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Abstract 
 
We consider the risk neutral loss distribution as implied by index CDO tranche quotes through a “scenario 
default rate” model as opposed to the  objective measure loss distribution based on historical analysis. The 
risk neutral loss distribution turns out to privilege large realizations of the loss with respect to the objective 
distribution, thus implying the well known presence of a risk premium.  We quantify this difference 
numerically by pricing CDO tranches and indices under the two distributions.   En passant we analyze the 
implied risk neutral default rate distributions calibrated from April-2004 throughout April-2006, pointing out 
its distinctive “bump feature” in the tail.      
 
Key Words: Default Rate distribution, CDO, CDO tranches, Perfect Copula, Implied Copula, Transition 
Matrices, Rating Classes, Risk Premium, Recovery Rate. 
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1. Introduction. 
 
In this paper we consider the loss distribution as implied either by index CDO tranche quotes (Risk neutral 
implied distribution) or by objective measure statistics such as rating migration probabilities and historical 
analysis of default correlation. The risk neutral Loss distribution is derived through a modified “scenario 
default rate” approach, inspired by the “perfect copula” model of Hull and White (2005), to which we refer as 
“implied copula”. Instead, the objective measure loss distribution is derived through a model taking into 
account rating class default probabilities and transition matrices. We find, in agreement with known market 
stylized facts, that the risk neutral loss distribution privileges large realizations of the loss with respect to the 
objective distribution, thus implying the well known presence of a risk premium.  We quantify this premium 
by re-pricing the market index and tranches under the objective loss distribution and comparing the resulting 
net present value (NPV) with the risk neutral one.  

 
 
2. Implied Copula and Implied Default Rate Distribution  
 
We take as reference the iTraxx Europe (125 constituents) index.  We fix a set of scenarios for the systemic 
factor M influencing the default of all the constituent names, and assume that conditional on M defaults of 
different names are independent.  This way we are relying on M as the only variable building the dependence 
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across the pool. The market standard Gaussian 1 factor copula makes particular assumptions on the 
dependence structure across defaults and on M , and we review them in Appendix A. In the implied copula 
setup one implicitly makes a homogeneous pool assumption, and directly postulates default intensities 
conditional on a finite set of scenarios for the systemic factor M , say  
 

},...,,{ 12410 mmmM ∈ .   

 
This amounts to assume that the stochastic default intensity λ  of any name in the pool, defined as   
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This amounts to assume, for a preferred maturity T  and for each name  125,...,2,1=i , the following default 
probabilities, conditional on M : 
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Again for a preferred maturity T , the pool default rate, conditional on the systemic scenario SmM = , is 

defined as (in our particular case 125=N ) 
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where { }conditionI  is equal to 1 if the condition is satisfied and 0 otherwise, and where, given our initial 
assumption, the terms in the summation are independent of each other given M .  
 
Now the infinite (or “large”) pool assumption comes into play. We may assume the number of names N in the 
pool to be very large. In this case the law of large numbers implies that the sample average of the i.i.d random 
variables  
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which is our )(TDRS
N , converges in law (under some mild assumptions) to the true mean of each single 

random variable when N  tends to infinity, i.e.  
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This set of scenarios 124,...,1,0   )( =STDRS , represents the set of all the possible default rates of the iTraxx 

portfolio: 124,...,1,0=S  out of 125 constituents of the portfolio default before maturity T. In turn, given its 
intuitive meaning, the default rate is also the fraction of names that have defaulted for a given maturity. As 
such, its natural values would be:1   
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We may use these natural default rate scenarios backwards to deduce sensible scenarios for the intensities 
associated with them for the maturity T. This amounts to solve in λ lambda   
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To sum up, from our set of default rates above, given the particular maturity T of the tranches and the index 
we want to price, we have determined a corresponding set of scenarios for the default intensities constituting 
the parametrization from which we started, thus finally closing the loop.  
 
 

3. The Instruments Payoff 
 

The tranches and the index pay their spread on the dates Nttt ,...,, 21 , expressed as year fractions.  We call the 

start date 00 =t .     We call SR  the recovery rate associated to the scenario S  and we call ir  the risk free 

zero-coupon rate on date it .    

 
Given a generic scenario S  the NPV of the premium and default leg of the index will be:   

                                                 
1 The original perfect copula approach of Hull and White (2005), to which our methodology is inspired, considers a more complex 
spacing in the set of default rates. Default rate scenarios are spaced in such a way that the sums of net present values of tranches and 
index under each scenario are equally spaced.   
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where the notation for the index outstanding notional, the index premium leg, the index spread and the index 
default leg is self evident.  Given a generic scenario S the NPV of the premium and default leg of the tranche 
with attachment A and detachment B will be:2   
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where again the notation for the A-B tranche outstanding notional, premium leg, spread, default leg and loss is 
self evident. 
 
 

4. Implied Default Rate Distribution 
 
Consistently with the perfect copula spirit by Hull and White (2005), our numerical problem is finding the 
weights (i.e. the scenario probabilitiesp , positive and adding up to 1) to assign to each scenario so as to 

reprice the index and the tranches consistently with market quotes.  These weights 12410 ,...,, ppp  will 

correspond to the risk neutral distribution of the default rates.   We have 125 scenarios and only 6 instruments 
(5 tranches plus the index), so that the system is under-determined. Indeed, we have too many unknowns (up 
to 125: the scenario weights) and too few equations (down to 6: the instruments to price).    
 
We call PR and DEF  the matrices with the NPV of the premium and default leg.  The rows correspond to the 
scenarios (remember that scenario S   is the scenario where S   names out of 125 default before maturity) 
whereas the columns correspond to the instruments (the index in the first column).    

                                                 
2 Notice the approximation we have introduced in the computation of the integrals involved in determined the average Outstanding 
Notional and Default Leg NPV in each period.   For a thorough exposition of CDS pricing and the accuracy of different 
approximations to the relevant integrals see O’Kane and Turnbull (2003).    
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If we call [ ]TppP 1240,...,=  the scenario weights vector then the NPV of the instruments will be:  
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To solve the under-determined feature problem Hull and White (2005) look for the set of weights assigned to 

the scenarios that best re-prices the instruments (minimizes NPVNPV ⋅T ) and that is also as regular as 

possible.  The objective function they select is 
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where the summation is a regularization term. In the objective function of Hull and White there is thus a  
trade-off between minimization of the mispricing and regularization of the scenarios distribution.   
 
 

5. Regularization through bid-ask information  
 
We prefer not to choose a trade-off between mispricing and regularization.   We aim at finding the smoothest 
distribution that prices all instruments exactly (i.e. within their Bid Ask spreads).  
 
To do this we split the problem in two steps.   In the first step we minimize the mispricing without considering 
smoothness of the distribution.   We consider the first minimization to be successful if all instruments are re-
priced within the bid ask spread.  In this case we proceed with a second optimization that takes as starting 
point in the numerical algorithm the optimum found in the first step.   In the second step we maximize the 
regularity of the distribution given the constraint that the instruments are priced within the bid ask spread.    
 
Following these two steps we avoid choosing any tradeoff between mispricing and smoothness.    
 
The instruments NPV can be rewritten as:  
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Thus the variation in the spreads required to set to 0 the NPV of the instruments given a scenario distribution 
P  is: 
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If the absolute value of the components of this vector  is larger than half  the bid ask spread then the scenario 
distribution P  is not able to price the instruments with an error within the bid ask spread.    
 

 
6. A convenient relationship between Default Rates and Recovery Rates    
 
In their article Hull and White (2005) have used first in their estimation a flat recovery rate at 40% for all 
scenarios: 

124,...,1,0      %40 == SRS  

 
The authors report they could fit market data in the first half of 2004 using a flat recovery of 40%.   They also 
report that in order to fit more recent data (as of November 2005) they found it necessary to incorporate the 
following best fit relationship as in Hamilton et al. (2005), expressing recovery as a function of the default 
rate:   

( )[ ] 124,...,1,0      )exp(19.6%52 , %0max =−−⋅−= SR SS λ  

 
This means that in correspondence of default rates above 7.53% the recovery is null.   Our approach is instead 
to fit a nonlinear relationship between recovery rates and annualized default rates as in Altman et al. (2002).3   
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3 The relationship we implement does not have an intercept so that we obtain a recovery of 0 in case the entire portfolio defaults.  



7 

7. Implied Default Rate Distribution through Time 
 
We now apply the methodology outlined in the previous paragraphs to the market CDS index and 
standardized CDO tranches spreads from April 2004 to April 2005.  We imply a risk neutral default rate 
density.   In the top two graphs of figure 1 we note that the reference swap rate (right hand scale) and the 
average default rate (left hand scale) are strongly correlated.   In the bottom two graphs of figure 1 we note 
instead that the implied default rate density had a much larger dispersion, as measured by the difference 
between the 75th and 25th percentile, during 2004 compared to the second half of  2005 and the beginning of 
2006.  This feature is especially pronounced for the 10 years maturity.  Also we note that until April 2005 the 
dispersion of the distribution was positively correlated with the reference spread movements, as proxied by 
the average default rate: the dispersion decreases (increases) when the index decreases (increases).     
 
Also from the middle two graphs of figure 1 we note what happened during the Ford-GMAC crisis.  Around 
April 2005 the average spread increased and simultaneously the distribution narrowed.  The dispersion 
narrowed and at one point in time, 16 May 2005, on the 10 year maturity the implied average default rate was 
above the 75th percentile.     
 

Figure 1 
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8. Default Rate Simulation under the Objective Measure 
 
We are given a set of N  reference obligations associated to a set of K  rating classes.  We have historically 
measured the frequency according to which a name  belonging to a certain rating class will default before a 
maturity T  expressed as a year fraction.   In order to value CDO tranches we need also a measure of the 
dependency between the defaults of the N  reference obligations in the portfolio.     
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We model this dependency via a one factor Gaussian copula:   

1) we randomly draw a vector X  of N  jointly standardized normal random variables with correlation 
matrix Σ ;   

2) we compute the cumulative normal  )( ii XU φ=  for all components iX  of X ;   

3) we finally compute the simulated default time for each name i as the inverse of the historically 

measured survival function 
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deterministic time dependent default intensity of name i. 
 

If the simulated default time τ  is less than T  then the associated reference obligation in the current 
simulation will default  before the maturity of the CDO.   The loss incurred by the portfolio will be the 
notional invested in the name (for the iTraxx it will be 0.8%=1/125)  times one minus the recovery associated 
to that name.    
 
In the risk neutral framework the way the correlation is implied from market quotes assumes  the correlation 
matrix Σ  to be flat in the sense that the off-diagonal terms are all equal to a single parameter ρ .   Given the 
market spread of a tranche the corresponding compound correlation would be the ρ  value to be put into a 
Gaussian copula linking the default of different names that sets to 0 the NPV of the tranche given the risk 
neutral default intensities )(sλ  stripped by the CDS term structure of the index constituents.   Clearly rather 
than a model this is a quoting mechanism, and to achieve consistency the related quotes of different tranches 
need to be calibrated with a single model, such as for example the perfect copula model above, where the 
notion of correlation matrix is somehow lost apart from its quoting mechanism interpretation. 
 
The correlation matrix we use to obtain the default rate and loss rate distributions under the objective measure 
is instead block diagonal, as in the CDO Evaluator of S&P.   The correlation between any two names will be 
15% if both names belong to the same global or regional sector and 5% otherwise.    
 
Remark 1: (“S&P CDO Evaluator 3” correlation assumptions). In determining the block diagonal structure of 
the pool of obligors the S&P CDO Evaluator 3 differentiates between local, regional and global sectors.   A 
local sector is only affected by the macroeconomic forces within the country where the asset resides (for 
example “building and development”).   A regional sector is affected by the macroeconomic forces of the 
region (for example: “rail industries”).   A global sector assumes that the same economic forces affect all 
companies in that sector, regardless of location (for example: “oil and gas”).    
 
 

9. Risk Premium Evidence in the Index Swap and the ITRAXX Tranches 
 
Given the dollar value of the default leg of an instrument (index CDS or CDO tranche) we can ask ourselves 
the question of how much of this dollar value is justified in terms of default risk.   In other words we want to 
know the difference between the NPV of the default leg under the risk neutral and objective measures.    
 
A different question we might consider is the following: how much more the premium leg would have paid in 
excess of the default leg if the default distribution were the historical one?   This corresponds to the difference 
between the  NPV of the premium and default leg under the objective measure.   Both differences can be 
thought as related to a compensation for the risk of default in the instrument notional.    
 
Given the market quotes of a set of instruments as of January 27th 2006 (1st row, left column of table 1), in 
order to be remunerated for the risk of default of the notional amount, we would expect both this differences 
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to be positive.   In both cases we subtract the NPV of the default leg under the objective measure (1st row, 
right column of table 1).   In the former definition we subtract it from the NPV of the default leg under the 
risk neutral measure (2nd row, right column of table 1) and in the latter definition from the NPV of the 
premium leg under the objective measure (2nd row, left column of table 1).    In fact we see that the two 
differences are indeed positive for all instruments and maturities (3rd row of table 1).    
 

Table 1 
 
Market Quotes (27 Jan 2006) 
 

  

 3 5 7 10 
index 0.1875% 0.3550% 0.4725% 0.5750% 
 0 - 3 5.0000% 27.7500% 48.2500% 57.6250% 
 3 - 6 0.0850% 0.7900% 1.8750% 5.3000% 
 6 - 9  0.0300% 0.2700% 0.4800% 1.0050% 

 9 - 12            -    0.1250% 0.2700% 0.4450% 
 12 - 22            -    0.0563% 0.1200% 0.2250%  

 
Npv Default Leg under the Objective Measure 
 
 3 5 7 10 
index 0.3093% 0.5902% 0.8991% 1.3776% 
 0 - 3 10.2967% 19.4756% 28.9749% 41.5994% 
 3 - 6 0.0132% 0.1949% 0.9632% 3.9975% 
 6 - 9  0.0000% 0.0027% 0.0312% 0.2979% 

 9 - 12 0.0000% 0.0000% 0.0020% 0.0224% 
 12 - 22 0.0000% 0.0000% 0.0001% 0.0011%  

 
Npv Premium Leg under the Objective Measure 
 
 3 5 7 10 

index 0.5179% 1.5996% 2.8889% 4.7598% 
 0 - 3 18.1851% 48.3559% 74.8461% 90.7758% 
 3 - 6 0.2355% 3.5807% 11.5529% 44.1433% 
 6 - 9  0.0831% 1.2242% 2.9629% 8.4422% 

 9 - 12 0.0000% 0.5668% 1.6667% 3.7397% 
 12 - 22 0.0000% 0.2550% 0.7407% 1.8909%  

 
Npv Default Leg under the Risk Neutral Measure 
 
 3 5 7 10 
index 0.5158% 1.5784% 2.8203% 4.5794% 
 0 - 3 17.5643% 44.6892% 66.5971% 76.2986% 
 3 - 6 0.2350% 3.5302% 11.1250% 38.1894% 
 6 - 9  0.0830% 1.2144% 2.9118% 8.1438% 

 9 - 12 0.0000% 0.5636% 1.6477% 3.6493% 
 12 - 22 0.0000% 0.2538% 0.7335% 1.8616%  

 
Npv Premium Leg under the Objective Measure  MINUS  
Npv Default Leg under the Objective Measure 
 
 3 5 7 10 

index 0.2086% 1.0094% 1.9898% 3.3821% 
 0 - 3 7.8884% 28.8803% 45.8712% 49.1764% 
 3 - 6 0.2224% 3.3858% 10.5897% 40.1458% 
 6 - 9  0.0831% 1.2215% 2.9316% 8.1443% 

 9 - 12 0.0000% 0.5668% 1.6647% 3.7173% 
 12 - 22 0.0000% 0.2550% 0.7407% 1.8898%  

 
Npv Default Leg under the Risk Neutral Measure  MINUS  
Npv Premium Leg under the Objective Measure 
 
 3 5 7 10 
index 0.2065% 0.9882% 1.9212% 3.2018% 
 0 - 3 7.2675% 25.2136% 37.6222% 34.6992% 
 3 - 6 0.2218% 3.3353% 10.1619% 34.1919% 
 6 - 9  0.0830% 1.2118% 2.8805% 7.8459% 

 9 - 12 0.0000% 0.5636% 1.6457% 3.6268% 
 12 - 22 0.0000% 0.2538% 0.7334% 1.8605%  

 
 
We note that for all maturities roughly half (between 40% and 60%) of the NPV of the equity tranche is 
justified in terms of default risk.    We also note that only a small portion of the mezzanine (3-6) 10 year 
tranche is justified in terms of default risk.     
 
Of course the quantification of the remuneration for risk for each instrument (index and tranche) depends 
heavily on the simulation engine outlined in section 8.   If for example we were to use non homogeneous 
rating transition matrices or a different copula we would get different NPVs of the default leg under the 
objective measure and thus different numbers in the third row of table 1.   
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10. Comparison between the Default Rate Density under the Objective and Risk 
Neutral Measure 
 
In figure 2 we plot the default rate density under the objective and risk neutral measure (the abscissas 
correspond to the number of defaulted obligor in the ITRAXX CDO pool: 125 names).   The risk neutral 
density is obtained from the market quotes in the bottom left part of table 1 (27-Jan-2006) using the 
methodology described in sections 2 to 6.    The objective measure density is obtained instead from a 
simulation following the methodology outlined in section 8.     
 

Figure 2 
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We notice immediately the different centers of the densities corresponding to the same maturity between the 
objective and risk neutral measure.  The risk neutral densities are shifted to the right, corresponding thus to a 
risk premium being priced in the traded assets underlying the risk neutral measure.    
 
In figure 3 we finally zoom on two features, corresponding to different areas of the abscissa (number of 
defaulted obligors at maturity) of the density under the risk neutral measure.    In the left plot we notice a 
series of bumps of increasing size and shifting further to the right, as maturity increases, in the range of 10 to 
40 defaults: a scenario of extremely severe loss in the CDO obligors pool.    In the right plot we notice the far 
end tail, referring to 80 to 125 defaults out of 125 obligors in the ITRAXX pool.   We notice a small bump 
increasing with the maturity also for this catastrophic scenario.   
 
The top part of figure 4 shows the implied default rate distribution calibrated at different times for the 5 and 
10 years maturity.   The bottom part of figure 4 zooms on the tails of the implied distribution, pointing out the 
overall persistence of the above mentioned bumps in terms of size (probability mass) and location (range of 
default numbers).   
 
Since this feature persists, it may be appropriated to look for more complex dynamical loss models that can 
produce a bump feature in the tail.  A related dynamical loss models that can be consistently calibrated to 
tranche and index data for different maturities is the Generalized Poisson Loss model of Brigo, Pallavicini and 
Torresetti (2006).      
 
Brigo, Pallavicini and Torresetti (2007) further address consistency with single name data and default clusters, 
leading to a top-down approach known as GPCL model.    
 
A different model free approach to extract market information from standardized CDO tranches that is also 
consistent across maturities can be found in Walker (2006) and in Torresetti, Brigo and Pallavicini (2006).  
 



11 

Figure 3 

Default Rate Density
under the Risk Neutral Measure
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APPENDIX  A  
 
The Gaussian 1 factor copula models assume a Gaussian copula structure driving the exponential random 
variables generating jumps in the related default processes of the names in the pool.  This results in the default 
probability for each name, conditional on the Gaussian systemic factorM , to be given by  
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where )(TPD  is the risk neutral probability that any name defaults by time T .    
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As before defaults are independent given M , and this allows to compute the joint default probabilities for the 
whole pool by simply multiplying the conditional risk neutral probabilities in [2] and integrating over M  
under its Gaussian density.    Under the large pool assumption the above probability is also the pool default 
rate by T  given M .     In the 1 factor Gaussian Copula the systemic factor is a continuous random variable.   
If we discretise the domain of the systemic factor we can sum up the Gaussian copula as:  
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It is now possible to compare this to the implied copula assumption we used in this paper: In our case we 
replaced the parametric formula [2] for the default probability with the more natural, intensity based one  
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The end result of these approaches as far as pricing is concerned is the default rate distribution.  In the 
Gaussian One Factor Copula case this distribution has little flexibility, in that one can play only with the 
single copula parameter ρ , scenario probabilities being fixed by the Gaussian assumption.  If one is to price a 
set of instruments (e.g. CDO tranches) with a single model specification, having just one parameter can be 
unrealistic.  In the implied copula approach instead we can play with the scenario probabilities so as to obtain 
a rich variety of possible default rate distributions, which can help in pricing a set of instruments with a single 
model specification. 
 


