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Abstract

In the present paper we show how to extend any time-homogeneous short-rate model to
a model which can reproduce any observed yield curve, through a procedure that preserves
the possible analytical tractability of the original model. In the case of the Vasicek (1977)
model, our extension is equivalent to that of Hull and White (1990), whereas in the case
of the Cox-Ingersoll-Ross (1985) (CIR) model, our extension is more analytically tractable
and avoids problems concerning the use of numerical solutions. Our approach can also be
applied to the Dothan (1978) or Rendleman and Bartter (1980) model, thus yielding a shifted
lognormal short—rate model which fits any given yield curve and for which there exist analytical
formulae for prices of zero coupon bonds. We also consider the extension of time-homogeneous
models without analytical formulae but whose tree—construction procedures are particularly
appealing, such as the exponential Vasicek’s. We explain why the CIR model is the more
interesting model to be extended through our procedure. We also give explicit analytical
formulae for bond options, and we explain how the model can be used for Monte Carlo
evaluation of Furopean path—dependent interest—rate derivatives. We finally hint at the same
extension for multifactor models and explain its strong points for concrete applications.

*We are grateful to Aleardo Adotti, our current head at the Product and Business Development Group of
Banca IMI, for encouraging us in the prosecution of the most speculative side of research in mathematical finance.
At different times, numerical implementations have been made feasible thanks to the cooperation of Gianvittorio
Mauri, Francesco Rapisarda and Giulio Sartorelli. A fruitful discussion with Marco Avellaneda and the helpful
suggestions and remarks from an anonymous referee are gratefully acknowledged. This paper is available both at
http://web.tiscali.it/damianohome and at http://web.tiscali.it/FabioMercurio. A short version of this
paper has appeared in Finance and Stochastics, and related contents are available in our book Interest Rate Models:
Theory and Practice
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1 Introduction

The issue of pricing interest-rate derivatives has been addressed by the financial literature in a
number of different ways. One of the oldest approaches is based on modelling the evolution of the
instantaneous spot interest rate (shortly referred to as ”short rate”) and goes back to Merton (1973)
and especially to Vasicek (1977). In both works, this rate is assumed to be normally distributed,
thus having the theoretical possibility to become negative. To overcome this drawback, Dothan
(1978) and Rendleman and Bartter (1980) proposed a lognormal distribution for the instantaneous
spot interest rate. Cox, Ingersoll and Ross (1985) (CIR) proposed instead a noncentral chi-square
distribution. All these models are “endogenous term structure” models, in that the initial term
structure of interest rates is an output of the model rather than an input as observed in the financial
market. This problem has been addressed in the continuous-time limit of the Ho and Lee (1986)
model derived by Dybvig (1988) or Jamshidian (1988), in the Hull and White (1990) model and
in the Black and Karasinski (1991) model, among others. In particular, Hull and White (1990)
proposed extensions of both the Vasicek (1977) model and the Cox, Ingersoll and Ross (1985)
model. However, while the first extension is quite natural and analytically tractable, the latter is
less straighforward. In fact, the Hull and White extended CIR is not always capable to exactly fit
an observed term structure of interest rates, and its analytical tractability can be easily questioned.

In this paper, we propose a simple method to extend any time-homogeneous short-rate model,
so as to exactly reproduce any observed term structure of interest rates while preserving the possible
analytical tractability of the original model. In the case of the Vasicek (1977) model, our extension
is perfectly equivalent to that of Hull and White (1990). In the case of the Cox-Ingersoll-Ross
(1985) model, instead, our extension is more analytically tractable and avoids problems concerning
the use of numerical solutions. We are in fact able to exactly fit any observed term structure of
interest rates and to derive analytical formulae both for pure discount bonds and for European
bond options. The unique drawback is that in principle we can guarantee the positivity of rates
only through restrictions on the paramters which might worsen the quality of the calibration to
caps/floors or swaption prices.

The CIR model is the most relevant case to which our procedure can be applied. Indeed, our
extension yields the unique short—rate model, to the best of our knowledge, featuring the following
three properties:

e exact fit of any observed term structure;
e analytical formulae for bond prices, bond option prices, swaptions and caps prices;

e the distribution of the istantaneous spot rate has tails which are fatter than in the Gaussian
case and, through restriction on the parameters, it is always possible to guarantee positive
rates without worsening the volatility calibration in most situations.

Moreover, one further property of our extended model is that the term structure is affine in the
short rate. The above uniqueness is the reason why we devote more space to the CIR case. We
also explain how this model can be used (and has been used by us) for Monte Carlo evaluation of
european path—dependent interest-rate derivatives.
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Our extension procedure is also applied to the Dothan (1978) model (equivalently the Rendle-
man and Bartter (1980) model), thus yielding a shifted lognormal short-rate model which fits any
given yield curve and for which there exist analytical formulae for zero coupon bonds.

Though conceived for analytically tractable models, the method we propose in this paper can
be employed to extend more general time-homegenous models. As a clarification, we consider the
example of an original short rate process that evolves as the exponential of a time-homegenous
Ornstein-Uhlenbeck process (shortly referred to as “exponential Vasicek”). The only requirement
that is needed in general is a numerical procedure for pricing interest rate derivatives under the
original model.

It should be remarked that our approach is similar to those of Scott (1995), Dybvig (1997), and
Avellaneda and Newman (1998). However, our analysis is richer in details and in the implications
being considered. Our model seems also to be related to the Schmidt (1997) framework, even
though in such a framework one works with the squared Gaussian model rather than with the
general CIR dynamics.

A final remark is due to the fact that modelling the instantaneous spot rate seems somehow
anachronistic as far as the theory of interest rates is concerned. Most recent works dealt in fact first
with the modelling of instantaneous forward rates (e.g., Heath, Jarrow and Morton (1992) (HJM))
and later on with forward Libor or swap rates (Miltersen, Sandmann and Sondermann (1997),
Brace, Gatarek and Musiela (1997), and Jamshidian (1997)). However, the spot-rate approach
is still quite popular among practitioners both for pricing interest rate derivatives and for risk
management purposes, and represents the most commonly used type of dynamical stochastic model
for interest rates. There are several reasons why this happens. In particular, the reasons for which
the HJIM appoach is not substantially—preferable to modelling the short rate evolution have been
outlined in Rogers (1995).

The paper is structured as follows. Section 2 defines an analytically tractable time-homogenous
model and describes the extension we propose in this paper. Section 3 derives zero-coupon bond
prices in the new model and analyzes the issue of fitting the current term structure of interest
rates. Section 4 derives zero-coupon bond option prices in the new model. Section 5 derives the
forward—measure dynamics. Section 6 deals with the first application of our extension procedure,
namely the Vasicek (1977) case. Section 7 considers the extension in the case of the Cox-Ingersoll-
Ross (1985) model. Sections 8 and 9 deal respectively with the extensions of the Dothan (1978)
and the “exponential Vasicek” models. Section 10 hints at the extension of multifactor models,
and presents the most relevant advantages of such extension for concrete applications. Section 11
concludes the paper.

2 The basic assumptions

On a filtered probability space (2, F* IF* Q), F* = {F}F : t > 0}, we consider a given time-
homogeneous stochastic process, whose dynamics is expressed by:

dey = p(x; a)dt + o(zf; o)dW, (1)

where z§ is a given real number, o = {ay,...,a,} € IR", n > 1, is a vector of parameters, W is a
standard Brownian motion and g and o are sufficiently well behaved real functions. We set F* to
be the sigma-field generated by x® up to time t¢.

We assume that the process z describes the evolution of the instantaneous spot interest rate
under the risk-adjusted martingale measure, and refer to this model as to the "reference model”.
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We denote by P*(t,T) the price at time ¢ of a zero-coupon bond maturing at 7" and with unit face

value, so that
T
P*(t,T)=E" {exp {—/ :z:g‘ds] |ft"”} :
t

where E* denotes the expectation under the risk-adjusted measure Q”.
We also assume that there exists an explicit real function II*, defined on a suitable subset of
IR™*3, such that
P, T)=11"(t, T, z3; o). (2)

The best known examples of spot-rate models satisfying our assumptions are the Vasicek (1977)
model, the Dothan (1978) model and the Cox-Ingersoll-Ross (1985) model.

Let us now denote by R*(t,T) the continously compounded spot-interest rate at time ¢ for an
investment maturing at time 7', i.e.,

InPe(t,T)  Inll*(t,T,28; a)

T, T) =
RE(t,T) T—t T—t

=: p"(t, T, x"; ).

Models like (1) are typical examples of models with endogenous term structure of interest rates.
This means that the initial term structure 7" — p®(0, 7T, z{; «) does not necessarily match the
term structure of interest rates observed in the market, no matter how the parameter vector «
is chosen. In practice, finding a particular a by calibration of the model to the observed term
structure of interest rates can produce a very poor fit, also because some typical shapes, like that
of an inverted yield curve, may not be reproduced by the model. The necessity to overcome this
drawback, especially to consistently price interest-rate derivatives, led to the introduction of models
with time-dependent coefficients. In particular, the Hull-White (1990) “Extended Vasicek” model
extends a model like (1) by exactly fitting the observed term structure of interest rates.

In this paper, we propose a simple approach for extending a time-homogenous spot-rate model (1),
in such a way that our extended version preserves the analytical tractability of the initial model.!

Precisely, we assume we are given a new filtered probability space (Q, F, IF, Q), IF = {F; : t > 0}
on which the new instantaneous short rate is defined by

re=x +o(tia), t>0, (3)

where z is a stochastic process that has under () the same dynamics as £ under Q*, and ¢ is
a deterministic function, depending on the parameter vector (a, ), that is integrable on closed
intervals. Notice that x( is one more parameter at our disposal: We are free to select its value as
long as

©(0;a) =19 — 0 .

The function ¢ can be chosen so as to fit exactly the initial term structure of interest rates. We
set F; to be the sigma-field generated by x up to time ¢.

We notice that the process r depends on the parameters oy, ..., a,, ro both through the process
x and through the function ¢. As a common practice, we can determine «, .. . , a,,, To by calibrating
the model to the current term structure of volatilities, fitting for example caps and floors or a few
swaptions prices.

'We found out at a later time that a similar idea has been developed independently by Dybvig (1997), and by
Avellaneda and Newman (1998). In their works, both Dybvig (1997) and Avellaneda and Newman (1998) refer to
the term ¢ as to the ”fudge” factor.
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Notice that, if ¢ is differentiable, the stochastic differential equation for the short-rate pro-
cess (3) is,

do(t; a
d'f’t: @Eit )

+ p(re — @t a); ) | dt + o(ry — o(t; a); a)dWy .

Since in case of time-homogeneous coefficients an affine term structure in the short-rate is equiva-
lent to affine drift and squared diffusion coefficients (see for example Bjork (1997) or Duffie (1996)),
we deduce immediately that if the reference model has an affine term structure so does the extended
model.

3 Fitting the initial term structure of interest rates

Definition (3) immediately leads to the following.

Theorem 3.1. The price at time t of a zero—coupon bond maturing at T and with unit face value
18

P(t,T) = exp [— /tT o(s; a)dS} (¢, T, re — p(t; @); ). (4)

Proof. Denoting by E the expectation under the measure (), we simply have to notice that

pe1) = oo |- [t olsanis] 7}

— exp {_ /th0<8; a)ds} E{exp {— /thsds] yﬂ}

T
— e |- [ plssa)ds] 07,7 ),
t

where in the last step we use the equivalence of the dynamics of x under ) and x® under Q*.
[

In the following, when we refer to zero—coupon bonds, we always assume a unit face value.

Let us now assume that the term structure of discount factors that is currently observed in the
market is given by the sufficiently smooth function t — PM (0, ).

If we denote by £%(0,t;«) and f(0,t) the instantaneous forward rates at time 0 for a maturity
t associated respectively to the bond prices {P*(0,t) : t > 0} and {PM(0,t) : t > 0}, i.e.,

o O P*(0,t)  OlnII*(0,t,x0; )
.f (Oata Oé) - ot - ot )
oln PM (0, 1)
M t — )
f (07 ) at )

we then have the following.

Corollary 3.2. The model (3) fits the currently observed term structure of discount factors if and
only if
p(t;a) = *(ta) = f1(0,1) — f2(0,t; ), (5)
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i.e., if and only if

r PM(0,T) T1%(0,t, 70; )
— ca)ds| = O (t, T, xp; ) := ’ L~ 6
€xp |: [ @(37&) 51 ( y 45 Xo; CY) Hx(O,T, To: Oé) PM<O,t) ( )

Moreover, the corresponding zero-coupon-bond prices at time t are given by P(t,T) =11(t, T, r; a),
where

H(ta T7 T't; O‘) = (I)*<t7 T7 Zo; Oé) Hx(t7 Ta Ty — 90* (t7 Oé); Oé) (7)
Proof. From the equality

t
PM(O,t> = exXp |i—/v QD(S; Oé)dS:| Hm(07t7x0; C(),
0

we obtain (5) by taking the natural logarithm of both members and then differentiating. From the
same equality, we also obtain (6) by noting that

o[ st [ [ ]| [ ] -

which, combined with (4), gives (7). O

Notice that by choosing ¢(t; «) as in (5), our model exactly fits the observed term structure of
interest rates, no matter which values of o and x( are chosen.

4 Explicit formulas for European options

In the previous section, we have seen that if an analytical expression for II* is available, then
defining ¢ as in (5) yields a model which fits exactly the observed term structure of interest rates
and still implies analytical formulas for bond prices.

The extension (3) is even more interesting when the reference model (1) allows for analytical
formulae for zero-coupon-bond options as well. It is easily seen that the extended model preserves
the analytical tractability for option prices by means of analytical correction factors that are defined
in terms of .

To this end, we note that under the model (1), the price at time ¢ of a European call option
with maturity 7', strike K and written on a zero-coupon bond maturing at time 7 is

ettt i) = 1 {exp [~ [ atas| (e - w1

We then assume there exists an explicit real function ¥* defined on a suitable subset of IR"™®, such
that
VET, 7, K) =9t T, 1, K,zy; a). (8)

The best known examples of models (1) for which this holds are again the Vasicek (1977) model
and the Cox-Ingersoll-Ross (1985) model.
Straightforward algebra leads to the following.
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Theorem 4.1. Under the model (3), the price at time t of a European call option with maturity
T, strike K and written on a zero-coupon bond maturing at time T 1s

Vo(t, T, 7, K) = exp {— /tTw(s;a)ds} e <t,T,T,KeXp {/TTgo(s;oz)ds} ,rt—go(t;oz);oz>. ()

Proof. We simply have to notice that

e, k) = Blow [~ [+ otsaes] () - K1)

- o] [ Cols: oas] £ oo - | ' s

(oo [ [ otsogas| e i) - 1) m}
= e[ [ et o[- [ sz

(o) s [t ) 157
= o[- [ et we (177 Koo [ [ otsoras] )

where in the last step we use the equivalence of the dynamics of x under ) and x® under Q*. [

The price of a European put option can be obtained through the put-call parity for bond options.
Indeed, denoting by Vp(t, T, 7, K) the price at time ¢ of a European put option with maturity T,
strike K and written on a zero-coupon bond maturing at time 7, we have

Vo(t,T,7,K) = Ve(t,T,7,K) — P(t,7) + KP(t,T). (10)

We then remark that, under our model (3), caps and floors can be priced analytically as well, since
they can be viewed respectively as portfolios of put options and portfolios of call options on zero
coupon bonds.

The previous formulas for European call and put options hold for any specification of the
function . In particular, when exactly fitting the initial term structure of interest rates, the
equality (5) must be used to produce the right formulas for option prices, i.e., Vo(t,T,7, K) =
U(t, T, 7, K, ry; a), where

U(t, T, 1, K,ry; ) = ©*(t, 7, 20; )W (8, T, 7, KO* (7, T, 05 ), 7t — 0" (85 )5 v) . (11)

To this end, we notice that, if prices are to be calculated at time 0, we need not explicitly compute
©*(t; ) since the relevant quantities are the discount factors at time zero.

Moreover, if Jamshidian (1989)’s decomposition for valuing coupon bearing bond options, and
hence swaptions, can be applied to the model (1), the same decomposition is still feasible under (3)
through straightforward modifications, so that also in the extended model we can price analytically
coupon bearing bond options and swaptions. Indeed, consider a coupon bearing bond with unit
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face value, paying the cash flows C = [cy, ¢o, . .., ¢,] at maturities T = [T}, T5, ..., T,]. Let T < Tj.
The price of our coupon—bearing bond in 7" is given by

T;
T

BC(T7C7T) = ZCZP(TaT‘z) = Z C; €Xp |:_/ (70(8? @)d8:| Hx(T77—;a rr — SO(T7 Oé); Oé)-
i=1 i=1

Assume we need to price at time t a European put option on the coupon—bearing bond with strike
price K and maturity 7. The option payoff is

[K — Ba(T,C,T)|" .

Jamshidian’s decomposition is based on a decomposition of this payoff obtained through the solution
x* of the following equation:

T;
T

Zci exp {—/ ga(s;a)ds} (T, T;, 2" a) = K .
i=1

The payoff can be easily rewritten as

+

[i oo {_ /Ti els: a)ds} (I*(T, T3, 2% ) = (T, Ty v — (T @) @)

i=1 T
We now assume that the basic model (1) satisfies the following assumption:

Oll*(t, s, x; @)
ox

It is easy to see that both the Vasicek and the CIR model satisfy this assumption. Under this
assumption, the payoff can be rewritten as

<0 forall0 <t < s, and all o .

n T;
Zci exp {—/ gp(s;a)ds} (II*(T, T}, z*; o) — II%(T, Ty, rp — (T a); ) *

i=1 T

so that we have now to value a portfolio of put options on zero—coupon bonds. If we take the risk—
neutral expectation of the discounted payoff, we obtain the price at time ¢ of the coupon—bearing
bond option with maturity 7" and strike K:

T;
T

VE(t,T,C,T,K) = Zci exp {—/ gp(s;&)ds} Ve(t,T,T;,11°(T, T}, ", ) (12)
i=1

where Vp can be computed via the formula given previously. This technique can be used to price
European swaptions as well.

5 Forward Measure dynamics

In this section we derive the T-forward measure dynamics of a given short-rate model (1) from
which the T-forward measure dynamics of the associated model (3) can be readily obtained through
the deterministic shift o(t).
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We recall the following possible formulation of the change-of-numeraire technique. Assume
we are given two numeraire assets S and U, whose dynamics under a common measure which is
equivalent to both the numeraire measures associated with S and U (say the risk-neutral measure)
is

dS; = 28 Sydt + o dW;,
dU; = 28Usdt + o dW,

with W a standard Brownian motion. Then the relationship between the standard Brownian
motions W and WY corresponding to the martingale measures associated respectively to the
numeraire assets S and U is known to be

s U
o o
AW =dwy — £+ — =L ) dt.
t t St Ut
We now consider the T-forward adjusted measure, corresponding to the bond-price numeraire S; =
P(t,T), and the risk-free measure, corresponding to the bank-account numeraire U; = exp( fot xyds),

whose volatility is zero, i.e. oV = 0. The volatility of S can be obtained through It6’s formula
applied to S; = P*(t,T) = II*(¢t, T, x{*; «). One finds

oy o OInlII*
oz’

= o(z};a)

5 =
so that, denoting by W/!' the standard Brownian motion W, under the T-forward adjusted measure
and by W; the standard Brownian motion W} under the risk neutral measure, we have

OlnII*

AWy = dW, + o(2f; @) o
Substituting this last relationship into equation (1) yields
OlInII*
drd = p(xd; )dt + o (2% ) ;1 dt + o(x¥;a)dW]l . (13)
x

Equation (13) gives the dynamics of the short rate under the T-forward adjusted measure for the
basic model z¢*. Of course the only instances where this equation is really useful are in cases where
the bond-price formula II% is explictly known.?

In the following sections we will develop some specific examples of our general model (3).

6 The Vasicek case

The first application we consider is based on the Vasicek (1977) model. In this case, the basic
time-homogeneous model evolves according to

do? = k(0 — 2)dt + o dW;, (14)

where the parameter vector is a = (k,0,0), with k, 0, o positive constants. This model yields a
term structure which is affine in the short rate.

2See also Davis (1998).
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Extending this model through (3) amounts to have the following short-rate dynamics:

dry = | kO + kp(t; o) + deltia)

dt —/{:T‘t dt+0 th .
Moreover, under the specification (5), ¢(t; ) = ©"45(t; ), where

_ k20 —o%/2 o2
P AS(ta) = F1(0,0) + (e — 1)

—kt —kt —kt
12 — @6 (]. — e ) — Xp€
The price at time t of a zero-coupon bond maturing at time 7' is

_ PM(0,T)A(0,t) exp{—B(0, )z}
PUT) = 530,140, T) exp =B (0. T)ro}

A(t,T) exp{—B(t, T)[r; — ¢"4%

p (8 )]}

10

(15)

and the price at time t of a European call option with strike K, maturity 7" and written on a
zero-coupon bond maturing at time 7 is

Volt. o7, ) = PM(0,7)A(0, 1) exp{—B(0, t)xo}

~ PM(0,t)A(0,7) exp{—B(0, T)x0}
pvAs (t,T7 7_7KPM(O,T)A(O,7') exp{—DB(0, 1)z}

PM(O, T)A(07 T) exp{_B(O’ T)ZEO} , Ty — @VAS(t; Oé); Oz> ,

where
GYAS (T 1, X, 25 00)

A(t,7)exp{—=B(t,7)x}N(h) — XA(t,T) exp{—B(t, T)x}N(h —7) ,

ho— lln A(t, T) exp{—B(t,7)x}

o
5 " XA T)exp{—B{ Tya} T2

1 — e—2k(T—t)
— oB(T, 7))\ —& —
o oB(T,T) 5%
B (B(t,T) —T +t)(k*0 — 0?/2)  0?B(t,T)?
o —k(T—t)
B4T) — 1=°

and N (-) denotes the standard normal cumulative distribution function.
We now notice that by defining

Ldp(t; )
I(t) =16 t; —
model (15) can be written as

drt = k’(’ﬁ(t) — Tt)dt +o0 th

(16)
which is one of the particular extensions of the Vasicek (1977) model that has been proposed by
Hull and White (1990, 1994a) (other possibilities include adopting time—varying coefficients k and

o). Viceversa, from the model (16), one can obtain our extension (15) by setting

t
o(t;a) = e (0, a) + k/ e M=99Y(s)ds — O(1 — e ).
0
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Therefore, our extension of the Vasicek (1977) model is perfectly equivalent to that by Hull and
White (1990, 1994a) with constant k£ and o, as we can also verify by further expliciting our bond
and option pricing formulae. This equivalence is basically due to the linearity of the reference-model
equation (14). In fact our extra parameter § turns out to be quite redundant since it is absorbed
by the time-dependent function ¥ that is completely determined through the fitting of the current
term structure of interest rates.

We notice that the function ¥4 for § = 0, is related to the function a(-) in Hull and White
(1994a), whose analytical expression has been derived by Pelsser (1996) or Kijima and Nagayama
(1994). The only difference is that ry is absorbed in «a(-), whereas we let ry be “absorbed” partly
by the reference model initial condition o and partly by ©¥4%(0; ).

Notice that in the Vasicek case keeping a general xg adds no further flexibility to the extended
model, due to linearity of the short-rate equation. We might as well set once and for all xq = rg
and ©"4%(0; o) = 0 in the Vasicek case without affecting the caps/floors fit quality.

We finally derive the T-forward adjusted dynamics of the Vasicek model (14) by applying (13).
We obtain

dz® = [k0 — B(t,T)o* — ka?|dt + ocdW}.

It is easy to compute the distribution of the short rate under the forward adjusted measure Q”
and to show that it is still Gaussian. Precisely, the transition distribution of z{* conditional on z¢
is given by

1 — —2k(t—s)
xf‘|x? ~T N(MT(S7t)7O-26—> )

2k
T k(t—s) o’ k(t—s) o’ k(T—t) k(T+t—2s)
M*(s,t) = 0O+e _S(x‘j—é’)—ﬁ(l—e_ _S)—I—@[e_ N —e” —2)],

with A (m,v) denoting the normal distribution with mean m and variance v.

7 The CIR++ model

The most relevant application of the results of the previous sections is the extension of the Cox-
Ingersoll-Ross (1985) model. In this case, the process (1) is given by

dry = k(0 — i) dt + o/ xddW,,
where the parameter vector is o = (k, 6, 0), with k, 0, o positive constants. The condition

2kl > o2

ensures that the origin is inaccessible to the reference model, so that the process z® remains positive.
As is well known, this process ¢ features a noncentral chi-square distribution, and yields an affine
term-structure of interest rates. Accordingly, analytical formulae for prices of zero-coupon bond
options, caps and floors, and, through Jamshidian’s decomposition, coupon-bearing bond options
and swaptions, can be derived.

We can therefore consider the CIR++ model, consisting of our extension (3), and calculate the
analytical formulas implied by such a model, by simply retrieving the explicit expression for II*
and U* as given in Cox et al. (1985).
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Then, assuming exact fitting of the initial term structure of discount factors, we have that
o(t; a) = C1E(t; o) where

i (ta) = fM(0,8) = FOIR(0, 8 0),
(exp{th} — 1)
2h + (k + h)(exp{th} — 1)

4h? exp{th}
2h + (k + h)(exp{th} — 1)]?

O, t0) = 2k6

+ xy
[
with
h = Vk2+ 202.

Moreover, the price at time ¢ of a zero-coupon bond maturing at time 7" is

PM(0,T)A(0,t) exp{—B(0,t)xo}
PM(0,t)A(0,T) exp{—B(0,T)xo}

P,T) = A, T) exp{=B(t,T)[re — " (t; )]},

where

o2h exp{(k+ h)(T —t)/2} 12/
2h + (k + h)(exp{(T — t)h} — 1) ’

2exp{(T — )b} — 1)
2h + (k+ h)(exp{(T — t)h} —1)

A, T)

B, T) =

The spot interest rate at time ¢ for the maturity 7' is therefore

1 PM(0,t)A(0,T) exp{—B(0,T)xo}

B = 7= ™ PO, 1) AW, ) exp{— B0, a0}

In(A(t,T)) — B(t, T)p® E(t; o) + B(t, T)ry

which is still affine in r;.
The price at time ¢t of a European call option with maturity 7" > ¢ and strike price K on a
zero-coupon bond maturing at 7 > T is

B PM(0,7)A(0,t) exp{—B(0, )0}
Vo(t, T, 7, K) = PM(0,t)A(0,7) exp{—B(0, 7)o}
PM(0,T)A(0, 7) exp{—B(0,7)xo}
PM(0,7)A(0,T) exp{—B(0,T)xo}

'\IICIR <t7 T7 T, K , 't — SOCIR(t; Oé>7 Oé> 9
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where

\IJCIR(t,T,T,X,Q3§Oé) = A(t,7)exp{—B(t, T)ili'}X ( 4k0 2p xexp{h(( ))})

o2’ p+¢v+ B(T

4k0 2p xzexp{h(T )})

— XA, T)exp{—B(t, T)x} x> (2r[p+¢] o+
po= 2r[p+¢+ B(T,7)],

2h
o? (exp{h(T — 1)} = 1)’

p = p(T'—t)=
v = (k+h)/o?

F o= #(r—T) = (AT, 7)/X)] /B(T,7) .

and x?(-;r, p) denotes the noncentral chi-squared distribution function with r degrees of freedom
and non-centrality parameter p, whose density is denoted by p,2(,,). By further simplifying these
last formulae we obtain

Ve(t, T, K) = P(t,7)x* (273[p + o+ BT, 7)) 2O 202[r, — ¢“TR(t; )] exp{h(T — t)})

o?’ p+o+B(T,7)
4]{:9 20%[ry — QCTE(t: )] exp{h(T —t
p+y
with
In A(T,7) “In PM(0,7)A(0,7) exp{—B(0,7)z0}
;= K PM(0,7)A(0,T) exp{—B(0,T)x0 }
B(T',7)

The analogous put option price is obtained easily through put—call parity, so that also caps and
floors can be valued analytically. Finally, formula (12) can be used to compute coupon—bearing
bond option and swaption prices.

We now derive the T-forward adjusted dynamics and distribution of the short rate, by apply-
ing (13). We obtain

dal = [k0 — (k + B(t,T)o®)xl|dt + o/z0dW] . (17)

By differentiating the call option price with respect to the strike price and by suitable decomposi-
tions, it can be shown that the transition distribution of the short rate x{ conditional on z¢ under
the forward adjusted measure Q7 (s <t < T) is given by

Proea (€)= Dy, sa)/atts) (@) = a(t, 8)px2(o, st (a(L, 5)T), (18)
q(t,s) = 2p( S)+¢+B(t 1)),
2 a s
it,s) = Ap(t = s) e ) v:4—k9.

q(t, s)
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7.1 The positivity of rates and fitting quality

The use of a pricing model such as the CIR++ model concerns mostly non-standard interest rate
derivatives. Indeed, for standard derivative products such as for example bond options, caps, floors,
and swaptions, one can often find quoted “Black-like” implied volatilities prices. The analytical
formulae given in this section are not used to price these standard instruments, but to determine
the model parameters « such that the model prices are as close as possible to the relevant subset
of the market prices above. This procedure is often referred to as “calibration” of the model to the
market. An important issue for the CIR++ model which we now address is whether calibration
to caps/floors prices is feasible while imposing positive rates. We know that the CIR++ rates are
always positive if
e (t;a) >0 forall t > 0.

In turn, this condition is satisfied if
IR0, 0) < fM(0,t) for all t > 0. (19)

Studying the behaviour of the function ¢ — f¢£(0,¢; ) will be helpful in our analysis. In partic-
ular, we are interested in its supremum

f*(@) = sup 10, 4 a) .
>0

There are three possible cases of interest:

i) wg < Oh/k: In this case t — fO(0,¢; ) is monotonically increasing and the supremum of

all its values is
2k0

fila) = tlgglo R0, a) = P

ii) Oh/k < o < 6: In this case t — fCIE(0,¢; o) takes its maximum value in

1. (zoh+kO)(h —k)
= =1 0
n oh — kO (h+ k)
and such a value is given by
(ZEQ — 9)2]{?2 )

fo(a) =z +

202z,
iii) o > 0: In this case t — fO1(0,¢; ) is monotonically decreasing for ¢t > 0 and the supremum
of all its values is

fi(a) = f10,0;@) = .

We can try and enforce positivity of p“I® analytically in a number of ways. To ensure (19) one

can for example impose that the market curve t — f™(0,¢) remains above the corresponding CIR
curve by requiring
fi(a) < inf £7(0,1)
This condition ensures (19), but appears to be too restrictive. To fix ideas, assume that when we
calibrate the model parameters to market caps and floors prices we constrain the parameters to
satisfy
xo >0 .
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CIR

Then we are in case iii) above. All we need to do to ensure positivity of ¢ in this case is

e M
xy < %rzl(f)f (0,%) .

This amounts to say that the initial condition of the time-homogeneous part of the model has to
be placed below the whole market forward curve. On the other hand, since 8 < zy and 6 is the
mean-reversion level of the time-homogeneous part, this means that the time-homogeneous part
will tend to decrease, and indeed we have seen that in case iii) ¢ — fEI2(0,¢; ) is monotonically
decreasing. If, on the contrary, the market forward curve is increasing (as is happening in the most
liquid markets nowadays) the "reconciling role” of ¢“/# between the time-homogeneous part and
the market forward curve will be stronger. Part of the flexibility of the time-homogeneous part of
the model is then lost in this strong "reconciliation”, thus subtracting freedom which the model
can otherwise use to improve calibration to caps and floors prices.

In general, it turns out in real applications that the above requirements are too strong: Con-
straining the parameters to satisfy

e oM
0 < xo <%121(f)f (0,1)

leads to a caps/floors calibration whose quality is much lower than we have with less restringent
constraints. For practical purposes it is in fact enough to impose weaker restrictions. Such restric-
tions, though not guaranteeing positivity of ¢“/# analytically, work well in all the market situation
we tested. First consider the case of a monotonically increasing market curve ¢ — f(0,¢): We
can choose a similarly increasing ¢t — (0, ¢; ) (case i)) starting from below the market curve,
o < 1o, and impose that its asymptotic limit

2k0
— =0
kE+h

be below the corresponding market curve limit. If we do this, calibration results are satisfactory and
we obtain usually positive rates. Of course we have no analytical certainty: The f¢/F curve might
increase quicker than the market one, f™, for small ¢’s, cross it, and then increase more slowly
so as to return below fM for large 's. In such a case ¢“/® would be negative in the in-between
interval. However, this situation is very unlikely and never occurred in the real market situations
we tested.

Next, consider a case with a decreasing market curve ¢ — f(0,¢). In this case we take again
Ty < ro and we impose the same condition as before on the terminal limit for ¢ — oo.

Similar considerations apply in the case of an upwardly humped market curve t — f(0,1),
which can be reporduced qualitatively by the time-homogenous model curve t — fC%(0,¢; ). In
this case one makes sure that the initial point, the analytical maximum and the asymptotic value
of the time-homogeneous CIR curve remain below the corresponding points of the market curve.

Finally, the only critical situation is the case of an inverted yield curve, as was observed for
example in the Italian market in the past years. The forward curve t — f¢I(0,t; ) of the CIR
model cannot mimic such a shape. Therefore, either we constrain it to stay below the inverted
market curve by choosing a decreasing CIR curve (case iii)) starting below the market curve, i.e.
xg < 19, or we make the CIR curve start from a very small 2y and increase, though not too steeply.
The discrepancy between f¢/% and f™ becomes very large for large ¢’s in the first case and for
small ¢’s in the second one. This feature lowers the quality of the caps/floors fitting in the case of
an inverted yield curve if one wishes to maintain positive rates. However, highly inverted curves
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are rarely observed in liquid markets, so that this problem can be generally avoided, or has at
most little effects. As far as the quality of fitting for the caps—volatility curve is concerned, we
notice the following. If the initial point in the market caps—volatility curve is much smaller than
the second one, so as to produce a large hump, the CIR++ model has difficulties in fitting the
volatility structure. We observed through numerical simulations that, ceteris paribus, lowering the
initial point of the caps volatility structure implied by the model roughly amounts to lowering the
parameter xf. This is consistent with the following formula

2h exp(Th)
2h + (k + h)(exp{Th} — 1)]?

O~/
[

for the volatility of instantaneous forward rates fC12(t,T;a) at the initial time ¢ = 0 for the
maturity 7. Therefore, a desirable fitting of the caps volatility curve can require low values of xg,
in agreement with one of the conditions needed to preserve positive rates.

We conclude this section by presenting some numerical results on the quality of the model
calibration to real-market cap prices, under the constraint that ¢ be a positive function. To
this end, we have used the EURO cap volatility curve as of December 6th, 1999 at 2 p.m. The
resulting fitting is displayed in Figure 1, where the volatility curve implied by the CIR++ model is
compared with the market volatility curve. In Figure 2, we plot instead the graph of the function
@ corresponding to the calibrated parameters.
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Figure 1: Comparison between the volatility curve implied by the CIR++ model and that observed
in the EURO market (M) on December 6th, 1999 at 2 p.m.

7.2 The Monte Carlo simulation

This section comments on the use of the CIR++ model for Monte Carlo pricing of path—dependent
interest—rate derivatives. Indeed, this model has been successfully applied to a number of practical
cases.

Once we have found the a’s such that the model is calibrated to the “relevant” part of the
market, we may be willing to price a path-dependent payoff with European exercise features. The
payoff is a function of the values of the underlying istantaneous interest rate at preassigned time
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Figure 2: Graph of the function ¢ corresponding to the previously calibrated parameters.

instants t = ty,%9,...,t,, = T. The current time is denoted by ¢, and usually one takes ¢ = 0.
The final maturity is 7. Let us denote the given discounted payoff (payments of different additive
components occur at different times and are discounted accordingly) by

m t;
Zexp {—/ T ds] H(ty, ... tyry,...,1) (20)
=1 0

Usually the payoff depends on the instantaneous rates r;, through the simple spot rates R(t;,t; +
T, 1) = [1/P(t;, t; + 7) — 1]/7 (typically six-month rates, i.e. 7 = 0.5). The advantage of
analytical formulae for such R's simplifies considerably the Monte Carlo pricing. Indeed, without
analytical formulae one would compute the R’'s from bond prices P obtained through trees or
through numerical approximations of the solution of the bond price PDE. This should be done for
every path, so as to increase dramatically the computational burden.

Pricing the generic additive term in the payoff (20) by a Monte Carlo method involves simulation
of p paths (typically ranging from p = 100,000 to p = 1,000, 000) of the short rate process r and
computing the arithmetic mean of the p values assumed by the discounted payoff along each path.
In order to avoid simulation of the integrals in the discounting terms

tj
exp [— / rsds}
0

one can work under the t,,-forward adjusted measure, since

L H(ty, ..oty oo T,
E{exp {—/ rsds] H(ty,....t;;re, ... ,rtj)|.7:0} = P(O,tm)Etm{ (- T, 77ﬂtj)|.7:0}.
0

P (tjv tm)
(21)
Notice that given the CIR analytical formula for bond prices, the term P(¢;,t,,) is determined
analytically from the simulated r;;, so that no further simulation is required to compute it. Here
ET denotes expected value under the T-forward adjusted measure.
In our case, simulating r is equivalent to simulating x, since ¢ is a known deterministic function.
In detail:
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e Define the sampling times s;, ¢ =0,1,2,...,q up to the final maturity date of the contract,
sq =T = t,. Of course the dates t; have to be included in the s;’s.

Now, in order to obtain the simulated paths, two approaches are possible:

1. Sampling at each step the exact noncentral chi-squared transition density from zf | to
x¢ which is known analitically from (18) with s = ¢;_; and t = t;;

2. Discretizing the SDE for z* via the Milstein scheme (see Kléden and Platen (1995)):

2

Toont = T, + kO — (k+ B(sitm)o?)ws,] At — UI ((W;ﬁm - I/Vstzm)2 — At)
o (Wit — W)

In doing so, one has simply to sample at each step At the distribution associated to
Ws,sar — Ws,, i.e. a normal distribution with mean 0 and variance A¢. Since the
increments of the Brownian motion are independent, these normal samples are drawn
from variables which are independent in different time intervals, so that one can generate
a priori p X ¢ independent realizations of such Gaussian random variables.

e Compute the discounted payoff (20) through (21) along each simultated path for r (deduced
from the paths for x by adding () and average all the obtained payoff values.

7.3 Alternative extensions

A final issue we would like to consider, is the possible inclusion of other ”time—varying coefficients”
with the possible purpose of allowing exact calibration to the caps/floors (at-the-money) market.

One of the first directions in this sense has been proposed by Hull and White (1990) as a
possibility to exactly fit the initial term-structure of interest rates, while keeping constant volatility
parameters. Hull and White proposed the following extension of the CIR model:

drt = k[ﬁ(t) — Tt]dt + U\/T_tth,

to exactly fit the initial term-structure of interest rates.

Such extension however is not analytically tractable. Indeed, to our knowledge, an analytical
expression for J(¢) in terms of the observed yield curve is not available in the literature. Further-
more, there is no guarantee that a numerical approximation of J(¢) would keep the rate r positive,
hence that the diffusion coefficient would always be well defined. On the contrary, our extension is
always well defined and never leads to numerical problems, since the basic square root process x
remains time-homogeneous. The only drawback is that we cannot guarantee positive interest rates
analytically without influencing the caps/floors fitting quality, since ¢“/%(t; o) can be negative in
principle. However, as noticed earlier, through simulations based on the calibration of the model to
real market data, we can argue that negative rates are hardly ever observed in practical situations.

More generally, Maghsoodi (1996) studied the general case with time—varying volatility param-
eters

dry = E(t)[0(t) — rdt + o(t)\/redWs.

If one chooses a constant 1 and then extends the model through our procedure by adding a suitable
, then one can produce an exact fitting to the term structures both of interest rates and of volatility.
However, this task is not without numerical difficulties: The bond price and option price formulas
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in Maghsoodi’s formulation rely on numerical integration and no formula for caps/floors prices is
available in terms of the model ”coefficients” k(t) and o(t). Consequently, no formula for ¢ would
be available, thus rendering the extension of too little analytical tractability. If the model loses
its tractability the advantages over log-normal short-rate models or even market models become
easily questionable. Finally the possibility of drawbacks related to ”overfitting” are far from being
remote. Indeed, forcing a one—factor model to match perfectly the caps/floors prices with a time—
dependent ”coefficient” leaves no synthesis to a parametric form and can lead to quite unrealistic
and uncontrolled behaviour of the future term structure of volatility, as resulting from the calibrated
model dynamics.
For further details on this extension of the CIR model, we refer to Brigo et al. (1998).

8 The Dothan case

The third example we consider is the extension of the Dothan (1978) model. This extension
yields a “quasi” lognormal short-rate model which fits any given yield curve and for which there
exist analytical formulae for zero coupon bonds. We offer its extension simply as an academic
analytically—tractable case different from the classical affine tractable models (Vasicek and CIR).
In his original paper, Dothan starts from a driftless geometric Brownian motion as short-rate
process under the objective probability measure:

dry = oxy dlf/[v/t )

Subsequently, he introduces a constant market price of risk which is equivalent to directly assuming
a risk—neutral dynamics of type

dey = axy dt+o xf dW,, a=(a,0), (22)

thus yielding the Rendleman and Bartter (1980) model.
The zero coupon bond prices derived by Dothan are then given by

P

P(t,T) = % /0Oo sin(2v/Z sinh ) /000 f(z)sin(yz)dzdy + Li’ngp(Q\/%)

I'(2p)
where
—(4p* + 2%)s ’ 2\ |2 Tz
- e res F(— —> h e
f(2) exp{ 1 z p—i—zZ cosh =,
_ 2y
T = 5
2 _
. o*(T t)}
2
1
= ——a
p 5 )

and K, denotes the modified Bessel function of the second kind of order ¢. Though somehow ex-
plicit, this formula for bond prices is rather complex since it depends on two integrals of functions
involving hyperbolic sines and cosines. A double numerical integration is needed so that the advan-
tage of having an “explicit” formula is dramatically reduced. In particular, as far as computational
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issues are concerned, implementing an approximating tree for the process x may be conceptually
easier and not necessarily more time consuming.

We need to remark that the extension we propose in this paper, though particularly meaningful
when the original model is time-homogenous and analytically tractable, is quite general and can be
in principle applied to any endogenous term structure model, as we shall also see in the following
section.

The construction of a binomial tree for pricing interest-rate derivatives under our extension (3)
of (22) is rather straightforward. In fact, we just have to build a tree for z, the time-homogeneous
part of the process r, and then shift the tree nodes at each time-period by a quantity that is defined
by the corresponding value of .

Since x is a geometric Brownian motion, the well consolidated Cox-Ross-Rubinstein (1979)
procedure can be used here (see also Rendleman and Bartter (1980)), thus rendering the tree
construction extremely simple while contemporarily ensuring well known results of convergence in
law. To this end, we denote by N the number of time-steps in the tree and with 7" a fixed maturity.
We then define the following coefficients

u = e"\/%, (23)
; (24)

u—d’ (25)
and build inductively the tree for x starting from xy. Denoting by # the value of x at a certain
node of the tree, the value of x in the subsequent period can either go up to zu with probability p
or go down to zd with probability 1 — p. Notice that the probabilities p and 1 — p are always well
defined for a sufficiently large N, both tending to % for N going to infinity.

The tree for the short-rate process r is finally constructed by displacing the previous nodes
through the function ¢. When exactly fitting the current term-structure of interest rates, the
displacement of the tree nodes can be done, for instance, through a similar procedure to the one
illustrated by Hull and White (1994a).

Our extended Dothan (1978) model, therefore, can be considered as a valid alternative to the
Black-Karasinsky (1991) model, especially as far as implementation issues are concerned. However,
the major drawback of our model is that the positivity of the short rate process cannot be guaranteed
any more since its distribution is obtained by shifting a lognormal distribution by a possibly negative
quantity.

9 The exponential Vasicek case

The last particular case we consider in this paper is the extension of what we call the exponential
Vasicek model. The exponential Vasicek model assumes that the instantaneous short rate process
evolves as the exponential of an Ornstein-Uhlenbeck process y

dyy = [0 — ay|dt + odW;, 0,a,0 > 0, (26)

or equivalently, in the notation of Section 2, that

2
dzf = xf [«9 + % = alnxf‘} dt + oz dW, ,
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with 2§ > 0 and a = {0,a,0}. The process z® thus defined is therefore lognormally distributed
and contrary to the Dothan (1979) process (22), always mean reverting since

2
lim E(zf) = exp (Q +2 ) ,

t—o0 a 4qa

20 o o?
tlirglo Var(zy) = exp (; + %) {exp(%) — 1]
The exponential Vasicek model does not imply explicit formulae for pure discount bonds. We have
seen in the previous section however that analytical tractability does not mean ease of implemen-
tation and that our extension procedure can be also applied to more general reference models.
To this end, similarly to the Dothan (1978) case, we can construct an approximating tree for the
process x“.
Let us define the process z as the process (26) with § = 0, i.e.,

dZt = —CLtht + O'th,

with 2o = 0. Since, by Ito’s lemma,

o « 0 —at ‘9
xy =exp | 2z + lnxo—a e +E ,

it is then enough to construct an approximating tree for the process z. For example, the trinomial
tree proposed by Hull and White (1994a) can be employed to this purpose.

Our extended exponential Vasicek (EEV) model leads to a fairly good calibration to cap prices in
that the resulting model prices lie within the band formed by the market bid and ask prices. Indeed,
this model clearly outperforms the classical lognormal short-rate model by Black and Karasinski
(1991) (BK). An example of the quality of the model fitting to at-the-money cap prices is shown
in Figure 3, where we have used the same market data as for the CIR++ case. In such a figure, it
is also displayed the corresponding best-fit volatility curve implied by the BK model.

A final word has to be spent on a further advantage of the EEV model. In fact, the assumption
of a shifted lognormal distribution, as implied by the EEV model, can be quite helpful when fitting
volatility smiles. Notice, indeed, that the Black formula for cap prices is based on a lognormal
distribution for the forward rates, and that a practical way to obtain implied volatility smiles is by
shifting the support of this distribution by a quantity to be suitably determined.

10 Extensions of multifactor models

So far we have considered explicitly only the yield-curve-fitting extension in the single factor case.
However, the generalization to two or more factors is indeed straightfoward. Analytical formulas for
zero-coupon bond are readily available especially in the case of independent factors, when they are
available for the single factor model. Indeed, in the table we refer to the case where the short-rate
is obtained by adding independent reference processes. For example, the two factor case is obtained
as follows:

re =t o) + i +yy”,

where £ and y*2 are two independent processes, both evolving similarly to (1), and o = (a1, a).
In particular, in the Gaussian case one can even allow for instantaneously correlated factors, thus



D. Brigo and F. Mercurio, Banca IMI: On extensions of short rate models 22

0.23

0.22 -

0.21F

0.2

0.18

0.16 L L
0

years

Figure 3: Comparison between the volatility curves implied by the EEV and the BK models and
that observed in the EURO market (M) on December 6th, 1999 at 2 p.m.

having one more parameter, and preserve analytical tractability. This model can then be shown to
be equivalent (by a change of variable) to the Hull and White (1994b) two-factor model. This “two-
factor extended Vasicek”, besides fitting the observed yield curve, features several other advantages,
among which we recall, also in comparison with market models:

Low dimensionality; Analytical tractability (bonds, zero-coupon-bond options, caps/floors);
Easy and recombining lattices (feasible calibration to swaptions); Known Gaussian transition den-
sities both under risk-neutral and forward measures; Easy and quick Monte Carlo implementation;
Humped volatility structures 7' +— +/Var[d f(t,T)]/dt are possible, and consequently a usually good
fit to swaption or cap prices; Straightforward extension to three factors; Good interaction with log-
normal FX-rate models for Monte Carlo pricing of Quanto-like products (e.g. quanto constant
maturity swap with cap/floor features); Suitable for modelling two correlated yield curves.

The analytical tractability and the good fitting of the volatility term structure render this model
a good choice, especially in areas such as risk management where the possibility to compute hedge
parameters in a reasonably short time is fundamental.

Another potentially good multi-factor choice is the extended CIR model, where both z{ and y$
evolve according to the time-homogeneous CIR dynamics. This can be shown to be also equivalent
to extending the Longstaff and Schwartz (1992) model to exactly fit the initial term-strucure,
while using the basic parameters to fit the volatility structure. On one side, this extension is an
improvement over the Vasicek case, since through restriction on the parameter values we can usually
preserve positive rates. On the other hand, modelling correlated factors is not as straightforward
as in the Gaussian case, and, as a result, the humped—volatility structure is not possible. It is
also difficult to model two different yield curves while preserving analytical tractability if there is a
non-zero correlation involved. We also recall that for pricing options on zero-coupon bonds in the
extended multifactor CIR model we have to resort to numerical procedures for the calculation of
multiple integrals. See also Chen and Scott (1992).
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Reference Model | Tails ABP AOP | Multif.: ABP | Multifactor: AOP
Vasicek N Yes Yes Yes Yes
CIR n.c. x> Yes Yes Yes Yes (Mult. Int.)
Dothan eV | Yes (Mult. Int.) | No No No
Exp. Vasicek eV No No No No

Table 1: Analytical bond prices (ABP) and analytical bond—option prices (AOP)

11 Concluding remarks

In this paper we obtained an extension of any given time-homogenous (reference) model through
a simple procedure. Our extension exactly fits the initial term structure of interest rates, and has
different impacts according to the nature of the reference model. In Table 1 we give a short list of
reference models and the corresponding features of the extended model. “Mult. Int” in the table
denotes the need for a multiple numerical integration.

When looking at Table 1, it is important to notice that the CIR model is the only reference
model with analytical formulae for both bonds and bond options and with an istantaneous-rate
featuring tails which are fatter than in the Gaussian case. This is the reason why the ideal choice
for the reference model to which our result can be applied is the CIR model, at least in the single
factor case. Our extended CIR model retains all these properties.

Concerning the pricing of American type derivatives, a binomial tree can be constructed for
each possible choice of the reference model, using for example the procedure outlined by Nelson
and Ramaswamy (1990). In this case, the function ¢ must be explicitly computed through (5), so
that additional (but not too severe) assumptions on the smoothness of the initial term structure of
interest rates are required (the analytical expression for ¢ is also needed for pricing path-dependent
claims through, for example, Monte Carlo simulations). A valuable alternative is constructing a
trinomial tree as suggested by Hull and White (1994a). In this case, in fact, we can avoid the
differentiation of the initial yield curve and produce a more accurate pricing.

Our result can be also applied to reference models which are not analytically tractable. In fact,
it can be convenient to do so when the basic model features an easy tree-implementation or other
numerically desirable properties, which are usually retained in the extended model. As an example,
we analysed the Dothan (1979) and the “exponential Vasicek” cases.

Finally, in the paper we have considered explicitly only the extension in the single factor case.
However, the generalization to two or more factors is indeed straightforward, and we hinted at its
advantages in concrete situations.
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