie / Bohm’s
theory that prompted Bell to derive his famous inequality that some
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scientists consider the most profound finding of all science (Henry
Stapp, Berkeley’s particle physicist: Bell’s theorem is the most
profound discovery of science). Bell died after being nominated but
before receiving the Nobel prize for his famous inequality. In Bell’s
own words, from his 1982 report ”On the impossible pilot wave”:
”... in 1952 I saw the impossible done. It was in papers by David
Bohm. Bohm showed explicitly how parameters could indeed be
introduced, into nonrelativistic wave mechanics, with the help of
which the indeterministic description could be transformed into a
deterministic one. More importantly, in my opinion, the subjectivity
of the orthodox version, the necessary reference to the observer,
could be eliminated... But why then had Born not told me of this
pilot wave? If only to point out what was wrong with it? Why did
von Neumann not consider it? More extraordinarily, why did people
go on producing impossibility proofs, after 1952, and as recently as
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1978? Why is the pilot wave picture ignored in text books? Should
it not be taught, not as the only way, but as an antidote to the
prevailing complacency? To show us that vagueness, subjectivity,
and indeterminism, are not forced on us by experimental facts, but
by deliberate theoretical choice? [...] However that may be, long
may Louis de Broglie continue to inspire those who suspect that
what is proved by impossibility proofs is lack of imagination.”.
According to mainstream interpretations, Bell showed with his
inequality that nature would have to give up either realism or
locality. Many interpreted Bell’s inequality to say that the pilot wave
theory, suggesting realism, was impossible, but this is not what
Bell himself thought he had done. In fact the pilot wave theory is
explicitly non-local. Bell thought his conclusions applied to
mainstream interpretations of QM as well and that this nonlocality
vs realism was not a problem just for Bohm’s version.
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Summing up: In the lecture above I have worked under the
Random interpretation of QM, but we need to keep in mind the
pilot wave as an alternative, and in fact there are many other
interpretations such as many worlds, GRW spontaneous collapse,
advanced action/transactional...

The Pilot Wave version is being currently investigated by physicists
such as Antony Valentini, who has been at Imperial College in the
past. A good summary of the pilot wave theory is in the
Encyclopedia in Stanford:

Goldstein, S. (2001). Bohmian Mechanics, Stanford Encyclopedia
of Philosophy, 2nd Edition 2013
http://plato.stanford.edu/entries/qm-bohm/,

Prof. D. Brigo (Imperial College London) Randomness, Dynamics and Risk 29 Jan 2014 121 / 157



Notes, references and further reading

References and further reading IX

We conclude the part on Quantum Theory with the double slit
experiment and Schroedinger’s cat. The double slit experiment led
Feynman to declare: ”[the double slit experiment shows] a
phenomenon which is impossible [...] to explain in any classical
way, and which has in it the heart of quantum mechanics. In reality,
it contains the only mystery [...].” The version of the double slit
experiment shown here is taken from Bell’s book ”Speakable and
Unspeakable in QM”. Schroedinger’s Cat is a thought experiment
meant to show that QM must be wrong: If one could transport the
fundamental indeterminacy from the quantum to the classical level,
we would have a cat that is at the same time alert and asleep (or,
more brutally in Schroedinger’s original version, alive and dead)
until observed or ”measured”. The absurdity of this was meant to
show that Quantum Mechanics as a theory is not complete or
consistent, and there is a big measurement problem that is
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supposed to happen outside the key rules of the theory and is
added ad hoc. In the Pilot Wave theory the impossibility to have
quantum uncertain cats in practice is explained by decoherence.
Recently, after much preparation larger and larger bodies have
been shown to interfer in a double slit experiment, such as
molecules, showing that if one is able to limit decoherence then
the superposition shows up also for objects that are far larger than
electrons. We are still far away from cats, though.

After this long digression on Quantum Theory, we go back to
probability.
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For probability theory associated to Quantum Mechanics and its
relationship to standard probability a la Kolmogorov see

Meyer, P. A. (1995). Quantum Probability for Probabilists. Lecture
Notes in Mathematics, Vol. 1538, Springer. This book (best read in
French, since in the French version there is more commentary by
Meyer) is important because written by one of the strongest
classical probabilist ever, Paul Andre Meyer. Meyer is known for
the Doob-Meyer decomposition and many other results. Another
interesting volume is

Gudder, S. P. (2005). Stochastic Methods in Quantum Mechanics.
Dover. Reprint of a classic of the seventies. Gudder shows that
Quantum probability (QP) is more general than classical
probability (CP), that QP is non distributive, non subadditive, does
not satisfy the Borel Cantelli lemma, etc. See also
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Khrennikov, A. Interpretations of Probability, Walter de Gruyter,
1999, 2nd Ed 2009 who argues that we need to assign different
probability spaces to different quantum experiments, and

Belavkin, V. P. (2000). Quantum Probabilities and Paradoxes of the
Quantum Century, in Inf. Dim. Anal. Quantum Probability and
Related Topics, 3 (4) 577-610 who argues that information theory
and conditioning are key mathematical aspects that have not been
properly used to correctly interpret quantum theory. He writes:
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”The creators of QM, [...], were unable to find a consistent
interpretation of it [...]. After inventing QM they spent much of their
lives trying to tackle the Problem of Quantum Measurement, the
greatest problem of quantum theory, not just of QM, or even of
unified quantum field theory, which would be the same “thing in
itself” as QM of closed systems without such interpretation. [...]
The solution [...] can be found in the framework of Quantum
Probability as a part of a unified mathematics rather than physics.
Most [...] have a broad mathematical education, but it ignores just
two crucial aspects – information theory and statistical
conditioning. So they gave up this problem as an unsolvable – and
it is indeed unsolvable in the traditional framework of mathematical
physics.” The paper by
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Rau, J. (2009). On Quantum vs Classical Probability, arXiv.org
argues that in reality classical probability is not a subset of QP but
rather the two probabilities intersect in a large set of principles,
with some differences then where QP favours smoothness and CP
favours decidability. He then goes on to make a (too?) bold
conjecture, namely that beyond CP and its variant QP there is no
other possible probability theory relevant to the physical world. A
very recent paper by

Holik, F., Plastino, A., and Sáenz, M. (2013). A discussion on the
origin of quantum probabilities. arXiv.org uses Cox’s reformulation
of Kolmogorov’s theory in propositional lattices. Recently, Cox
approach has been adapted to non-boolean propositional lattices
and has been used for Quantum probabilities. This provides a
common framework (rather than Kolmogorov/Measure spaces vs
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von Neumann/Hilbert spaces) to compare the theories of QP and
CP. In particular, the authors argue that the axioms of QP are
completely driven by the non-boolean lattice structure of the
quantum case so that in a way the event structure forces the
definitions of QP, similarly to how the Kolmogorov rules follow from
a boolean lattice structure. This provides a common ground for
probability theories comparisons.

What do classical probabilists think of Quantum Probability? Are
most classical probabilists ignoring it?

Prof. D. Brigo (Imperial College London) Randomness, Dynamics and Risk 29 Jan 2014 128 / 157



Notes, references and further reading

References and further reading XVI
Classical (above) and Quantum (below) Probabilities:

Sample Space Events Random Variables Probability
Kolmogorov:

Measure space σ-algebra F of measurable Normalized
Ω in (Ω,F ,P) measurable sets function Ω→ R measure P

Von Neumann:
Hilbert space Family of closed Self-adjoint Born rule

H subspaces of H operator on H
Paul–André Meyer (1934-2003), 1986:
”Although QM is essentially a probabilistic theory, the
probability [theory] used by physicists has remained very
rudimentary for quite some time, as opposed to their
functional analysis, and ”classical” probabilists could
afford to ignore it. Today, this is no longer the case”.
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This quick overview does no justice to the available authors
and literature on QP. We refer the reader to references in the
above articles for a comprehensive view.

Now we provide some references for readers interested in
stochastic differential equations. We start with the book by

Friedman, A. (2003). Stochastic Differential Equations and
Applications, Dover, reprint of the classic two volumes dated
1975-76. Friedman is well known for his books on PDEs, but this is
an excellent book on SDEs, despite some non-standard treatment
of a few SDEs topics. A more standard good book for SDEs with
brilliant exposition for the technically minded is
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Rogers, L.G.C, and Williams, D. (2000). Diffusions, Markov
Processes and Martingales, Vol. 1 and 2, Cambridge University
Press (Solutions to SDEs are often called diffusion processes).

Chaos theory has been popularized much more than the theory of
SDEs, so it is possible to read accounts of Chaos theory that are
not overly technical. A standard popular reference is the book

Gleick, J. (1987). Chaos: Making a New Science, Viking Penguin.

Another good reference on chaos is again the Stanford
Encyclopedia,
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Bishop, R.C. (2008). Chaos.
http://plato.stanford.edu/entries/chaos
An important point is that Chaos might amplify the fundamental
randomness in QM to macroscopic levels via the nonlinear
dynamics that is sensitive to initial conditions. This of course
depends on whether QM is truly random (or pilot wave?) among
other issues.

We now move to Nonlinear Stochastic Filtering.
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The use of filtering in the first human moon landing (1969) has
been reported in

Cipra, B. (1993). Engineers Look to Kalman Filtering for Guidance.
SIAM News, Vol. 26, No. 5, August 1993

An extract is as follows:

’Even so, the new approach didn’t catch on right away. Bucy
recalls that ”no one was very interested in the papers originally.”
But then researchers at NASA latched onto the Kalman filter as a
way of dealing with problems in satellite orbit determination.
Kalman filtering rapidly became a mainstay of aerospace
engineering. It was used, for example, in the Ranger, Mariner, and
Apollo missions of the 1960s. In particular, the on-board computer
that guided the descent of the Apollo 11 lunar module to the moon
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had a Kalman filter. That computer was also communicating with a
system of four Doppler radar stations on Earth that were
monitoring the module’s position. It was important that estimates
from all sources be good: The Earth-based estimates were used
to adjust the on-board system; if they had disagreed too much with
the on-board estimates, the mission would have had to be aborted.
It could have happened. According to William Lear, an aerospace
engineer who was then at TRW in Redondo Beach, California,
NASA contacted him about nine months before Apollo 11’s
scheduled launch because their Earth-based tracking program
wasn’t working. Lear, who now works for Draper Labs at the
Johnson Space Center, wrote a 21-state Kalman filter program,
which went into the Doppler radar system. The final check of the
program, Lear recalls, was done the day before Armstrong, Aldrin,
and Collins took off.’
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The part on the Nonlinear Filtering Problem is based on my PhD
work (1993-96) with Bernard Hanzon (currently at Cork University,
at the time at the Free University of Amsterdam) and Francois Le
Gland (INRIA/IRISA), and on recent research with John Armstrong
(King’s College London).

As I am mentioning my PhD, Special Thanks here to Peter Spreij
(currently at UVA) and Jan van Schuppen (CWI, Delft University)
who helped me at the most difficult times during the PhD period
and both taught me a lot, and not only in mathematics.

The main references on the projection filter: the idea started in
1987 by Bernard Hanzon:
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Hanzon, B. A differential-geometric approach to approximate
nonlinear filtering. In C.T.J. Dodson, Geometrization of Statistical
Theory, pages 219 – 223, ULMD Publications, University of
Lancaster, 1987
and

Hanzon, B., and Hut, R. (1991). New results on the projection filter.
Working paper.

It was expanded and fully developed in 1993-1996 in the following
works, with particular attention to exponential families:

D. Brigo, Filtering by Projection on the Manifold of Exponential
Densities, PhD Thesis, Free University of Amsterdam, 1996.
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Brigo, D, Hanzon, B, LeGland, F, A differential geometric approach
to nonlinear filtering: The projection filter, IEEE T AUTOMAT
CONTR, 1998, Vol: 43, Pages: 247 – 252

Brigo, D, Hanzon, B, Le Gland, F, Approximate nonlinear filtering
by projection on exponential manifolds of densities, BERNOULLI,
1999, Vol: 5, Pages: 495 – 534

Brigo, D. Diffusion Processes, Manifolds of Exponential Densities,
and Nonlinear Filtering, In: Ole E. Barndorff-Nielsen and Eva B.
Vedel Jensen, editor, Geometry in Present Day Science, World
Scientific, 1999

More recently, variants based on mixture families are being
investigated in
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Brigo, D. (2012). The direct L2 geometric structure on a manifold of
probability densities with applications to Filtering. Available at
arXiv.org

J. Armstrong, D. Brigo (2013). Stochastic filtering via L2 projection
on mixture manifolds with computer algorithms and numerical
examples. Available at arXiv.org

It is interesting to notice that stochastic filtering ideas have been
used also in quantum theory. This is not so unnatural if one
realizes that filtering is about conditional probabilities from
observations and information. The late V. P. Belavkin (mentioned
earlier) also did work in this sense and thought that filtering theory
could contribute to QM.
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The projection filter has a Quantum version introduced in Quantum
ElectroDynamics:

van Hander, R., and Mabuchi, H. (2005). Quantum projection filter
for a highly nonlinear model in cavity QED. J. Opt. B: Quantum
Semiclass. Opt. 7 S226

We now move to derivatives and finance. We mentioned Bachelier
and De Finetti among the forerunners.
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Louis Bachelier (1870 – 1946) (First to introduce Brownian
motion Wt in Finance, First in the modern study of Options);
Bruno de Finetti (1906 – 1985) (See also Frank Ramsey;
Subjective interpret of probability; defines risk neutral
measure very similarly to current theories: first to derive no
arbitrage through inequalities constraints, discrete setting).
Modern theory (1973 on) follows Nobel awarded (Black,)
Scholes and Merton (+ Harrison and Kreps...)
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The Bachelier dissertation that started Brownian motion and first
used Brownian motion in finance is

Bachelier, (1900). Théorie de la Spéculation. PhD dissertation,
Sorbonne. This has been translated into English by Mark Davis,
Imperial College London. Mark was first at Electrical Engineering
and then became one of the founders of the Mathematical Finance
group. The translation is co–authored with Alison Etheridge and
has a preface by Nobel Awarded Paul Samuelson.

We mentioned Bruno De Finetti as one of the leading probabilist
and statisticians of the past century. He worked in the industry and
also in academia. He is well known for a number of results and for
the subjective interpretation of probability. The way he
characterized the No Dutch Book argument for consistency of
probabilities is very similar to no arbitrage theory and the risk

Prof. D. Brigo (Imperial College London) Randomness, Dynamics and Risk 29 Jan 2014 141 / 157



Notes, references and further reading

References and further reading XXIX

neutral measure Q. This had been done independently here in the
UK by Frank Ramsey, who however passed away at the age of 26
before developing the theory further. De Finetti main work in this
respect is

DeFinetti, B. (1931). Sul significato soggettivo della probabilitá. In
Fundamenta Mathematicae, Warszawa, T. XVII, pp. 298–329.
DeFinetti’s work relevance for current no arbitrage theory has been
pointed out for example in

Nau, R. F. (2001). De Finetti was right: Probability does not exist.
Theory and Decisions, 51: 89–124.
Nau writes: ”In the 1970s the so-called golden age” of asset
pricing theory – there was an explosion of interest among finance
theorists in models of asset pricing by arbitrage. The key discovery
of this period was the fundamental theorem of asset pricing [...]
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There are no arbitrage opportunities in a financial market if and
only if there exists a probability distribution with respect to which
the expected value of every assets future payoffs, discounted at
the risk free rate, lies between its current bid and ask prices; and if
the market is complete, the distribution is unique. This is just de
Finetti’s fundamental theorem of subjective probability, with
discounting thrown in, although de Finetti is not usually given credit
in the finance literature for having discovered the same result 40
years earlier.

Further discussion is available in
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Trieste, 23 ottobre 2009, Trieste, EUT Edizioni Universitá di Trieste,
2010, pp. 65–84.

The option pricing theory of Black, Scholes and Merton and
subsequent formalization of no arbitrage by Harrison, Kreps, Pliska
et al is accounted for in many academic texts. See for example

Bjork, T. (2004). Arbitrage theory in continuous time. 2nd Edition,
Oxford University Press.

The paper that discusses the dangers in using continuous time as
an approximation for discrete time is
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D. Brigo and F. Mercurio (2000). Option pricing impact of
alternative continuous time dynamics for discretely observed stock
prices, Finance and Stochastics, Vol. 4, N. 2 (2000), pp. 147–160.
Extended version (1998) available online SSRN.com and arXiv.org

The mixture dynamics volatility smile model alternative to the
geometric brownian motion of Black Scholes has been developed
in a number of papers:

D. Brigo, F. Mercurio, Displaced and Mixture Diffusions for
Analytically-Tractable Smile Models, in: Geman, H., Madan, D.B.,
Pliska, S.R. (Editors), Mathematical Finance - Bachelier Congress
2000, Springer, Berlin (2001).

Brigo, D., Mercurio, F., Rapisarda, F., Smile at Uncertainty, Risk
Magazine (2004), May issue.
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Brigo, D., Mercurio, F., and Sartorelli, G., Alternative Asset Price
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(2003) pp. 173-183

D. Brigo and F. Mercurio, Analytical pricing of the smile in a forward
LIBOR market model, Quantitative Finance, Vol. 3, No. 1 (2003).

D. Brigo and F. Mercurio, Lognormal-mixture dynamics and
calibration to market volatility smiles, International Journal of
Theoretical and Applied Finance, Vol. 5, No. 4 (2002), 427-446.

This is just one of the countless models developed by academic
research and by the industry to generalize the Geometric
Brownian Motion in Black Scholes, although it is one of the most
tractable and flexible in terms of parameterization. It is also fully
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rigorous, as one can show existence and uniqueness of the strong
solution for the related SDE.

Term structure modeling and interest rate dynamics is discussed in
several papers and in the book

D. Brigo and F. Mercurio, Interest-Rate Models: Theory and
Practice with Smile, Inflation and Credit, Springer Verlag, 2001,
second edition 2006.
Despite the book becoming a field reference and the main
reference worldwide for term structure modeling in derivatives
markets, the theory is currently inadequate as multiple curves and
credit-liquidity effects started affecting interest rates in a way that is
not consistently accounted for by most available theories. A paper
that tries to develop a consistent new theory with all these effects is
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A. Pallavicini and D. Brigo (2013). Interest-Rate Modelling in
Collateralized Markets: Multiple curves, credit-liquidity effects,
CCPs. SSRN.com and arXiv.org

The Credit (CDO) crisis, the models limitations and proposed
solutions (dated 2006) are best summarized in the small book

D. Brigo, A. Pallavicini and R. Torresetti, Credit Models and the
Crisis: A journey into CDOs, Copulas, Correlations and Dynamic
Models. Wiley, 2010
referencing several papers in the period 2006-2010. This is also
the story of how media and a few mainstream journalists
misunderstood the role of financial modeling and of modeling more
generally. An online report ”Credit models and the crisis or: How I
learned to stop worrying and love the CDOs” is also available on
arXiv and SSRN. See also
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Mathematical Finance, 21 (4), pp 573–593

for the related issues on Credit Index Options.

The new or formerly neglected risks including credit risk, funding
liquidity risk, collateral gap risk, CCPs, initial margining,
re-hypothecation are discussed in the book
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Closeout, Netting, Collateral, Re-hypothecation, Wrong Way Risk,
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arXiv.org
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