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Abstract

We consider the risk neutral loss distributionraplied by index CDO tranche quotes through a “sgena
default rate” model as opposed to the objectivasuee loss distribution based on historical ansly&he
risk neutral loss distribution turns out to prigéelarge realizations of the loss with respech&dbjective
distribution, thus implying the well known preserafea risk premium. We quantify this difference
numerically by pricing CDO tranches and indicesarmttie two distributions. En passant we anallgee t
implied risk neutral default rate distributionsibahted from April-2004 throughout April-2006, ptiimg out
its distinctive “bump feature” in the tail.

Key Words: Default Rate distribution, CDO, CDO tranches, PerfCopula, Implied Copula, Transition
Matrices, Rating Classes, Risk Premium, Recovetg.Ra

JEL classification code: G13.

1. Introduction.

In this paper we consider the loss distributioimgdied either by index CDO tranche quotes (Risltred
implied distribution) or by objective measure satis such as rating migration probabilities arstdrical
analysis of default correlation. The risk neutrakk distribution is derived through a modified ‘fsaeo
default rate” approach, inspired by the “perfeqiida” model of Hull and White (2005), to which wefer as
“implied copula”’. Instead, the objective measurgsldistribution is derived through a model takinig i
account rating class default probabilities andditaan matrices. We find, in agreement with knowarket
stylized facts, that the risk neutral loss disttib privileges large realizations of the loss wigéspect to the
objective distribution, thus implying the well knavpresence of a risk premium. We quantify thisrpun
by re-pricing the market index and tranches unlerobjective loss distribution and comparing thsultng
net present value (NPV) with the risk neutral one.

2. Implied Copula and Implied Default Rate Distribution

We take as reference the iTraxx Europe (125 camstit) index. We fix a set of scenarios for theteayic
factor M influencing the default of all the congénht names, and assume that conditional on M defatll
different names are independent. This way weelygng on M as the only variable building the degemce
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across the pool. The market standard Gaussiartdr fampula makes particular assumptions on the
dependence structure across defaults anigrand we review them in Appendix A. In the impliszpula
setup one implicitly makes a homogeneous pool aggam and directly postulates default intensities
conditional on a finite set of scenarios for theteynic factorM , say

M D{mo,ml,...,n1124} :
This amounts to assume that the stochastic defdelisity A of any name in the pool, defined as
ProbabiliyRiskNeutal (Namedefaultsin [t;t + dt)|Namehasnotdefau|tecbyt) = A [dit

further satisfies, conditionally oM ,

SystemicScenario Scenarid’robabiliy Conditiondintensity
M =m° Po A0
M =m? Py A
M = ml24 P1os JL24

This amounts to assume, for a preferred matdritgnd for each name = 12,...125, the following default
probabilities, conditional oM :

S
-A°T
ProbRiskNetra( Name defaultsby timeT‘ M = msj =l-e

Again for a preferred maturity , the pool default rate, conditional on the systestgenarioM = m>, is

defined as (in our particular cade=125)

N
N {Namei defaultsbeforeT‘ M = ms}

S 1
DRN(T)=—
N2

where | {conditior} is equal to 1 if the condition is satisfied andtBerwise, and where, given our initial
assumption, the terms in the summation are indeperaf each other giveN .
Now the infinite (or “large”) pool assumption coma play. We may assume the number of namestNen

pool to be very large. In this case the law of éangmbers implies that the sample average of itdeandom
variables

[{Nameldefaultsbeforel | M = mS} , I{Name2defaultsbeforeT | M = mS},...

which is ourDRﬁ (T), converges in law (under some mild assumptionff)édrue mean of each single
random variable wheiN tends to infinity, i.e.



DR,% (T) - ExpectatimlRiskNeutaIlI{Namedefaulti)eforeT| M :mS}] as N - o
law

Expectati@RiskNeutaI[I{NamedefaultsbeforeT | M = ms}]:

S
-A°T
= ProbabiIiyRiskNeutaI{NamedefauItsbeforeT |M = ms}zl—e = DRS(T)

This set of scenario@RS(T) S=01,...124, represents the set of all the possible defatdsraf the iTraxx

portfolio: S=01,...124 out of 125 constituents of the portfolio defawdfdre maturity T. In turn, given its

intuitive meaning, the default rate is also theti@ of names that have defaulted for a given nigtuAs
such, its natural values would be:

DRS D{O,i,...,g} ={DRO, DRl,...,DR124}.
125125

We may use these natural default rate scenaridsMaads to deduce sensible scenarios for the irttessi
associated with them for the maturity T. This antsua solve ind lambda

ST <
1-e  =DR (T)D{

0 1 124
125’125 125’

leading to

In(l— 1 j n( _124)
ppl-ni=0 U 125) U 125)| _fo p o
T T T

To sum up, from our set of default rates abovegmithe particular maturity T of the tranches araitiuex
we want to price, we have determined a correspgrsih of scenarios for the default intensities tiansg
the parametrization from which we started, thualfinclosing the loop.

3. The I nstruments Payoff

The tranches and the index pay their spread odatest, ,t,,....ty , expressed as year fractions. We call the

start datet; =0. We callR® the recovery rate associated to the scenrand we call; the risk free

zero-coupon rate on date .

Given a generic scenari® the NPV of the premium and default leg of the md&ll be:

! The original perfect copula approach of Hull antit& (2005), to which our methodology is inspirednsiders a more complex
spacing in the set of default rates. Default ranarios are spaced in such a way that the sumet gfesent values of tranches and
index under each scenario are equally spaced.
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OutNotiig = Y ( —t_,) @xpEr [ ) @xpA® [y +t_1)/2)
i=1

N
Defipg = (1-R®) [} expCr ) E[EXp(—AS £ _,)—expAS )
i=1

where the notation for the index outstanding naiptihe index premium leg, the index spread andritiex
default leg is self evident. Given a generic scen@ the NPV of the premium and default leg of ttaseche
with attachment A and detachment B will be:

Prenﬁ,B =rap EDutNotliB

N t_ +t
OutNOtliB = Z(ti —t_y) expCr ) 1—TrancheLog{8, |—12 i ]
i=1
s N
Defx g = 2 exp(r [ )EhTrancheLoss(S,ti ) —Trancheloss(St _1)]
i=1
max(PortfLoss(S,t) — A,0) — max(PortfLoss(S,t) — B,0)
B-A

TrancheLoss(S,t) =

PortfLoss(S,t) = (1- RS) [ﬁt—exp(—)ls [ﬂ))

where again the notation for the A-B tranche outditag notional, premium leg, spread, default led kss is
self evident.

4. Implied Default Rate Distribution

Consistently with the perfect copula spirit by Hald White (2005), our numerical problem is findthg
weights (i.e. the scenario probabilities positive and adding up to 1) to assign to eaeln&co so as to

reprice the index and the tranches consistently miarket quotes. These weighdg, p; ..., P4 Will

correspond to the risk neutral distribution of tiefault rates. We have 125 scenarios and onmgtBuments
(5 tranches plus the index), so that the systaimder-determined. Indeed, we have too many unknguwms
to 125: the scenario weights) and too few equat{dog/n to 6: the instruments to price).

We call PR and DEF the matrices with the NPV efphemium and default leg. The rows corresporttdo
scenarios (remember that scenggiois the scenario wher® names out of 125 default before maturity)
whereas the columns correspond to the instrumdrgsr{dex in the first column).

% Notice the approximation we have introduced indbmputation of the integrals involved in deternditiee average Outstanding
Notional and Default Leg NPV in each period. Bdhorough exposition of CDS pricing and the accyiat different
approximations to the relevant integrals see O’Kame Turnbull (2003).
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If we call P = [po,..., p124r the scenario weights vector then the NPV of tisériiments will be:

NPV, 4

NPVp3

NPV = = (Prem-Def)" P

| NPVioos |

To solve the under-determined feature problem Bindl White (2005) look for the set of weights ass@yto
the scenarios that best re-prices the instrumemtsrqizes NPV INPV ) and that is also as regular as

possible. The objective function they select is

7
NPVT DNPV+cD122:3 (Ps+1~ Ps) ~(Ps ~ Ps-1)
= 1/125

where the summation is a regularization term. Inothjective function of Hull and White there is thais
trade-off between minimization of the mispricinglaregularization of the scenarios distribution.

5. Regularization through bid-ask infor mation

We prefer not to choose a trade-off between migpyieind regularization. We aim at finding the sthest
distribution that prices all instruments exactlg (within their Bid Ask spreads).

To do this we split the problem in two steps. la finst step we minimize the mispricing without calesing
smoothness of the distribution. We consider tfs minimization to be successful if all instrunteare re-
priced within the bid ask spread. In this case voeged with a second optimization that takes asirsgar
point in the numerical algorithm the optimum foundhe first step. In the second step we maxirttize
regularity of the distribution given the constrdimat the instruments are priced within the bid gwlead.

Following these two steps we avoid choosing any triddetween mispricing and smoothness.

The instruments NPV can be rewritten as:



124 < 124 o ]
) ~ S e 0> OutNotlpg Lpg — > Defipg [pg
NPV, 4 $=0 S0
0 124 < 124
npy =| NPVos [=|  sprp0) OutNotigs Cpg — > Defis Chg
“aa S=O S=O
NPV, 124 124
1222
L J | 52205 OutNoti , g — 3. DefiS 5 T
i S=0 S=0 -

Thus the variation in the spreads required tos8tthe NPV of the instruments given a scenaritiidigion

P is:

124 S

i L | -NPV, 4/ Y OutNotig Cpg
i 2

Asprog || -NPV,5/ Y OutNotlgs (pg

S=0

Aspr 124
L L222] ) NPV, 5,/ Y OutNoti, 55 [pg
S=0

Aspr =

If the absolute value of the components of thidmeds larger than half the bid ask spread timenscenario
distribution P is not able to price the instruments with an ewithin the bid ask spread.

6. A convenient relationship between Default Rates and Recovery Rates

In their article Hull and White (2005) have usedtfin their estimation a flat recovery rate at 4fafvoall
scenarios:

RS=40% S=01..124

The authors report they could fit market data mfitst half of 2004 using a flat recovery of 40%hey also
report that in order to fit more recent data (ablofember 2005) they found it necessary to incafgothe
following best fit relationship as in Hamilton dt €005), expressing recovery as a function ofdetult
rate:

RS = max{O% 529 - 69 E&l—exp(—/ls)) S=01..124

This means that in correspondence of default atese 7.53% the recovery is null. Our approachstead
to fit a nonlinear relationship between recovetgsaand annualized default rates as in Altman. ¢2a02)°

0 RS- 0,8=0
—0.10563]h(1—exp(—/18)) , S=12...124

% The relationship we implement does not have ardept so that we obtain a recovery of 0 in casesttire portfolio defaults.
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7. Implied Default Rate Distribution through Time

We now apply the methodology outlined in the presiparagraphs to the market CDS index and
standardized CDO tranches spreads from April 2004 td 2p05. We imply a risk neutral default rate
density. In the top two graphs of figure 1 we rtbeg the reference swap rate (right hand scale}land
average default rate (left hand scale) are stroogiselated. In the bottom two graphs of figuneelnote
instead that the implied default rate density haauah larger dispersion, as measured by the diféere
between the 75th and 25th percentile, during 200dpewed to the second half of 2005 and the beginmiin
2006. This feature is especially pronounced ferlfl years maturity. Also we note that until Aprib8Ghe
dispersion of the distribution was positively coateld with the reference spread movements, as prbyied
the average default rate: the dispersion decrdasgsases) when the index decreases (increases).

Also from the middle two graphs of figure 1 we note thappened during the Ford-GMAC crisis. Around
April 2005 the average spread increased and sinadtesty the distribution narrowed. The dispersion

narrowed and at one point in time, 16 May 2005then10 year maturity the implied average defaué veas
above the 75th percentile.

Figure 1
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8. Default Rate Simulation under the Objective Measure

We are given a set dfl reference obligations associated to a sé afating classes. We have historically
measured the frequency according to which a nanh@ndiieg to a certain rating class will default befar
maturity T expressed as a year fraction. In order to vV@IDO® tranches we need also a measure of the
dependency between the defaults of Mheeference obligations in the portfolio.
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We model this dependency via a one factor Gaussipnla:
1) we randomly draw a vectaoX of N jointly standardized normal random variables wibirelation
matrix 2 ;
2) we compute the cumulative normél; = ¢(X; for all componentsX; of X ;

3) we finally compute the simulated default time focleaame i as the inverse of the historically
T
measured survival functiony = S_l(Ui ), S(M)= ex;{— j)li (s)ds} where A is here the
0
deterministic time dependent default intensity aine |i.

If the simulated default tim& is less thanl then the associated reference obligation in tmeenti
simulation will default before the maturity of t@O. The loss incurred by the portfolio will be the
notional invested in the name (for the iTraxx itlvok 0.8%=1/125) times one minus the recovery@asal
to that name.

In the risk neutral framework the way the correlaimmplied from market quotes assumes the cdrogla
matrix 2 to be flat in the sense that the off-diagonal &are all equal to a single parameter Given the

market spread of a tranche the corresponding contpoarrelation would be thg value to be put into a
Gaussian copula linking the default of different earnthat sets to 0 the NPV of the tranche given ke ri
neutral default intensitied(s 9tripped by the CDS term structure of the indexstiturents. Clearly rather
than a model this is a quoting mechanism, andhceae consistency the related quotes of differemtdhes
need to be calibrated with a single model, suctoaeXample the perfect copula model above, where the
notion of correlation matrix is somehow lost apasti its quoting mechanism interpretation.

The correlation matrix we use to obtain the defeatkt and loss rate distributions under the objeatieasure
is instead block diagonal, as in the CDO Evaluat@®&P. The correlation between any two names will be
15% if both names belong to the same global ooredisector and 5% otherwise.

Remark 1: (“S&P CDO Evaluator 3” correlation assuimps). In determining the block diagonal structure o
the pool of obligors the S&P CDO Evaluator 3 diffdrates between local, regional and global sectdks.
local sector is only affected by the macroecondimices within the country where the asset resides (fo
example “building and development”). A regionattse is affected by the macroeconomic forces of the
region (for example: “rail industries”). A globséctor assumes that the same economic forces afifect
companies in that sector, regardless of locationgkample: “oil and gas”).

9. Risk Premium Evidencein the Index Swap and the | TRAXX Tranches

Given the dollar value of the default leg of aniinstent (index CDS or CDO tranche) we can ask ourselves
the question of how much of this dollar value idified in terms of default risk. In other words went to
know the difference between the NPV of the defaululeder the risk neutral and objective measures.

A different question we might consider is the follogiithow much more the premium leg would have paid in
excess of the default leg if the default distribotivere the historical one? This correspondsealifierence
between the NPV of the premium and default leg utiteeobjective measure. Both differences can be
thought as related to a compensation for the rigletault in the instrument notional.

Given the market quotes of a set of instrumentd darmary 2% 2006 (£ row, left column of table 1), in
order to be remunerated for the risk of defaulihef notional amount, we would expect both this defifees

8



to be positive. In both cases we subtract the NPtWeodefault leg under the objective measurer(iy,

risk neutral measure

right column of table %%
premium leg under the objective measur¥ (8w,

In the former definiove subtract it from the NPV of the default leg unithe
row, right column of table 1) and in the latteridgfon from the NPV of the

left column of table 1). In fact we seetitiee two

differences are indeed positive for all instrumeartd maturities (3 row of table 1).

Table 1

Market Quotes (27 Jan 2006)

Npv Default Leg under the Objective Measure

3 5 7 10 3 5 7 10
index  0.1875% 0.3550% 0.4725%  0.5750% index 0.3093%  0.5902%  0.8991% 1.3776%
0-3 5.0000%  27.7500%  48.2500% 57.6250% 0-3 10.2967% 19.4756% 28.9749% 41.5994%
3-6 0.0850% 0.7900% 1.8750% 5.3000% 3-6 0.0132% 0.1949% 0.9632% 3.9975%
6-9 0.0300% 0.2700% 0.4800% 1.0050% 6-9 0.0000% 0.0027% 0.0312% 0.2979%
9-12 - 0.1250% 0.2700% 0.4450% 9-12 0.0000% 0.0000% 0.0020% 0.0224%
12-22 - 0.0563% 0.1200%  0.2250% 12-22 0.0000%  0.0000%  0.0001%  0.0011%

Npv Premium Leg under the Objective Measure Npv Default Leg under the Risk Neutral Measure

3 5 7 10 3 5 7 10
index 0.5179% 1.5996% 2.8889%  4.7598% index 0.5158%  1.5784%  2.8203%  4.5794%
0-3 18.1851% 48.3559% 74.8461% 90.7758% 0-3 17.5643% 44.6892% 66.5971% 76.2986%
3-6 0.2355% 3.5807% 11.5529% 44.1433% 3-6 0.2350% 3.5302% 11.1250% 38.1894%
6-9 0.0831% 1.2242% 2.9629% 8.4422% 6-9 0.0830% 1.2144% 2.9118% 8.1438%
9-12 0.0000% 0.5668% 1.6667% 3.7397% 9-12 0.0000% 0.5636% 1.6477% 3.6493%
12 -22 0.0000% 0.2550% 0.7407% 1.8909% 12 -22 0.0000% 0.2538% 0.7335% 1.8616%

Npv Premium Leg under the Objective Measure MINUS
Npv Default Leg under the Objective Measure

Npv Default Leg under the Risk Neutral Measure MINUS
Npv Premium Leg under the Objective Measure

3 5 7 10
index 0.2086%  1.0094% 1.9898% 3.3821%
0-3 7.8884% 28.8803% 45.8712%  49.1764%
3-6 0.2224%  3.3858%  10.5897%  40.1458%
6-9 0.0831%  1.2215% 2.9316% 8.1443%
9-12 0.0000%  0.5668% 1.6647% 3.7173%
12-22 0.0000%  0.2550% 0.7407% 1.8898%

3 5 7 10
index  0.2065%  0.9882% 1.9212% 3.2018%
0-3 7.2675% 25.2136% 37.6222%  34.6992%
3-6 0.2218%  3.3353%  10.1619% 34.1919%
6-9 0.0830%  1.2118% 2.8805% 7.8459%
9-12 0.0000%  0.5636% 1.6457% 3.6268%
12-22 0.0000% 0.2538% 0.7334% 1.8605%

We note that for all maturities roughly half (beeme40% and 60%) of the NPV of the equity tranche is
justified in terms of default risk. We also ndit@t only a small portion of the mezzanine (3-8)y&ar
tranche is justified in terms of default risk.

Of course the quantification of the remunerationrisk for each instrument (index and tranche) ddpen
heavily on the simulation engine outlined in sac® If for example we were to use non homogeneous
rating transition matrices or a different copulawauld get different NPVs of the default leg under the
objective measure and thus different numbers irthtind row of table 1.



10. Comparison between the Default Rate Density under the Objective and Risk
Neutral Measure

In figure 2 we plot the default rate density unther objective and risk neutral measure (the ab&siss
correspond to the number of defaulted obligor e IFIRAXX CDO pool: 125 names). The risk neutral
density is obtained from the market quotes in tbidon left part of table 1 (27-Jan-2006) using the
methodology described in sections 2to 6. Theadlve measure density is obtained instead from a
simulation following the methodology outlined in 8en 8.

Figure 2

Default Rate Density Default Rate Density
under the Objective Measure under the Risk Neutral Measure
45% 45%
40% 40% -
35% - 35% 1

30% \ 30% \\
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We notice immediately the different centers of de@sities corresponding to the same maturity betwlezn
objective and risk neutral measure. The risk raualkensities are shifted to the right, correspogdius to a
risk premium being priced in the traded assets tyidg the risk neutral measure.

In figure 3 we finally zoom on two features, corresging to different areas of the abscissa (hnumber o
defaulted obligors at maturity) of the density untles risk neutral measure. In the left plot voéice a
series of bumps of increasing size and shiftinthrrto the right, as maturity increases, in thegeaof 10 to
40 defaults: a scenario of extremely severe lo$lsarCDO obligors pool. In the right plot we nottbe far
end tail, referring to 80 to 125 defaults out obIdbligors in the ITRAXX pool. We notice a smalirbp
increasing with the maturity also for this cataskigscenario.

The top part of figure 4 shows the implied defaaterdistribution calibrated at different times floe 5 and
10 years maturity. The bottom part of figure 43 on the tails of the implied distribution, paigtout the
overall persistence of the above mentioned bumparins of size (probability mass) and location genf
default numbers).

Since this feature persists, it may be appropritiddok for more complex dynamical loss models tizan
produce a bump feature in the tail. A related dyicamoss models that can be consistently calilor&be
tranche and index data for different maturitieghiss Generalized Poisson Loss model of Brigo, Paliavand
Torresetti (2006).

Brigo, Pallavicini and Torresetti (2007) furtherdaelss consistency with single name data and deflusiters,
leading to a top-down approach known as GPCL model.

A different model free approach to extract marké&irimation from standardized CDO tranches that is also
consistent across maturities can be found in W4&@06) and in Torresetti, Brigo and Pallavicind(B).
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Figure 3
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APPENDIX A

The Gaussian 1 factor copula models assume a Gausgiala structure driving the exponential random
variables generating jumps in the related defawitg@sses of the names in the pool. This resultseimefault
probability for each name, conditional on the Gaarssiystemic factdvl , to be given by

“(PD(T))-M4/p

[2] ProbabiliyRiskNeuta NamedefaultsbeforeT | M} = N T
-p

where PD(T )is the risk neutral probability that any name dégaby timeT .
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As before defaults are independent givn and this allows to compute the joint default @doibties for the
whole pool by simply multiplying the conditionakk neutral probabilities in [2] and integrating o\

under its Gaussian density. Under the large psslimption the above probability is also the pledhult
rate byT given M . Inthe 1 factor Gaussian Copula the systéautor is a continuous random variable.
If we discretise the domain of the systemic fagtercan sum up the Gaussian copula as:

SystemicScenario ScenaridProbabiliy  Conditiond defaultrate

NL(Pd(T))-myp
=y

OnefactorGaussiarCopula

MO[m;m+dm) N(m+dm)-N(@m) N

It is now possible to compare this to the impliega assumption we used in this paper: In our ease
replaced the parametric formula [2] for the defaudttbability with the more natural, intensity basetk
S
-A°T
ProbabiIiyRiskNeutaI{NamedefauItsbeforeT | M = ms}:l—e

leading to
SystemicScenario Scenarid’robabiliy Conditiond defaultrate
0
-AUT
M =m?° pO 1-e
1
: AT
ImpliedCopula M = mt pl 1-e
124
AT
M = mi24 IO124 1-e

The end result of these approaches as far as gigitoncerned is the default rate distributiomthie
Gaussian One Factor Copula case this distributasnlittle flexibility, in that one can play only thithe

single copula parameter, scenario probabilities being fixed by the Gaussissumption. If one is to price a
set of instruments (e.g. CDO tranches) with a simgbdel specification, having just one parametaerbea
unrealistic. In the implied copula approach indte& can play with the scenario probabilities stoasbtain

a rich variety of possible default rate distribugpwhich can help in pricing a set of instrumemnits a single
model specification.
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