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Part I

Introduction and CDO calibration

In this paper we consider a simple dynamical model for the loss distribution of a pool of

names. This model aims at addressing the direct loss modeling in a simple and tractable

way. Our model focuses on three points:

1. Tractability: the loss distribution should be known analytically;

2. Calibration: The calibration of market information, currently quoted index CDO

tranches and tranchelets for several maturities, should be possible and realistic

numerical examples should be given;

3. Pricing: the pricing of correlation products depending on the loss distribution

dynamics should be feasible in a reasonable amount of time, possibly by simulation.

We adopt a “homogeneous pool” framework, in that we assume that all that matters

in determining the loss distribution is knowledge of the number of defaulted names rather

than knowledge of the specific defaulted names themselves. This means in particular that

the recovery rate associated with any loss has to be a function of the number of defaults

in the pool rather than a function of the specific defaulted names.

The basic idea of our approach here, following Pallavicini (2006), consists in modeling

the number of defaults as a linear combination of independent Poisson processes with

different intensities or, in other terms, as a generalized Poisson process. The jumps of

different processes represent defaults with different multiplicity. As a sketchy example,

we may assume that each time the first process in the summation jumps there is a single

default, while each time the second process jumps there are two defaults, and so on. We

may calibrate to market data both the multiplicity coefficients and the intensities in the

single Poisson processes. The resulting model is called Generalized-Poisson Loss (GPL)

dynamical model.

The idea of modeling financial variables as a linear combination of Poisson processes

has been explored before, for example Babbs and Webber (1994) use this idea to model

interest rates. Here we find that this kind of approach lends itself naturally to modeling

the loss distribution of the pool of names. The basic GPL model is able to fit satisfactorily

all maturities except the last one, and in the second part of the paper we consider all

the maturities in a more general formulation of the model.

Our model is based on a simple idea. Different frameworks with loss dynamics have

been proposed recently by Bennani (2005), Schönbucher (2005), Di Graziano and Rogers

(2005), Elouerkhaoui (2006), and Sidenius et al. (2005). We aim at a completely specified

and manageable model, rather than at an abstract framework, and we present detailed

calibration results, with numerical outputs. Modeling the aggregate loss directly rather

than obtaining it from single default models with a dependence structure constitutes the
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“top-down” approach. See for example Errais, Giesecke and Goldberg (2006) and refer-

ences given therein, where a random thinning technique is also suggested to zoom from

the aggregate loss to single defaults. More promisingly, our model seems to be related to

insurance shock models leading to a “bottom-up” approach where single name default

dependence is represented through a Marshal-Olkin copula (see for example Lindskog

and McNeil (2003)). We pursue this relationship and show consistency with single names

and cluster dynamics, leading to the GPCL model, in Brigo, Pallavicini and Torresetti

(2007).

In this first part of our work we focus on the basic model formulation and calibra-

tion. The model is based on the default counting process and the loss is derived as a

byproduct. In the second part we consider a loss based version of the model as long as

stochastic intensity extensions, spread dynamics, recovery assumptions, option payoffs

and calibration stability.

1 Market quotes

The most liquid multi-name credit instruments available in the market are credit indices

and CDO tranches (e.g. DJi-TRAXX, CDX). Recently, credit index options have been

considered as well. We discuss indices and tranches in the following, while we address

index options in the second part of the paper.

1.1 Credit indices

The index is given by a pool of CDS on the names 1, 2, . . . , M , typically M = 125,

each with notional 1/M so that the total pool has unitary notional. The index default

leg consists of protection payments corresponding to the defaulted names of the pool.

Each time one or more names default the corresponding loss increment is paid to the

protection buyer, until final maturity T = Tb arrives or until all the names in the pool

have defaulted.

In exchange for loss increase payments, a periodic premium with rate S is paid from

the protection buyer to the protection seller, until final maturity Tb. This premium

is computed on a notional that decreases each time a name in the pool defaults, and

decreases of an amount corresponding to the notional of that name (without taking out

the recovery).

We denote with L̄t the portfolio cumulated loss and with C̄t the number of defaulted

names up to time t re-scaled by M . Thus, 0 ≤ L̄t ≤ C̄t ≤ 1. The discounted payoff of

the two legs of the index is given as follows:

DEFLEG(0) :=

∫ T

0

D(0, t)dL̄t

PREMIUMLEG(0) := S0

b∑
i=1

D(0, Ti)

∫ Ti

Ti−i

(1− C̄t)dt
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where D(s, t) is the discount factor (often assumed to be deterministic) between times

s and t. The integral on the right hand side of the premium leg is the outstanding

notional on which the premium is computed for the index. Often the premium leg

integral involved in the outstanding notional is approximated so as to obtain

PREMIUMLEG(0) = S0

b∑
i=1

δiD(0, Ti)(1− C̄Ti
)

where δi = Ti − Ti−1 is the year fraction.

Notice that, differently from what will happen with the tranches (see the following

section), here the recovery is not considered when computing the outstanding notional,

in that only the number of defaults matters.

The market quotes the value of S0 that, for different maturities, balances the two

legs. If one has a model for the loss and the number of defaults one may impose that

the loss and number of defaults in the model, when plugged inside the two legs, lead

to the same risk neutral expectation (and thus price) when the quoted S0 is inside the

premium leg, leading to

S0 =
E0

[ ∫ T

0
D(0, t)dL̄t

]

E0

[ ∑b
i=1 δiD(0, Ti)(1− C̄Ti

)
] (1)

1.2 CDO tranches

Synthetic CDO with maturity T are contracts involving a protection buyer, a protec-

tion seller and an underlying pool of names. They are obtained by putting together a

collection of Credit Default Swaps (CDS) with the same maturity on different names,

1, 2, ..., M , typically M = 125, each with notional 1/M , and then “tranching” the loss of

the resulting pool between the points A and B, with 0 ≤ A < B ≤ 1.

L̄A,B
t :=

1

B − A

[
(L̄t − A)1{A<L̄t≤B} + (B − A)1{L̄t>B}

]

Once enough names have defaulted and the loss has reached A, the count starts. Each

time the loss increases the corresponding loss change re-scaled by the tranche thickness

B −A is paid to the protection buyer, until maturity arrives or until the total pool loss

exceeds B, in which case the payments stop.

The discounted default leg payoff can then be written as

DEFLEG(0; A, B) :=

∫ T

0

D(0, t)dL̄A,B
t

Again, one should not be confused by the integral, the loss L̄A,B
t changes with discrete

jumps. Analogously, also the total loss L̄t and the tranche outstanding notional change

with discrete jumps.
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As usual, in exchange for the protection payments, a premium rate SA,B
0 , fixed at

time T0 = 0, is paid periodically, say at times T1, T2, . . . , Tb = T . Part of the premium

can be paid at time T0 = 0 as an upfront UA,B
0 . The rate is paid on the “survived”

average tranche notional, leading to the following discounted payoff for the premium leg

PREMIUMLEG(0; A,B) := UA,B
0 +

b∑
i=1

D(0, Ti)S
A,B
0

∫ Ti

Ti−1

(1− L̄A,B
t )dt.

If we assume that the payments are made on the notional remaining at each payment

date Ti, rather than on the average in [Ti1 , Ti], the premium leg can be written as

PREMIUMLEG(0; A, B) = UA,B
0 + SA,B

0

b∑
i=1

δiD(0, Ti)(1− L̄A,B
Ti

)

where δi = Ti − Ti−1 is the year fraction.

When pricing CDO tranches, one is interested in the premium rate SA,B
0 that sets

to zero the risk neutral price of the tranche. The tranche value is computed taking the

(risk-neutral) expectation (in t = 0) of the discounted payoff consisting on the difference

between the default and premium legs above. We obtain

SA,B
0 =

E0

[ ∫ T

0
D(0, t)dL̄A,B

t

]
− UA,B

0

E0

[ ∑b
i=1 δiD(0, Ti)(1− L̄A,B

Ti
)
] (2)

The above expression can be easily recast in terms of the upfront premium UA,B
0 for

tranches that are quoted in terms of upfront fees.

The tranches that are quoted on the market refer to standardized pools. Let us

consider for example the DJi-TRAXX index, referring to the most liquid M = 125 names

in the European CDS market. This index can indeed be traded in terms of leveraged

tranches, in the same way as standard CDO’s are traded. The fundamental variable on

which we now have to concentrate is the total portfolio loss. Tranches with different

seniorities are traded in the market. The main difference with respect to generic CDO’s

is that now tranches are standardized. That means that standard attachment points

are used. For the DJ-iTRAXX Europe, the traded tranches are: an equity tranche,

responsible for all losses between 0% and 3%, then other mezzanine and senior tranches

covering 3%-6%, 6%-9%, 9%-12% and 12%-22%. For the main US index, the DJ CDX

NA the tranche sizes are different: 0%-3%, 3%-7%, 7%-10%, 10%-15% and 15%-30%.

The market quotes either the periodic premiums rate SA,B
0 of these tranches or their

upfront premium rate UA,B
0 for maturities T = 3y, 5y, 7y, 10y. Tranches with low de-

tachment points (B ≤ 3%) are usually quoted in terms of the upfront premium, while

tranches with higher detachment points are quoted in terms of the periodic premium.

The equity tranche is quoted by the upfront amount needed to make it fair when a

running spread of 500bp is taken as periodic spread in the premium leg.
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2 Modeling framework and model definition

The no-arbitrage expressions for the quoted spread of credit indices, given by equation

(1), and of CDO tranches, given by equation (2), show that the only information we can

infer from market quotes are expected quantities, while we lack direct information about

dependencies across single names. In particular credit indices depend both on expected

portfolio cumulated loss and on expected number of defaults, while CDO tranches depend

only on expected tranched portfolio cumulated loss.

These market data suggest to model loss-related quantities, i.e. portfolio cumulated

loss and number of defaults, directly as fundamental objects, rather than patching single

default models through a copula.

Since both the loss and the default counting process are jump processes, we now

specify some technical assumptions on jump processes. We assume our jump processes

to be right continuous with left limits. With the notation dXt, where Xt is such a jump

process, we actually mean the jump size of process X at time t if X jumps at t, and

zero otherwise, or, in other terms, pathwise, dXt = Xt−Xt− , where in general we define

Xt− := limh↓0 Xt−h.

2.1 Non-arbitrage constraints

The portfolio cumulated loss (L̄t) and the re-scaled number of defaults (C̄t) cannot be

independently modelled, since they are coupled by the forward realization of the recovery

rate (Rt) at default dates, which we could call “instantaneous recovery”.

L̄T =

∫ T

0

[1−Rs−(C̄s−)]dC̄s.

Notice that, in general, the recovery rate Rt depends on the number of defaults and

possibly on other random sources. However, here we assume Rt to be possibly stochastic

only via the number of defaults.

As a first approach we choose to model directly the number of defaults and to intro-

duce an average recovery rate (REC) defined by

REC(T ) :=

∫ T

0
Rs−(C̄s−)dC̄s∫ T

0
dC̄s

to model the portfolio cumulated loss, as given through direct substitution by

L̄T = C̄T (1− REC(T )) (3)

The recovery rate is not arbitrary, but it must be constrained in order to ensure that

the resulting dynamics is arbitrage free.

In order to ensure an arbitrage-free dynamics, the portfolio cumulated loss and the

(re-scaled) number of defaults must be non-decreasing processes taking values in the

[0, 1] interval, the increments of the former always smaller or equal than the increments

7



of the latter. In the following we further assume, for the sake of simplicity, that L̄0 = 0

and C̄0 = 0 too, i.e. no defaults have occurred before the initial time 0.

Any choice of the function Rs(·) which is bounded in the interval [0, 1] for all times s

leads to a mean recovery rate (REC) ensuring the no-arbitrage constraint by construction.

A simple prescription is to take a constant value. In the following we select Rt = 40%

for any time t, namely REC = 40%.

Remark 2.1. As an alternative formulation we can consider the portfolio cumulated loss

as the fundamental object to model. In this case we have to reformulate the non-arbitrage

constraint by taking into account that the recovery rate goes to zero for maximum loss.

We address this issue, and discuss further recovery models, in the second part of the

paper.

2.2 The basic GPL dynamical model

The basic Generalized Poisson Loss (GPL) model can be formulated as follows. Consider

a probability space (Ω,G,Gt,Q) (Q is the risk neutral measure, the related expectation

conditional on Gt is denoted by Et) supporting a number n of independent Poisson pro-

cesses N1, . . . , Nn with time-varying intensities λ1, . . . , λn. Define the stochastic process

Zt :=
n∑

j=1

αjNj(t),

for integers α1, . . . , αn, and model the number of defaults in the pool of names as Zt.

One possible choice is αj = j, so that in this case

Zt = N1(t) + 2N2(t) + 3N3(t) + . . . + nNn(t).

If N1 jumps there has been just one default (idiosyncratic risk), if Nn jumps there are

n defaults and the whole pool defaults one shot (systemic risk), otherwise for other

Ni’s we have intermediate situations (contagion, sectors, etc). This model explicitly

contemplates the possibility of multiple defaults in small time intervals, contrary for

example to Schönbucher (2005) and Errais, Giesecke and Goldberg (2006). Multiple

defaults are allowed for example also in Putyatin et al. (2006). Notice also that limiting

ourselves to some values of α can be interpreted in turn as the missing α’s being there

with zero intensity. So in this sense the real parameters of the model are the intensities

and one can always think of the α’s as all being there.

It was recently brought to our attention that a similar approach considering dL rather

than L is pursued by Elouerkhaoui (2006), who links the resulting loss process to a model

consistent with single names connected through a Marshall-Olkin copula. See also the

earlier work of Lindskog and McNeil (2003).

A drawback of our model is that the number of defaults in time may increase without

limit. If our pool contains M names, we may then consider as actual number of defaults

Ct := min(Zt,M) = Zt1{Zt<M} + M1{Zt≥M}
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In turn the re-scaled number of defaults can be defined as

C̄t :=
1

M
Ct

while the portfolio cumulated loss is given by substituting C̄t into equation (3).

If Zt has a known distribution, the distribution of Ct can be easily derived as a

byproduct. Indeed,

Q(Ct ≤ x) = 1{x<M}Q(Zt < x) + 1{x≥M}.

The related density (defined on integer values since the law is discrete) is

pCt(k) = pZt(k)1{k<M} +Q(Zt ≥ M)1{k=M}.

The distribution of Zt (and thus of Ct) is directly known through its characteristic

function. Indeed, compute the characteristic function of Zt,

ϕZt(u) := E0[ exp(iuZt) ] =

∫ ∞

0

exp(iux)pZt(x)dx

i.e. the Fourier transform of the density pZt of the random variable Zt. We have easily,

thanks to independence of different Ni’s,

ϕZt(u) =
n∏

j=1

E0[ exp(iuαjNj(t)) ] =
n∏

j=1

ϕNj(t)(αju),

where now ϕNj(t) is the characteristic function of the Poisson process Nj. Since we know

the characteristic function of the Poisson law, we may write

ϕZt(u) = exp

[
n∑

j=1

Λj(t)
(
eiαju − 1

)
]

(4)

where we define Λj(t) :=
∫ t

0
λj(v)dv to be the cumulated intensity at time t. The density

of Zt can be obtained as the inverse Fourier transform of ϕZt(u).

If one wishes to avoid Fourier methods there are alternative possibilities for finding

the law of Zt. Indeed, given the vector α = [α1, . . . , αn] of possible jump sizes for Zt, for

any possible value k of Zt define the sets

Aα
k := {[m1, . . . , mn] : m1, . . . , mn ∈ N ∪ {0}, α1m1 + . . . + αnmn = k}.

The set Aα
k is the set of all possible values of the constituent Poisson processes [N1, ..., Nn]

leading to Zt having the value k. It is a finite set, given non-negativeness of the m’s.

Determining Aα
k amounts to solving a linear Diophantine equation in dimension n, a

problem for which integer programming algorithms are available. Once the Aα
k have

been determined, we compute the law of Zt as follows:

Q(Zt = k) =
∑

m∈Aα
k

Q(N1(t) = m1, . . . , Nn(t) = mn) =
∑

m∈Aα
k

n∏
j=1

Q(Nj(t) = mj) (5)

where terms in products are known from the Poisson law and we have used independence

of the Nj’s.
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2.3 Default intensity

An important feature of loss models is to link default intensities jumps to loss dynamics,

so that the default intensity decreases, as long as loss increases, and it is equal to zero

when the whole portfolio has defaulted.

Let us consider the compensator At of the default-counting point process Ct, namely

the nondecreasing predictable process that added to a local martingale gives Ct itself

(Doob-Meyer decomposition), satisfying

Et[ CT − AT ] = Ct − At,

see for example Giesecke and Goldberg (2005). A can be computed as

AT := lim
h↓0

∫ T

0

Et[ Ct+h − Ct ]

h
dt = lim

h↓0

∫ T

0

Et

[
min(Zt+h − Zt,M − Zt)1{Zt<M}

]

h
dt

= lim
h↓0

∫ T

0

Et

[∑n
j=1 min(αj,M − Zt)1{Zt<M}1{Zt+h−Zt=αj}

]

h
dt

= lim
h↓0

∫ T

0

∑n
j=1 min(αj,M − Zt)1{Zt<M}Et

[
1{Zt+h−Zt=αj}

]

h
dt

so that, with a final calculation,

AT =

∫ T

0

n∑
j=1

min(αj, (M − Zt−)+)λj(t)dt (6)

where we have taken the left limit in the integrand to ensure its left-continuity (and

hence predictability).

If At is absolutely continuous, as in our case, its density is known as the intensity of

the process Ct, and is given by

hC(t) =
n∑

j=1

min(αj, (M − Zt−)+)λj(t). (7)

The intensity h goes to zero when the whole portfolio has defaulted, as expected.

Further, if all the amplitudes αj are greater than zero, as with the choice αj = j, the

intensity hC jumps whenever the default-counting process C jumps.

Remark 2.2. A possible generalization of the GPL model which can show a wider class

of default intensities can be obtained if we redefine Ct in a more general fashion as

Ct := Ψ(Zt)

where Ψ : R+
0 → [0, 1] is non-decreasing and deterministic. The default intensity is

hC(t) =
n∑

j=1

(Ψ(Zt− + αj)−Ψ(Zt−))λj(t)

We plan to address this generalization in future works.
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Remark 2.3. The default intensity hC in the basic GPL model is a stochastic object

only through its dependence on the process Zt. However, it is possible to extend the GPL

model by considering the Poisson intensities λj as stochastic processes, e.g. following a

Gamma or CIR process. In this case the default intensity hC acquires a new source of

stochasticity. We address such extensions in the second part of the paper, in relationship

with credit index options.

2.4 Equivalent formulation as Generalized Poisson Process

The process Zt can also be characterized as a so called generalized Poisson process

(GPP, hence the name GPL for the loss model). A generalized Poisson process has the

same properties as a Poisson process with the exception of the possibility to allow for

multiple jumps. A (time-homogeneous) GPP Jt is defined as a process with stationary

independent increments, where the increments of Jt may amount to positive integer

values 0 < α1 < α2 < . . . < αn. The probability to have a jump of size αk given that

there has been at least one jump of any positive size satisfies

lim
h→0

Q{Jt+h − Jt = αk|Jt+h − Jt ≥ α1} = pk. (8)

Also, the probability of having no jumps up to time t and to have at least one jump in

arbitrarily small times is

Q(Jt = 0) = exp(−λt), lim
h→0

Q{Jh > 0}/h = λ,

exactly as for the standard Poisson process. But, differently from the generalized Poisson

process satisfying (8), the standard Poisson process Nt satisfies

lim
h→0

Q{Nt+h −Nt ≥ 2|Nt+h −Nt ≥ 1} = 0.

Now let us go back to Zt. In case we take time homogeneous Poisson processes Nj

with constant intensities λj, our process above for Zt is the same as a GPP Jt with the

same α’s and multiple jump probabilities pi and intensity λ given by

pi =
λi∑n

j=1 λj

, λ =
n∑

j=1

λj. (9)

In other terms, our linear combination of Poisson processes is the same as a generalized

Poisson process allowing for multiple jumps with given probabilities. The two processes

do not coincide only as far as marginal distributions (or characteristic functions) are

concerned, but share the same finite dimensional distributions, and are thus the same

process from the process law point of view.

2.5 Equivalent formulation as Compound Poisson Process

One more way of looking at our process is the compound Poisson process. Indeed, at

any time t our process Zt has the same characteristic function as a particular compound

Poisson process. Consider the following compound Poisson process
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Xt =
Nt∑
j=1

Yj,

where N is a standard Poisson process with intensity λ and the Yj’s are i.i.d random

variables, independent of N , and with distribution given by

Yj ∼





α1 λ1/(
∑n

k=1 λk)

α2 λ2/(
∑n

k=1 λk)
...

αn λn/(
∑n

k=1 λk)

If, as before, we define λ as in (9), then the compound Poisson process Xt has the

same characteristic function, at all times t, as our process Zt for the default counting

function. The finite dimensional distributions of the two processes coincide as well, so

that substantially Zt and Xt are the same process. This is easily checked by writing the

finite dimensional distributions in terms of independent increments, while recalling that

both Zt and Xt have stationary independent increments. Finally, we notice that also Di

Graziano and Rogers (2005) in some of their formulations obtain a compound Poisson

process for the loss distribution.

Remark 2.4. The marginal distributions of compound Poisson processes can be explicitly

calculated in closed form if the jump amplitude Y has a discrete-valued distribution, since

it is possible to find a relationship, known as Panjer recursion, between the probability

densities pXt(n) and pXt(n − 1). By following Hess et al. (2002), we can write for

k ∈ [1, n] and in the case αj = j

pXt(0) = exp(−λt), pXt(k) =
1

k

k∑
j=1

jλjtpXt(k − j)

If we expand the recursion for each k, we get equation (5), previously obtained by general

considerations.

3 Numerical results

The GPL model is calibrated to the market quotes observed on March 6, 2006. Deter-

ministic discount rates are listed in Table 1, while tranche data and DJi-TRAXX fixings

are listed in Table 2. All calibrations assume R = 40%.

The model parameters fixed by the calibration procedure are the amplitudes αi with

i = 1 . . . n, which can assume only positive integer values, and the cumulated intensities

Λi(T ), which are real non-decreasing piecewise linear functions in the tranche maturity.

The optimal values for the amplitudes α are selected, by adding non-zero amplitudes

one by one, as follows:

1. set α1 = 1 and calibrate Λ1;
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2. add the amplitude α2 and find its best integer value by calibrating the cumulated

intensities Λ1 and Λ2, starting from the previous value for Λ1 as a guess, for each

value of α2 in the range [1, 125],

3. repeat the previous step for αi with i = 3 and so on, by calibrating the cumulated

intensities Λ1, . . . , Λi, starting from the previously found Λ1, . . . , Λi−1 as initial

guess, until the calibration error is under a pre-fixed threshold or until the intensity

Λi can be considered negligible.

The objective function f to be minimized in the calibration is the squared sum of the

errors shown by the model to recover the tranche and index market quotes weighted by

market bid-ask spreads:

f(α, Λ) =
∑

i

ε2
i , εi =

xi(α, Λ)− xMid
i

xBid
i − xAsk

i

(10)

where the xi, with i running over the market quote set, are the index values S0 for

DJi-TRAXX index quotes, and either the index periodic premiums SA,B
0 or the upfront

premium rates UA,B for the DJi-TRAXX tranche quotes.

3.1 Calibration of CDO indices and tranches

As a first calibration example we consider data coming from standard DJi-TRAXX

tranches up to a maturity of seven years with constant recovery rate of 40%. The

calibration procedure selects five Poisson processes as listed in Table 4. The 18 market

quotes used by the calibration procedure are almost perfectly recovered. In particular

all instruments are calibrated within the bid-ask spread.

One possible comparison of our implied loss distribution according to the GPL model

is with the implied loss distribution according to Hull and White’s (2005) “perfect cop-

ula” approach. The comparison makes sense on a single maturity, being the perfect

copula approach inherently static1, contrary to our dynamical model. If we compare the

implied loss distribution resulting from the calibration of the five year index and tranche

quotes with the perfect copula approach as reformulated in Torresetti et al. (2006a), we

find a qualitative pattern similar to the pattern we have in Figure 1. Indeed, notice in

particular the large portion of mass concentrated near the origin, the subsequent modes

when moving along the loss distribution for increasing values, and the bumps in the far

tail. These features are common to both approaches, and multiple modes occur also

with different methods, see for example Albanese et al. (2005). In our GPL models the

bumps in the tails of the loss distributions, which seem to be necessary in order to be

able to recover the market quotes, are obtained thanks to the multiple jumps components

contributing to the loss distribution. In particular, the components with higher α’s are

giving rise to the little bumps in the far tail of the loss distribution.

1See Walker (2006) and Torresetti et al. (2006b) on how to improve the perfect copula approach to
add constraints ensuring an arbitrage-free dynamics across maturities.
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Figure 1: Loss distribution of the basic GPL model for three different maturities drawn

as a continuous line. The right-side plots are drawn with different scales to zoom on

some fine-grain details of the distribution.

If we repeat the calibration and add the ten year maturity, the calibration errors

grow and not all market quotes can be recovered within the market bid-ask spread. In

particular, equity and mezzanine tranches of the ten year maturity set are quite out of the

bid-ask spread. We see a solution to this problem in the second part of the paper, where

we also repeat the calibration at different dates finding that the calibration parameters

are quite stable.

3.2 Calibration of CDO tranchelets

The market quotes also non-standard tranches, which are quoted over the counter. An

interesting case is given by the so called “tranchelets”, namely DJi-TRAXX tranches

with attachment and detachment points possibly smaller than 3%. On the first of march

2006 we obtain market quotes for a set of tranchelets with maturity of five and seven

years (see Table 3).

We calibrate the market data with constant recovery rate of 40%. The calibration

procedure selects five Poisson processes as listed in Table 5. The 18 market quotes used

by the calibration procedure are recovered, but within an error that is occasionally larger

than the bid-ask spread.

4 Pricing

The GPL model belongs in the “top-down” approach to credit models, in that we can

directly price only products whose payoff depends on the loss distribution rather than

14



on the single default events. Indices, CDO tranches, forward start CDO tranches and

tranche options are among such products, whereas, for example, CDO squared are not.

However, for products such as CDO squared a random thinning procedure can be con-

sidered as a possibility to consistently “zoom” on single name defaults. This possible

extension is under investigation and would be based on our earlier expression (7) for the

pool default intensity in the GPL model. Alternatively, our model seems to be related to

a “bottom-up” approach where single name default dependence is represented through

a Marshal-Olkin copula.

Now we hint at pricing products based on the loss distribution such as tranche op-

tions, forward start tranches, and so on, with the calibrated model. This task is simple,

given knowledge of the marginal and transition distributions for the constituent Poisson

processes. Indeed, if we have a payoff or additive portion of a payoff depending on the

loss at one single maturity, we simply sample one-shot the independent Poisson laws

of the constituent processes Nj at maturity, add them up using the related multiplicity

coefficients αj, plug the resulting loss in the payoff portion and average over scenar-

ios. This procedure is substantially maintained also under possible random intensities.

Alternatively, we may decide to use the inverse Fourier transform of the known charac-

teristic function of the terminal distribution to obtain the loss density and then integrate

numerically the payoff against this density. This approach avoids simulation.

If a payoff is path dependent on the loss we still may simulate the independent incre-

ments of the independent constituent Poisson processes Nj among the relevant instants.

Given independence this can be realized by sampling known independent Poisson laws.

Once this has been done, we obtain the constituent processes at every relevant time by

adding up their increments, and then we obtain the loss at any time by simply adding the

constituent processes times their multiplicity coefficients α. Then we plug each temporal

path of the loss distribution in the payoff and average over scenarios. This procedure is

substantially maintained also under possible random intensities. Simulation is thus easy

and based on the ability to sample from a Poisson law.

5 Conclusions and Second Part

We have introduced a dynamical model for the loss distribution of a pool of names.

The model builds on the notion of generalized Poisson process, is tractable and can

be consistently calibrated to quoted index CDO tranches and tranchelets for several

maturities. We have illustrated consistent calibration of the basic model to market CDO

index data with different maturities. We have further explained that pricing and in

particular simulation with the resulting model is easy.

The second part of the paper shows the extended versions of the GPL models which

include direct loss modeling rather than number of defaults, recovery rate specifications

and stochastic intensities. We also address issues concerning calibration stability. Fur-

ther, we plan to analyze credit index options within the extended version of the model,

showing which extensions of the GPL model may account for index spread volatility.
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Part II

Calibration stability and spread

dynamics extensions

In this second part of the paper we address more advanced issues concerning direct loss

modeling with the Generalized Poisson Loss (GPL) model introduced in part one (Brigo,

Pallavicini and Torresetti (2006a)), and propose enhanced versions of the basic model.

Our basic GPL model can be improved in several respects. First, we review the

payoffs of credit index options and leveraged super-senior CDO tranches as fundamental

examples motivating the subsequent extensions of the model. Then we introduce the

stochastic intensity versions of the basic GPL process to be used later for loss modeling.

We introduce explicit stochastic intensities maintaining analytical tractability, leading

to the gamma , piecewise gamma, scenario and CIR GPL processes. Then we explain

how one can model directly the loss dynamics rather than the number of defaults, as

we did instead in the first part, and introduce general recovery assumptions, discussing

the link between recovery and pool intensities. We explicitly write the index spread in

terms of intensities explaining how this is obtained in our models, with possible benefits

of the stochastic intensity extensions. The same benefits would apply in valuation of

forward start CDO tranches and tranche options. We finally focus on calibration results

and stability when the loss based GPL model is used with some minimalist recovery

assumptions.

6 Market quotes

We briefly review the payoffs of credit indices and of CDO tranches. A detailed discussion

is present in the first part of the paper. Then, we discuss the payoff of credit index

options and leveraged super-senior CDO tranches as fundamental examples motivating

the subsequent extensions of the model.

6.1 Credit indices and CDO tranches

Let us denote by C̄(t) the number of defaults by t divided by the number of names in

the pool. Let us denote the related portfolio cumulated loss by t as L̄(t). We may write

the following general expression at initial time 0 for the credit index spread quoted by

the market:

S0 :=
E0

[ ∫ Tb

0
D(0, t)dL̄t

]

E0

[∑b
i=1 δiD(0, Ti)(1− C̄Ti

)
] (11)

where {Ti : i = 1 . . . b} is the premium leg time-structure, T0 = 0 and δi = Ti − Ti−1 is

the year fraction. We are assuming that no default has happened before trade date, i.e.
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C̄0 = 0 and L̄0 = 0. The denominator in (11) is the spot index risky-duration or annuity.

The forward annuity at time T is defined as

ΘT := ET

[
b∑

i=1

δiD(T, Ti)(1− C̄Ti
)1{Ti>T}

]

It is useful to introduce the forward index that ignores defaults occurred before the

index fixing in determining the default leg. Such assumption is known as “knock-out”

feature. The forward index with and without knock-out feature, respectively, is

ST =
1

ΘT

ET

[ ∫ Tb

T

D(T, t)dL̄t

]
, S̄T =

1

ΘT

(
ET

[ ∫ Tb

T

D(T, t)dL̄t

]
+ L̄T

)
(12)

Moving from the index to its tranches, the spread quoted by the market for CDO

tranches at the initial time 0 is

SA,B
0 :=

E0

[ ∫ Tb

0
D(0, t)dL̄A,B

t

]
− UA,B

0

E0

[∑b
i=1 δiD(0, Ti)(1− L̄A,B

Ti
)
] (13)

and the above expression can be easily recast in terms of the upfront premium UA,B
0 for

tranches that are quoted in terms of upfront fees. The analogous forward tranche spread

is defined similarly to the case of the index.

Remark 6.1. (Recovery: splitting loss and number of defaults information).

As noticed en passant also in the first part, from (13) we see that the spread tranche

quotes contain information only on the loss L̄ (both numerator and denominator), and

thus they do not allow us to discriminate between the loss and the number of defaults or

default rate C̄. The only market quantity allowing us to do so is the index spread, (11),

where we have information on both L̄ (numerator) and C̄ (denominator). But even with

(11) we can derive only very stylized features of expected recovery rates and not sharp

recovery dynamics, as is reflected in our definition (23) below.

6.2 Credit index options

Credit markets quote few data on credit index derivatives. In particular (premium-)

receiver (put) and payer (call) options on entering a credit index contract at a given

strike value are traded with a certain liquidity.

A simplified version of the option payoff, which avoids cash-settling features usually

considered in market practice (see e.g. Pedersen (2003)), is given for the put option

(premium receiver) by

ΠPUT(T, T ; K) :=

(
KΘT − ET

[ ∫ Tb

T

D(T, t)dL̄t

])+

and for the call option (premium payer) by

ΠCALL(T, T ; K) :=

(
ET

[ ∫ Tb

T

D(T, t)dL̄t

]
+ L̄T −KΘT

)+
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Notice that the receiver option depends only on the loss in [T, Tb] whereas the payer

option incorporates the losses L̄T occurred up to expiry date T (“front-end protection”).

By substituting the credit index spread into the payoff expressions, we obtain the call

and put option price under the risk-neutral measure:

ΠPUT(0, T ; K) := E0

[
D(0, T )ΘT (K − ST )+

]
(14)

ΠCALL(0, T ; K) := E0

[
D(0, T )ΘT

(
S̄T −K

)+
]

6.3 Leveraged super-senior CDO tranches

Let us define the forward tranched risky-duration on a premium leg time-structure start-

ing at t0 ≥ T and ending at tf > T for a senior tranche (which usually does not require

an upfront payment) as

ΘA,B
T (t0, tf ) := ET

[
b∑

i=1

δiD(T, Ti)(1− L̄A,B
Ti

)1{t0<Ti≤tf}

]

Let us define the value of a forward tranche entered at a strike premium K ¿ 1 on

a premium leg time-structure starting at t0 and ending at tf as

TRANCHE(T ; K, A, B, t0, tf ) := ET

[ ∫ Tb

T

1{t0<t≤tf}D(0, t)dL̄A,B
t

]
−KΘA,B

T (t0, tf )

Let us define the value of a leveraged super-senior CDO tranche with stochastic

trigger time τ as

LSS(0; K,A, B) := E0

[
TRANCHE(0; SA,B

0 , A, B, 0, τ)
]

(15)

+ E0

[
D(0, τ) min(K, TRANCHE(τ ; SA,B

0 , A,B, τ, Tb))
]

In some of the simplest prototypical LSS tranches, the trigger time τ is the time where

the loss goes the first time above a pre-specified safety level K, and the index spread

is not involved directly. The trigger ensures the position unwind before the default leg

becomes too severe for the protection seller. This way the investor (protection seller)

may try and obtain a premium on the notional 1 by risking default payments only on

a much smaller K. In more sophisticated versions, the trigger time τ depends also on

the index spread, requiring a realistic model also for the spread. We comment on the

stochastic index spread extensions of the GPL process below.

7 Model definition

The GPL model was already defined in the first part of the paper as a dynamical model

for the number of defaults. Here, we extend it as a generic dynamical model either

for portfolio cumulated loss or for the number of defaults. Further, we show how to

dynamically model the recovery rate and the default intensity taking into account the

kind of information that is available in the market.
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7.1 The underlying GPL dynamics

Consider the GPL process Zt, which is defined as

Zt :=
n∑

j=1

αjNj(t) (16)

where Nj, with j = 1 . . . n, are (conditional on the intensity) time-inhomogeneous Pois-

son counting processes with possibly stochastic intensity λj(t) and deterministic integer-

valued positive amplitudes αj. Under stochastic intensity the Nj are actually Cox pro-

cesses. We deal with stochastic intensity here, since in the first part we assumed deter-

ministic intensity.

The characteristic function of the Zt process is

ϕZt(u) = E0

[
eiuZt

]
= E0

[
E0

[
eiuZt|Λ1(t) . . . Λn(t)

] ]

where Λj(t) :=
∫ t

0
λj(s) ds, with i = 1 . . . n, are the cumulated intensities of each Poisson

process. Now, we substitute Zt obtaining

ϕZt(u) = E0

[
n∏

j=1

E0

[
eiuαjNj(t)|Λ1(t) . . . Λn(t)

]
]

= E0

[
n∏

j=1

ϕNj(t)|Λj(t)(uαj)

]

which can be directly calculated since the characteristic function ϕNj(t)|Λj(t) of each Pois-

son process, given its intensity, is known in closed form, leading to

ϕZt(u) = E0

[
exp

(
n∑

j=1

Λj(t)(1− eiuαj)

)]
(17)

The marginal distribution pZt of the process Zt can be directly computed at any

time via inverse Fourier transformation of the characteristic function of the process. The

characteristic function ϕZt(u) can be explicitly calculated for some relevant choices of

Poisson cumulated intensities distributions, as we see below.

The GPL process, which is a linear combination of Poisson process, has independent

increments. This property allows to explicitly calculate the transition probability of the

GPL process too. Indeed, we obtain

πZ(s, x; t, y) := Q
{

Zt = y
∣∣ Zs = x

}
= Q

{
Zt − Zs = y − x

∣∣ Zs = x
}

= Q {Zt − Zs = y − x } = pZt−Zs(y − x)

where s < t and pZt−Zs is the marginal distribution of the Zt − Zs process. This result

is useful when computing forward expectations for option pricing.

The intensity of the process Zt can be defined in term of the density hZ(t) of its

predictable compensator AZ(t),

AZ(t) := lim
h↓0

1

h

∫ t

0

Es[ Zs+h − Zs ] = lim
h↓0

1

h

∫ t

0

n∑
j=1

αjEs[ Nj(s + h)−Nj(s) ] =
n∑

j=1

αjΛj(s),
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hZ(t) =
n∑

j=1

αjλj(t). (18)

Notice that the intensity of the GPL process does not depend on the process itself, but

only on the intensities of the constituent Poisson processes.

In the first part we have seen that if the Poisson cumulated intensities Λj(t) are

deterministic, the characteristic function of the process Zt is known in closed form and is

simply (17) without expectation. In this case the GPL intensity hZ(t) is deterministic.

7.1.1 The Gamma intensity GPL model

Assume now that the cumulated intensities Λj(t) are distributed at any time t ac-

cording a Gamma distribution, i.e.

Λj(t) ∼ Γ(kj(t), θj)

where k > 0 is the shape parameter and θ > 0 is the scale parameter in the Gamma

distribution. We take different Λj(t) to be independent as j changes.

The Gamma choice is convenient because it does not alter the tractability of the

basic model. Indeed, we can still compute the characteristic function of the process Zt

in closed form as

ϕG
ZT

(u) =
n∏

j=1

[(
1 + θj

(
1− eiαju

))]−kj(T )

Since the constituent Poisson intensities are stochastic and independent of each other,

also the GPL intensity hZ(t) is stochastic and distributed according to a linear combi-

nation of different and independent Gamma distributed random variables.

Remark 7.1. The Gamma distribution assumption for Λj(t) ∼ Γ(kj(t), θj) at every time

t is consistent with a Gamma process assumption for Λj(t). Consider indeed a Gamma

process with independent stationary increments, each increment between any two instant

s < t distributed as

Λj(t)− Λj(s) ∼ Γ(kj(t)− kj(s), θj).

By taking the limit case we see that

λj(t)dt ∼ Γ (dkj(t), θj) .

Thanks to independence of increments and to the fact the the sum of two independent

Γ(k1, θ) and Γ(k2, θ) is Γ(k1 + k2, θ) we have that Λj(t) can be simulated at discrete

instants by means of sums of independent Gamma random variables.

Finally we notice that the Gamma distribution of Λ(t) is controlled by both param-

eters k and θ. In particular, recall that, omitting the index,

E[Λ(t)] = k(t)θ, Var[Λ(t)] = k(t)θ2.

Thus in this first extension we have parameters k(T ) to control the mean of the cumulated

intensity in time T for each number of jumps in the loss but only one parameter θ to

modify/calibrate the variance. In the next subsection we improve the model in this

respect.

20



7.1.2 The piecewise-Gamma intensity GPL model

A further example is obtained by extending the Gamma case by letting the θ’s vary

over time, thus allowing for a larger control of the variance. Assume each θj to be

piecewise constant w.r.t. times Ti, with i = 1 . . . b. Define Λj(t) through its independent

increments, distributed as

Λj(Ti)− Λj(Ti−1) ∼ Γ(ki,j, θi,j)

where T0 = 0.

We have lost the gamma distribution of Λ(T ), since the fact that the increments of

Λ are Gamma with different θ’s renders their sums not Gamma. However, we still know

the distribution of the sum, thanks to independence of the increments, and again we

know the characteristic function of the loss in closed form as

ϕGPW
Zt

(u) =
n∏

j=1

b∏

h=1

[(
1 + θh,j

(
1− eiαju

))]−kh,j

As in the Gamma case the GPL intensity (18) is stochastic.

7.1.3 The scenario GPL model

A different extension is as follows. By taking scenarios on the intensities we may easily

extend our basic GPL model. In this model we assume the intensities in all the compo-

nents to take different scenarios with different probabilities. Indeed, assume now that

the (possibly time varying) intensities λ are indexed by a random variable I taking values

1, 2, . . . , m with (risk-neutral) probabilities q1, q2, . . . , qm: λI
j is then a random intensity

for the j-th Poisson process, depending on I. The related Poisson process is denoted by

N I
j , and the extended GPL process is denoted by

ZI(t) =
n∑

j=1

αjN
I
j (t).

I is assumed to be independent of the exponential random variables triggering the jumps

of the Poisson processes. Conditional on I = i, the intensities of the processes N I
1 , . . . , N I

n

are λi
1, . . . , λ

i
n. This formulation does not spoil analytical tractability. Indeed, the char-

acteristic function is now computed easily through iterated expectation:

ϕMIX
Zt

(u) = E0

[
E0

[
exp(iuZI

t )
∣∣ I

] ]
=

m∑

k=1

qk E0

[
E0

[
exp(iuZI

t )
∣∣ I = k

] ]

=
m∑

k=1

qk exp

[
n∑

j=1

Λk
j (t)

(
eiαju − 1

)
]

.

Any discounted payoff Π that can be priced under the basic GPL model is easily

priced under the mixture extension:

E0[ Π ] = E0[E0[ Π|I ] ] =
m∑

k=1

qk E0

[
Π

∣∣ I = k
]
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We obtain the usual linear combination of prices under each basic GPL model implied

by each single intensity scenario.

7.1.4 The GPL-CIR model

A different and possibly more interesting extension is the CIR- Generalized Poisson

(CIR-GPL) model

ZCIR
t =

n∑
j=1

αjN
CIR
j (t), dλj(t) = kj(θj − λj(t))dt + σj

√
λj(t)dWj,

with 2kjθj > σ2
j , and where the intensities of multiple defaults with different sizes follow

different independent CIR processes.

The characteristic function of Z can be computed again in closed form, the calculation

being similar to the bond price formula for the CIR interest rate model. Alternatively,

jump diffusion JCIR intensities can be considered, maintaining tractability.

7.2 Loss dynamics

The GPL process (Zt) can be considered as a driving process for the market relevant

quantities, namely the cumulated portfolio loss (L̄t) and the re-scaled number of defaults

(C̄t). The underlying GPL process Z is non-decreasing and takes arbitrarily large values,

given large enough times. The portfolio cumulated loss and the re-scaled number of

defaults processes are non-decreasing, but limited to the interval [0, 1]. Thus, we consider

the deterministic non-decreasing function Ψ : N∪ {0} → [0, 1] and we define the process

Yt, either the loss or the counting process, as

Yt := Ψ(Zt)

In the first part of the paper we use the GPL process to drive the re-scaled number

of defaults, i.e. C̄t := ΨC̄(Zt) := min(Zt/M, 1), where M > 0 is the number of names

in the portfolio, while in this second part we follow the other way round by modelling

directly the cumulated portfolio loss, i.e. L̄t := ΨL̄(Zt) := min(Zt/M
′, 1), where 1/M ′,

with M ′ ≥ M > 0, is the minimum jump for the loss process. The quantity that is not

modelled directly between C̄t and L̄t can be obtained from the one modelled directly

through explicit assumptions on the recovery rate.

Remark 7.2. If we model the loss process with the GPL model, i.e. L̄t := Ψ(Zt), the loss

is bounded within the interval [0,1] by construction, but there is still the possibility that

the loss jumps more than M times, where M is the number of names in the portfolio. If

this is the case, we may check a-posteriori that the probability of such events is negligible.

This happens in all our examples.

The marginal distribution of the Yt process can be calculated by “tabulation” from

the discrete distribution of Z:

pYt(y) =
∑

z∈Ψ−1({y})
pZt(z)
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The intensity of Yt can also be directly computed

hY (t) =
n∑

j=1

(Ψ(Zt− + αj)−Ψ(Zt−))λj(t) (19)

Notice that the intensity of the process Yt, in general, depends on the underlying GPL

process Z. This behaviour is similar to the loss feedback present in the default intensities

of Hawkes process, as shown in Giesecke and Goldberg (2005).

Example 7.3. Consider the map Ψ(x) := min(x,M), where M is a positive constant

Yt := Ψ(Zt) = min(Zt, M) = Zt1{Zt<M} + M1{Zt≥M}

Since Zt has a known distribution, the distribution of Yt can be easily derived as a byprod-

uct. Indeed,

Q {Yt ≤ y } = Q {Zt < y } 1{y<M} + 1{y≥M}

The related density (defined on integer values since the law is discrete) is

pYt(y) = pZt(y)1{y<M} +Q {Zt ≥ M } 1{y=M}

(in this case Ψ−1({k}) = k for k < M and Ψ−1({M}) = {M, M + 1,M + 2, . . .}).
The transition probability for Yt can be calculated as well, by using the independence

of the Poisson’s increments. We get for s < t:

πY (s, x; t, y) = πZ(s, x; t, y)1{x≤y<M} +Q
{

Zt ≥ M
∣∣ Zs = x

}
1{x≤y=M}

= pZt−Zs(y − x)1{x≤y<M} +Q {Zt − Zs ≥ M − x } 1{x≤y=M}

The intensity of Yt can also be directly computed, as explicitly done in the first part

of the paper, where Y is used as default counting process, and is given by

hY (t) =
n∑

j=1

min(αj, (M − Zt−)+)λj(t)

7.3 Recovery dynamics and intensities

The cumulated loss process L̄t and the re-scaled number of defaults C̄t must satisfy at

any time t the arbitrage-free constraint

dL̄t = dC̄t(1−Rt) (20)

where we define Rt as the “recovery rate at default”, assuming it is a Gt-adapted and

left continuous (and hence predictable) process taking values in the interval [0, 1].

Remark 7.4. The arbitrage-free constraint (20) leaves us with the freedom of defining

only two processes among L̄t, C̄t and Rt. The more natural approach would be modeling

explicitly (L̄t, Rt), obtaining C̄t, or modeling explicitly (C̄t, Rt), obtaining L̄t. However,

if we choose to model both L̄t and C̄t and to infer the recovery, we have to ensure that

the resulting process Rt obtained by “inverting” (20) is indeed predictable.
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The recovery rate can be expressed also in terms of the intensities of the loss and de-

fault rate processes. By taking the expectation on both sides of equation (20) conditional

on Gt, we obtain

Rt = 1− hL̄(t)

hC̄(t)
(21)

where the expression can be further expanded, by using equation (19), if we introduce

the GPL process to define L̄t and/or C̄t.

Equation (21) shows that the recovery rate at default is directly related to the inten-

sities of both the loss and the default rate processes. Thus, the choice for the intensity

dynamics does induce a dynamics for the recovery rate.

Example 7.5. Consider the maps

ΨC̄(Zt) := min

(
Zt

M
, 1

)
and ΨL̄(Zt) := (1− β) min

(
Zt

M
, 1

)
,

where 0 < β ≤ 1 and M > 0. This choice ensures that Rt is Gt-predictable and it

corresponds to the default rate model presented in the first part of the paper.

In this second part of the paper we avoid the simultaneous specification of a dynamics

for both the cumulated portfolio loss and the re-scaled number of defaults, since the

market data mostly depend on the values of the expected loss. Thus, we choose to drive

the loss process by means of a GPL model and, then, we take a minimalist assumption

for the recovery rate, as described in Section 8 below. This will be sufficient to calibrate

all available market data. Also, notice that recovery swaps, as stated in Albanese et

al. (2005), are not liquid enough to be used to extract valuable information on recovery

dynamics.

7.4 Spread dynamics

The valuation of credit index forward contracts or options requires the calculation of the

forward index spread St given by equation (12), which in turn depends on the default

intensity. Consider, for instance, the case of deterministic interest rates

ST =
1

ΘT

ET

[ ∫ Tb

T

D(T, t)dL̄t

]
=

∫ Tb

T
D(T, t)ET [ hL̄(t) ] dt

∑b
i=1 δiD(T, Ti)

(
1− C̄T −

∫ Ti

T
ET [ hC̄(t) ]

)
1{Ti>T}

where hL̄(t) is the default intensity of the cumulated portfolio loss process and hC̄(t) is

the default intensity of the re-scaled default counting process.

The dynamics of the index St (spread dynamics) can be introduced within the GPL

model by modelling the default intensities hL̄(t) and hC̄(t), either by explicitly adding

stochasticity to the Poisson intensities λj(t), e.g. the Gamma , scenario or CIR exten-

sions of the GPL model seen above or, indirectly, by choosing particular deterministic

maps Ψ transforming Z, leading to appropriate loss or default counting processes.
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8 Numerical Results

In the first part of the paper we considered the calibration of the default-rate based GPL

model to credit index and CDO tranche quotes. In this second part we do the same

but we resort to the loss based GPL model. Since these products depend only on the

expectation of the portfolio cumulated tranched loss (L̄t) and of the re-scaled number of

defaults (C̄t), we avoid to directly introduce stochasticity either on the process intensities

or on the recovery rate. This stochasticity would help for modeling spread dynamics for

tranche or index options pricing, for example.

We map the GPL process Z by setting the quantity 1/M ′ as minimum jump for the

cumulated loss process L̄t, with M ′ ≥ M > 0, where M is the number of names in

the portfolio, usually M = 125. Further, we try to specify as little as possible of the

recovery dynamics, since the credit index quotes contain only little information about it

and tranches no information at all, see also Remark 6.1.

The GPL model specification is:

Zt :=
n∑

j=1

αjNj(t) and L̄t := ΨL̄(Zt) := min

(
Zt

M ′ , 1
)

(22)

where M ′ ≥ M > 0 and each Poisson mode Nj has a deterministic piecewise-constant

intensity λj(t).

We do not characterize completely the re-scaled default counting process C̄t, but we

give only its expectation values. This is done because calibration payoffs depend on C̄

only via said expectation:

E0

[
C̄t

]
:=

1

1−R E0

[
L̄t

]
with 0 ≤ R < 1− E0

[
L̄Tb

]
(23)

where the range of definition of the constant R is taken in order to ensure that at each

time t the expected value of the re-scaled number of defaults is greater, or equal to,

the cumulated portfolio loss, and that both be smaller or equal to one. As a direct

consequence we avoid to introduce an explicit dynamics for the recovery rate too.

In the following we take R = 30% as reference value for the recovery rate in the DJi-

TRAXX Europe market for spot and forward contracts. The quality of our calibration

below is not altered if we select a value R = 40% resembling the recovery typically used

in simplified quoting mechanisms in the market. In terms of the mean recovery R the

credit index spread can be recast in the following form

ST =
(1−R)ET

[ ∫ Tb

T
D(T, t)L̄t

]

ET

[∑b
i=0 δiD(T, Ti)(1−R− L̄Ti

)1{T>Ti}
]

8.1 Calibration procedure

The model parameters fixed by the calibration procedure are the amplitudes αj ∈ {m ∈
N : m ≤ M ′} with j = 1 . . . n, and the cumulated intensities Λj(T ), which are real

non-decreasing piecewise linear functions in the tranche maturity.

25



The optimal values for the amplitudes α are selected in the following way:

1. Fix the minimum jump size to 1/M ′ by choosing the integer M ′ ≥ M > 0.

2. Find the best integer value for α1 by calibrating the cumulated intensity Λ1 for

each value of α1 in the range [1,M ′],

3. Add the amplitude α2 and find its best integer value by calibrating the cumulated

intensities Λ1 and Λ2, starting from the previous value for Λ1 as a guess, for each

value of α2 in the range [1,M ′],

4. Repeat the previous step for αi with i = 3 and so on, by calibrating the cumulated

intensities Λ1, . . . , Λi, starting from the previously found Λ1, . . . , Λi−1 as initial

guess, until the calibration error is under a given threshold or until the intensity

Λi can be considered negligible.

5. Check a-posteriori that the probability to have more than M jumps is negligible

and that the value of R is within the arbitrage-free range given in (23).

The objective function f to be minimized in the calibration is the squared sum of the

errors shown by the model to recover the tranche and index market quotes weighted by

market bid-ask spreads:

f(α, Λ) =
∑

i

ε2
i , εi =

xi(α, Λ)− xMid
i

xBid
i − xAsk

i

(24)

where the xi, with i running over the market quote set, are the index values S0 for DJi-

TRAXX index quotes, and either the index periodic premium rates SA,B
0 or the upfront

premium rates UA,B for the DJi-TRAXX tranche quotes.

8.2 Calibration results

The GPL model is calibrated to the market quotes observed weekly from May 6, 2005

to October 18, 2005. All calibrations assume R = 30%. We try as minimum loss jumps

the values 2bp, 10bp and 50bp corresponding, respectively, to M ′ equal to 5000, 1000

and 200.

The behaviour of the mean calibration error for the three different choices of M ′

is quite similar and within about one bid-ask spread. Also the values of the Poisson

amplitudes are quite stable across the calibration dates. Indeed, in six months we observe

at most four changes in their values, as shown in Table 8.

Consider, as a first example, the calibration date May 13, 2005. Tranche data and

DJi-TRAXX fixings are listed in Table 6. We list in Table 9 the calibration result and the

values of the calibrated parameters. The calibration errors are very low for all maturities.

Consider, as a second example, the calibration date October 11, 2005. Tranche data

and DJi-TRAXX fixings are listed in Table 7. We list in Table 10 the calibration results

and the values of the calibrated parameters. The calibration errors show that the ten
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Figure 2: Loss distribution evolution of the GPL model with minimum jump size of 50bp

at all the quoted maturities up to ten years, drawn as a continuous line.

year equity tranche is not correctly priced. We find such mispricing in many calibration

examples, in particular after October 2005.

If we decrease the minimum loss jump size 1/M ′, we observe that the calibration

error does not decrease significatively, in particular the difference between the M ′ = 1000

calibration and the M ′ = 5000 one is small. For instance the mispricing on the ten year

tranches as the minimum jump size decreases is given in Table 11.

Remark 8.1. As the minimum jump size decreases, the loss distribution becomes noisier,

due to the presence of small amplitudes. Further, very small modes, appearing when the

minimum jump size is as small as a few basis points, may violate the requirement that

the loss process jumps less than M times (see remark 7.2). We tried also calibrations

with M ′ less than 200, i.e. with minimum loss jump greater than 50bp. In this case the

calibration error grows quickly. Indeed, the minimum jump size, in this case, becomes

greater than the typical portfolio loss given when one name defaults.

The loss distribution implied by the GPL model is multi-modal and the probability

mass moves towards larger loss values as the maturity increases, as already noticed in the

first part of the paper. These features are shared by different approaches. For instance,

static models, such as perfect copula approach by Hull and White (2005) or Torresetti et

al (2006a), or the implied expected tranched-loss surface by Walker (2006) or Torresetti

et al. (2006b), predict multi-modal loss distributions. The evolution of the implied loss

distribution is shown in Figure 2.

The credit dynamic correlation model by Albanese et al. (2005) shows implied loss

distributions whose modes tend to group, as the maturity increases, leading to a distri-

bution approaching normality. The GPL model reproduces this behaviour as shown in

Figure 3.
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Figure 3: Probability density of the cumulate portfolio loss process with minimum loss

jump size of 10bp for 4y, 6y, 8y and 10y maturities drawn as a continuous line on

calibration date October,11 2005.

9 Conclusions

In this second part of the paper we introduced the stochastic intensity versions of the

basic GPL process. We introduced explicit stochastic intensities maintaining analytical

tractability, leading to the Gamma , piecewise Gamma, scenario and CIR GPL pro-

cesses. Then we explained how one can model directly the loss dynamics rather than the

number of defaults, as we did instead in the first part. We introduced general recovery

assumptions, illustrating the link between recovery and pool intensities. We introduced

the index spread in terms of intensities explaining how this is obtained in our models,

with possible benefits of the stochastic intensity extensions. A similar approach holds

also for tranche spreads, which can be helpful when dealing with tranche options. Finally

we focused on calibration results and stability when the loss based GPL model is used

with some minimalist recovery assumptions. Further work concerns the extension of the

calibration to index options, and examples of valuation of tranche options, leveraged

super senior tranches and other correlation payoffs. Also, consistency with single name

is to be investigated either through random thinning or the Marhsal-Olkin copula.
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A Appendix: Inputs and Numerical Results

Calibration to 2006 data

Date Rate Date Rate Date Rate Date Rate
22-Mar-06 2.58% 19-Sep-08 3.31% 18-Sep-13 3.61% 21-Mar-11 3.50%
21-Jun-06 2.72% 19-Dec-08 3.34% 18-Dec-13 3.62% 20-Jun-11 3.51%
20-Sep-06 2.84% 23-Mar-09 3.36% 20-Mar-14 3.63% 19-Sep-11 3.52%
20-Dec-06 2.95% 22-Jun-09 3.38% 19-Jun-14 3.64% 19-Dec-11 3.53%
22-Mar-07 3.04% 21-Sep-09 3.40% 18-Sep-14 3.65% 20-Mar-12 3.54%
21-Jun-07 3.11% 21-Dec-09 3.42% 18-Dec-14 3.66% 19-Jun-12 3.56%
20-Sep-07 3.17% 22-Mar-10 3.44% 20-Mar-15 3.68% 18-Sep-12 3.57%
20-Dec-07 3.21% 21-Jun-10 3.45% 19-Jun-15 3.69% 18-Dec-12 3.58%
25-Mar-08 3.25% 20-Sep-10 3.47% 18-Sep-15 3.70% 20-Mar-13 3.59%
20-Jun-08 3.28% 20-Dec-10 3.48% 18-Dec-15 3.71% 19-Jun-13 3.60%

Table 1: EUR zero-coupon continuously-compounded spot rates (ACT/365).

Att-Det Maturities
3y 5y 7y

Index 20(1) 35(1) 48(1)
Tranche 0-3 500(20) 2655(25) 4825(25)

3-6 7.50(2.50) 67.50(1.00) 225.50(2.50)
6-9 1.25(0.75) 22.00(1.00) 51.00(1.00)
9-12 0.50(0.25) 10.50(1.00) 28.50(1.00)
12-22 0.15(0.05) 4.50(0.50) 10.25(0.50)

Table 2: DJi-TRAXX index and tranche quotes in basis points on March 6, 2006, along

with the bid-ask spreads. Index and tranches are quoted through the periodic premium,

whereas the equity tranche is quoted as an upfront premium. See section 1.
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Att-Det Maturities
5y 7y

Index 35(1) 48(1)
tranchelet 0-1 6100(200) 7400(300)

1-2 1085(70) 5025(300)
2-3 393(45) 850(60)

Tranche 0-3 2600(50) 4788(50)
3-6 71.00(2.00) 210.00(5.00)
6-9 22.00(2.00) 49.00(2.00)
9-12 10.00(2.00) 29.00(2.00)
12-22 4.25(1.00) 11.00(1.00)

Table 3: DJi-TRAXX index, tranche and tranchelets OTC quotes in basis points on

March 1, 2006. Index and tranches are quoted through the periodic premium, whereas

the equity tranche is quoted as an upfront premium. The five year tranchelets with 2%

and 3% detachment points and the seven year tranchelets with 3% detachment point are

quoted through the periodic premium, whereas the other tranchelets are quoted as an

upfront premium. See section 1.

Att-Det Maturities
3y 5y 7y

Index -0.4 -0.2 -0.9
Tranche 0-3 0.1 0.0 -0.7

3-6 0.0 0.0 0.7
6-9 0.0 0.0 -0.2
9-12 0.0 0.0 0.0
12-22 0.0 0.0 0.2

α Λ(T )
3y 5y 7y

1 0.535 2.366 4.930
3 0.197 0.266 0.267
16 0.000 0.007 0.024
21 0.000 0.003 0.003
88 0.000 0.002 0.007

Table 4: Left side: calibration error calculated with respect to the bid-ask spread (i.e.

εi in (10)) for tranches quoted by the market (see Table 2). Right side: cumulated

intensities, integrated up to tranche maturities, of the basic GPL model. Each row

corresponds to a different Poisson component with jump amplitude α. Recovery rate is

40%.
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Att-Det Maturities
5y 7y

Index -0.8 -2.1
tranchelet 0-1 1.1 -1.4

1-2 1.7 -0.6
2-3 -0.1 -0.4

Tranche 0-3 0.1 0.4
3-6 -1.9 0.2
6-9 0.4 0.6
9-12 2.8 0.9
12-22 -0.4 -1.5

α Λ(T )
5y 7y

1 0.834 3.336
2 1.070 1.070
13 0.008 0.015
21 0.004 0.013
104 0.002 0.007

Table 5: Left side: calibration error calculated with respect to the bid-ask spread for

tranches quoted by the market (see Table 3). Right side: cumulated intensities, inte-

grated up to tranche maturities, of the basic GPL model. Each row corresponds to a

different Poisson component with jump amplitude α. Recovery rate is 40%.

Calibration to 2005 data

Att-Det Maturities
3y 5y 7y 10y

Index 38(4) 54(1) 65(3) 77(2)
Tranche 0-3 2060(100) 4262(118) 5421(384) 6489(124)

3-6 72(10) 173(68) 398(40) 590(20)
6-9 28(6) 57(6) 141(17) 188(15)
9-12 13(2) 31(5) 72(20) 87(15)
12-22 3(1) 21(3) 42(13) 60(10)

Table 6: DJi-TRAXX index and tranche quotes in basis points on May 13, 2005, along

with the bid-ask spreads. Index and tranches are quoted through the periodic premium,

whereas the equity tranche is quoted as an upfront premium. See section 1.

33



Att-Det Maturities
3y 5y 7y 10y

Index 23(2) 38(1) 47(1) 58(1)
Tranche 0-3 762(26) 137(26) 4862(76) 5862(74)

3-6 20(10) 95(1) 200(3) 515(10)
6-9 7(6) 28(1) 43(2) 100(4)
9-12 12(2) 27(4) 54(5)
12-22 7(1) 13(2) 23(3)

Table 7: DJi-TRAXX index and tranche quotes in basis points on October 11, 2005,

along with the bid-ask spreads. Index and tranches are quoted through the periodic

premium, whereas the equity tranche is quoted as an upfront premium. See section 1.

50bp Poisson’s Amplitudes
Date 1 2 3 4 5 6 7

06-May-05 0.50% 1.50% 4.00% 6.00% 9.50% 39.50% 92.50%
02-Sep-05 0.50% 1.00% 4.00% 5.50% 12.50% 39.00% 100.00%
11-Oct-05 0.50% 1.00% 5.50% 11.00% 14.50% 16.00% 96.00%

10bp Poisson’s Amplitudes
Date 1 2 3 4 5 6 7

06-May-05 0.10% 1.50% 4.60% 5.90% 9.60% 39.60% 53.00%
05-Aug-05 0.20% 1.10% 1.40% 8.10% 11.30% 49.00% 62.40%
11-Oct-05 0.10% 0.70% 1.00% 6.30% 11.50% 14.50% 93.70%

2bp Poisson’s Amplitudes
Date 1 2 3 4 5 6 7

06-May-05 0.02% 1.50% 5.26% 9.64% 17.58% 39.64% 99.78%
12-Aug-05 0.38% 1.06% 1.14% 7.38% 12.24% 41.34% 99.80%
03-Oct-05 0.02% 0.98% 1.16% 7.52% 9.74% 43.34% 65.16%
11-Oct-05 0.16% 0.68% 1.00% 6.30% 10.98% 14.46% 94.90%

Table 8: Values of the Poisson’s amplitudes α, normalized to 1, for different values of

the minimum loss jump 1/M ′. Only the calibration dates between 6 May 2005 and 18

October 2005 where the α values change are listed.
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Att-Det Maturities
3y 5y 7y 10y

Index 0.0 -0.1 0.3 0.0
Tranche 0-3 0.0 0.1 0.2 -0.2

3-6 0.0 0.0 -0.2 0.0
6-9 0.0 0.0 -0.3 0.1
9-12 -0.1 0.1 -0.1 0.4
12-22 0.0 0.0 -0.2 -0.3

α Λ(T )
3y 5y 7y 10y

1 1.955 3.726 4.464 7.694
3 0.000 0.062 0.305 0.305
8 0.016 0.033 0.011 0.011
12 0.004 0.013 0.026 0.026
19 0.006 0.006 0.017 0.017
72 0.000 0.009 0.026 0.049
185 0.000 0.002 0.002 0.008

Table 9: Left side: calibration error calculated with respect to the bid-ask spread for

tranches quoted by the market on May 13, 2005. Right side: cumulated intensities,

integrated up to tranche maturities, of the GPL model with M ′ = 200. Each row

corresponds to a different Poisson component with jump amplitude α. Recovery rate is

30%.

Att-Det Maturities
3y 5y 7y 10y

Index 0.0 0.0 0.1 0.1
Tranche 0-3 -0.1 0.1 -1.2 2.1

3-6 -0.1 -0.1 0.3 -1.0
6-9 0.0 -0.1 0.3 0.9
9-12 0.4 -0.8 -0.8
12-22 0.0 0.0 0.0

α Λ(T )
3y 5y 7y 10y

1 0.441 2.498 4.466 7.555
2 0.435 0.435 0.435 0.671
11 0.004 0.023 0.023 0.023
22 0.000 0.001 0.006 0.030
29 0.000 0.000 0.001 0.001
32 0.001 0.004 0.004 0.004
192 0.000 0.001 0.005 0.011

Table 10: Same as Table 9 on October 11, 2005 (the three year maturity quotes lack two

tranches).

Att-Det Maturity 10y
50bp 10bp 2bp

Tranche 0-3 2.1 1.8 1.8
3-6 -1.0 -1.0 -1.0
6-9 0.9 0.9 0.9
9-12 -0.8 -0.9 -0.8
12-22 0.0 0.2 0.0

Table 11: Calibration error given by the GPL model for different minimum loss jump

size 1/M ′ calculated with respect to the bid-ask spread for tranches with a maturity of

ten years quoted by the market on October 11, 2005. Recovery rate is 30%.
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