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Abstract 
 

We illustrate the two main types of implied correlation one may obtain from market CDO 
tranche spreads. Compound correlation is more consistent at single tranche level but for 
some market CDO tranche spreads cannot be implied. Base correlation is less consistent 
but more flexible and can be implied for a much wider set of CDO tranche market spreads. 
Furthermore, base correlation is more easily interpolated and leads to the possibility to 
price non-standard detachments.  Even so, Base correlation may lead to negative expected 
tranche losses, thus violating basic no-arbitrage conditions. We illustrate these features 
with numerical examples. 

 
JEL Classification: G16 
 
Keywords: Implied Correlation, Base Correlation, Compound Correlation, Expected Tranche Loss, DJ 
iTraxx, CDX, CDO tranche, back-test, no-arbitrage conditions.   

 
 
 
1. Compound Correlation. 
 
Compound correlation is a first paradigm for implying credit default dependence from liquid market data. 
This approach consists in linking defaults across single names through a Gaussian copula where all the 
correlation parameters are collapsed to one. One then finds the value of the correlation parameter matching, 
for each quoted tranche attachment and detachment (strike), the relevant CDO tranche spread. When 
plotting such correlation against the strikes one obtains a (compound) correlation smile.     
 
The market data we take as inputs, namely reference index term structure and 10y tranche spreads, are 
detailed in Table 1.   An example of the compound correlation skew we imply from this set of market data is 
given below in Figure 1.   
 
Notice that in Figure 1 there is no bar corresponding to the 6%-9% tranche: from the market spread of the 
tranche, given the reference index term, we cannot imply a compound correlation. We see in the following 



how this problem is not at all trivial, in that we face quite often market spreads where we cannot imply the 
compound correlation.      
 
Table 1:  
Index and Tranche Market Spread 3rd-aug-2005 
 
Reference Swap: 
Itraxx Europe S5 
 
maturity ref  

index 
3y 21 bp 
5y 36 bp 
7y 46 bp 
10y 56 bp  

Tranche Spread:  
Itraxx Europe S5 10y 
 
tranche running upfront 

0-3 5.00% 49+.00% 
3-6 3.60% 0.00% 
6-9 0.82% 0.00% 
9-12 0.46% 0.00% 
12-22 0.31% 0.00%   

Figure 1: Compound Correlation Skew 

 
 
 
 

2. Existence and monotonicity of market spread as a function of compound 
correlation  
 
We have just seen that on a particular date we cannot imply a compound correlation from the market spread 
of the 6-9 tranche.   We investigate further this date plotting in Figure 2 the fair market spread as a function 
of the compound correlation: the equity tranche is quoted upfront (0.25 means 25%) and all other tranches 
are quoted in number of running basis points (123 means 1.23% per annum).    The red flat line is the level 
of the market spread.   The fair tranche spread is obtained dividing the NPV of the default leg by an annuity 
factor (the NPV of the premium leg of a tranche with spread equal to 100%).    
 
 
Figure 2: Fair Tranche Spread as a function of Compound Correlation 

  
 



  

 

 

 
We note that:  
1) For certain tranches, from the unique market spread we can imply more than one compound correlation, 
although this does not happen in our example of Figure 2 (the flat red line crosses the dotted black line at 
most in one point).  
2) Given a market spread we are not always guaranteed we can imply a compound correlation, as we see for 
example in the 6-9 tranche of Figure 2 (there is no intersection between the flat red line and the dotted black 
line). 

 
 
 
3. Historical Relevance of the Invertibility Limitations of the Compound 
Correlation 
 
We have seen before that on 3rd-aug-2005 we cannot imply a compound correlation for the 6-9 tranche.   
We now check how often in the past this kind of problem occurred, in that we look for past tranche spreads 
from which we cannot imply a compound correlation.     



 
In figure 3 we plot the dates where the 10y tranches on iTraxx and CDX are not invertible. For the iTraxx 
all cases of non-invertibility are imputable to the 6%-9% tranche, whereas for the CDX all cases of non-
invertibility are imputable to the 7%-10% tranche.  In all cases the market spread is too small to be inverted: 
the same problem we had for the 6-9 tranche in Figure 2.   
 
Figure 3: Back-test of Compound Correlation Invertibility 

  
 
 
 

4. Base Correlation 
 
The tranched loss can be written as:      
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where L is the portfolio Loss at maturity and A and B are the attachment and detachment points.     
 
With a little manipulation we can write:     
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Thus the tranched loss can be rewritten as the difference between two tranched equity losses.    Iteratively, 
given the base correlation on the detachment A, we look for the base correlation on the detachment B such 
that the net present value of the A-B tranche is set to 0.   
 
The only problem left with this approach is that we are using a different correlation parameters in the 
calculation of the expected loss for the tranches ),0( AL  and ),0( BL  concurring to the same payoff.    
Valuing different parts of the same payoff with different model parameters (correlations) clearly leads to 
inconsistencies.   This means that we are not guaranteed that this expectation is a strictly increasing function 
of time.    



5. Is Base Correlation immune from inconsistencies in practice? 
 
In the left hand graph in Figure 4 we plot the Base Correlation calibrated to the market data in Table 1.   In 
the right hand graph in figure 4 we plot the Expected Equity Tranche Loss for the various detachment points 
as a function of time.   
 

[ ] %22%,12%,9%,6%,3   ,    ),0( =BBLE .   
 
From these expectations, using equations [2], we can compute the Expected Tranche Loss, plotted in Figure 
5, as a function of time:   
 

[ ] [ ] [ ] )/()),0(),0((),( ABALEABLEBBALE −⋅−⋅=  
 
Figure 4: Base Correlation and Expected Equity Tranche Loss 

  
 
Figure 5: Expected Tranche Loss through the Expected Equity Tranche Loss in Figure 4 (via eqn [2])  

  



  

 

 

 
From Figure 4 we note that the base correlation is a much smoother function of detachments than compound 
correlation.   Also, to price a non-standard tranche, say a 4%-15% tranche, we can interpolate the non-
standard attachment (4%) and detachment (15%) whereas with the compound correlation we do not know 
exactly what to interpolate (since with compound correlation there is a unique correlation associated to each 
tranche, i.e. correlation is associated with two points rather than a single one).    
 
As we can see from our examples, also the base correlation approach is not immune from inconsistencies.  
In fact in Figure 5 we note that for the 6-9, 9-12 and 12-22 tranches  the expected tranche loss becomes 
initially slightly negative.  This inconsistency arises from the different base correlations we use in equation 
[2] to compute the two expected tranche loss terms in A and B.    

 
 
 
6. Is Base Correlation a solution to the inconsistencies of Compound Correlation? 
 
The answer is in the affirmative and this can be clearly seen for example in Figure 6 where we plot the fair 
tranche spread as a function of the base correlation on the detachment point for each tranche, given the base 
correlation on the attachment point set equal to the calibrated base in Figure 4.    
 



This gives us an idea of the range of the tranche spread we can calibrate using base correlation. These plots 
of Figure 6 can be compared with the plots in Figure 2, showing the fair tranche spread as a function of 
compound correlation.     In Figure 6 the thick black line is flat at the level of the market spread for the 
tranche.  The two thin red lines are the minimum and maximum spread we are able to obtain by varying 
compound correlation.     
 
We note that for each tranche the fair spread is a monotonic function of the base correlation on the 
detachment point  and also the range of market spread that can be attained by varying base correlation is 
much wider than the corresponding one for compound correlation. Consider for example the 6-9 tranche: 
from Figure 2 the tranche spread that can be inverted in a compound correlation setting lies between 93 and 
268 bps,  whereas from Figure 6 the tranche spread that can be inverted in a base correlation setting lies in 
the wider range between 0 and 732 bps.    
 
Figure 6 

  

  
 
In Figure 6 we did not plot the market spread for all base correlations between 0 and 1 because beyond a 
certain point the fair tranche spread becomes negative. Recall once again that in Equation [2] we use two 
different correlation parameters for different parts of the same payoff: when these two correlations are very 
different from each other (the detachment correlation is much higher than the attachment one) the 
inconsistency of a negative expected tranche loss becomes more evident.        
 



Figure 7 

  
 
Consider for example the 6-9 tranche.   In Figure 7 we plot in the abscissas the year fraction of the tranche 
payment dates and in the ordinates the Expected Tranche (6-9) Loss.   For both graphs in Figure 7 the 
tranche attachment correlation is the calibrated base on the 6% detachment.   The tranche detachment (9%) 
correlation is set to the calibrated base on the left hand graph (38.07%) and to an arbitrarily high level (48%) 
on the right hand graph.     
 
 
 
7. Conclusions 
 
Calibrating base correlations by tranching the loss as shown in equation [2] without calibrating first single 
compound correlations solves the two main issues concerning compound correlation calibration. 
 
Indeed, as illustrated in Figures 1 and 7 by calibrating directly base correlations: 

1) we get a monotonic mapping of the base correlation parameter into tranche spreads; 
2) we can invert a wider range of tranche spreads into a base correlation parameter; 
3) we can price bespoke detachments by interpolating the base correlation across detachments. 

 
Even so, base correlation needs to be handled with care, since it may lead to negative loss distributions, thus 
violating basic no-arbitrage constraints.  
 
Alternative copula specifications are possible. Indeed, Hull and White (2004) show that on a particular date 
the “double-t copula” can consistently reproduce tranche spreads without skew in the correlation parameter.   
Independent tests of ours show that the skew resurfaces at later dates (from May 2005 on).    
 
A more model independent approach to tranche interpolation and pricing consists in implying expected 
tranche losses without assuming any model, see for example Walker (2006) or Torresetti Brigo and 
Pallavicini (2006b). An explicit model implying a dynamics for dependence across defaults, absent in the 
copula case, is given in Brigo Pallavicini and Torresetti (2006). Finally, we note that the loss distribution of 
the pool under the risk neutral measure, which has been discussed in this paper, is different from the actual 
loss distribution in the objective measure, as pointed out for example in Torresetti, Brigo and Pallavicini 
(2006a). 
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