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Course based on the BMP Book http://www.damianobrigo.it/cvabook.pdf

Course based on 2002-13 Research and on Book
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Course based on the BMP Book http://www.damianobrigo.it/cvabook.pdf

Check also

I have been working on Credit Risk and CVA since 2002.
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Basic Credit Risk Products and Models CDS and Defaultable bonds

Intro to Basic Credit Risk Products and Models

Before dealing with the current topical issues of Counterparty Credit
Risk, CVA, DVA and Funding, we need to introduce some basic
elements of Credit Risk Products and Credit Risk Modelling.

We now briefly look at:

Products: Credit Default Swaps (CDS) and Defaultable Bonds
Payoffs and prices of such products
Market implied Q probabilities of default defined by such models
Intensity models and probabilities of defaults as credit spreads
Credit spreads as possibly constant, curved or even stochastic
Credit spread volatility (stochastic credit spreads)
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Basic Credit Risk Products and Models CDS and Defaultable bonds

Defaultable (corporate) zero coupon bonds

We started this course by defining the zero coupon bond price P(t ,T ).
Similarly to P(t ,T ) being one of the possible fundamental quantities
for describing the interest-rate curve, we now consider a defaultable
bond P̄(t ,T ) as a possible fundamental variable for describing the
defaultable market.

DEFAULT FREE

time t time T
: ←− :

P(t ,T ) 1

with DEFAULT

time t time T :
: ←− NO DEFAULT: 1

P̄(t ,T ) DEFAULT: 0

When considering default, we have a random time τ representing the time at
which the bond issuer defaults. τ : Default time of the issuer
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Basic Credit Risk Products and Models CDS and Defaultable bonds

Defaultable (corporate) zero coupon bonds I

The value of a bond issued by the company and promising the
payment of 1 at time T , as seen from time t , is the risk neutral
expectation of the discounted payoff
BondPrice = Expectation[ Discount x Payoff ]

P(t ,T ) = E{D(t ,T ) 1 |Ft}, 1{τ>t}P̄(t ,T ) := E{D(t ,T )1{τ>T}|Gt}

where Gt represents the flow of information on whether default
occurred before t and if so at what time exactly, and on the default free
market variables (like for example the risk free rate rt ) up to t . The
filtration of default-free market variables is denoted by Ft . Formally, we
assume

Gt = Ft ∨ σ({τ ≤ u}, 0 ≤ u ≤ t).

D is the stochastic discount factor between two dates, depending on
interest rates, and represents discounting.
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Basic Credit Risk Products and Models CDS and Defaultable bonds

Defaultable (corporate) zero coupon bonds II

The “indicator” function 1condition is 1 if “condition” is satisfied and 0
otherwise. In particular, 1{τ>T} reads 1 if default τ did not occur before
T , and 0 in the other case.

We understand then that (ignoring recovery) 1{τ>T} is the correct
payoff for a corporate bond at time T : the contract pays 1 if the
company has not defaulted, and 0 if it defaulted before T , according to
our earlier stylized description.
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Basic Credit Risk Products and Models CDS and Defaultable bonds

Defaultable (corporate) zero coupon bonds

If we include a recovery amount REC to be paid at default τ in case of
early default, we have as discounted payoff at time t

D(t ,T )1{τ>T} + RECD(t , τ)1{τ≤T}

If we include a recovery amount REC paid at maturity T , we have as
discounted payoff

D(t ,T )1{τ>T} + RECD(t ,T )1{τ≤T}

Taking E[·|Gt ] on the above expressions gives the price of the bond.
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Basic Credit Risk Products and Models CDS and Defaultable bonds

Fundamental Credit Derivatives: Credit Default Swaps

Credit Default Swaps are basic protection contracts that became quite
liquid on a large number of entities after their introduction.

CDS’s are now actively traded and have become a sort of basic
product of the credit derivatives area, analogously to interest-rate
swaps and FRA’s being basic products in the interest-rate derivatives
world.

As a consequence, the need is not to have a model to be used to value
CDS’s, but rather to consider a model that can be calibrated to CDS’s,
i.e. to take CDS’s as model inputs (rather than outputs), in order to
price more complex derivatives.

As for options, single name CDS options have never been liquid, as
there is more liquidity in the CDS index options. We may expect
models will have to incorporate CDS index options quotes rather than
price them, similarly to what happened to CDS themselves.
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Basic Credit Risk Products and Models CDS and Defaultable bonds

Fundamental Credit Derivatives: CDS’s

A CDS contract ensures protection against default. Two companies “A”
(Protection buyer) and “B” (Protection seller) agree on the following.
If a third company “C” (Reference Credit) defaults at time τ , with
Ta < τ < Tb, “B” pays to “A” a certain (deterministic) cash amount LGD.
In turn, “A” pays to ”B” a rate R at times Ta+1, . . . ,Tb or until default.
Set αi = Ti − Ti−1 and T0 = 0.

Protection
Seller B

→ protection LGD at default τC if Ta < τC ≤ Tb →
← rate R at Ta+1, . . . ,Tb or until default τC ←

Protection
Buyer A

(protection leg and premium leg respectively). The cash amount LGD is
a protection for “A” in case “C” defaults. Typically LGD = notional, or
“notional - recovery” = 1− REC.
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Basic Credit Risk Products and Models CDS and Defaultable bonds

Fundamental Credit Derivatives: CDS’s

A typical stylized case occurs when “A” has bought a corporate bond
issued by “C” and is waiting for the coupons and final notional payment
from “C”: If “C” defaults before the corporate bond maturity, “A” does
not receive such payments. “A” then goes to “B” and buys some
protection against this risk, asking “B” a payment that roughly amounts
to the loss on the bond (e.g. notional minus deterministic recovery)
that A would face in case “C” defaults.

Or again ”A” has a portfolio of several instruments with a large
exposure to counterparty ”C”. To partly hedge such exposure, ”A”
enters into a CDS where it buys protection from a bank ”B” against the
default of ”C”.
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Basic Credit Risk Products and Models CDS and Defaultable bonds

Fundamental Credit Derivatives: CDS’s

Protection
Seller B

→ protection LGD at default τC if Ta < τC ≤ Tb →
← rate R at Ta+1, . . . ,Tb or until default τC ←

Protection
Buyer A

Formally we may write the (Running) CDS discounted payoff to “B” at
time t < Ta as

ΠRCDSa,b(t) := D(t , τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb} +
b∑

i=a+1

D(t ,Ti)αiR1{τ>Ti}

−1{Ta<τ≤Tb}D(t , τ) LGD

where Tβ(τ) is the first of the Ti ’s following τ .
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Basic Credit Risk Products and Models CDS and Defaultable bonds

CDS payout to Protection seller (receiver CDS)

The 3 terms in the payout are as follows (they are seen from the
protection seller, receiver CDS):

Discounted Accrued rate at default : This is supposed to
compensate the protection seller for the protection he provided
from the last Ti before default until default τ :

D(t , τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb}

CDS Rate premium payments if no default: This is the premium
received by the protection seller for the protection being provided

b∑
i=a+1

D(t ,Ti)αiR1{τ>Ti}

Payment of protection at default if this happens before final Tb

−1{Ta<τ≤Tb}D(t , τ) LGD

These are random discounted cash flows, not yet the CDS price.
(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 17 / 325



Basic Credit Risk Products and Models CDS and Defaultable bonds

CDS’s: Risk Neutral Valuation Formula

Denote by CDSa,b(t ,R,LGD) the time t price of the above Running
standard CDS’s payoffs.

As usual, the price associated to a discounted payoff is its risk neutral
expectation.

The resulting pricing formula depends on the assumptions on
interest-rate dynamics and on the default time τ (reduced form
models, structural models...).
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Basic Credit Risk Products and Models CDS and Defaultable bonds

CDS’s: Risk Neutral Valuation

In general by risk-neutral valuation we can compute the CDS price at
time 0 (or at any other time similarly):

CDSa,b(0,R,LGD) = E{ΠRCDSa,b(0)},

with the CDS discounted payoffs defined earlier. As usual, E denotes
the risk-neutral expectation, the related measure being denoted by Q.

However, we will not use the formulas resulting from this approach to
price CDS that are already quoted in the market. Rather, we will invert
these formulas in correspondence of market CDS quotes to calibrate
our models to the CDS quotes themselves. We will give examples of
this later.

Now let us have a look at some particular formulas resulting from the
general risk neutral approach through some simplifying assumptions.
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Basic Credit Risk Products and Models CDS and Defaultable bonds

CDS Model-independent formulas

Assume the stochastic discount factors D(s, t) to be independent
of the default time τ for all possible 0 < s < t . The price of the
premium leg of the CDS at time 0 is:

PremiumLega,b(R) = E[D(0, τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb}] +

+
b∑

i=a+1

E[D(0,Ti)αiR1{τ≥Ti}]

= E
[∫ ∞

t=0
D(0, t)(t − Tβ(t)−1)R1{Ta<t<Tb}δτ (t)dt

]
+

b∑
i=a+1

E[D(0,Ti)]αiR E[1{τ≥Ti}] =

For those who don’t know the theory of distributions (Dirac’s delta etc),
read δτ (t)dt = 1{τ∈[t ,t+dt]}.
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Basic Credit Risk Products and Models CDS and Defaultable bonds

CDS Model-independent formulas

PremiumLega,b(R) =

∫ Tb

t=Ta

E[D(0, t)(t − Tβ(t)−1)R δτ (t)dt ] +

+
b∑

i=a+1

P(0,Ti)αiR Q(τ ≥ Ti) =

=

∫ Tb

t=Ta

E[D(0, t)](t − Tβ(t)−1)R E[δτ (t)dt ] +
b∑

i=a+1

P(0,Ti)αiR Q(τ ≥ Ti)

= R
∫ Tb

t=Ta

P(0, t)(t − Tβ(t)−1)Q(τ ∈ [t , t + dt)) +

+R
b∑

i=a+1

P(0,Ti)αiQ(τ ≥ Ti),

where we have used independence in factoring terms. Again, read
δτ (t)dt = 1{τ∈[t ,t+dt]}
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Basic Credit Risk Products and Models CDS and Defaultable bonds

CDS Model-independent formulas

We have thus, by rearranging terms and introducing a “unit-premium”
premium leg (sometimes called “DV01”, “Risky duration” or “annuity”):

PremiumLega,b(R; P(0, ·),Q(τ > ·)) = R PremiumLeg1a,b(P(0, ·),Q(τ > ·)),

PremiumLeg1a,b(P(0, ·),Q(τ > ·)) := −
∫ Tb

Ta

P(0, t)(t − Tβ(t)−1)dt Q(τ ≥ t)

+
b∑

i=a+1

P(0,Ti)αi Q(τ ≥ Ti) (1)

This model independent formula uses the initial market zero coupon
curve (bonds) at time 0 (i.e. P(0, ·)) and the survival probabilities
Q(τ ≥ ·) at time 0 (terms in the boxes).

A similar formula holds for the protection leg, again under
independence between default τ and interest rates.
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Basic Credit Risk Products and Models CDS and Defaultable bonds

CDS Model-independent formulas

ProtecLega,b(LGD) = E[1{Ta<τ≤Tb}D(0, τ) LGD]

= LGD E
[∫ ∞

t=0
1{Ta<t≤Tb}D(0, t)δτ (t)dt

]
= LGD

[∫ Tb

t=Ta

E[D(0, t)δτ (t)dt ]

]

= LGD

∫ Tb

t=Ta

E[D(0, t)]E[δτ (t)dt ]

= LGD

∫ Tb

t=Ta

P(0, t)Q(τ ∈ [t , t + dt))

(again interpret δτ (t)dt = 1{τ∈[t ,t+dt]})
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Basic Credit Risk Products and Models CDS and Defaultable bonds

CDS Model-independent formulas

so that we have, by introducing a “unit-notional” protection leg:

ProtecLega,b(LGD; P(0, ·),Q(τ > ·)) = LGD ProtecLeg1a,b(P(0, ·),Q(τ > ·)),

ProtecLeg1a,b(P(0, ·),Q(τ > ·)) := −
∫ Tb

Ta

P(0, t) dt Q(τ ≥ t)

This formula too is model independent given the initial zero coupon
curve (bonds) at time 0 observed in the market and given the survival
probabilities at time 0 (term in the box).
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Basic Credit Risk Products and Models CDS and Defaultable bonds

CDS Model-independent formulas

The total (Receiver) CDS price can be written as

CDSa,b(t ,R,LGD;Q(τ > ·)) = RPremiumLeg1a,b(Q(τ > ·))

−LGD ProtecLeg1a,b(Q(τ > ·))

= R

−∫ Tb

Ta

P(0, t)(t − Tβ(t)−1)dt Q(τ ≥ t) +
b∑

i=a+1

P(0,Ti)αi Q(τ ≥ Ti)

+

+LGD

[∫ Tb

Ta

P(0, t) dt Q(τ ≥ t)

]
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Basic Credit Risk Products and Models CDS and Defaultable bonds

(Receiver) CDS Model-independent formulas

We may also use that dtQ(τ > t) = dt (1−Q(τ ≤ t)) = −dt Q(τ ≤ t).
We have

CDSa,b(t ,R,LGD;Q(τ ≤ ·)) = −LGD

[∫ Tb

Ta

P(0, t) dt Q(τ ≤ t)

]
+

R

∫ Tb

Ta

P(0, t)(t − Tβ(t)−1)dt Q(τ ≤ t) +
b∑

i=a+1

P(0,Ti)αi Q(τ ≥ Ti)


The integrals in the survival probabilities given in the above formulas
can be valued as Stieltjes integrals in the survival probabilities
themselves, and can easily be approximated numerically by
summations through Riemann-Stieltjes sums, considering a low
enough discretization time step.
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Basic Credit Risk Products and Models Market implied default probabilities

CDS Model-independent formulas

The market quotes, at time 0, the fair R = Rmkt MID
0,b (0) coming from bid

and ask quotes for this fair R.

This fair R equates the two legs for a set of CDS with initial protection
time Ta = 0 and final protection time
Tb ∈ {1y ,2y ,3y ,4y ,5y ,6y .7y ,8y ,9y ,10y}, although often only a
subset of the maturities {1y ,3y ,5y ,7y ,10y} is available.

Solve then
CDS0,b(t ,RmktMID

0,b (0),LGD;Q(τ > ·)) = 0

in portions of Q(τ > ·) starting from Tb = 1y , finding the market
implied survival {Q(τ ≥ t), t ≤ 1y}; plugging this into the Tb = 2y CDS
legs formulas, and then solving the same equation with Tb = 2y , we
find the market implied survival {Q(τ ≥ t), t ∈ (1y ,2y ]}, and so on up
to Tb = 10y .
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Basic Credit Risk Products and Models Market implied default probabilities

CDS Model-independent formulas

This is a way to strip survival (or equivalently default)
probabilities from CDS quotes in a model independent way. No
need to assume an intensity or a structural model for default here.

However, the market in doing the above stripping typically resorts to
intensities (also called hazard rates), assuming existence of intensities
associated with the default time.

We will refer to the method just highlighted as ”CDS stripping”.

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 28 / 325



Basic Credit Risk Products and Models CDS and Defaultable Bonds: Intensity Models

CDS and Defaultable Bonds: Intensity Models

In intensity models the random default time τ is assumed to be
exponentially distributed.

A strictly positive stochastic process t 7→ λt called default intensity (or
hazard rate) is given for the bond issuer or the CDS reference name.

The cumulated intensity (or hazard function) is the process
t 7→

∫ t
0 λs ds =: Λt . Since λ is positive, Λ is increasing in time.

The default time is defined as the inverse of the cumulative intensity on
an exponential random variable ξ with mean 1 and independent of λ

τ = Λ−1(ξ).

Recall that

Q(ξ > u) = e−u, Q(ξ < u) = 1− e−u, E(ξ) = 1.
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Basic Credit Risk Products and Models CDS and Defaultable Bonds: Intensity Models
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Basic Credit Risk Products and Models CDS and Defaultable Bonds: Intensity Models
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Basic Credit Risk Products and Models CDS and Defaultable Bonds: Intensity Models

CDS and Defaultable Bonds: Intensity Models

A few calculations: Probability of surviving time t :

Q(τ > t) = Q(Λ−1(ξ) > t) = Q(ξ > Λ(t)) =→

Let’s use the tower property of conditional expectation and the fact that
Λ is independent of ξ:

→= E[Q(ξ > Λ(t)|Λ(t))] = E[e−Λ(t)] = E[e−
∫ t

0 λs ds]

This looks exactly like a bond price if we replace r by λ!
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Basic Credit Risk Products and Models CDS and Defaultable Bonds: Intensity Models

CDS and Defaultable Bonds: Intensity Models

Let’s price a defaultable zero coupon bond with zero recovery. Assume
that ξ is also independent of r .

P̄(0,T ) = E[D(0,T )1{τ>T}] = E[e−
∫ T

0 rs ds1{Λ−1(ξ)>T}] =

= E[e−
∫ T

0 rs ds1{ξ>Λ(T )}] = E[E{e−
∫ T

0 rs ds1{ξ>Λ(T )}|Λ, r}]

= E[e−
∫ T

0 rs dsE{1{ξ>Λ(T )}|Λ, r}]

= E[e−
∫ T

0 rs dsQ{ξ > Λ(T )|Λ}] = E[e−
∫ T

0 rs dse−Λ(T )] =

= E[e−
∫ T

0 rs ds−
∫ T

0 λs ds = E[e
−

∫ T
0 (rs + λs) ds

]

So the price of a defaultable bond is like the price of a default-free
bond where the risk free discount short rate r has been replaced by r
plus a spread λ.
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Basic Credit Risk Products and Models CDS and Defaultable Bonds: Intensity Models

CDS and Defaultable Bonds: Intensity Models

This is why in intensity models, the intensity is interpreted as a credit
spread.

Because of properties of the exponential random variable, one can
also prove that

Q(τ ∈ [t , t + dt)|τ > t , ”λ[0, t ]”) = λt dt

and the intensity λt dt is also a local probability of defaulting around t .

So:
λ is an instantaneous credit spread or local default probability

ξ is pure jump to default risk
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Basic Credit Risk Products and Models CDS and Defaultable Bonds: Intensity Models

Intensity models and Interest Rate Models

As is now clear, the exponential structure of τ in intensity models
makes the modeling of credit risk very similar to interest rate models.

The spread/intensity λ behaves exactly like an interest rate in
discounting

Then it is possible to use a lot of techniques from interest rate modeling
(short rate models for r , first choice seen earlier) for credit as well.
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Basic Credit Risk Products and Models CDS and Defaultable Bonds: Intensity Models

Intensity: Constant, time dependent or stochastic

Constant λt : in this case λt = γ for a deterministic constant credit
spread (intensity);
Time dependent deterministic intensity λt : in this case λt = γ(t)
for a deterministic curve in time γ(t). This is a model with a term
structure of credit spreads but without credit spread volatility.
Time dependent and stochastic intensity λt : in this case λt is a full
stochastic process. This allows us to model the term structue of
credit spreads but also their volatility.
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Basic Credit Risk Products and Models Intensity models: Constant Intensity

The case with constant intensity λt = γ: CDS

Assume as an approximation that the CDS premium leg pays
continuously.

Instead of paying (Ti − Ti−1)R at Ti as the standard CDS, given that
there has been no default before Ti , we approximate this premium leg
by assuming that it pays ”dt R” in [t , t + dt) it there has been no default
before t + dt .
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Basic Credit Risk Products and Models Intensity models: Constant Intensity

The case with constant intensity λt = γ: CDS

This amounts to replace the original pricing formula of a CDS (receiver
case, spot CDS with Ta = 0 = today)

CDS0,b(0,R,LGD;Q(τ > ·)) = R

[
−
∫ Tb

0
P(0, t)(t − Tβ(t)−1)dtQ(τ ≥ t)

+
b∑

i=1

P(0,Ti)αiQ(τ ≥ Ti)

]
+ LGD

[∫ Tb

0
P(0, t) dt Q(τ ≥ t)

]
with (accrual term vanishes because payments continuous now)

R
∫ Tb

0
P(0, t)Q(τ ≥ t)dt + LGD

∫ Tb

0
P(0, t) dtQ(τ ≥ t)
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Basic Credit Risk Products and Models Intensity models: Constant Intensity

The case with constant intensity λt = γ: CDS

If the intensity is a constant γ we have

Q(τ > t) = e−γt , dtQ(τ > t) = −γe−γtdt = −γQ(τ > t)dt ,

and the receiver CDS price we have seen earlier becomes

CDS0,b(t ,R,LGD;Q(τ > ·)) = −LGD

[∫ Tb

0
P(0, t)γQ(τ ≥ t)dt

]

+R

[∫ Tb

0
P(0, t)Q(τ ≥ t)dt

]
If we insert the market CDS rate R = Rmkt MID

0,b (0) in the premium leg,
then the CDS present value should be zero. Solve

CDSa,b(t ,R,LGD;Q(τ > ·)) = 0 in R

to obtain

γ =
Rmkt MID

0,b (0)

LGD
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The case with constant intensity λt = γ: CDS

from which we see that also the CDS premium rate R is indeed a
sort of CREDIT SPREAD, or INTENSITY.

We can play with this formula with a few examples.

CDS of FIAT trades at 300bps for 5y, with recovery 0.3

What is a quick rough calcul for the risk neutral probability that FIAT
survives 10 years?

γ =
Rmkt FIAT

0,b (0)

LGD
=

300/10000
1− 0.3

= 4.29%
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The case with constant intensity λt = γ: CDS

Survive 10 years:

Q(τ > 10y) = exp(−γ10) = exp(−0.0429 ∗ 10) = 65.1%

Default between 3 and 5 years:

Q(τ > 3y)−Q(τ > 5y) = exp(−γ3)− exp(−γ5)

= exp(−0.0429 ∗ 3)− exp(−0.0429 ∗ 5) = 7.2%

If RCDS goes up and REC remains the same, γ goes up and survival
probabilities go down (default probs go up)

If REC goes up and RCDS remains the same, LGD goes down and γ
goes up - default probabilities go up
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The case with time dependent intensity λt = γ(t): CDS

We consider now deterministic time-varying intensity γ(t), which we
assume to be a positive and piecewise continuous function. We define

Γ(t) :=

∫ t

0
γ(u)du,

the cumulated intensity, cumulated hazard rate, or also Hazard
function.

From the exponential assumption, we have easily

Q{s < τ ≤ t} = Q{s < Γ−1(ξ) ≤ t} = Q{Γ(s) < ξ ≤ Γ(t)} =

= Q{ξ > Γ(s)} −Q{ξ > Γ(t)} = exp(−Γ(s))− exp(−Γ(t)) i.e.

“prob of default between s and t is “e−
∫ s

0 γ(u)du − e−
∫ t

0 γ(u)du≈
∫ t

s γ(u)du”
(where the final approximation is good ONLY for small exponents).
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CDS Calibration and Implied Hazard Rates/Intensities

Reduced form models are the models that are most commonly used in
the market to infer implied default probabilities from market quotes.

Market instruments from which these probabilities are drawn are
especially CDS and Bonds.

We just implement the stripping algorithm sketched earlier for ”CDS
stripping”, but now taking into account that the probabilities are
expressed as exponentials of the deterministic intensity γ, that is
assumed to be piecewise constant.

By adding iteratively CDS with longer and longer maturities, at each
step we will strip the new part of the intensity γ(t) associated with the
last added CDS, while keeping the previous values of γ, for earlier
times, that were used to fit CDS with shorter maturities.
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A Case Study of CDS stripping: Lehman Brothers

Here we show an intensity model with piecewise constant λ obtained
by CDS stripping.

We also show the AT1P structural / firm value model by Brigo et al
(2004-2010). This will not be subject for this course, but in case of
interest, for details on AT1P see

http://arxiv.org/abs/0912.3028
http://arxiv.org/abs/0912.3031
http://arxiv.org/abs/0912.4404

Otherwise ignore the AT1P and σi parts of the tables.
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August 23, 2007: Lehman announces that it is going to shut one
of its home lending units (BNC Mortgage) and lay off 1,200
employees. The bank says it would take a $52 million charge to
third-quarter earnings.
March 18, 2008: Lehman announces better than expected
first-quarter results (but profits have more than halved).
June 9, 2008: Lehman confirms the booking of a $2.8 billion loss
and announces plans to raise $6 billion in fresh capital by selling
stock. Lehman shares lose more than 9% in afternoon trade.
June 12, 2008: Lehman shakes up its management; its chief
operating officer and president, and its chief financial officer are
removed from their posts.
August 28, 2008: Lehman prepares to lay off 1,500 people. The
Lehman executives have been knocking on doors all over the
world seeking a capital infusion.
September 9, 2008: Lehman shares fall 45%.
September 14, 2008: Lehman files for bankruptcy protection and
hurtles toward liquidation after it failed to find a buyer.
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Lehman Brothers CDS Calibration: July 10th, 2007

On the left part of this Table we report the values of the quoted CDS
spreads before the beginning of the crisis. We see that the spreads
are very low. In the middle of Table 1 we have the results of the exact
calibration obtained using a piecewise constant intensity model.

Ti Ri (bps) λi (bps) Surv (Int) σi Surv (AT1P)
10 Jul 2007 100.0% 100.0%

1y 16 0.267% 99.7% 29.2% 99.7%
3y 29 0.601% 98.5% 14.0% 98.5%
5y 45 1.217% 96.2% 14.5% 96.1%
7y 50 1.096% 94.1% 12.0% 94.1%
10y 58 1.407% 90.2% 12.7% 90.2%

Table: Results of calibration for July 10th, 2007.
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Lehman Brothers CDS Calibration: June 12th, 2008

We are in the middle of the crisis. We see that the CDS spreads Ri
have increased with respect to the previous case, but are not very
high, indicating the fact that the market is aware of the difficulties
suffered by Lehman but thinks that it can come out of the crisis. Notice
that now the term structure of both R and intensities is inverted. This is
typical of names in crisis

Ti Ri (bps) λi (bps) Surv (Int) σi Surv (AT1P)
12 Jun 2008 100.0% 100.0%

1y 397 6.563% 93.6% 45.0% 93.5%
3y 315 4.440% 85.7% 21.9% 85.6%
5y 277 3.411% 80.0% 18.6% 79.9%
7y 258 3.207% 75.1% 18.1% 75.0%

10y 240 2.907% 68.8% 17.5% 68.7%

Table: Results of calibration for June 12th, 2008.
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Lehman Brothers CDS Calibration: Sept 12th, 2008

In this Table we report the results of the calibration on September 12th,
2008, just before Lehman’s default. We see that the spreads are now
very high, corresponding to lower survival probability and higher
intensities than before.

Ti Ri (bps) λi (bps) Surv (Int) σi Surv (AT1P)
12 Sep 2008 100.0% 100.0%

1y 1437 23.260% 79.2% 62.2% 78.4%
3y 902 9.248% 65.9% 30.8% 65.5%
5y 710 5.245% 59.3% 24.3% 59.1%
7y 636 5.947% 52.7% 26.9% 52.5%

10y 588 6.422% 43.4% 29.5% 43.4%

Table: Results of calibration for September 12th, 2008.

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 48 / 325



Basic Credit Risk Products and Models Intensity models: Stochastic Intensity

Stochastic Intensity. The CIR++ model

We have seen in detail CDS calibration in presence of deterministic
and time varying intensity or hazard rates, γ(t)dt = Q{τ ∈ dt |τ > t}

As explained, this accounts for credit spread structure but not for
volatility.

The latter is obtained moving to stochastic intensity (Cox process).
The deterministic function t 7→ γ(t) is replaced by a stochastic process
t 7→ λ(t) = λt . The Hazard function Γ(t) =

∫ t
0 γ(u)du is replaced by the

Hazard process (or cumulated intensity) Λ(t) =
∫ t

0 λ(u)du.
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CIR++ stochastic intensity λ

We model the stochastic intensity as follows: consider

λt = yt + ψ(t ;β) , t ≥ 0,

where the intensity has a random component y and a deterministic
component ψ to fit the CDS term structure. For y we take a Jump-CIR
model

dyt = κ(µ− yt )dt + ν
√

ytdZt + dJt , β = (κ, µ, ν, y0), 2κµ > ν2.

Jumps are taken themselves independent of anything else, with
exponential arrival times with intensity η and exponential jump size
with a given parameter.

In this course we will focus on the case with no jumps J, see B and
El-Bachir (2006) or B and M (2006) for the case with jumps.
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CIR++ stochastic intensity λ.
Calibrating Implied Default Probabilities

With no jumps, y follows a noncentral chi-square distribution; Very
important: y > 0 as must be for an intensity model (Vasicek would not
work). This is the CIR++ model we have seen earlier for interest rates.

About the parameters of CIR:

dyt = κ(µ− yt )dt + ν
√

ytdZt

κ: speed of mean reversion
µ: long term mean reversion level
ν: volatility.
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CIR++ stochastic intensity λ. I
Calibrating Implied Default Probabilities

E [λt ] = λ0e−κt + µ(1− e−κt )

VAR(λt ) = λ0
ν2

κ
(e−κt − e−2κt ) + µ

ν2

2κ
(1− e−κt )2

After a long time the process reaches (asymptotically) a stationary
distribution around the mean µ and with a corridor of variance µν2/2κ.
The largest κ, the fastest the process converges to the stationary state.
So, ceteris paribus, increasing κ kills the volatility of the credit spread.
The largest µ, the highest the long term mean, so the model will tend
to higher spreads in the future in average.
The largest ν, the largest the volatility. Notice however that κ and ν
fight each other as far as the influence on volatility is concerned.
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CIR++ stochastic intensity λ. II
Calibrating Implied Default Probabilities

Figure: y0 = 0.0165, κ = 0.4, µ = 0.05, ν = 0.04
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EXERCISE: The CIR model

Assume we are given a stochastic intensity process of CIR type,

dyt = κ(µ− yt )dt + ν
√

ytdW (t)

where y0, κ, µ, ν are positive constants. W is a brownian motion under
the risk neutral measure.
a) Increasing κ increases or decreases randomness in the intensity?
And ν?
b) The mean of the intensity at future times is affected by k? And by ν?
c) What happens to mean of the intensity when time grows to infinity?
d) Is it true that, because of mean reversion, the variance of the
intensity goes to zero (no randomness left) when time grows to infinity?
e) Can you compute a rough approximation of the percentage volatility
in the intensity?
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EXERCISE: The CIR model

f) Suppose that y0 = 400bps = 0.04, κ = 0.3, ν = 0.001 and
µ = 400bps. Can you guess the behaviour of the future random
trajectories of the stochastic intensity after time 0?
g) Can you guess the spread of a CDS with 10y maturity with the
above stochastic intensity when the recovery is 0.35?
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EXERCISE Solutions. I

a) We can refer to the formulas for the mean and variance of yT in a
CIR model as seen from time 0, at a given T . The formula for the
variance is known to be (see for Example Brigo and Mercurio (2006))

VAR(yT ) = y0
ν2

κ
(e−κT − e−2κT ) + µ

ν2

2κ
(1− e−κT )2

whereas the mean is

E [yT ] = y0e−κT + µ(1− e−κT )

We can see that for k becoming large the variance becomes small,
since the exponentials decrease in k and the division by k gives a
small value for large k . In the limit

lim
κ→+∞

VAR(yT ) = 0

so that for very large κ there is no randomness left.
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EXERCISE Solutions. II

We can instead see that VAR(yT ) is proportional to ν2, so that if ν
increases randomness increases, as is obvious from ν

√
yt being the

instantaneous volatility in the process y .

b) As the mean is

E [yT ] = y0e−κT + µ(1− e−κT )

we clearly see that this is impacted by κ (indeed, ”speed of mean
reversion”) and by µ clearly (”long term mean”) but not by the
instantaneous volatility parameter ν.
c) As T goes to infinity, we get for the mean

lim
T→+∞

y0e−κT + µ(1− e−κT ) = µ

so that the mean tends to µ (this is why µ is called ”long term mean”).
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EXERCISE Solutions. III

d) In the limit where time goes to infinity we get, for the variance

lim
T→+∞

[y0
ν2

κ
(e−κT − e−2κT ) + µ

ν2

2κ
(1− e−κT )2] = µ

ν2

2κ

So this does not go to zero. Indeed, mean reversion here implies that
as time goes to infinite the mean tends to µ and the variance to the
constant value µ ν

2

2κ , but not to zero.
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EXERCISE Solutions. IV
e) Rough approximations of the percentage volatilities in the intensity
would be as follows. The instantaneous variance in dyt , conditional on
the information up to t , is (remember that VAR(dW (t)) = dt)

VAR(dyt ) = ν2ytdt

The percentage variance is

VAR
(

dyt

yt

)
=
ν2yt

y2
t

dt =
ν2

yt
dt

and is state dependent, as it depends on yt . We may replace yt with
either its initial value y0 or with the long term mean µ, both known. The
two rough percentage volatilities estimates will then be, for dt = 1,√

ν2

y0
=

ν
√

y0
,

√
ν2

µ
=

ν
√
µ
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EXERCISE Solutions. V

These however do not take into account the important impact of κ in
the overall volatility of finite (as opposed to instantaneous) credit
spreads and are therefore relatively useless.
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EXERCISE Solutions. VI
f) First we check if the positivity condition is met.

2κµ = 2 · 0.3 · 0.04 = 0.024; ν2 = 0.0012 = 0.000001

hence 2κµ > ν2 and trajectories are positive. Then we observe that
the variance is very small: Take T = 5y ,

VAR(yT ) = y0
ν2

κ
(e−κT − e−2κT ) + θ

ν2

2κ
(1− e−κT )2 ≈ 0.0000006.

Take the standard deviation, given by the square root of the variance:

STDEV(yT ) ≈
√

0.0000006 = 0.00077.

which is much smaller of the level 0.04 at which the intensity refers
both in terms of initial value and long term mean. Therefore there is
almost no randomness in the system as the variance is very small
compared to the initial point and the long term mean.
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EXERCISE Solutions. VII

Hence there is almost no randomness, and since the initial condition
y0 is the same as the long term mean µ0 = 0.04, the intensity will
behave as if it had the value 0.04 all the time. All future trajectories will
be very close to the constant value 0.04.
g) In a constant intensity model the CDS spread can be approximated
by

y =
RCDS

1− REC
⇒ RCDS = y(1− REC) = 0.04(1− 0.35) = 260bps
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CIR++ stochastic intensity λ. I
Calibrating Implied Default Probabilities

For restrictions on the β’s that keep ψ and hence λ positive,
as is required in intensity models, we may use the results in B. and

M. (2001) or (2006). We will often use the hazard process
Λ(t) =

∫ t
0 λsds, and also Y (t) =

∫ t
0 ysds and Ψ(t , β) =

∫ t
0 ψ(s, β)ds.

If we can read from the market some implied risk-neutral default
probabilities, and associate to them implied hazard functions ΓMkt (as
we have done in the Lehman example), we may wish our stochastic
intensity model to agree with them. By recalling that survival
probabilities look exactly like bonds formulas in short rate models for r ,
we see that our model agrees with the market if

exp(−ΓMkt(t)) = exp (−Ψ(t , β))E[e−
∫ t

0 ysds]
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CIR++ stochastic intensity λ. II
Calibrating Implied Default Probabilities

IMPORTANT 1: This is possible only if λ is strictly positive;
IMPORTANT 2: It is fundamental, if we aim at calibrating default
probabilities, that the last expected value can be computed analytically.
The only known diffusion model used in interest rates satisfying
both constraints is CIR++
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CIR++ stochastic intensity λ
Calibrating Implied Default Probabilities

exp(−ΓMkt(t)) = Q{τ > t} = exp (−Ψ(t , β))E[e−
∫ t

0 ysds]

Now notice that E[e−
∫ t

0 ysds] is simply the bond price for a CIR interest
rate model with short rate given by y , so that it is known analytically.
We denote it by Py (0, t , y0;β).

Similarly to the interest-rate case, λ is calibrated to the market implied
hazard function ΓMkt if we set

Ψ(t , β) := ΓMkt(t) + ln(Py (0, t , y0;β))

where we choose the parameters β in order to have a positive function
ψ, by resorting to the condition seen earlier.
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This concludes our introduction to Defaultable Bonds, CDS, credit
spreads and intensity models.

We now turn to using such tools in one of the problems the industry is
facing right now:

Pricing of counterparty credit risk, leading to the notion of Credit
Valuation Adjustment (CVA)
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Context
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Counterparty Credit Risk Counterparty Credit Risk: Introduction

Q & A: What is Counterparty Credit Risk?

Q What is counterparty risk in general?
A The risk taken on by an entity entering an OTC contract with a

counterparty having a relevant default probability. As such, the
counterparty might not respect its payment obligations.

The counterparty credit risk is defined as the risk that the
counterparty to a transaction could default before the final
settlement of the transaction’s cash flows. An economic loss would
occur if the transactions or portfolio of transactions with the
counterparty has a positive economic value at the time of default.
[Basel II, Annex IV, 2/A]
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Counterparty Credit Risk Credit VaR and CVA

Q & A: Credit VaR and CVA

Q What is the difference between Credit VaR and CVA?
A They are both related to credit risk.
Credit VaR is a Value at Risk type measure, a Risk Measure. it
measures a potential loss due to counterparty default.
CVA is a price, it stands for Credit Valuation Adjustment and is a
price adjustment. CVA is obtained by pricing the counterparty risk
component of a deal, similarly to how one would price a credit
derivative.
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Q & A: Credit VaR and CVA

Q What is the difference in practical use?
A Credit VaR answers the question:
”How much can I lose of this portfolio, within (say) one year, at a
confidence level of 99%, due to default risk and exposure?”
CVA instead answers the question:
”How much discount do I get on the price of this deal due to the
fact that you, my counterparty, can default? I would trade this
product with a default free party. To trade it with you, who are
default risky, I require a discount.”

Clearly, a price needs to be more precise than a risk measure, so the
techniques will be different.
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Q & A: Credit VaR and CVA

Q Different? Are the methodologies for Credit VaR and CVA not
similar?

A There are analogies but CVA needs to be more precise in
general. Also, Credit VaR should use statistics under the physical
measure whereas CVA should use statistics under the pricing measure
Q What are the regulatory bodies involved?

A There are many, for Credit VaR type measures it is mostly Basel
II and now III, whereas for CVA we have IAS, FASB and ISDA. But the
picture is now blurring since Basel III is quite interested in CVA too
Q What is the focus of this presentation?

A We will focus on CVA.
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Q & A: Credit VaR and CVA
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Counterparty Credit Risk CVA, Model Risk and WWR

Q & A: CVA and Model Risk, WWR

Q What impacts counterparty risk CVA?
A The OTC contract’s underlying volatility, the correlation between

the underlying and default of the counterparty, and the counterparty
credit spreads volatility.
Q Is it model dependent?

A It is highly model dependent even if the original portfolio without
counterparty risk was not. There is a lot of model risk.
Q What about wrong way risk?

A The amplified risk when the reference underlying and the
counterparty are strongly correlated in the wrong direction.
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Counterparty Credit Risk Collateral

Q & A: Collateral

Q What is collateral?
A It is a guarantee (liquid and secure asset, cash) that is deposited

in a collateral account in favour of the investor party facing the
exposure. If the depositing counterparty defaults, thus not being able
to fulfill payments associated to the above mentioned exposure,
Collateral can be used by the investor to offset its loss.
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Q & A: Netting

Q What is netting?
A This is the agreement to net all positions towards a counterparty

in the event of the counterparty default. This way positions with
negative PV can be offset by positions with positive PV and
counterparty risk is reduced. This has to do with the option on a sum
being smaller than the sum of the options. CVA is typically computed
on netting sets.
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Q & A: Basel III and CVA Risk

Q What is happening with Basel III?
A Basel noticed that during the crisis only one third of losses due to

counterparty risk were due to actual defaults. The remaining losses
have been due to CVA mark to market losses. Hence the pricing of
counterparty risk has been twice as dangerous as the risk itself.
Q Then we should ”risk-measure” CVA itself?

A Indeed there is a lot of discussion around Value at Risk of CVA.
This is not traditional credit VaR of course. It is something much more
sophisticated. It is a percentile on future possible losses due to future
averse movements of the PRICING of counterparty risk
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Q & A: Collateral and CVA. Gap Risk

Q But collateral should spare one the pains of this?
A Collateral/CSA Margining is only an imperfect remedy to

Counterparty risk, mostly due to Gap Risk, the risk of sudden mark to
market changes and defaults between margining dates. This can be
dramatic for assets that are subject to strong contagion under systemic
risk. Also, we have re-hyphotecation, where collateral is not kept
segregated as a guarantee. More generally, there are collateral
disputes.
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Q & A: CVA Restructuring

Q So to manage CVA risk it is either Collateral (with the above
caveats) or large capital requirements. Isn’t this possibly creating a
liquidity strain and depress the economy further?

A A third possibility would be a macroeconomically healthy way of
securitizing counterparty risk, a way recognized by regulators that
banks could adopt to ”buy” counterparty risk protection in the market.
This is quite delicate. Floating margin lending, based on a notion of
floating CVA, might be interesting from this point of view. More
traditional fixed-premium cash CDO-type securitization mechanisms
have failed so far.
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Q & A: CVA - Unilateral or Bilateral?

Basel II on bilateral counterparty risk:

Unlike a firm’s exposure to credit risk through a loan, where
the exposure to credit risk is unilateral and only the lending
bank faces the risk of loss, the counterparty credit risk
creates a bilateral risk of loss: the market value of the
transaction can be positive or negative to either counterparty
to the transaction. [Basel II, Annex IV, 2/A]
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Counterparty Credit Risk CVA: Unilateral or Bilateral? DVA

Q & A: CVA - Unilateral or Bilateral?

Q When is valuation of counterparty risk CVA symmetric?
A When we include the possibility that also the entity computing

the counterparty risk adjustment may default, besides the counterparty
itself.
Q When is valuation of counterparty risk CVA asymmetric?

A When the entity computing the counterparty risk adjustment
considers itself default-free, and only the counterparty may default.
Q Which one is computed usually for valuation adjustments?

A Pre-crisis it used to be the asymmetric one; At the moment there
is quite a debate
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Counterparty Credit Risk CVA: Unilateral or Bilateral? DVA

Q & A: DVA

Q What happens in the symmetric case?
A We have a new quantity called Debit Valuation Adjustment, or

DVA.
Q What is that?

A It answers the question: ”I recognize that I am default risky, so in
trading this position with you, I accept to be charged more for this
product than if I were default free, since you, my counterparty, are
taking additional risk due to my possible default. DVA is then the
increase in value I need to pay to enter this deal with you.”
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Counterparty Credit Risk CVA: Unilateral or Bilateral? DVA

Q & A: DVA

Q Looks like CVA seen from the other side. Is this why now pricing is
symmetric?

A Indeed, on side ”B” you have

DVAB,C − CVAB,C .

On the other side you have that DVAB,C becomes CVAC,B and CVAB,C
becomes DVAC,B, so you have exactly

−(DVAB,C − CVAB,C) = DVAC,B − CVAC,B.

Symmetry as in a swap. However, there are a few caveats
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Counterparty Credit Risk CVA: Unilateral or Bilateral? DVA

Q & A: DVA

Q Meaning?
A DVA increases when the credit quality of the calculating entity

worsens, because it becomes less likely that the calculating entity will
have to repay its debt. However this is a profit that can only be realized
by defaulting. Should it be accounted for?
Q How would one hedge DVA?

A One would have to sell protection of oneself (issue and then buy
back bonds? Proxy Hedging?). Very difficult. Without hedging, is it
really a price? However, it is from the other side, since it is CVA.
Perspectival
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Counterparty Credit Risk CVA: Unilateral or Bilateral? DVA

Q & A: DVA

Q Is this why you said DVA is debated?
A Yes, regulators are fighting. FASB approved it. Basel does not

recognize it, ”perverse incentive”. This makes CVA capital charges
larger, since in future P&L simulations there will be no DVA balancing
CVA.
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Counterparty Credit Risk CVA: Unilateral or Bilateral? DVA

Q & A: First default

Q Does bilateral counterparty risk pricing, namely DVA - CVA, consider
closeout? Namely, that at the first default the deal is liquidated or
replaced?

A Only if you take into account the first to default time in valuation.
Correct CVA and DVA account for that. However first to default involves
knowing the default ”correlation” between the two entities in the deal. It
may be difficult. Hence often the industry uses a formula ignoring first
to default. This however involves double counting.
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Counterparty Credit Risk CVA: Closeout

Q & A: Closeout

Q And again on closeout, how is exactly the value of the residual deal
computed at the closeout time?

A You may have a risk free closeout, where the residual deal is
priced at mid market without any residual credit risk, or you may have
a replacement closeout, where the remaining deal is priced by taking
into account the credit quality of the surviving party and of the party
that replaces the defaulted one (so the new DVA - CVA at default).
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Counterparty Credit Risk CVA: Closeout

Q & A: Closeout

Q Does it make a big difference?
A It does.
Part of the market argues that if you are closing the deal at the
closeout time, why should you worry about residual credit risk until
the final maturity?
On the other hand, if before the first default you were marking to
market the deal including CVA and DVA, and all of a sudden at the
first default you take CVA and DVA out, you create a discontinuity.
It has been found that Risk Free closeout penalizes borrowers,
whereas Replication closeout penalizes lenders, and the effect
depends on the default correlation between parties.

ISDA is not very assertive on closeout.
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Counterparty Credit Risk CVA: Payout risk

Q & A: CVA and Payout Risk

Q So we have:
DVA Yes/No?
First to Default time or not?
Risk Free closeout or replication closeout?

It looks like not even the precise payout of CVA is clear, let alone
model risk.

A Yes, there is a lot of payout risk. In an interview to Risk
Magazine, top tier 1 banks complained towards smaller banks by
saying that the latter were more aggressive in CVA assumptions, thus
taking clients that would otherwise work with the top tier 1. This
aggressive pricing has been interpreted by tier 1 banks as using the
cheapest form of CVA payout for the client.
It has also been said that 5 banks may compute CVA in 15 different
ways across functions and deals.
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Counterparty Credit Risk Funding Costs: FVA?

Q & A: Funding Costs I

Q There is a further topic I keep hearing around. Its the inclusion of
Cost of Funding into the valuation framework. What is that?

A A When you manage a trading position, you need to obtain cash
in order to do a number of operations:

hedging the position,
posting collaterals or paying interests on them,
paying coupons or notional amounts,
set reserves in place...
You may obtain cash from your Treasury department or in the
market. You may also receive cash as a consequence of being in
the position:

a coupon, a notional reimbursement, a positive mark-to-market
move, getting some collateral, a closeout payment. . .

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 89 / 325



Counterparty Credit Risk Funding Costs: FVA?

Q & A: Funding Costs II

Q Why should I to consider such flows?
A All such flows need to be remunerated:

if you are borrowing, this will have a cost,

and if you are lending, this will provide you with some revenues.

Including the cost of funding into your valuation framework means to
properly account for such features.
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Counterparty Credit Risk Funding Costs: FVA?

Q & A: Funding Costs III

As we will see, the inclusion of a simple and additive ”Funding
Valuation Adjustments” (FVA) is not as straightforward as CVA and
DVA are (even with all their problems).

Proper inclusion of funding leads to a recursive pricing problem where
credit and funding risk interact in a complex and nonlinear/ non
decomposable way

We can compute a total adjustment for funding and credit risk but not
separate adjustments
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Counterparty Credit Risk CCPs

Q & A. CCPs

Q And what about Central Counterparty Clearing houses (CCP’s)?
A CCPs are commercial entities that, ideally, would interpose

themselves between the two parties in a trade.
Each party will post collateral margins say daily, every time the
mark to market goes against that party.
Collateral will be held by the CCP as a guarantee for the other
party.
If a party in the deal defaults and the mark to market is in favour of
the other party, then the surviving party will obtain the collateral
from the CCP and will not be affected, in principle, by counterparty
risk.
Moreover, there is also an initial margin that is supposed to cover
for additional risks like deteriorating quality of collateral, gap risk,
wrong way risk, etc.
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Counterparty Credit Risk CCPs

Q & A: CCPs

Q It looks pretty safe. With the current regulation and law pushing
firms to trade through central clearing, will all this analysis of credit,
liquidity and funding risk be a moot point? Are CCP’s going to be the
end of CVA/DVA/FVA problems?

A CCP’s will reduce risk in many cases but are not a panacea.
They also require daily margining, and one may question the fees and
initial margins they charge. Also, they could become too big to fail. And
finally, too many CCPs makes netting unefficient, whereas too few
creates concentration risk.
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Counterparty Credit Risk CCPs

Q & A: CCPs

Q So CCP’s are not really a panacea. Other issues with CCPs?
A The following points are worth keeping in mind:a

CCPs are usually highly capitalised. All clearing members post
collateral (asymmetric ”CSA”). Initial margin means clearing
members are overcollateralised all the time.
TABB Group says extra collateral could be about 2 $ Trillion.b

CCPs can default and did default. Defaulted ones - 1974: Caisse
de Liquidation des Affaires en Marchandises; 1983: Kuala Lumpur
Commodity Clearing House; 1987: Hong Kong Futures Exchange.
The ones that were close to default- 1987: CME and OCC, US;
1999: BM&F, Brazil.

aSee for example Piron, B. (2012). Why collateral and CCPs can be bad
for your wealth. SunGard’s Adaptive White Paper.

bRhode, W. (2011). European Credit and Rates Dealers 2011 – Capital,
Clearing and Central Limit Order Books. TABB Group Research Report
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Counterparty Credit Risk CVA ”Best Practices”: CVA Desk

Q & A: CVA Desks? ”Best practices”?

Q In terms of active and concrete CVA (DVA? FVA?) management,
what is the ”best practice” banks follow? I hear about ”CVA Desks”,
what does that mean?

AThe idea is to move Counterparty Risk management away from
classic asset classes trading desks by creating a specific counterparty
risk trading desk, or ”CVA desk”. Under a lot of simplifying
assumptions, this would allow ”classical” traders to work in a
counterparty risk-free world in the same way as before the
counterparty risk crisis exploded.
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Counterparty Credit Risk CVA ”Best Practices”: CVA Desk

Q & A: CVA Desks? ”Best practices”?

Q How would this CVA desk help classical trading desks, more in
detail?a

A It would free the classical traders from the need to:
develop advanced credit models to be coupled with classical asset
classes models (FX, equity, rates, commodities...);
know the whole netting sets trading portfolios; traders would have
to worry only about their specific deals and asset classes, as the
CVA desk takes care of ”options on whole portfolios” embedded in
counterparty risk pricing and hedging;
Hedge counterparty credit risk, which is very complicated.

aSee for example ”CVA Desk in the Bank Implementation”, Global Market
Solutions white paper
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Counterparty Credit Risk CVA ”Best Practices”: CVA Desk

Q & A: CVA Desks? ”Best practices”?

Q Is this working?
A Of course the idea of being able to relegate all CVA(/DVA/FVA)

issues to a single specialized trading desk is a little delusional.
WWR makes isolating CVA from other activities quite difficult.
In particular WWR means that the idea of hedging CVA and the
pure classical risks separately is not effective.
CVA calculations may depend on the collateral policy, which does
not depend on the CVA desk or even on the trading floor.
We have seen FVA and CVA interact

In any case a CVA desk can have different levels of sophistication and
effectiveness.
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Counterparty Credit Risk CVA ”Best Practices”: CVA Desk

Q & A: CVA Desks? ”Best practices”?

Q What do ”classical traders” think about this?
A Clearly, being P&L sensitive this is rather delicate. There are

mixed feelings.
Because CVA is hard to hedge (especially the jump to default risk
and WWR), occasionally classical traders feel that the CVA desk
does not really hedge their counterparty risk effectively and
question the validity of the CVA fees they pay to the CVA desk.
Other traders are more optimistic and feel protected by the
admittedly approximate hedges implemented by the CVA desk.
There is also a psychological component of relief in delegating
management of counterparty risk elsewhere.
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Counterparty Credit Risk CVA ”Best Practices”: CVA Desk

For an introductory dialogue on Counterparty Risk see

CVA Q&A
D. Brigo (2012). Counterparty Risk Q&A: Credit VaR, CVA, DVA,
Closeout, Netting, Collateral, Re-hypothecation, Wrong Way Risk,
Basel, Funding, and Margin Lending. SSRN.com and arXiv.org.
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Counterparty Credit Risk CVA ”Best Practices”: CVA Desk

Context
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Counterparty Credit Risk CVA ”Best Practices”: CVA Desk

General Notation

We will call “Bank” or sometimes the ”investor” the party interested
in the counterparty adjustment. This is denoted by “B”
We will call “counterparty” the party with whom the Bank is
trading, and whose default may affect negatively the Bank. This is
denoted by “C”.
“1” will be used for the underlying name/risk factor(s) of the
contract
The counterparty’s default time is denoted with τC and the
recovery rate for unsecured claims with RECC (we often use
LGDC := 1− RECC).
ΠB(t ,T ) is the discounted payout without default risk seen by ‘B’
(sum of all future cash flows between t and T , discounted back at
t). ΠC(t ,T ) = −ΠB(t ,T ) is the same quantity but seen from the
point of view of ‘C’. When we omit the index B or C we mean ‘B’.
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Counterparty Credit Risk CVA ”Best Practices”: CVA Desk

General Notation

We define NPVB(t ,T ) = Et [Π(t ,T )]. When T is clear from the
context we omit it and write NPV(t).

Π(s, t) + D(s, t)Π(t ,u) = Π(s,u)

E0[D(0,u)NPV (u,T )] = E0[D(0,u)Eu[Π(u,T )]] =

= E0[D(0,u)Π(u,T )] = NPV (0,T )− E0[Π(0,u)]

= NPV (0,T )− NPV (0,u)
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Mechanics

Unilateral counterparty risk

We now look into unilateral counterparty risk.

This is a situation where counterparty risk pricing is computed by
assuming that only the counterparty can default, whereas the investor
or bank doing the calculation is assumed to be default free.

Hence we will only consider here the default time τC of the
counterparty. We will address the bilateral case later on.
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Mechanics

The mechanics of Evaluating unilateral counterparty
risk

payoff under
counterparty
default risk

counterparty
defaults after
final maturity

original payoff of the instrument

counterparty
defaults before
final maturity

all cash flows before default
⊕ recovery of the residual NPV at
default if positive
	 Total residual NPV at default if
negative
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Mechanics General formula, Symmetry vs Asymmetry

General Formulation under Asymmetry

ΠD
B (t ,T ) = 1τC>T ΠB(t ,T )

+1t<τC≤T
[
ΠB(t , τC) + D(t , τC)

(
RECC (NPVB(τC))+ − (−NPVB(τC))+)]

This last expression is the general payoff seen from the point of view of
‘B’ (ΠB, NPVB) under unilateral counterparty default risk. Indeed,

1 if there is no early default, this expression reduces to first term on
the right hand side, which is the payoff of a default-free claim.

2 In case of early default of the counterparty, the payments due
before default occurs are received (second term)

3 and then if the residual net present value is positive only the
recovery value of the counterparty RECC is received (third term),

4 whereas if it is negative it is paid in full by the investor/ Bank
(fourth term).
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Mechanics Unilateral Credit Valuation Adjustment (UCVA)

General Formulation under Asymmetry

If one simplifies the cash flows and takes the risk neutral expectation,
one obtains the fundamental formula for the valuation of counterparty
risk when the investor/ Bank B is default free:

Et
{

ΠD
B (t ,T )

}
=

111{τC>t}Et {ΠB(t ,T )} − Et
{

LGDC111{t<τC≤T}D(t, τC) [NPVB(τC)]+
}

(∗)

First term : Value without counterparty risk.
Second term : Unilateral Counterparty Valuation Adjustment
NPV(τC) = EτC [Π(τC ,T )] is the value of the transaction on the
counterparty default date. LGD = 1 - REC counterparty.

UCVA0 = Et
{

LGDC111{t<τC≤T}D(t, τC) [NPVB(τC)]+
}
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Mechanics Unilateral Credit Valuation Adjustment (UCVA)

Proof of the formula

In the proof we omit indices: τ = τC , REC=RECC , LGD=LGDC ,
NPV=NPVB, Π = ΠB. The proof is obtained easily putting together the
following steps. Since

1{τ>t}Π(t ,T ) = 1{τ>T}Π(t ,T ) + 1{t<τ≤T}Π(t ,T )

we can rewrite the terms inside the expectation in the right hand side
of the simplified formula (*) as

111{τ>t}Π(t ,T )−
{

LGD111{t<τ≤T}D(t , τ) [NPV(τ)]+
}

= 1{τ>T}Π(t ,T ) + 1{t<τ≤T}Π(t ,T )

+ {(REC− 1)[1{t<τ≤T}D(t , τ)(NPV(τ))+]}
= 1{τ>T}Π(t ,T ) + 1{t<τ≤T}Π(t ,T )

+ REC 1{t<τ≤T}D(t , τ)(NPV(τ))+ − 1{t<τ≤T}D(t , τ)(NPV(τ))+

Conditional on the information at τ the second and the fourth terms are
equal to
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Mechanics Unilateral Credit Valuation Adjustment (UCVA)

Proof (cont’d)

Eτ [1{t<τ≤T}Π(t ,T )− 1{t<τ≤T}D(t , τ)(NPV(τ))+]

= Eτ [1{t<τ≤T}[Π(t , τ) + D(t , τ)Π(τ,T )− D(t , τ)(Eτ [Π(τ,T )])+]]

= 1{t<τ≤T}[Π(t , τ) + D(t , τ)Eτ [Π(τ,T )]− D(t , τ)(Eτ [Π(τ,T )])+]

= 1{t<τ≤T}[Π(t , τ)− D(t , τ)(Eτ [Π(τ,T )])−]

= 1{t<τ≤T}[Π(t , τ)− D(t , τ)(Eτ [−Π(τ,T )])+]

= 1{t<τ≤T}[Π(t , τ)− D(t , τ)(−NPV(τ))+]

since

1{t<τ≤T}Π(t ,T ) = 1{t<τ≤T}{Π(t , τ) + D(t , τ)Π(τ,T )}

and f = f + − f− = f + − (−f )+.
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Mechanics Unilateral Credit Valuation Adjustment (UCVA)

Proof (cont’d)

Then we can see that after conditioning the whole expression of the
original long payoff on the information at time τ and substituting the
second and the fourth terms just derived above, the expected value
with respect to Ft coincides exactly with the one in our simplified
formula (*) by the properties of iterated expectations by which
Et [X ] = Et [Eτ [X ]].
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Mechanics Unilateral Credit Valuation Adjustment (UCVA)

What we can observe

Including counterparty risk in the valuation of an otherwise
default-free derivative =⇒ credit (hybrid) derivative.

The inclusion of counterparty risk adds a level of optionality to the
payoff.
In particular, model independent products become model
dependent also in the underlying market.
=⇒ Counterparty Risk analysis incorporates an opinion
about the underlying market dynamics and volatility.
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Mechanics Unilateral Debit Valuation Adjustment (UDVA)

The point of view of the counterparty “C”

The deal from the point of view of ‘C’, while staying in a world where
only ‘C” may default.

ΠD
C(t ,T ) = 1τC>T ΠC(t ,T )

+1t<τC≤T
[
ΠC(t , τC) + D(t , τC)

(
(NPVC(τC))+ − RECC (−NPVC(τC))+)]

This last expression is the general payoff seen from the point of view of
‘C’ (ΠC , NPVC) under unilateral counterparty default risk. Indeed,

1 if there is no early default, this expression reduces to first term on
the right hand side, which is the payoff of a default-free claim.

2 In case of early default of the counterparty ‘C”, the payments due
before default occurs go through (second term)

3 and then if the residual net present value is positive to the
defaulted ‘C’, it is received in full from ‘B’ (third term),

4 whereas if it is negative, only the recovery fraction RECC it is paid
to ‘B’ (fourth term).
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Mechanics Unilateral Debit Valuation Adjustment (UDVA)

The point of view of the counterparty “C”

The above formula simplifies to

Et
{

ΠD
C(t ,T )

}
=

111τC>tEt {ΠC(t ,T )}+ Et
{

LGDC111t<τC≤TD(t, τC) [−NPVC(τC)]+
}

and the adjustment term with respect to the risk free price
Et {ΠC(t ,T )} is called

UNILATERAL DEBIT VALUATION ADJUSTMENT

UDVAC(t) = Et
{

LGDC111{t<τC≤T}D(t, τC) [−NPVC(τC)]+
}

We note that UDVAC = UCVAB.
Notice also that in this universe UDVAB = UCVAC = 0.
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Mechanics Bilateral Risk and DVA

Including the investor/ Bank default or not?

Often the investor, when computing a counterparty risk adjustment,
considers itself to be default-free. This can be either a unrealistic
assumption or an approximation for the case when the counterparty
has a much higher default probability than the investor.

If this assumption is made when no party is actually default-free, the
unilateral valuation adjustment is asymmetric: if “C” were to consider
itself as default free and “B” as counterparty, and if “C” computed the
counterparty risk adjustment, this would not be the opposite of the one
computed by “B” in the straight case.

Also, the total NPV including counterparty risk is similarly asymmetric,
in that the total value of the position to “B” is not the opposite of the
total value of the position to “C”. There is no cash conservation.
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Mechanics Bilateral Risk and DVA

Including the investor/ Bank default or not?

We get back symmetry if we allow for default of the investor/ Bank in
computing counterparty risk. This also results in an adjustment that is
cheaper to the counterparty “C”.

The counterparty “C” may then be willing to ask the investor/ Bank “B”
to include the investor default event into the model, when the
Counterparty risk adjustment is computed by the investor
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Mechanics Bilateral Risk and DVA

The case of symmetric counterparty risk

Suppose now that we allow for both parties to default. Counterparty
risk adjustment allowing for default of “B”?
“B” : the investor; “C”: the counterparty;
(“1”: the underlying name/risk factor of the contract).
τB, τC : default times of “B” and “C”. T : final maturity
We consider the following events, forming a partition

Four events ordering the default times

A = {τB ≤ τC ≤ T} E = {T ≤ τB ≤ τC}
B = {τB ≤ T ≤ τC} F = {T ≤ τC ≤ τB}
C = {τC ≤ τB ≤ T}
D = {τC ≤ T ≤ τB}

Define NPV{B,C}(t) := Et [Π{B,C}(t ,T )], and recall ΠB = −ΠC .
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Mechanics Bilateral Risk and DVA

The case of symmetric counterparty risk
ΠD

B (t ,T ) = 1E∪F ΠB(t ,T )

+1C∪D
[
ΠB(t , τC) + D(t , τC)

(
RECC (NPVB(τC))+ − (−NPVB(τC))+)]

+1A∪B
[
ΠB(t , τB) + D(t , τB)

(
(NPVB(τB))+ − RECB (−NPVB(τB))+)]

1 If no early default⇒ payoff of a default-free claim (1st term).
2 In case of early default of the counterparty, the payments due

before default occurs are received (second term),
3 and then if the residual net present value is positive only the

recovery value of the counterparty RECC is received (third term),
4 whereas if negative, it is paid in full by the investor/ Bank (4th

term).
5 In case of early default of the investor, the payments due before

default occurs are received (fifth term),
6 and then if the residual net present value is positive it is paid in full

by the counterparty to the investor/ Bank (sixth term),
7 whereas if it is negative only the recovery value of the investor/

Bank RECB is paid to the counterparty (seventh term).
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Mechanics Bilateral Risk and DVA

The case of symmetric counterparty risk

Et

{
ΠD

B (t ,T )
}

= Et {ΠB(t ,T )}+ DVAB(t)− CVAB(t)

DVAB(t) = Et
{

LGDB · 111(t < τ 1st = τB < T) · D(t, τB) · [−NPVB(τB)]+
}

CVAB(t) = Et
{

LGDC · 111(t < τ 1st = τC < T) · D(t, τC) · [NPVB(τC)]+
}

1(A ∪ B) = 1(t < τ1st = τB < T ), 1(C ∪ D) = 1(t < τ1st = τC < T )

Obtained simplifying the previous formula and taking expectation.
2nd term : adj due to scenarios τB < τC . This is positive to the
investor/ Bank B and is called ”Debit Valuation Adjustment” (DVA)
3d term : Counterparty risk adj due to scenarios τC < τB

Bilateral Valuation Adjustment as seen from B:
BVAB = DVAB − CVAB.
If computed from the opposite point of view of “C” having
counterparty “B”, BVAC = −BVAB. Symmetry.
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Mechanics Bilateral Risk and DVA

The case of symmetric counterparty risk

Strange consequences of the formula new mid term, i.e. DVA

credit quality of investor WORSENS⇒ books POSITIVE MARK
TO MKT
credit quality of investor IMPROVES⇒ books NEGATIVE MARK
TO MKT
Citigroup in its press release on the first quarter revenues of 2009
reported a positive mark to market due to its worsened credit
quality: “Revenues also included [...] a net 2.5$ billion positive
CVA on derivative positions, excluding monolines, mainly due to
the widening of Citi’s CDS spreads”

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 118 / 325



Mechanics DVA Hedging?

The case of symmetric counterparty risk: DVA?

October 18, 2011, 3:59 PM ET, WSJ. Goldman Sachs
Hedges Its Way to Less Volatile Earnings.

Goldman’s DVA gains in the third quarter totaled $450 million [...] That
amount is comparatively smaller than the $1.9 billion in DVA gains that
J.P. Morgan Chase and Citigroup each recorded for the third quarter.
Bank of America reported $1.7 billion of DVA gains in its investment
bank. Analysts estimated that Morgan Stanley will record $1.5 billion of
net DVA gains when it reports earnings on Wednesday [...]

Is DVA real? DVA Hedging. Buying back bonds? Proxying?

DVA hedge? One should sell protection on oneself, impossible, unless
one buys back bonds that he had issued earlier. Very Difficult.
Most times: proxying. Instead of selling protection on oneself, one
sells protection on a number of names that one thinks are highly
correlated to oneself.
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Mechanics DVA Hedging?

The case of symmetric counterparty risk: DVA?

Again from the WSJ article above:

[...] Goldman Sachs CFO David Viniar said Tuesday that the company
attempts to hedge [DVA] using a basket of different financials.
A Goldman spokesman confirmed that the company did this by selling
CDS on a range of financial firms. [...] Goldman wouldn’t say what
specific financials were in the basket, but Viniar confirmed [...] that the
basket contained ’a peer group.’

This can approximately hedge the spread risk of DVA, but not the jump
to default risk. Merrill hedging DVA risk by selling protection on
Lehman would not have been a good idea. Worsens systemic risk.
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Mechanics DVA Hedging?

DVA or no DVA? Accounting VS Capital Requirements

NO DVA: Basel III, page 37, July 2011 release

This CVA loss is calculated without taking into account any offsetting
debit valuation adjustments which have been deducted from capital
under paragraph 75.

YES DVA: FAS 157
Because nonperformance risk (the risk that the obligation will not be
fulfilled) includes the reporting entitys credit risk, the reporting entity
should consider the effect of its credit risk (credit standing) on the fair
value of the liability in all periods in which the liability is measured at
fair value under other accounting pronouncements FAS 157 (see also
IAS 39)
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Mechanics DVA Hedging?

DVA or no DVA? Accounting VS Capital Requirements

Stefan Walter says:

”The potential for perverse incentives resulting from profit being linked
to decreasing creditworthiness means capital requirements cannot
recognise it, says Stefan Walter, secretary-general of the Basel
Committee: The main reason for not recognising DVA as an offset is
that it would be inconsistent with the overarching supervisory prudence
principle under which we do not give credit for increases in regulatory
capital arising from a deterioration in the firms own credit quality.”
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Mechanics DVA Hedging?

The case of symmetric counterparty risk: DVA?

When allowing for the investor to default: symmetry

DVA: One more term with respect to the unilateral case.
depending on credit spreads and correlations, the total adjustment
to be subtracted (CVA-DVA) can now be either positive or
negative. In the unilateral case it can only be positive.
Ignoring the symmetry is clearly more expensive for the
counterparty and cheaper for the investor.
Hedging DVA is difficult. Hedging “by peers” ignores jump to
default risk
We assume the unilateral case in most of the numerical
presentations
WE TAKE THE POINT OF VIEW OF ‘B” from now on, so we omit
the subscript ‘B’. We denote the counterparty as ‘C”.

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 123 / 325



Mechanics Closeout and contagion

Closeout: Replication (ISDA?) VS Risk Free

When we computed the bilateral adjustment formula from

ΠD
B (t ,T ) = 1E∪F ΠB(t ,T )

+1C∪D
[
ΠB(t , τC) + D(t , τC)

(
RECC (NPVB(τC))+ − (−NPVB(τC))+)]

+1A∪B
[
ΠB(t , τB) + D(t , τB)

(
(−NPVC(τB))+ − RECB (NPVC(τB))+)]

(where we now substituted NPVB = −NPVC in the last two terms) we
used the risk free NPV upon the first default, to close the deal. But
what if upon default of the first entity, the deal needs to be valued by
taking into account the credit quality of the surviving party? What if we
make the substitutions

NPVB(τC)→ NPVB(τC) + UDVAB(τC)

NPVC(τB)→ NPVC(τB) + UDVAC(τB)?
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Mechanics Closeout and contagion

Closeout: Replication (ISDA?) VS Risk Free

ISDA (2009) Close-out Amount Protocol.
”In determining a Close-out Amount, the Determining Party may
consider any relevant information, including, [...] quotations (either firm
or indicative) for replacement transactions supplied by one or more
third parties that may take into account the creditworthiness of the
Determining Party at the time the quotation is provided”

This makes valuation more continuous: upon default we still price
including the DVA, as we were doing before default.
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Mechanics Closeout and contagion

Closeout: Substitution (ISDA?) VS Risk Free

The final formula with subsitution closeout is quite complicated:

ΠD
B (t ,T ) = 1E∪F ΠB(t ,T )

+1C∪D

[
ΠB(t , τC) + D(t , τC)

·
(
RECC (NPVB(τC) + UDVAB(τC))+ − (−NPVB(τC)− UDVAB(τC))+) ]

+1A∪B

[
ΠB(t , τB) + D(t , τB)

·
(
(−NPVC(τB)− UDVAC(τB))+ − RECB (NPVC(τB) + UDVAC(τB))+) ]
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Mechanics Closeout and contagion

Closeout: Substitution (ISDA?) VS Risk Free

B. and Morini (2010)
We analyze the Risk Free closeout formula in Comparison with the
Replication Closeout formula for a Zero coupon bond when:
1. Default of ‘B’ and ‘C” are independent
2. Default of ‘B’ and ‘C” are co-monotonic

Suppose ‘B’ (the lender) holds the bond,
and ‘C’ (the borrower) will pay the notional 1 at maturity T .

The risk free price of the bond at time 0 to ’B’ is denoted by P(0,T ).

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 127 / 325



Mechanics Closeout and contagion

Closeout: Replication (ISDA?) VS Risk Free

Suppose ‘B’ (the lender) holds the bond, and ‘C’ (the borrower) will pay
the notional 1 at maturity T .
The risk free price of the bond at time 0 to ’B’ is denoted by P(0,T ).
If we assume deterministic interest rates, the above formulas reduce to

PD,Repl(0,T ) = P(0,T )[Q(τC > T ) + RECCQ(τC ≤ T )]

PD,Free(0,T ) = P(0,T )[Q(τC > T ) + Q(τB < τC < T )

+RECCQ(τC ≤ min(τB,T ))]

= P(0,T )[Q(τC > T ) + RECCQ(τC ≤ T ) + LGDCQ(τB < τC < T )]

Risk Free Closeout and Credit Risk of the Lender
The adjusted price of the bond DEPENDS ON THE CREDIT RISK OF
THE LENDER ‘B’ IF WE USE THE RISK FREE CLOSEOUT. This is
counterintuitive and undesirable.
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Mechanics Closeout and contagion

Closeout: Replication (ISDA?) VS Risk Free

Co-Monotonic Case
If we assume the default of B and C to be co-monotonic, and the
spread of the lender ‘B” to be larger, we have that the lender ‘B”
defaults first in ALL SCENARIOS (e.g. ‘C’ is a subsidiary of ‘B’, or a
company whose well being is completely driven by ‘B’: ‘C’ is a trye
factory whose only client is car producer ‘B”). In this case

PD,Repl(0,T ) = P(0,T )[Q(τC > T ) + RECCQ(τC ≤ T )]

PD,Free(0,T ) = P(0,T )[Q(τC > T ) + Q(τC < T )] = P(0,T )

Risk free closeout is correct. Either ‘B” does not default, and then ‘C”
does not default either, or if ‘B” defaults, at that precise time C is
solvent, and B recovers the whole payment. Credit risk of ‘C” should
not impact the deal.

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 129 / 325



Mechanics Closeout and contagion

Closeout: Substitution (ISDA?) VS Risk Free

Contagion. What happens at default of the Lender

PD,Subs(t ,T ) = P(t ,T )[Qt (τC > T ) + RECCQt (τC ≤ T )]

PD,Free(t ,T ) = PD,Subs(t ,T ) + P(t ,T )LGDCQt (τB < τC < T )

We focus on two cases:
τB and τC are independent. Take t < T .

Qt−∆t (τB < τC < T ) 7→ {τB = t} 7→ Qt+∆t (τC < T )

and this effect can be quite sizeable.
τB and τC are comonotonic. Take an example where τB = t < T
implies τC = u < T with u > t . Then

Qt−∆t (τC > T ) 7→ {τB = t , τC = u} 7→ 0

Qt−∆t (τC ≤ T ) 7→ {τB = t , τC = u} 7→ 1

Qt−∆t (τB < τC < T ) 7→ {τB = t , τC = u} 7→ 1
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Mechanics Closeout and contagion

Closeout: Substitution (ISDA?) VS Risk Free

Let us put the pieces together:

τB and τC are independent. Take t < T .

PD,Subs(t −∆t ,T ) 7→ {τB = t} 7→ no change

PD,Free(t −∆t ,T ) 7→ {τB = t} 7→ add Qt−∆t (τB > τC , τC < T )

and this effect can be quite sizeable.
τB and τC are comonotonic. Take an example where τB = t < T
implies τC = u < T with u > t . Then

PD,Subs(t −∆t ,T ) 7→ {τB = t} 7→ subtract X

X = LGDCP(t ,T )Qt−∆t (τC > T )

PD,Free(t −∆t ,T ) 7→ {τB = t} 7→ no change
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Mechanics Closeout and contagion

Closeout: Replication (ISDA?) VS Risk Free

The independence case: Contagion with Risk Free closeout
The Risk Free closeout shows that upon default of the lender, the mark
to market to the lender itself jumps up, or equivalently the mark to
market to the borrower jumps down. The effect can be quite
dramatic.
The Replication closeout instead shows no such contagion, as the
mark to market does not change upon default of the lender.

The co-monotonic case: Contagion with Replication closeout
The Risk Free closeout behaves nicely in the co-monotonic case, and
there is no change upon default of the lender.
Instead the Replication closeout shows that upon default of the lender
the mark to market to the lender jumps down, or equivalently the mark
to market to the borrower jumps up.
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Mechanics Closeout and contagion

Closeout: Replication (ISDA?) VS Risk Free

Impact of an early default of the Lender
Dependence→ independence co-monotonicity

Closeout↓
Risk Free Negatively affects No contagion

Borrower

Replication No contagion Further Negatively
affects Lender

For a numerical case study and more details see Brigo and Morini
(2010, 2011).
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Mechanics Can we neglect first to default risk?

A simplified formula without τ1st for bilateral VA

The simplified formula is only a simplified representation of
bilateral risk and ignores that upon the first default closeout
proceedings are started, thus involving a degree of double
counting
It is attractive because it allows for the construction of a bilateral
counterparty risk pricing system based only on a unilateral one.
The correct formula involves default dependence between the two
parties through τ1st and allows no such incremental construction
A simplified bilateral formula is possible also in case of
substitution closeout, but it turns out to be identical to the
simplified formula of the risk free closeout case.
We analyze the impact of default dependence between investor ‘B’
and counterparty ‘C’ on the difference between the two formulas
by looking at a zero coupon bond and at an equity forward.
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Mechanics Can we neglect first to default risk?

A simplified formula without τ1st for bilateral VA

One can show easily that the difference between the full correct
formula and the simplified formula is

E0[1{τB<τC<T}LGDCD(0, τC)(EτC (Π(τC ,T )))+] (2)
− E0[1{τC<τB<T}LGDBD(0, τB)(−EτB (Π(τB,T )))+].
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Mechanics Can we neglect first to default risk?

A simplified formula without τ1st : The case of a Zero
Coupon Bond

We work under deterministic interest rates. We consider P(t ,T ) held
by ‘B” (lender) who will receive the notional 1 from ‘C”(borrower) at
final maturity T if there has been no default of ‘C”.

The difference between the correct bilateral formula and the simplified
one is, under risk free closeout,

LGDCP(0,T )Q(τB < τC < T ).

The case with substitution closeout is instead trivial and the difference
is null. For a bond, the simplified formula coincides with the full
substitution closeout formula.

Therefore the difference above is the same difference between risk
free closeout and substitution closeout formulas, and has been
examined earlier, also in terms of contagion.
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Mechanics Can we neglect first to default risk?

A simplified formula without τ1st : The case of an
Equity forward

In this case the payoff at maturity time T is given by ST − K

where ST is the price of the underlying equity at time T and K the
strike price of the forward contract (typically K = S0, ‘at the money’, or
K = S0/P(0,T ), ‘at the money forward’).

We compute the difference DBC between the correct bilateral risk free
closeout formula and the simplified one.
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Mechanics Can we neglect first to default risk?

A simplified formula without τ1st : The case of an
Equity forward

DBC := A1 − A2, where

A1 = E0
{

1{τB<τC<T}LGDCD(0, τC)(SτC − P(τC ,T )K )+
}

A2 = E0
{

1{τC<τB<T}LGDBD(0, τB)(P(τB,T )K − SτB )+
}

The worst cases will be the ones where the terms A1 and A2 do not
compensate. For example assume there is a high probability that
τB < τC and that the forward contract is deep in the money. In such
case A1 will be large and A2 will be small.

Similarly, a case where τC < τB is very likely and where the forward is
deep out of the money will lead to a large A2 and to a small A1.

However, we show with a numerical example that even when the
forward is at the money the difference can be relevant. For more
details see Brigo and Buescu (2011).
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Mechanics Can we neglect first to default risk?

Figure: DBC plotted against Kendall’s tau between τB and τC , all other
quantities being equal: S0 = 1, T = 5, σ = 0.4, K = 1, λB = 0.1, λC = 0.05.
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Mechanics Payoff Risk

PAYOFF RISK

The exact payout corresponding with the Credit and Debit valuation
adjustment is not clear.

DVA or not?
Which Closeout?
First to default risk or not?
How are collateral and funding accounted for exactly?

Worse than model risk: Payout risk. WHICH PAYOUT?
At a recent industry panel (WBS) on CVA it was stated that 5 banks
might compute CVA in 15 different ways.
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Model

Methodology
1 Assumption: The Bank/investor enters a transaction with a

counterparty and, when dealing with Unilateral Risk, the investor
considers itself default free.
Note : All the payoffs seen from the point of view of the investor.

2 We model and calibrate the default time of the counterparty using
a stochastic intensity default model, except in the equity case
where we will use a firm value model.

3 We model the transaction underlying and estimate the deal NPV
at default.

4 We allow for the counterparty default time and the contract
underlying to be correlated.

5 We start however from the case when such correlation can be
neglected.
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Model Modeling the underlying

Approximation: Default Bucketing
General Formulation

1 Model (underlying) to estimate the NPV of the transaction.

2 Simulations are run allowing for correlation between the credit and
underlying models, to determine the counterparty default time and the
underlying deal NPV respectively.

Approximated Formulation under default bucketing

E0ΠD(0,T ) := E0Π(0,T )− LGDE0[1{τ<Tb} D(0, τ)(EτΠ(τ,T ))+]

= E0Π(0,T )− LGDE0[(
b∑

j=1

1{τ ∈ (Tj−1,Tj ]}) D(0, τ)(EτΠ(τ,T ))+]

= E0Π(0,T )− LGD

b∑
j=1

E0[1{τ ∈ (Tj−1,Tj ]} D(0, τ)(EτΠ(τ,T ))+]

≈ E0Π(0,T )− LGD

b∑
j=1

E0[1{τ ∈ (Tj−1,Tj ]} D(0,Tj )(ETj Π(Tj ,T ))+]
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Model Modeling the underlying

Approximation: Default Bucketing and Independence

1 In this formulation defaults are bucketed but we still need a joint
model for τ and the underlying Π including their correlation.

2 Option model for Π is implicitly needed in τ scenarios.

Approximated Formulation under independence (and 0 correlation)

E0ΠD(0,T ) := E0Π(0,T )

−LGD

b∑
j=1

Q{τ ∈ (Tj−1,Tj ]} E0[D(0,Tj )(ETj Π(Tj ,T ))+]

1 In this formulation defaults are bucketed and only survival probabilities
are needed (no default model).

2 Option model is STILL needed for the underlying of Π.
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Model Modeling the credit part

Ctrparty default model: CIR++ stochastic intensity

If we cannot assume independence, we need a default model.
Counterparty instantaneous credit spread: λ(t) = y(t) + ψ(t ;β)

1 y(t) is a CIR process with possible jumps

dyt = κ(µ−yt )dt+ν
√

ytdW y
t +dJt , τC = Λ−1(ξ), Λ(T ) =

∫ T

0
λ(s)ds

2 ψ(t ;β) is the shift that matches a given CDS curve
3 ξ is standard exponential independent of all brownian driven

stochastic processes
4 In CDS calibration we assume deterministic interest rates.
5 Calibration : Closed form Fitting of model survival probabilities to

counterparty CDS quotes
6 B and El Bachir (2010) (Mathematical Finance) show that this

model with jumps has closed form solutions for CDS options.
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Model Modeling the credit part

4 cases: Rates, Credit, Commodities and Equity

Impact of dynamics, volatilities, correlations, wrong way risk

Interest Rate Swaps and Derivatives Portfolios (B. Masetti
(2005), B. Pallavicini 2007, 2008, B. Capponi P. Papatheodorou
2011, B. C. P. P. 2012 with collateral and gap risk)
Commodities swaps (Oil) (B. and Bakkar 2009)
Credit: CDS on a reference credit (B. and Chourdakis 2009, B.
C. Pallavicini 2012 Mathematical Finance)
Equity Return Swaps (B. and Tarenghi 2004, B. T. Morini 2011)
Equity uses AT1P firm value model of B. and T. (2004) (barrier
options with time-inhomogeneous GBM) and extensions (random
barriers for risk of fraud).

Further asset classes are studied in the literature. For example see
Biffis et al (2011) for CVA on longevity swaps.
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Model Modeling the credit part

4 cases: Interest Rates, Credit, Commodities and
Equity

We now examine UCVA with WWR for:
Interest Rate Swaps and Derivatives Portfolios
Commodities swaps (Oil)
Credit: CDS on a reference credit
Equity: Equity Return Swaps
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4 applications: Rates, Commodities Credit and Equity Interest rate swaps

Interest Rates Swap Case
Formulation for IRS under independence (no correlation)

IRSD(t ,K ) = IRS(t .K )

−LGD

b−1∑
i=a+1

Q{τ ∈ (Ti−1,Ti ]}SWAPTIONi,b(t ; K ,Si,b(t), σi,b)

Modeling Approach with corr.
Gaussian 2-factor G2++ short-rate r(t) model:
r(t) = x(t) + z(t) + ϕ(t ;α), r(0) = r0

dx(t) = −ax(t)dt + σdWx
dz(t) = −bz(t)dt + ηdWz

dWx dWz = ρx,zdt

α = [r0, a, b, σ, η, ρ1,2]

dWx dWy = ρx,y dt , dWzdWy = ρz,y dt

Calibration

The function ϕ(·;α) is deterministic and is
used to calibrate the initial curve observed
in the market.

We use swaptions and zero curve data to
calibrate the model.

The r factors x and z and the intensity are
taken to be correlated.
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4 applications: Rates, Commodities Credit and Equity Interest rate swaps

Interest Rates Swap Case

Total Correlation Counterparty default / rates

ρ̄ = Corr(drt ,dλt ) =
σρx ,y + ηρz,y√

σ2 + η2 + 2σηρx ,z

√
1 + 2βγ2

ν2yt

.

where β is the intensity of arrival of λ jumps and γ is the mean of the
exponentially distributed jump sizes.

Without jumps (β = 0)

ρ̄ = Corr(drt ,dλt ) =
σρx ,y + ηρz,y√
σ2 + η2 + 2σηρx ,z

.
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4 applications: Rates, Commodities Credit and Equity Interest rate swaps

IRS: Case Study
1) Single Interest Rate Swaps (IRS)
At-the-money fix-receiver forward interest-rate-swap (IRS) paying on
the EUR market.
The IRS’s fixed legs pay annually a 30E/360 strike rate, while the
floating legs pay LIBOR twice per year.
2) Netted portfolios of IRS.
- Portfolios of at-the-money IRS either with different starting dates or
with different maturities.

1 (Π1) annually spaced dates {Ti : i = 0 . . .N}, T0 two business
days from trade date; portfolio of swaps maturing at each Ti , with
i > 0, all starting at T0.

2 (Π2) portfolio of swaps starting at each Ti all maturing at TN .
Can also do exotics (Ratchets, CMS spreads, Bermudan)
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4 applications: Rates, Commodities Credit and Equity Interest rate swaps

IRS Case Study: Payment schedules

T

Π2

T

Π1
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4 applications: Rates, Commodities Credit and Equity Stressing underlying vols, credit spread vols, and correlations

IRS Results
Counterparty risk price for netted receiver IRS portfolios Π1 and Π2
and simple IRS (maturity 10Y). Every IRS, constituting the portfolios,
has unit notional and is at equilibrium. Prices are in bps.
λ correlation ρ̄ Π1 Π2 IRS

3% -1 -140 -294 -36
0 -84 -190 -22
1 -47 -115 -13

5% -1 -181 -377 -46
0 -132 -290 -34
1 -99 -227 -26

7% -1 -218 -447 -54
0 -173 -369 -44
1 -143 -316 -37
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4 applications: Rates, Commodities Credit and Equity Stressing underlying vols, credit spread vols, and correlations

Compare with ”Basel 2” deduced adjustments

Basel 2, under the ”Internal Model Method”, models wrong way risk by
means of a 1.4 multiplying factor to be applied to the zero correlation
case, even if banks have the option to compute their own estimate of
the multiplier, which can never go below 1.2 anyway.

Is this confirmed by our model?

(140− 84)/84 ≈ 66% > 40%

(54− 44)/44 ≈ 23% < 40%

So this really depends on the portfolio and on the situation.
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A bilateral example and correlation risk

Finally, in the bilateral case for Receiver IRS, 10y maturity, high risk
counterparty and mid risk investor, we notice that depending on the
correlations

ρ̄0 = Corr(drt ,dλ0
t ), ρ̄2 = Corr(drt ,dλ2

t ), ρCopula
0,2 = 0

the DVA - CVA or Bilateral CVA does change sign, and in particular for
portfolios Π1 and IRS the sign of the adjustment follows the sign of the
correlations.

ρ̄2 ρ̄0 Π1 Π2 10×IRS
-60% 0% -117(7) -382(12) -237(16)
-40% 0% -74(6) -297(11) -138(15)
-20% 0% -32(6) -210(10) -40(14)
0% 0% -1(5) -148(9) 31(13)

20% 0% 24(5) -96(9) 87(12)
40% 0% 44(4) -50(8) 131(11)
60% 0% 57(4) -22(7) 159(11)
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Payer vs Receiver

Counterparty Risk (CR) has a relevant impact on interest-rate
payoffs prices and, in turn, correlation between interest-rates and
default (intensity) has a relevant impact on the CR adjustment.
The (positive) CR adjustment to be subtracted from the default
free price decreases with correlation for receiver payoffs.
Natural: If default intensities increase, with high positive
correlation their correlated interest rates will increase more than
with low correlation, and thus a receiver swaption embedded in
the adjustment decreases more, reducing the adjustment.
The adjustment for payer payoffs increases with correlation.
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Further Stylized Facts

As the default probability implied by the counterparty CDS
increases, the size of the adjustment increases as well, but the
impact of correlation on it decreases.
Financially reasonable: Given large default probabilities for the
counterparty, fine details on the dynamics such as the correlation
with interest rates become less relevant
The conclusion is that we should take into account
interest-rate/ default correlation in valuing CR interest-rate
payoffs.
In the bilateral case correlation risk can cause the adjustment to
change sign
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Exotics

For examples on exotics, including Bermudan Swaptions and CMS
spread Options, see

Papers with Exotics and Bilateral Risk
Brigo, D., and Pallavicini, A. (2007). Counterparty Risk under
Correlation between Default and Interest Rates. In: Miller, J.,
Edelman, D., and Appleby, J. (Editors), Numerical Methods for
Finance, Chapman Hall.
Brigo, D., Pallavicini, A., and Papatheodorou, V. (2009). Bilateral
counterparty risk valuation for interest-rate products: impact of
volatilities and correlations. Available at Defaultrisk.com, SSRN
and arXiv
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Commodities and WWR

The correlation between interest rates drt (LIBOR, OIS) and credit
intensities dλt , if measured historically, if often quite small in absolute
value. Hence interest rates are a case where including correlation is
good for stress tests and conservative hedging of CVA, but a number
of market participant think that CVA can be computed by assuming
zero correlations.

Whether one agrees or not, there are other asset classes on which
CVA can be computed and where there is agreement on the necessity
of including correlation in CVA pricing. We provide an example: Oil
swaps traded with an airline.

It’s natural to think that the future credit quality of the airline will be
correlated with prices of oil.
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Commodities: Futures, Forwards and Swaps

Forward: OTC contract to buy a commodity to be delivered at a
maturity date T at a price specified today. The cash/commodity
exchange happens at time T.
Future: Listed Contract to buy a commodity to be delivered at a
maturity date T. Each day between today and T margins are called
and there are payments to adjust the position.
Commodity Swap: Oil Example:
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Commodities: Modeling Approach

Schwartz-Smith Model

ln(St ) = xt + lt + ϕ(t)
dxt = −kxtdt + σxdWx

dlt = µdt + σldWl

dWx dWl = ρx,ldt

Correlation with credit

dWx dWy = ρx ,ydt ,
dWl dWy = ρl,ydt

Variables
St : Spot oil price;
xt , lt : short and long term
components of St ;
This can be re-cast in a classic
convenience yield model

Calibration
ϕ: defined to exactly fit the oil forward
curve.
Dynamic parameters k , µ, σ, ρ are
calibrated to At the money implied
volatilities on Futures options.
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Commodities

Total correlation Commodities - Counterparty default

ρ̄ = corr(dλt , dSt ) =
σxρx ,y + σLρL,y√
σ2

x + σ2
L + 2ρx ,LσxσL

We assumed no jumps in the intensity

We show the counterparty risk CVA computed by the AIRLINE on the
BANK. This is because after 2008 a number of bank’s credit quality
deteriorated and an airline might have checked CVA on the bank with
whom the swap was negotiated.
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Commodities: Commodity Volatility Effect
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Commodities: Commodity Volatility Effect

Notice: In this example where CVA is calculated by the AIRLINE,
positive correlation implies larger CVA.

This is natural: if the Bank credit spread widens, and the bank default
becomes more likely, with positive correlation also OIL goes up.

Now CVA computed by the airline is an option, with maturity the default
of the bank=counterparty, on the residual value of a Payer swap. As
the price of OIL will go up at default due to the positive correlation
above, the payer oil-swap will move in-the-money and the OIL option
embedded in CVA will become more in-the-money, so that CVA will
increase.

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 161 / 325



4 applications: Rates, Commodities Credit and Equity CVA for Commodities

Commodities: Credit Volatility Effect
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Commodities1 : Credit volatility effect

ρ̄ intensity volatility νR 0.025 0.25 0.50
-88.5 Payer adj 2.742 1.584 1.307

Receiver adj 1.878 2.546 3.066
-63.2 Payer adj 2.813 1.902 1.63

Receiver adj 1.858 2.282 2.632
-25.3 Payer adj 2.92 2.419 2.238

Receiver adj 1.813 1.911 2.0242
-12.6 Payer adj 2.96 2.602 2.471

Receiver adj 1.802 1.792 1.863
0 Payer adj 2.999 2.79 2.719

Receiver adj 1.79 1.676 1.691
+12.6 Payer adj 3.036 2.985 2.981

Receiver adj 1.775 1.562 1.527
+25.3 Payer adj 3.071 3.184 3.258

Receiver adj 1.758 1.45 1.371
+63.2 Payer adj 3.184 3.852 4.205

Receiver adj 1.717 1.154 0.977
+88.5 Payer adj 3.229 4.368 4.973

Receiver adj 1.664 0.988 0.798
Fixed Leg Price maturity 7Y: 7345.39 USD for a notional of 1 Barrel per Month

1adjusment expressed as % of the fixed leg price
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Commodities2 : Commodity volatility effect

ρ̄ Commodity spot volatility σS 0.0005 0.232 0.46 0.93
-88.5 Payer adj 0.322 0.795 1.584 3.607

Receiver adj 0 1.268 2.546 4.495
-63.2 Payer adj 0.322 0.94 1.902 4.577

Receiver adj 0 1.165 2.282 4.137
-25.3 Payer adj 0.323 1.164 2.419 6.015

Receiver adj 0 0.977 1.911 3.527
-12.6 Payer adj 0.323 1.246 2.602 6.508

Receiver adj 0 0.917 1.792 3.325
0 Payer adj 0.324 1.332 2.79 6.999

Receiver adj 0 0.857 1.676 3.115
+12.6 Payer adj 0.324 1.422 2.985 7.501

Receiver adj 0 0.799 1.562 2.907
+25.3 Payer adj 0.324 1.516 3.184 8.011

Receiver adj 0 0.742 1.45 2.702
+63.2 Payer adj 0.325 1.818 3.8525 9.581

Receiver adj 0 0.573 1.154 2.107
+88.5 Payer adj 0.326 2.05 4.368 10.771

Receiver adj 0 0.457 0.988 1.715
Fixed Leg Price maturity 7Y: 7345.39 USD for a notional of 1 Barrel per Month

2adjusment expressed as % of the fixed leg price
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Wrong Way Risk?

Basel 2, under the ”Internal Model Method”, models wrong way risk by
means of a 1.4 multiplying factor to be applied to the zero correlation
case, even if banks have the option to compute their own estimate of
the multiplier, which can never go below 1.2 anyway.
What did we get in our cases? Two examples:

(4.973− 2.719)/2.719 = 82% >> 40%

(1.878− 1.79)/1.79 ≈ 5% << 20%
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Credit (CDS)

Model equations: (”1” = CDS underlying, ”2” = counterparty )

dλj (t) = kj (µj − λj (t))dt + νj
√
λj (t)dZj (t), j = 1,2

Cumulative intensities are defined as : Λ(t) =
∫ t

0 λ(s)ds.

Default times are τj = Λ−1
j (ξj ). Exponential triggers ξ1 and ξ2 are

connected through a gaussian copula with correlation parameter ρ.

In our approach, we take into account default correlation between default
times τ1 and τC and credit spreads volatility νj , j = 1,2.

Important: volatility can amplify default time uncertainty, while high
correlation reduces conditional default time uncertainty.
Taking into account ρ and ν =⇒ better representation of market
information and behavior, especially for wrong way risk.
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Credit (CDS) : Overview
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Credit (CDS) Correlation and Volatility Effects

spread volatility affects
individual times

τC T

τR T

τC τR

default correlation affects
joint times

T

τR τC T
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Moderate counterparty spread ν2 = 0.10
ρ Vol parameter ν1 0.01 0.10 0.20 0.30 0.40 0.50

CDS Implied vol 1.5% 15% 28% 37% 42% 42%
-99 Payer adj 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Receiver adj 40(2) 38(2) 39(2) 38(2) 36(1) 37(1)
-90 Payer adj 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Receiver adj 39(2) 38(2) 38(2) 38(2) 35(1) 37(2)
-60 Payer adj 0(0) 0(0) 0(0) 0(0) 0(0) 1(0)

Receiver adj 36(1) 35(1) 36(1) 36(1) 32(1) 35(1)
-20 Payer adj 0(0) 0(0) 1(0) 2(0) 3(0) 4(1)

Receiver adj 16(1) 16(1) 17(1) 19(1) 18(1) 21(1)
0 Payer adj 3(0) 4(0) 5(0) 7(1) 7(1) 8(1)

Receiver adj 0(0) 2(0) 5(0) 8(0) 10(0) 11(1)
+20 Payer adj 27(1) 25(1) 23(1) 20(1) 16(2) 13(1)

Receiver adj 0(0) 0(0) 1(0) 2(0) 2(0) 4(0)
+60 Payer adj 80(4) 82(4) 67(4) 64(4) 55(3) 48(3)

Receiver adj 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
+90 Payer adj 87(6) 86(6) 88(6) 78(5) 80(5) 71(4)

Receiver adj 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
+99 Payer adj 10(2) 21(3) 52(5) 68(5) 73(5) 76(5)

Receiver adj 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
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Large counterparty spread ν2 = 0.20
ρ Vol parameter ν1 0.01 0.10 0.20 0.30 0.40 0.50

CDS Implied vol 1.5% 15% 28% 37% 42% 42%
-99 Payer adj 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Receiver adj 41(2) 40(2) 39(2) 40(2) 40(2) 40(2)
-90 Payer adj 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Receiver adj 41(2) 39(2) 39(2) 41(2) 40(2) 40(2)
-60 Payer adj 0(0) 0(0) 0(0) 0(0) 1(0) 1(0)

Receiver adj 39(1) 37(1) 37(1) 37(1) 36(1) 35(1)
-20 Payer adj 0(0) 0(0) 2(0) 3(0) 3(0) 4(1)

Receiver adj 17(1) 17(1) 17(1) 19(1) 21(1) 20(1)
0 Payer adj 3(0) 5(0) 6(0) 7(1) 6(1) 6(1)

Receiver adj 0(0) 2(0) 4(0) 7(0) 10(0) 12(1)
+20 Payer adj 25(1) 24(1) 23(1) 20(1) 17(1) 15(1)

Receiver adj 0(0) 0(0) 1(0) 2(0) 2(0) 4(0)
+60 Payer adj 74(4) 74(4) 69(4) 59(3) 54(3) 52(3)

Receiver adj 0(0) 0(0) 0(0) 0(0) 0(0) 1(0)
+90 Payer adj 91(6) 90(6) 88(5) 80(5) 81(5) 81(5)

Receiver adj 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
+99 Payer adj 43(4) 56(5) 57(5) 72(5) 74(5) 78(5)

Receiver adj 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
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Credit Spread Volatility as a Smoothing Parameter

The dropping blue correlation pattern is due to a feature inherent in the
copula notion (any copula).
Take for example the case with constant deterministic (zero volatility)
intensities for simplicity. Push dependence to co-monotonicity (ρ = 1 in
the Gaussian case), so that

τ1 =
ξ

λ1
τC =

ξ

λC
(∗)

Usually λ1 > λC because one does not buy default protection for name
1 from an entity C that is riskier than 1.
Then τ1 < τC in all scenarios.
Then whenever τC hits, the CDS has already defaulted and there is no
loss faced by B. This is why CVA drops to zero when ρ→ 1.
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Credit Spread Volatility as a Smoothing Parameter

τ1 =
ξ

λ1
τC =

ξ

λC
(∗)

However, if we increase Credit Volatility ν to values that are realistic
(Brigo 2005 on CDS options) the uncertainty in (*) comes back in the
”denominator” and the pattern goes back to be increasing.

The fundamental role of Credit Volatility
Credit Vol is a fundamental risk factor and should be taken into
account. Current models for multiname credit derivatives (CDO,
Default Baskets) ignore credit volatility assuming it is zero. This can
lead to very funny results when the correlation becomes very high
(unrealistic representation of systemic risk)
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CDS: Bilateral
Need to add one Model equations: (”0” = CDS investor )

dλj (t) = kj (µj − λj (t))dt + νj
√
λj (t)dZj (t), j = 0,1,2

Cumulative intensities are defined as : Λ(t) =
∫ t

0 λ(s)ds.

Default times are τj = Λ−1
j (ξj ). Exponential triggers ξ0, ξ1 and ξ2 are

connected through a gaussian copula with correlation parameters r01, r02
and r12.

In our approach, we take into account default correlation between default
times τB, τ1 and τC and credit spreads volatility νj , j = 0,1,2.

Important: volatility can amplify default time uncertainty, while high
correlation reduces conditional default time uncertainty.
Taking into account vols and correlations =⇒ better representation of
market information and behavior, especially for wrong way risk.
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CDS: Bilateral Adjustment to be subtracted

CDS on reference entity “1” traded between investor “0” (protection
seller) and counterparty “2” (protection buyer). τ = min(τB, τC).

CVAt − DVAt =

= LGD2 · Et

{
1τ=τC≤T · D(t , τC) ·

[
1τ1>τC CDSa,b(τC ,S,LGD1)

]+
}

−LGD0 · Et

{
1τ=τB≤T · D(t , τB) ·

[
−1τ1>τB CDSa,b(τB,S,LGD1)

]+
}
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CDS: Bilateral Adjustment to be subtracted

where

CDSa,b(Tj ,S1,LGD1) =

:=

{
S1

[
−
∫ Tb

max{Ta,Tj}
D(Tj , t)(t − Tγ(t)−1)dQ(τ1 > t |GTj )

+
b∑

i=max{a,j}+1

αiD(Tj ,Ti)Q(τ1 > Ti |GTj )

]

+LGD1

[ ∫ Tb

max{Ta,Tj}
D(Tj , t)dQ(τ1 > t |GTj )

]}
Key quantities are CONDITIONAL default probabilities. Conditioning
makes their calculations quite complicated, bringing in a number of
non-tractable copula terms. We used Fourier transforms techniques
combined with copula computations.
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CDS Bilateral Adjustment: A market case with
Lehman, Shell and BA

Maturity Royal Dutch Shell Lehman Brothers British Airways
1y 4/24 6.8/203 10/151
2y 5.8/24.6 10.2/188.5 23.2/230
3y 7.8/26.4 14.4/166.75 50.6/275
4y 10.1/28.5 18.7/152.25 80.2/305
5y 11.7/30 23.2/145 110/335
6y 15.8/32.1 27.3.3/136.3 129.5/342
7y 19.4/33.6 30.5/130 142.8/347
8y 20.5/35.1 33.7/125.8 153.6/350.6
9y 21/36.3 36.5/122.6 162.1/353.3

10y 21.4/37.2 38.6/120 168.8/355.5
Market spread quotes in basis points for Royal Dutch Shell, Lehman
Brothers and British Airways on January 5, 2006 and May 1, 2008.
The notation a/c indicates that a is the CDS spread on Ta =Jan 5,
2006, while c is the CDS spread on Tc = May 1, 2008.
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CDS Bilateral Adjustment: volatility dynamics

2006/2008 y(0) κ µ ν

Lehm “0” 0.0001/ 0.036/ 0.0432/ 0.0553/
0.6611 7.8788 0.0208 0.5722

Shell “1” 0.0001/0.003 0.0394/0.1835 0.0219/0.0089 0.0192/
0.0057

BA “2” 0.00002/0.00001 0.0266/0.6773 0.2582/0.0782 0.0003/
0.2242

The CIR parameters of Lehman Brothers, Royal Dutch Shell and British
Airways calibrated to the market quotes of CDS on January 5, 2006, and May
1, 2008. The notation a/c indicates that a is the CIR parameter on Ta =Jan 5
2006, while c is the CIR parameter on Tc =May 1, 2008.
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CDS Bilateral Adjustment: MTM pre- / in- crisis

We calculate the mtm of the CDS contract as follows:

MTMa,c(S1,LGD012) = CDSD
c,d (Tc ,S1,LGD)−

CDSD
a,b(Ta,S1,LGD)

D(Ta,Tc)

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 179 / 325



4 applications: Rates, Commodities Credit and Equity

CDS Bilateral Adjustment: MTM pre- / in- crisis
r01 r02 r12 Vol. ν1 0.01 0.10 0.20 0.30 0.40 0.50

CDS IV 1.5% 15% 28% 37% 42% 42%
-.3, -.3, .6 L Pay, BA R 39.1(2.1) 44.7(2.0) 51.1(1.9) 58.4(1.4) 60.3(1.7) 63.8(1.1)

BA P, L Rec -84.2(0.0) -83.8(0.1) -83.5(0.1) -83.8(0.1) -83.8(0.2) -83.8(0.2)
-.3, -.3, .8 L P, BA R 13.6(3.6) 22.6(3.2) 35.2(2.6) 43.7(2.0) 45.3(2.4) 52.0(1.4)

BA P, L R -84.2(0.0) -83.9(0.1) -83.6(0.1) -83.9(0.1) -83.9(0.2) -83.8(0.2)
.6, -.3, -.2 L P, BA R 83.1(0.0) 81.9(0.2) 81.6(0.3) 82.4(0.3) 82.6(0.3) 82.8(0.4)

BA P, L R -55.6(1.8) -58.7(1.7) -66.1(1.4) -71.3(1.1) -73.2(1.0) -74.1(0.9)
.8, -.3, -.3 L P, BA R 83.9(0.0) 82.9(0.1) 82.3(0.3) 82.9(0.2) 82.9(0.3) 83.0(0.3)

BA P, L R -36.4(3.3) -41.9(3.0) -55.9(2.2) -63.4(1.6) -65.8(1.5) -66.4(1.5)
0, 0, .5 L P, BA R 50.6(1.5) 54.3(1.5) 59.2(1.5) 64.4(1.1) 65.5(1.3) 68.8(0.8)

BA P, L R -80.9(0.2) -80.5(0.3) -80.9(0.4) -82.3(0.3) -82.6(0.3) -82.8(0.3)
0, 0, .8 L P, BA R 12.3(3.5) 21.0(3.0) 34.9(2.5) 41.3(2.1) 44.6(1.9) 50.6(1.4)

BA P, L R -80.9(0.2) -81.5(0.2) -81.9(0.3) -81.9(0.4) -82.1(0.4) -82.7(0.3)
0, 0, 0 L P, BA R 78.1(0.2) 77.9(0.3) 79.5(0.5) 79.5(0.5) 80.1(0.6) 82.1(0.4)

BA P, L R -81.6(0.2) -81.9(0.2) -82.3(0.3) -82.2(0.4) -82.7(0.3) -83.2(0.3)
0, .7, 0 L P, BA R 77.3(0.3) 77.3(0.4) 78.5(0.5) 79.2(0.5) 79.7(0.6) 81.5(0.4)

BA P, L R -81.2(0.2) -81.8(0.2) -81.9(0.3) -80.8(1.3) -82.4(0.3) -82.6(0.3)
.3, .2, .6 L P, BA R 54.1(1.4) 56.7(1.3) 62.5(1.1) 63.6(1.1) 66.4(0.9) 69.7(0.6)

BA P, L R -81.3(0.2) -81.7(0.2) -81.4(0.4) -81.3(0.5) -81.6(0.4) -82.1(0.4)
.3, .3, .8 L P, BA R 22.8(4.2) 28.8(3.5) 38.6(2.9) 42.6(2.9) 45.9(2.5) 52.0(2.2)

BA P, L R -83.0(0.2) -83.2(0.2) -82.8(0.3) -82.4(0.4) -82.5(0.4) -82.9(0.4)
.5, .5, .5 L P, BA R 62.8(0.8) 64.5(0.8) 67.7(0.8) 68.5(0.9) 71.3(0.7) 73.2(0.6)

BA P, L R -67.4(1.1) -70.4(0.9) -72.9(0.9) -74.4(0.9) -75.8(0.8) -76.7(0.7)
.7, 0, 0 L P, BA R 77.4(0.2) 77.3(0.3) 78.9(0.5) 79.1(0.5) 79.9(0.5) 81.4(0.4)

BA P, L R -47.3(2.2) -55.0(1.9) -61.6(1.6) -65.0(1.5) -67.5(1.3) -69.6(1.1)

CDS marked to market by Lehman Brothers on May 1, 2008. The mark-to-market value of the

CDS without risk adjustment when Lehman Brothers is respectively payer (receiver) is

84.2(-84.2) bps, due to the widening of Shell spreads.
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4 applications: Rates, Commodities Credit and Equity

CDS Bilateral Adjustment: MTM pre- / in- crisis

Negative or null BA“2”/Shell“1” dependence

If BA is negatively correlated or uncorrelated to Shell, see triples
(0.6,−0.3,−0.2), (0.8,−0.3,−0.3), and (0.7,0,0), then the MTM
appears to be the largest for Lehman
This happens whether Lehman is the CDS payer or the CDS
receiver.
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4 applications: Rates, Commodities Credit and Equity

CDS Bilateral Adjustment: MTM pre- / in- crisis

Shell“1” credit spread volatility
Increases in credit spreads volatility of Shell increase the MTM
when Lehman is the CDS payer and decrease the contract
valuation when Lehman is the CDS receiver.
Conversely, if Lehman is receiver, this implies smaller CDS
contract valuations for Lehman.
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4 applications: Rates, Commodities Credit and Equity

CDS Bilateral on a different portfolio: Wrong way risk
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4 applications: Rates, Commodities Credit and Equity Equity Return Swaps

Equity: Intensity vs Firm value models

If we have equity St of a name ‘1’ as contract underlying and we have
the default of the counterparty

τC = Λ−1
C (ξC)

it’s hard to correlate τC and S1 enough, given that the exponential
random variable ξC and any Brownian motion W1 driving S1 will
necessarily be independent.

Underlying Equity/ Counterparty Default correlation
The only hope to create correlation is to put a stochastic λC and
correlate it with W1 driving S1. However, since most of the randomness
of τC comes from ξC , this does not create enough correlation.

With equity we change family of credit models, and resort to Firm
Value (or structural) models for the default of the counterparty.
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4 applications: Rates, Commodities Credit and Equity Equity Return Swaps

Equity: Intensity vs Firm Value models

Intensity VS Firm Value models

τC = Λ−1
C (ξC) vs τC = inf{t : V (t) ≤ H(t)}

Default of the counterparty is the first time when the counterparty firm
value V hits a default barrier H.

Equity/Credit Correlation with Firm Value Models
Now if the underlying equity S1 is driven by a brownian motion W1,

dS1(t) = (r − y1)S1(t)dt + σ1(t)S1(t)dW1(t)

and the counterparty V = VC is also driven by a brownian motion WC ,

dV (t) = (r − q)V (t)dt + σ(t)V (t)dWC(t)

then an effective way to create correlation is dW1dWC = ρ1Cdt
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4 applications: Rates, Commodities Credit and Equity Equity Return Swaps

Equity: Firm Value models for the counterparty default

AT1P model

Let the risk neutral firm value V dynamics and the default barrier Ĥ(t)
of the counterparty ‘C‘ be

dV (t) = V (t)(r(t)− q(t))dt + V (t)σ(t)dWC(t)

H(t) =
H
V0

E [Vt ] e(−B
∫ t

0 σ
2
s ds)

and let the default time τ be the 1st time VC hits H(t) from above,
starting from V0 > H. Here H > 0 and B are free parameters we may
use to shape the barrier.

Then the survival probability is given analytically in close form by a
barrier option type formula (see Brigo and Tarenghi (2005) and Brigo,
Morini and Tarenghi (2011)).
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4 applications: Rates, Commodities Credit and Equity Equity Return Swaps

Firm Value model Calibration to CDS data

It is possible to fit exactly the CDS spreads for the counterparty
through the firm value volatility σ(t) using a bootstrapping procedure.

SMktCDS
0,1y

SMktCDS
0,2y

...
SMktCDS

0,10y

←→


dV (t) = (r − q)V (t)dt + σV (t)V (t)dW (t)
H(t)

model parameters: σV (t)

This ensures that the firm value model is consistent with liquid credit
data of the counterparty.
In the papers we give examples based on Lehman and Parmalat.
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4 applications: Rates, Commodities Credit and Equity Equity Return Swaps

Counterparty risk in equity return swap (ERS)

Initial Time 0: NO FLOWS, or (3)

B −→ KS0 cash −→ C
←− K equity ←−

....

Time Ti : −→ equity dividends −→

B ←− Libor + Spread ←− C
....

Final Time Tb : −→ K equity or KSTb cash −→

B ←− KS0 cash ←− C
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4 applications: Rates, Commodities Credit and Equity Equity Return Swaps

Counterparty risk in equity return swap (ERS)

We are a default-free company (bank) “B” entering a contract with
counterparty “C” (corporate). The reference underlying equity is
“1”.
“B” and “C” agree on an amount K of stocks of “1” (with price S) to
be taken as nominal (N = K S0). The contract starts in Ta = 0 and
has final maturity Tb = T .
At t = 0 there is no exchange of cash (alternatively, we can think
that “C” delivers to “B” an amount K of “1” stock and receives a
cash amount equal to KS0).
At intermediate times “B” pays to “C” the dividend flows of the
stocks (if any) in exchange for a periodic risk free rate plus a
spread X .
At final maturity T = Tb, “B” pays KST to “C” (or gives back the
amount K of stocks) and receives a payment KS0.

The (fair) spread X is chosen in order to obtain a contract whose value
at inception is zero.
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4 applications: Rates, Commodities Credit and Equity Equity Return Swaps

Counterparty risk in equity return swap (ERS)

S0 = 20, volatility σ = 20% and constant dividend yield y = 0.80%.
The simulation date is September 16th, 2009. The contract has
maturity T = 5y and the settlement of the risk free rate has a
semi-annual frequency. Finally, we included a recovery rate REC = 40%
for the counterparty default.

Ti SBID,CDS
i (bps) SASK ,CDS

i (bps)
1y 25 31
3y 34 39
5y 42 47
7y 46 51
10y 50 55

Table: CDS spreads used for the counterparty “B” credit quality in the
valuation of the equity return swap.
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4 applications: Rates, Commodities Credit and Equity Equity Return Swaps

Counterparty risk in equity return swap (ERS)

Fair spread X is driven by CVA
We compute the unilateral CVA adjustment by simulation in the model
above. We search for the spread X such that the total value of the ERS
INLCUDING THE CVA ADJUSTMENT is zero. In fact, it can be proven
that without counterparty credit risk the theoretical fair spread X would
be 0. We see that the spread X is due entirely to counterparty risk.

ρ X (AT1P)
-1 0.0

-0.2 3.0
0 5.5

0.5 14.7
1 24.9

Table: Fair spread X (in basis points) of the Equity Return Swap in five
different correlation cases for AT1P.
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4 applications: Rates, Commodities Credit and Equity Equity Return Swaps

Compare with ”Basel 2” deduced adjustments

Basel 2, under the ”Internal Model Method”, models wrong way risk by
means of a 1.4 multiplying factor to be applied to the zero correlation
case, even if banks have the option to compute their own estimate of
the multiplier, which can never go below 1.2 anyway.

Is this confirmed by our model?

(24.9− 5.5)/5.5 ≈ 353% >> 40%
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Collateral Management and Gap Risk I

Collateral (CSA) is considered to be the solution to counterparty risk.
Periodically, the position is re-valued (”marked to market”) and a
quantity related to the change in value is posted on the collateral
account from the party who is penalized by the change in value.

This way, the collateral account, at the periodic dates, contains an
amount that is close to the actual value of the portfolio and if one
counterparty were to default, the amount would be used by the
surviving party as a guarantee (and viceversa).
Gap Risk is the residual risk that is left due to the fact that the
realingment is only periodical. If the market were to move a lot
between two realigning (”margining”) dates, a significant loss would
still be faced.

Folklore: Collateral completely kills CVA and gap risk is negligible.
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Collateral Management and Gap Risk I

Folklore: Collateral completely kills CVA and gap risk is negligible.
We are going to show that there are cases where this is not the case at
all (B. Capponi and Pallavicini 2012, Mathematical Finance)

Risk-neutral evaluation of counterparty risk in presence of
collateral management can be a difficult task, due to the
complexity of clauses.
Only few papers in the literature deal with it. Among them we cite
Cherubini (2005), Alavian et al. (2008), Yi (2009), Assefa et al.
(2009), Brigo et al (2011) and citations therein.
Example: Collateralized bilateral CVA for a netted portfolio of IRS
with 10y maturity and 1y coupon tenor for different default-time
correlations with (and without) collateral re-hypothecation. See B,
Capponi, Pallavicini and Papatheodorou (2011)
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Collateral Management and Gap Risk II
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Figure explanation

Bilateral valuation adjustment, margining and rehypotecation

The figure shows the BVA(DVA-CVA) for a ten-year IRS under
collateralization through margining as a function of the update
frequency δ with zero correlation between rates and counterparty
spread, zero correlation between rates and investor spread, and zero
correlation between the counterparty and the investor defaults. The
model allows for nonzero correlations as well.
Continuous lines represent the re-hypothecation case, while dotted
lines represent the opposite case. The red line represents an investor
riskier than the counterparty, while the blue line represents an investor
less risky than the counterparty. All values are in basis points.

See the full paper by Brigo, Capponi, Pallavicini and Papatheodorou
‘Collateral Margining in Arbitrage-Free Counterparty Valuation
Adjustment including Re-Hypotecation and Netting”
available at http://arxiv.org/abs/1101.3926
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Figure explanation

From the fig, we see that the case of an investor riskier than the
counterparty (M/H) leads to positive value for DVA-CVA, while the case
of an investor less risky than the counterparty has the opposite
behaviour. If we inspect the DVA and CVA terms as in the paper we
see that when the investor is riskier the DVA part of the correction
dominates, while when the investor is less risky the counterparty has
the opposite behaviour.
Re-hypothecation enhances the absolute size of the correction, a
reasonable behaviour, since, in such case, each party has a greater
risk because of being unsecured on the collateral amount posted to
the other party in case of default.

Let us now look at a case with more contagion: a CDS.
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Collateral Management and Gap Risk I
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Collateral Management and Gap Risk II

The figure refers to a payer CDS contract as underlying. See the full
paper by Brigo, Capponi and Pallavicini (2011) for more cases.

If the investor holds a payer CDS, he is buying protection from the
counterparty, i.e. he is a protection buyer.

We assume that the spread in the fixed leg of the CDS is 100 while the
initial equilibrium spread is about 250.

Given that the payer CDS will be positive in most scenarios, when the
investor defaults it is quite unlikely that the net present value be in
favor of the counterparty.

We then expect the CVA term to be relevant, given that the related
option will be mostly in the money. This is confirmed by our outputs.
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Collateral Management and Gap Risk III

We see in the figure a relevant CVA component (part of the bilateral
DVA - CVA) starting at 10 and ending up at 60 bps when under high
correlation.

We also see that, for zero correlation, collateralization succeeds in
completely removing CVA, which goes from 10 to 0 basis points.

However, collateralization seems to become less effective as default
dependence grows, in that collateralized and uncollateralized CVA
become closer and closer, and for high correlations we still get 60
basis points of CVA, even under collateralization.

The reason for this is the instantaneous default contagion that, under
positive dependency, pushes up the intensity of the survived entities,
as soon as there is a default of the counterparty.
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Collateral Management and Gap Risk IV

Indeed, the term structure of the on-default survival probabilities (see
paper) lies significantly below the one of the pre-default survival
probabilities conditioned on Gτ−, especially for large default correlation.

The result is that the default leg of the CDS will increase in value due
to contagion, and instantaneously the Payer CDS will be worth more.
This will instantly increase the loss to the investor, and most of the
CVA value will come from this jump.

Given the instantaneous nature of the jump, the value at default will be
quite different from the value at the last date of collateral posting,
before the jump, and this explains the limited effectiveness of collateral
under significantly positive default dependence.
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Monitoring Counterparty Credit Risk

When we monitor a (symmetric) risk in a bilateral agreement, we
should introduce a “metric” which is shared by both parties.
→ The ISDA Master Agreement defines the term exposure to be the

netted mid-market mark-to-market value of the transaction.

We name the exposure priced at time t , either by the investor or
by the counterparty, with εt .
Notice that the ISDA Master Agreement allows the calculation
agent to be a third party.
Since counterparty risk can be sized in term of exposure, we can
operate to mitigate the risk by reducing such quantity.
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Mitigating Counterparty Credit Risk – I

The ISDA Master Agreement lists two different tools to reduce
exposure:
→ close-out netting rules, which state that if a default occurs, multiple

obligations between two parties are consolidated into a single net
obligation; and

→ collateralization, namely the right of recourse to some asset of
value that can be sold or the value of which can be applied in the
event of default on the transaction.

We consider that assets used as collaterals are posted on a
Collateral Account held by a Collateral Taker, and we name its
value at time t with Ct .
Notice that if at time t the investor posts some collateral we
consider that dCt < 0, the other way round if the counterparty is
posting.
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Mitigating Counterparty Credit Risk – II

In the following we assume that close-out netting rules are always
active, so that we consider the transaction Π(t ,T ) and the
collateral account Ct together when calculating the CVA.
Thus, under close-out netting rules we get

CVA(t ,T ; C) := Et
[

Π̄(t ,T ; C)− Π(t ,T )− CT D(t ,T )
]

where the expectation is taken under risk-neutral measure, and
Π̄(t ,T ; C) will be analyzed in the following slides.
Furthermore, we assume that mid-market exposure εt can be
calculated from the risk-free Π(t ,T ) as

εt
.

= Et [ Π(t ,T ) ]
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Re-hypothecation Liquidity Risk – I

At transaction maturity or after applying close-out netting, the
originating party expects to get back the remaining collateral.
Yet, prevailing legislations may give to the Collateral Taker some
rights on the collateral itself.
For instance, on an early termination date a counterparty to an
English CSA will find itself as an unsecured creditor, thus entitled
to only a fraction of the value of the collateral it transferred.
With a New York CSA transferred cash collateral or
re-hypothecated collateral are both likely to leave the collateral
provider in the same position as an unsecured creditor, but, in this
case, the parties may agree on amending the provisions of the
CSA which make re-hypothecation possible.
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Counterparty Credit Risk and Collateral Margining Collateralization, Gap Risk and Re-Hypothecation

Re-hypothecation Liquidity Risk – II

In case of collateral re-hypothecation the surviving party must
consider the possibility to recover only a fraction of his collateral.
→ We name such recovery rate REC

′
I , if the investor is the Collateral

Taker, or REC
′
C in the other case (we often use LGD

′
I := 1− REC

′
I and

LGD
′
C := 1− REC

′
C).

In the worst case the surviving party has no precedence on other
creditors to get back his collateral. In such case the recovery rate
of collateral is the one of the transaction. Thus, we get

RECI ≤ REC
′
I ≤ 1 , RECC ≤ REC

′
C ≤ 1

If the Collateral Taker is a risk-free third-party we can assume that
REC
′
I = REC

′
C = 1.
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Counterparty Credit Risk and Collateral Margining Margining Practice

Collateral Choice

Ideally, firms would like an asset of stable and predictable
value, an asset that is not linked to the value of the
transaction in any way and an asset that can be sold quickly
and easily if the need arises. [ISDA, Coll. Review, 1.1]

Thus, in order to achieve an effective collateralization of the
transaction, we require that
→ collaterals hedge investor’s exposure on counterparty’s default

event,
→ they are liquid assets,
→ they are not related to the deal’s underlying assets or to the

counterparty.

In practice, when collaterals do not match such requirements, their
value is reduced by means of corrective factors named haircuts.
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Counterparty Credit Risk and Collateral Margining Margining Practice

Margining Practice – I

In general, margining practice consists in a pre-fixed set of dates
during the life of a deal when both parties post or withdraw
collaterals, according to their current exposure, to or from an
account held by the Collateral Taker.
The Collateral Taker may be a third party or the party of the
transaction who is not posting collateral.
Notice that in legal documents where a pledge or a security
interest is in act the Collateral Taker is named the Secured Party,
while the other party is the Pledgor.
We do not consider legal issues which may change collateral
arrangement (pledge vs. title transfer) but for re-hypothecation
issues.
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Counterparty Credit Risk and Collateral Margining Margining Practice

Margining Practice – II

The Collateral Taker remunerates the account (usually) at
over-night rate.
→ In the following we consider that the collaterals are risk-free and

their account is a cash account accruing at risk-free rate.
At deal termination date the parties are not forced to close the
collateral account, but they may agree to use it for a new deal.
→ We consider that the collateral account is opened anew for each

new deal and it is closed upon a default event occurs or maturity is
reached.

If the account is closed any collateral held by the Collateral Taker
would be required to be returned to the originating party.
→ We have Cu = 0 for all u ≤ t or u ≥ T .

We do not consider haircuts in the following.
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Counterparty Credit Risk and Collateral Margining Margining Practice

Margining Practice – III

A realistic margining practice should allow for collateral posting
only on a fixed time-grid (t0 = t , . . . , tN = T ), and for the presence
of independent amounts (A), minimum transfer amounts (M), and
thresholds (H), with H ≥ M.
Independent amounts represent a further insurance on the
transaction and they are often posted as an upfront protection, but
they may be updated according to exposure changes. We do not
consider them in the following.
Thresholds represent the amount of permitted unsecured risk, so
that they may depend on the credit quality of the counterparties.
Moving thresholds depending on a deterioration of the credit
quality of the counterparties (downgrade triggers) have been a
source of liquidity strain during the market crisis.
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Counterparty Credit Risk and Collateral Margining Margining Practice

Margining Practice – IV

At each collateral posting date ti , the collateral account is updated
according to changes in exposure, otherwise producing an
unsecured risk.

1 First, we consider how much collateral the investor should post to
or withdraw from the collateral account:

1{|(εti +HI)−−C−
t−i
|>M}((εti + HI)

− − C−
t−i

)

2 Then, we consider how much collateral the counterparty should
post to or withdraw from the collateral account:

1{|(εti−HC)+−C+

t−i
|>M}((εti − HC)+ − C+

t−i
)
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Counterparty Credit Risk and Collateral Margining Margining Practice

Margining Practice – V
By adding the two terms we get how the collateral account is
updated during the life of the transaction

Ct0 := 0 , Ct+
N

:= 0 , Cu− :=
Cβ(u)+

D(β(u),u)

Ct+
i

:= Ct−i

+ 1{|(εti +HI )−−C−
t−i
|>M}((εti + HI)

− − C−
t−i

)

+ 1{|(εti−HC )+−C+

t−i
|>M}((εti − HC)+ − C+

t−i
)

where β(u) is the last update time before u, and t0 < u ≤ tN .
In case of no thresholds (HI = HC = 0) and no minimum transfer
amount (M = 0), we obtain a simpler rule

Ct0 = Ct+
N

= 0 , Ct− =
εβ(u)

D(β(u),u)
, Ct+

i
= εti
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Counterparty Credit Risk and Collateral Margining Close-Out Netting Rules

Close-Out Netting Rules – I

The effect of close-out netting is to provide for a single net
payment requirement in respect of all the transactions that
are being terminated, rather than multiple payments between
the parties. Under the applicable accounting rules and capital
requirements of many jurisdictions, the availability of
close-out netting allows parties to an ISDA Master Agreement
to account for transactions thereunder on a net basis. [ISDA, Coll.

Review, 2.1.1]

The occurrence of an event of default gives the parties the right to
terminate all transactions that are concluded under the relevant
ISDA Master Agreement.
The ISDA Master Agreement provides for the mechanism of
close-out netting to be enforced.
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Counterparty Credit Risk and Collateral Margining Close-Out Netting Rules

Close-Out Netting Rules – II

The Secured Party will transfer to the Pledgor any proceeds
and posted credit support remaining after liquidation and/or
set-off after satisfaction in full of all amounts payable by the
Pledgor with respect to any obligations; the Pledgor in all
events will remain liable for any amounts remaining unpaid
after any liquidation and/or set-off. [ISDA, CSA Annex, 8]

In case of default of one party, the surviving party should evaluate
the transactions just terminated, due to the default event
occurrence, to claim for a reimbursement after the application of
netting rules to consolidate the transactions, inclusive of collateral
accounts.
→ The ISDA Master Agreement defines the term close-out amount to

be the amount of the losses or costs of the surviving party would
incur in replacing or in providing for an economic equivalent.
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Counterparty Credit Risk and Collateral Margining Close-Out Netting Rules

Close-Out Netting Rules – III

Notice that the close-out amount is not a symmetric quantity w.r.t.
the exchange of the role of two parties, since it is valued by one
party after the default of the other one.
Instead of the close-out amount we introduce the ”on-default
exposure”, namely the price of the replacing transaction or of its
economic equivalent.
We name the on-default exposure priced at time t by the investor
on counterparty’s default with εI,t (and εC,t in the other case,
namely when the investor is defaulting). Notice that we always
consider all prices from the point of view of the investor. Thus,
→ a positive value for εI,t means the investor is a creditor of the

counterparty, while
→ a negative value for εC,t means the counterparty is a creditor of the

investor.
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Cash Flows on Counterparty Default Event – I

We start by listing all the situations may arise on counterparty
default event. The case of the investor’s default event will be
derived accordingly.
Our goal is to calculate the present value of all cash flows involved
by the contract by taking into account:
→ collateral margining operations, and
→ close-out netting rules in case of default.

Notice that we can safely aggregate the cash flows of the contract
with the ones of the collateral account, since on contract
termination all the posted collateral are returned to the originating
party.
We introduce the (first) default time τ := min{τC , τI}.
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Cash Flows on Counterparty Default Event – II

1 The investor measures a positive (on-default) exposure on
counterparty default (εI,τC > 0), and some collateral posted by the
counterparty is available (CτC > 0).
→ Then, the exposure is reduced by netting, and the remaining

collateral (if any) is returned to the counterparty. If the collateral is
not enough, the investor suffers a loss for the remaining exposure.

1{τ=τC<T}1{εI,τ>0}1{Cτ>0}(RECC(εI,τ − Cτ )+ + (εI,τ − Cτ )−)
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Cash Flows on Counterparty Default Event – III

2 The investor measures a positive (on-default) exposure on
counterparty default (εI,τC > 0), and some collateral posted by the
investor is available (CτC < 0).
→ Then, the investor suffers a loss for the whole exposure. All the

collateral (if any) is returned to the investor if it is not
re-hypothecated, otherwise an unsecured claim is needed.

1{τ=τC<T}1{εI,τ>0}1{Cτ<0}(RECCεI,τ − REC
′
CCτ )
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Cash Flows on Counterparty Default Event – IV

3 The investor measures a negative (on-default) exposure on
counterparty default (εI,τC < 0), and some collateral posted by the
counterparty is available (CτC > 0).
→ Then, the exposure is paid to the counterparty, and the

counterparty gets back its collateral in full.

1{τ=τC<T}1{εI,τ<0}1{Cτ>0}(εI,τ − Cτ )
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Cash Flows on Counterparty Default Event – V

4 The investor measures a negative (on-default) exposure on
counterparty default (εI,τC < 0), and some collateral posted by the
investor is available (CτC < 0).
→ Then, the exposure is reduced by netting and paid to the

counterparty. The investor gets back its remaining collateral (if any)
in full if it is not re-hypothecated, otherwise an unsecured claim is
needed for the part of collateral exceeding the exposure.

1{τ=τC<T}1{εI,τ<0}1{Cτ<0}((εI,τ − Cτ )− + REC
′
C(εI,τ − Cτ )+)
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Aggregating Cash Flows – I

Now, we can aggregate all these cash flows, along with cash flows
coming from the default of the investor and the ones due in case
of non-default, inclusive of the cash-flows of the collateral account.

We obtain the cash flows coming from the default of the investor
simply by reformulating the previous line of reasoning from the
point of view of the counterparty.

In the following equations we use the risk-free discount factor
D(t ,T ), which is implicitly used also in the definitions of the
risk-free discounted payoff Π(t ,T ), and in the accumulation curve
used for the collateral account Ct .
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Aggregating Cash Flows – II
We obtain by summing all the contributions

Π̄(t ,T ; C) =

1{τ>T}Π(t ,T )

+ 1{τ<T}(Π(t , τ) + D(t , τ)Cτ )

+ 1{τ=τC<T}D(t , τ)1{εI,τ<0}1{Cτ>0}(εI,τ − Cτ )

+ 1{τ=τC<T}D(t , τ)1{εI,τ<0}1{Cτ<0}((εI,τ − Cτ )− + REC
′
C(εI,τ − Cτ )+)

+ 1{τ=τC<T}D(t , τ)1{εI,τ>0}1{Cτ>0}((εI,τ − Cτ )− + RECC(εI,τ − Cτ )+)

+ 1{τ=τC<T}D(t , τ)1{εI,τ>0}1{Cτ<0}(RECCεI,τ − REC
′
CCτ )

+ 1{τ=τI<T}D(t , τ)1{εC,τ>0}1{Cτ<0}(εC,τ − Cτ )

+ 1{τ=τI<T}D(t , τ)1{εC,τ>0}1{Cτ>0}((εC,τ − Cτ )+ + REC
′
I(εC,τ − Cτ )−)

+ 1{τ=τI<T}D(t , τ)1{εC,τ<0}1{Cτ<0}((εC,τ − Cτ )+ + RECI(εC,τ − Cτ )−)

+ 1{τ=τI<T}D(t , τ)1{εC,τ<0}1{Cτ>0}(RECIεC,τ − REC
′
ICτ )
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Aggregating Cash Flows – III

Hence, by a straightforward calculation we get

Π̄(t ,T ; C) = Π(t ,T )

− 1{τ<T}D(t , τ)
(
Π(τ,T )− 1{τ=τC}εI,τ − 1{τ=τI}εC,τ

)
− 1{τ=τC<T}D(t , τ)(1− RECC)(ε+

I,τ − C+
τ )+

− 1{τ=τC<T}D(t , τ)(1− REC
′
C)(ε−I,τ − C−τ )+

− 1{τ=τI<T}D(t , τ)(1− RECI)(ε−C,τ − C−τ )−

− 1{τ=τI<T}D(t , τ)(1− REC
′
I)(ε+

C,τ − C+
τ )−

Notice that the collateral account enters only as a term reducing
the exposure of each party upon default of the other one, keeping
into account which is the party who posted the collateral.
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Collateralized Bilateral CVA

Now, by taking risk-neutral expectation of both sides of the above
equation, and by plugging in the definition of mid-market exposure,
we obtain the general expression for collateralized bilateral CVA.

CVA(t ,T ; C) = −Et
[

1{τ<T}D(t , τ)
(
ετ − 1{τ=τC}εI,τ − 1{τ=τI}εC,τ

) ]
− Et

[
1{τ=τC<T}D(t , τ)LGDC(ε+

I,τ − C+
τ )+

]
− Et

[
1{τ=τC<T}D(t , τ)LGD

′
C(ε−I,τ − C−τ )+

]
− Et

[
1{τ=τI<T}D(t , τ)LGDI(ε

−
C,τ − C−τ )−

]
− Et

[
1{τ=τI<T}D(t , τ)LGD

′
I(ε

+
C,τ − C+

τ )−
]

Now, we need a recipe to calculate on-default exposures εI,τC and
εC,τI , that, in the practice, are approximated from today exposure
corrected for haircuts or add-ons.
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Formulae for Collateralized Bilateral CVA – I

We consider all the exposures being evaluated at mid-market,
namely we consider:

εI,t
.

= εC,t
.

= εt

Thus, in such case we obtain for collateralized bilateral CVA

CVA(t ,T ; C) = −Et
[

1{τ=τC<T}D(t , τ)LGDC(ε+
τ − C+

τ )+
]

− Et
[

1{τ=τC<T}D(t , τ)LGD
′
C(ε−τ − C−τ )+

]
− Et

[
1{τ=τI<T}D(t , τ)LGDI(ε

−
τ − C−τ )−

]
− Et

[
1{τ=τI<T}D(t , τ)LGD

′
I(ε

+
τ − C+

τ )−
]

After this section we show a possible way to relax such
approximation.
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Formulae for Collateralized Bilateral CVA – II

If collateral re-hypothecation is not allowed (LGD
′
C
.

= LGD
′
I
.

= 0) the
above formula simplifies to

CVA(t ,T ; C) = −Et
[

1{τ=τC<T}D(t , τ)LGDC(ε+
τ − C+

τ )+
]

− Et
[

1{τ=τI<T}D(t , τ)LGDI(ε
−
τ − C−τ )−

] (4)

On the other hand, if re-hypothecation is allowed and the surviving
party always faces the worst case (LGD

′
C
.

= LGDC and LGD
′
I
.

= LGDI),
we get

CVA(t ,T ; C) = −Et
[

1{τ=τC<T}D(t , τ)LGDC(ετ − Cτ )+
]

− Et
[

1{τ=τI<T}D(t , τ)LGDI(ετ − Cτ )−
] (5)
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

Formulae for Collateralized Bilateral CVA – III

If we remove collateralization (Ct = 0), we recover the result of
Brigo and Capponi (2008), and used in Brigo, Pallavicini and
Papatheodorou (2009).

CVA
BC(t ,T ) = −Et

[
1{τ=τC<T}D(t , τ)LGDCε

+
τ

]
− Et

[
1{τ=τI<T}D(t , τ)LGDIε

−
τ

] (6)

If we remove collateralization (Ct = 0) and we consider a risk-free
investor (τI →∞), we recover the result of Brigo and Pallavicini
(2007), but see also Canabarro and Duffie (2004).

CVA
BP(t ,T ) = −Et

[
1{τC<T}D(t , τC)LGDCε

+
τC

]
(7)
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Counterparty Credit Risk and Collateral Margining Risk-Neutral Modelling of Bilateral CVA with Margining

An Example: Perfect Collateralization

We consider, for this example, updating the collateral account
continuously. We obtain the following (perfect) collateralization
rule.

Cperfect
t := εt

Thus, if we plug it into the collateralized bilateral CVA equation
(with all exposure at mid-market), we get that all terms drop, as
expected, leading to

CVA(t ,T ; Cperfect) = 0

Et
[

Π̄(t ,T ; C)
]

= Et [ Π(t ,T ) ] = εt = Cperfect
t

Thus, the proper discount curve for pricing the deal is the collateral
accrual curve (see also Fujii et al. (2010) or Piterbarg (2010)).
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Funding Costs

Inclusion of Funding Cost

When managing a trading position, one needs to obtain cash in order
to do a number of operations:

hedging the position,
posting collateral,
paying coupons or notionals
set reserves in place

and so on. Where are such founds obtained from?
Obtain cash from her Treasury department or in the market.
receive cash as a consequence of being in the position:

a coupon or notional reimbursement,
a positive mark to market move,
getting some collateral or interest on posted collateral,
a closeout payment.

All such flows need to be remunerated:
if one is ”borrowing”, this will have a cost,
and if one is ”lending”, this will provide revenues.

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 229 / 325



Funding Costs

Inclusion of Funding Cost

Funding is not just different discounting

CVA and DVA are not obtained just by adding a spread to the
discount factor of assets cash flows
Similarly, a hypothetical FVA is not simply applying spreads to
borrowing and lending cash flows.

One has to carefully and properly analyze and price the real cash
flows rather than add an artificial spread. The simple spread may
emerge for very simple deals and under simplifying assumptions (no
correlations, uni-directional cash flows, etc)
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Funding Costs

Inclusion of Funding Cost: literature

Crepey (2011) is one of the most comprehensive treatments so
far. The only limitation is that it does not allow for underlying credit
instruments in the portfolio, and has possible issues with FX.
A related framework that is more general, is in Pallavicini, Perini
and B. (2011). Earlier works are partial.
Piterbarg (2010) considers an initial analysis of the problem of
replication of derivative transactions under collateralization but in
a standard Black Scholes framework without default risk. Burgard
and Kjaer (2011) are more general but do not consider collateral
subtelties and resort to a PDE approach.
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Funding Costs

Funding: The self financing condition

A number of papers (and Hull’s book) have a mistake in the
self-financing condition, in that they assume the risky asset
position is self-financing on its own. They assume the replicating
portfolio to be Pt = ∆tSt + γt , and the self financing condition

dPt = ∆tdSt + dγt ⇒ d(∆tSt ) = ∆tdSt (wrong).

The funding account γ is NOT properly defined that way.
Going back to literature, Morini and Prampolini (2011) focus on
simple products (zero coupon bonds or loans) in order to highlight
some essential features of funding costs and their relationship
with DVA.
Fujii and Takahashi (2010) analyzes implications of currency risk
for collateral modeling.
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Funding Costs

Funding Valuation Adjustment? Can FVA be additive?

A fundamental point is including funding consistently with counterparty
risk. Industry wishes for a “Funding Valuation Adjustment”, or FVA,
that would be additive:

TOTAL PRICE =
= RISK FREE PRICE + DVA - CVA + FVA

Since I need to pay the funding costs to my treasury desk or to the
market party that is funding me, or perhaps since I am receiving
interest on collateral I posted, the real value of the deal is affected.

But is the effect just additive and decomposable with CVA and DVA?

It is not so simple
Funding, credit and market risk interact in a nonlinear and recursive
way and they cannot be decomposed additively.
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Funding Costs

Funding and DVA

DVA a component of FVA?
DVA is related to funding costs when the payout is uni-directional, eg
shorting/issuing a bond, borrowing in a loan, or going short a call
option.

Indeed, if we are short simple products that are uni-directional, we are
basically borrowing.

As we shorted a bond or a call option, for example, we received cash
V0 in the beginning, and we will have to pay the product payout in the
end.

This cash can be used by us to fund other activities, and allows us to
spare the costs of fuding this cash V0 from our treasury.
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Funding Costs

Funding and DVA

Our treasury usually funds in the market, and the market charges our
treasury a cost of funding that is related to the borrowed amount V0, to
the period T and to our own bank credit risk τB < T .

In this sense the funding cost we are sparing when we avoid borrowing
looks similar to DVA: it is related to the price of the object we are
shorting and to our own credit risk.

However quite a number of assumptions is needed to identify DVA with
a pure funding benefit, as we will see below.
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Funding Costs: Quantitative Analysis and ”FVA” Risk-Neutral Modelling of Bilateral CVA with Margining

Basic Payout plus Credit and Collateral: Cash Flows I

We calculate prices by discounting cash-flows under the pricing
measure. Collateral and funding are modeled as additional
cashflows (as for CVA and DVA)
We start from derivative’s cash flows.

V̄t (C; F ) := Et [ Π(t ,T ∧ τ) + . . . ]

where
−→ τ := τC ∧ τI is the first default time, and
−→ Π(t ,u) is the sum of all discounted payoff terms up from t to u,
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Funding Costs: Quantitative Analysis and ”FVA” Risk-Neutral Modelling of Bilateral CVA with Margining

Basic Payout plus Credit and Collateral: Cash Flows II

As second contribution we consider the collateralization procedure
and we add its cash flows.

V̄t (C; F ) := Et [ Π(t ,T ∧ τ) ]

+ Et
[
γ(t ,T ∧ τ ; C) + 1{τ<T}D(t , τ)Cτ− + . . .

]
where
−→ Ct is the collateral account defined by the CSA,
−→ Cτ− is the pre-default value of the collateral account, and
−→ γ(t ,u; C) are the collateral margining costs up to time u.

Notice that when applying close-out netting rules, first we will net
the exposure against Cτ− , then we will treat any remaining
collateral as an unsecured claim.
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Funding Costs: Quantitative Analysis and ”FVA” Risk-Neutral Modelling of Bilateral CVA with Margining

Basic Payout plus Credit and Collateral: Cash Flows III

γ(t ,u; C) :=
n−1∑
k=1

1{t≤tk<u}D(t , tk )Ctk (1− Ptk (tk+1)(1 + αk c̃tk (tk+1)))

where αk = tk+1 − tk and the collateral accrual rates are given by

c̃t := c+
t 1{Ct>0} + c−t 1{Ct<0}

Then, according to CSA, we introduce the pre-default value of the
collateral account Cτ− as

Cτ− :=
n−1∑
k=1

1{tk<τ<tk+1}Ctk Pτ (tk+1)(1 + αk c̃tk (tk+1))
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Funding Costs: Quantitative Analysis and ”FVA” Risk-Neutral Modelling of Bilateral CVA with Margining

Close-Out: Trading-CVA/DVA under Collateral – I

As third contribution we consider the cash flow happening at 1st
default, and we have

V̄t (C; F ) := Et [ Π(t ,T ∧ τ) ]

+ Et
[
γ(t ,T ∧ τ ; C) + 1{τ<T}D(t , τ)Cτ−

]
+ Et

[
1{τ<T}D(t , τ) (θτ (C, ε)− Cτ−) + . . .

]
where
−→ ετ is the amount of losses or costs the surviving party would incur

on default event (close-out amount), and
−→ θτ (C, ε) is the on-default cash flow.

θτ will contain collateral adjusted CVA and DVA payouts for the
instument cash flows
We define θτ including the pre-default value of the collateral
account since it is used by the close-out netting rule to reduce
exposure
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Funding Costs: Quantitative Analysis and ”FVA” Risk-Neutral Modelling of Bilateral CVA with Margining

Close-Out: Trading-CVA/DVA under Collateral – II

The close-out amount is not a symmetric quantity w.r.t. the
exchange of the role of two parties, since it is valued by one party
after the default of the other one.

ετ := 1{τ=τC}εI,τ + 1{τ=τI}εC,τ

Without entering into the detail of close-out valuation we can
assume a close-out amount equal to the risk-free price of
remaining cash flows inclusive of collateralization and funding
costs. More details in the examples.
−→ See ISDA document “Market Review of OTC Derivative Bilateral

Collateralization Practices” (2010).
−→ See, for detailed examples, Parker and McGarry (2009) or Weeber

and Robson (2009)
−→ See, for a review, Brigo, Morini, Pallavicini (2013).
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Funding Costs: Quantitative Analysis and ”FVA” Risk-Neutral Modelling of Bilateral CVA with Margining

Close-Out: Trading-CVA/DVA under Collateral – III

At transaction maturity, or after applying close-out netting, the
originating party expects to get back the remaining collateral.
Yet, prevailing legislation’s may give to the Collateral Taker some
rights on the collateral itself.
−→ In presence of re-hypothecation the collateral account may be used

for funding, so that cash requirements are reduced, but
counterparty risk may increase.

−→ See Brigo, Capponi, Pallavicini and Papatheodorou (2011).
In case of collateral re-hypothecation the surviving party must
consider the possibility to recover only a fraction of his collateral.
−→ We name such recovery rate REC

′
I , if the investor is the Collateral

Taker, or REC
′
C in the other case.

−→ In the worst case the surviving party has no precedence on other
creditors to get back his collateral, so that

RECI ≤ REC
′
I ≤ 1 , RECC ≤ REC

′
C ≤ 1

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 241 / 325



Funding Costs: Quantitative Analysis and ”FVA” Risk-Neutral Modelling of Bilateral CVA with Margining

Close-Out: Trading-CVA/DVA under Collateral – IV

The on-default cash flow θτ (C, ε) can be calculated by following
ISDA documentation. We obtain

θτ (C, ε) := 1{τ=τC<τI}

(
εI,τ − LGDC(ε+

I,τ − C+
τ−)+ − LGD

′
C(ε−I,τ − C−τ−)+

)
+ 1{τ=τI<τC}

(
εC,τ − LGDI(ε

−
C,τ − C−τ−)− − LGD

′
I(ε

+
C,τ − C+

τ−)−
)

where loss-given-defaults are defined as LGDC := 1− RECC , and
so on.
If both parties agree on exposure, namely εI,τ = εC,τ = ετ then

θτ (C, ε) := ετ − 1{τ=τC<τI}ΠCVAcoll + 1{τ=τI<τC}ΠDVAcoll
ΠCVAcoll = LGDC(ε+

τ − C+
τ−)+ + LGD

′
C(ε−τ − C−τ−)+

ΠDVAcoll = LGDI((−ετ )+ − (−Cτ−)+)+ + LGD
′
I(C

+
τ− − ε+

τ )+
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Funding Costs: Quantitative Analysis and ”FVA” Risk-Neutral Modelling of Bilateral CVA with Margining

Close-Out: Trading-CVA/DVA under Collateral – V

In case of re-hypothecation, when LGDC = LGD
′
C and LGDI = LGD

′
I , we

obtain a simpler relationship

θτ (C, ε) := ετ

− 1{τ=τC<τI}LGDC(εI,τ − Cτ−)+

− 1{τ=τI<τC}LGDI(εC,τ − Cτ−)−
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Funding Costs: Quantitative Analysis and ”FVA” Risk-Neutral Modelling of Bilateral CVA with Margining

Funding and Hedging – I

As fourth and last contribution we consider the funding and
hedging procedures and we add their cash flows.

V̄t (C; F ) := Et [ Π(t ,T ∧ τ) ]

+ Et
[
γ(t ,T ∧ τ ; C) + 1{τ<T}D(t , τ)θτ (C, ε)

]
+ Et [ϕ(t ,T ∧ τ ; F ,H) ]

where
−→ Ft is the cash account needed for trading,
−→ Ht is the risky-asset account implementing the hedging strategy,

and
−→ ϕ(t ,T ; F ,H) are the cash F and hedging H funding costs up to u.

In classical Black Scholes on Equity, for a call option (no credit
risk, no collateral, no funding costs),

V̄ Call
t = ∆tSt + ηtBt =: Ht + Ft , τ = +∞, γ = 0, ϕ = 0.
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Funding Costs: Quantitative Analysis and ”FVA” Risk-Neutral Modelling of Bilateral CVA with Margining

Funding and Hedging – II

The cash flows due to the funding and hedging strategy on the
time grid {tj} are equal to

ϕ(t ,u; F ,H) :=
m−1∑
j=1

1{t≤tj<u}D(t , tj )(Ftj + Htj )
(

1− Ptj (tj+1)(1 + αj f̃tj (tj+1))
)

−
m−1∑
j=1

1{t≤tj<u}D(t , tj )Htj

(
1− Ptj (tj+1)(1 + αj h̃tj (tj+1))

)
where the funding/borrowing and investing/lending rates for F

and H are given by

f̃t := f +
t 1{Ft>0} + f−t 1{Ft<0} , h̃t := h+

t 1{Ht>0} + h−t 1{Ht<0}
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Funding Costs: Quantitative Analysis and ”FVA” Risk-Neutral Modelling of Bilateral CVA with Margining

Funding and Hedging – III

Cash is borrowed F > 0 from the treasury at an interest f + (cost) or is
lent F < 0 at a rate f− (revenue)

Risky Hedge asset is worth H. Cash needed to buy H > 0 ie the risky
hedge is borrowed at an interest f + from the treasury (cost); in this
case H can be used for asset lending (Repo for example) at a rate h+

(revenue);

On the other hand if risky hedge is worth H < 0, we may borrow from
the repo market by posting the asset H as guarantee (rate h−, cost),
and lend the obtained cash to the treasury to be remunerated at a rate
f− (revenue).

It is possible to include the risk of default of the funder and funded,
leading to CVA and DVA adjustments for the funding position, see PPB.
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Funding Costs: Quantitative Analysis and ”FVA” The recursive nature of funding adjusted prices

The Recursive Nature of Pricing Equations – I

(∗) V̄t (C; F ) = Et
[

Π(t ,T ∧ τ) + γ(t ,T ∧ τ) + 1{τ<T}D(t , τ)θτ (C, ε)
]

+Et [ϕ(t ,T ∧ τ ; F ,H) ]

where we recall that ϕ(t ,T ∧ τ ; F ) = sum of all the Investor funding
borrowing and lending positions costs/revenues to hedge its trading
position, up to the 1st default.

Recursive pricing algorithm (see full PPB (2011) paper for details)

We obtain a recursive equation: the product price V̄t (C,F ) in (∗)
depends on the funding strategy F ((t ,T ]) after t via ϕ, and the funding
F = V̄ − (C−)H after t depends on the future product price V̄ ((t ,T ]).

This recursive equation can be solved iteratively via LS MC
techniques as in standard CVA calculations→ See PPB (2011)
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Funding Costs: Quantitative Analysis and ”FVA” The recursive nature of funding adjusted prices

The Recursive Nature of Pricing Equations – II

−→ Numerical solutions based on BSDE techniques are required to
solve the general problem.

−→ See Pallavicini, Perini, Brigo (2011) for a discrete time solution.
−→ See Crépey et al. (2012a) for further examples.

The recursive feature of pricing equations is hidden in simplified
approaches starting either from spreading the discount curve, or
from adding simplistic extra pricing terms (FVA?).

A different approach, leading to similar results, is followed by
Crépey et al. (2011) or Burgard and Kjaer (2010,2011) where the
usual risk-neutral evaluation framework is extended to include
many cash accounts accruing at different rates.
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Funding Costs: Quantitative Analysis and ”FVA” The recursive nature of funding adjusted prices

Explain Funding Rates: Trading vs. Funding DVA – I

The funding rate f̃t is determined by the party managing the
funding account for the investor, usually the bank’s treasury
according to its liquidity policy:
−→ trading positions may be netted before searching for funds on the

market;
−→ a Funds Transfer Pricing (FTP) process may be implemented to

gauge the performances of different business units;
−→ a maturity transformation rule can be used to link portfolios to

effective maturity dates;
−→ many source of funding can be mixed to obtain the internal funding

curve; etc. . .

In the literature the role of the treasury is usually neglected,
leading to some controversial results particularly when the funding
positions are not distinguished from the trading positions.
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Funding Costs: Quantitative Analysis and ”FVA” The recursive nature of funding adjusted prices

Explain Funding Rates: Trading vs. Funding DVA – II
In particular, the false claim “funding costs are the DVA”, or even
“there are no funding costs at all”, are often cited in the
practitioners’ literature.

−→ See the querelle following Hull and White (2012), ”FVA =0” (???)

DealPrice = RiskFreePrice - CVA + DVA ± FVA?
Can we simply add a new term called FVA to account for funding
costs, ”funding valuation adjustment”?

We have seen that when including funding we obtain a recursive
nonlinear problem on a specific portfolio (netting set? Aggregation
level? Treasury decision?).

Not additive with CVA and DVA as these cash flows feed each other in
a nonlinear and overlapping way. These risk interact and we can only
compute a total adjustment.
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Funding Costs: Quantitative Analysis and ”FVA” Funding Costs, CVA Desk and Bank Structure

Funding structures inside a bank?

Funding implications on a Bank structure
Including funding costs into valuation, even via a simplistic FVA,
involves methodological, organisational, and structural challenges.

Many difficulties are similar to CVA’s and DVA’s, so Funding can be
integrated in the CVA effort typically.

Reboot IT functions, analytics, methodology, by adopting a
consistent global methodology including a consistent
credit-debit-collateral-funding adjustment
Very strong investment, discontinuity, and against the ”internal
competition” culture
OR include separate and inconsistent CVA and FVA adjustments,
accepting simplifications and double counting.
It can be important to analyze the global funding implications of
the whole trading activity of the bank.
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Funding Costs: Quantitative Analysis and ”FVA” Funding Costs, CVA Desk and Bank Structure

Conclusions on funding

The law of one price
FVA cannot be charged to the counterparty, differently from CVA, and
cannot be bilateral, since we do not know the funding policy of our
counterparties. So even if DVA was giving us some hope to realign
symmetry of prices, funding finally destroys the law of one price and
makes prices a matter of perspective. bid ask?

Is the funding inclusive ”price” a real price?
Each entity computes a different funding adjusted price for the same
product. The funding adjusted ”price” is not a price in the conventional
term. We may use it to book the deal in our system or to pay our
treasury but not to charge a client. It is more a ”value” than a ”price”.
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CCPs

CCPs

Governments pressure
EMIR and Dodd Frank are pushing financial institutions to work
through Central Counterparty Clearing Houses (CCPs).

CCPs are commercial entities that, ideally, would interpose themselves
between the two parties in a trade.

Each party will post collateral margins say daily, every time the
mark to market goes against that party.
Collateral is held by the CCP as guarantee for the other party.
If a party in the deal defaults and the mark to market is in favour of
the other party, then the surviving party will obtain the collateral
from the CCP and will not be affected (?) by counterparty risk.
Moreover, there is also an initial margin that is supposed to cover
for additional risks like deteriorating quality of collateral, gap risk,
wrong way risk, etc.
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CCPs

Figure: Bilateral trades and exposures without CCPs. Source: John Kiff.

http://shadowbankers.wordpress.com/2009/05/07/mitigating-counterparty-credit-risk-
in-otc-markets-the-basics
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CCPs

Figure: Bilateral trades and exposures with CCPs. Source: John Kiff.

http://shadowbankers.wordpress.com/2009/05/07/mitigating-counterparty-credit-risk-
in-otc-markets-the-basics
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CCPs

CCPs

CCPs as the end of counterparty risk?
A number of market operators believe that CCPs are going to be the
end of the counterparty credit and funding risk valuation problems,
with CVA and FVA going to zero.

CCP’s will reduce risk in many cases but are not a panacea. They also
require daily margining, and one may question

The pricing of the fees they apply
The appropriateness of the initial margins and of
overcollateralization buffers that are supposed to account for
wrong way risk and collateral gap risk
The default risk of CCPs themselves.
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CCPs

CCPs

CVA Analytics may still be necessary even with CCPs
Valuation of the above points requires CVA type analytics, inclusive of
collateral gap risk and wrong way risk, similar to those we discuss
here. So unless one trusts blindly a specific clearing house, it will be
still necessary to access CVA analytics and risk measures.
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CCPs

CCPs

Standing problems with CCPs

The following points are worth keeping in mind:a

CCPs are usually highly capitalised. All clearing members post
collateral (asymmetric ”CSA”). Initial margin means clearing
members are overcollateralised all the time.
TABB Group says extra collateral could be about 2 $ Trillion.b

CCPs can default and did default. Defaulted ones - 1974: Caisse
de Liquidation des Affaires en Marchandises; 1983: Kuala Lumpur
Commodity Clearing House; 1987: Hong Kong Futures Exchange.
The ones that were close to default- 1987: CME and OCC, US;
1999: BM&F, Brazil.

aSee for example Piron, B. (2012). Why collateral and CCPs can be bad
for your wealth. SunGard’s Adaptive White Paper.

bRhode, W. (2011). European Credit and Rates Dealers 2011 – Capital,
Clearing and Central Limit Order Books. TABB Group Research Report
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CCPs

CCPs

CCPs and netting
A typical bank may have a quite large number of outstanding trades,
making the netting clause quite material. With just one CCP for all
asset classes across countries and continents, netting efficiency would
certainly improve.
—
However, in real life CCPs deal with specific asset classes or
geographical areas, and this may even reduce netting efficiency
compared to now.
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CCPs

CCPs

CCPs compete with each other
One can be competitive in specific areas but hardly in all of them.
Some CCPs will be profitable in specific asset classes and countries.
They will deal mostly with standardised transactions.
Even if CCPs could function across countries, bankruptcy laws can
make collateral held in one place unusable to cover losses in other
places.a

aSingh, M. (2011) Making OTC Derivatives Safe - A Fresh Look. IMF paper
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CCPs

CCPs

CCPs and EMIR/CDR 4/Basel III/DFA
There is currently ”No legal construct to satisfy both Dodd Frank Act
and EMIR and allow EU clients to access non-EU CCP’s”.a And there
are also other conflicts in this respect. Where will CCPs be located
and which countries will they serve? For example, the European
Central Bank opposed LCH–Clearnet to work with Euro denominated
deals because this CCP is not located in the Eurozone. This lead to a
legal battle with LCH invoking the European Court of Justice.

aWayne, H. (2012). Basel 3, Dodd Frank and EMIR. Citigroup
Presentation.
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CCPs

CCPs

Competition and conflict of interest
To compete CCPs may lower margin requirements, which would make
them riskier (remember the above CCPs defaults). In the US, where
the OTC derivatives market is going through slightly more than 10
large dealers and is largely concentrated among 5, we could have a
conflict of interest. If CCPs end up incorporating most trades currently
occurring OTC bilaterally, then CCPs could become ”too big to fail”.a

aMiller, R. S. (2011) Conflicts of interest in derivatives clearing.
Congressional Research Service report.

Given that CCPs may default, there is counterparty risk and ideally a
CVA towards the CCP.
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CCPs

CCPs

Counterparty Risk with CCPs
The CCP does not post collateral directly to the entities trading with it,
as the collateral agreement is not symmetric.
Hence, pricing counterparty risk towards a CCP is like CVA but
computed without collateral.
On top of that, one has the overcollateralization cost to lose.
Hopefully, the default probability is low, making CVA small, bar strong
contagion, gap risk and WWR
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CCPs

CCPs

CCPs are not the end of CVA and extensions thereof
We need to consider and price/ risk-manage

Checking initial margin charges across different CCPs to see
which ones best reflect actual gap risk and contagion. This
requires a strong pricing apparatus
Computing counterparty risk associated with the default of the
CCP itself
Understanding quantitatively the consequences of the lack of
coordination among CCPs across different countries and
currencies.
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CVA ”Best Practices”: CVA Desk

CVA Desks and ”Best practices”

How do banks price and trade/hedge CVA?

The idea is to move Counterparty Risk management away from classic
asset classes trading desks by creating a specific counterparty risk
trading desk, or ”CVA desk”.

Under a lot of simplifying assumptions, this would allow ”classical”
traders to work in a counterparty risk-free world in the same way as
before the counterparty risk crisis exploded.

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 265 / 325



CVA ”Best Practices”: CVA Desk

CVA Desks and ”Best practices”

What lead to CVA desks?
Roughly, CVA followed this historical path:

Up to 1999/2000 no CVA. Banks manage counterparty risk
through rough and static credit limits, based on exposure
measurements (related to Credit VaR: Credit Metrics 1997).
2000-2007 CVA was introduced to assess the cost of counterparty
credit risk. However, it would be charged upfront and would be
managed mostly statically, with an insurance based approach.
2007 on, banks increasingly manage CVA dynamically. Banks
become interested in CVA monitoring, in daily and even intraday
CVA calculations, in real time CVA calculations and in more
accurate CVA sensitivities, hedging and management.
CVA explodes after 7[8] financials defaults occur in one month of
2008 (Fannie Mae, Freddie Mac, Washington Mutual, Lehman,
[Merrill] and three Icelandic banks).

This contributed to the creation of CVA desks
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CVA ”Best Practices”: CVA Desk

CVA Desks and ”Best practices”

CVA desk location in a bank
In most tier-1 and 2 banks the CVA Desk is in on the capital
markets/trading floor division, being a trading desk. Occasionally it
may sit on the Treasury department (eg Banca IMI). In a few cases it
can be a stand-alone entity outside standard departments
classifications.

Trading floor is natural because it is a trading desk.

CVA desk and Classical Trading desks

The CVA desk charges classical trading desks a CVA fee in order to
protect their trading activities from counterparty risk through hedging.
This may happen also with collateral/CSA in place (Gap Risk, WWR,
etc). The cost of implementing this hedge is the CVA fee the CVA desk
charges to the classical trading desk.
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CVA ”Best Practices”: CVA Desk

CVA Desks and ”Best practices”

CVA desk in the trasury department
Charging a fee is not easy and can make a lot of P&L sensitive traders
nervous. That is one reason why some banks set the CVA desk in the
treasury for example. Being outside the trading floor can avoid some
”political” issues on P&L charges among traders.
—
Furthermore, given that the treasury often controls collateral flows and
funding policies, this would allow to coordinate CVA and FVA
calculations and charges after collateral.
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CVA ”Best Practices”: CVA Desk

CVA Desks and ”Best practices”

How the CVA desk helps other trading desks

The CVA deska would free the classical traders from the need to:
develop advanced credit models to be coupled with classical asset
classes models (FX, equity, rates, commodities...);
know the whole netting sets trading portfolios; traders would have
to worry only about their specific deals and asset classes, as the
CVA desk takes care of ”options on whole portfolios” embedded in
counterparty risk pricing and hedging;
Hedge counterparty credit risk, which is very complicated.

aSee for example ”CVA Desk in the Bank Implementation”, Global Market
Solutions white paper
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CVA ”Best Practices”: CVA Desk

CVA Desks and ”Best practices”

The CVA desk task looks quite difficult
The CVA desk has little/no control on inflowing trades, and has to:

quote quickly to classical trading desks a ”incremental CVA” for
specific deals, mostly for pre-deal analysis with the client;
For every classical trade that is done, the CVA desk needs to
integrate the position into the existing netting sets and in the
global CVA analysis in real time;
related to pre-deal analysis, after the trade execution CVA desk
needs to allocate CVA results for each trade (”marginal CVA”)
Manage the global CVA, and this is the core task: Hedge
counterparty credit and classical risks, including credit-classical
correlations (WWR), and check with the risk management
department the repercussions on capital requirements.
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CVA ”Best Practices”: CVA Desk

CVA Desks and ”Best practices”

CVA Desks effectiveness if often questioned
Of course the idea of being able to relegate all CVA(/DVA/FVA) issues
to a single specialized trading desk is a little delusional.

WWR makes isolating CVA from other activities quite difficult.
In particular WWR means that the idea of hedging CVA and the
pure classical risks separately is not effective.
CVA calculations may depend on the collateral policy, which does
not depend on the CVA desk or even on the trading floor.
We have seen FVA and CVA interact

In any case a CVA desk can have different levels of sophistication and
effectiveness.
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CVA ”Best Practices”: CVA Desk

CVA Desks and ”Best practices”

Classical traders opinions
Clearly, being P&L sensitive, the CVA desk role is rather delicate.
There are mixed feelings.

Because CVA is hard to hedge (especially the jump to default risk
and WWR), occasionally classical traders feel that the CVA desk
does not really hedge their counterparty risk effectively and
question the validity of the CVA fees they pay to the CVA desk.
Other traders are more optimistic and feel protected by the
admittedly approximate hedges implemented by the CVA desk.
There is also a psychological component of relief in delegating
management of counterparty risk elsewhere.
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Restructuring Counterparty Risk

Restructuring Counterparty Credit Risk I

So far we have looked at the question ”What is Counterparty Risk
and how do we price it, possibly in a way that is consistent with
other risks and arbitrage free?”
Early attempts to price it have witnessed considerable CVA
volatility, resulting in important mark to market losses during the
crisis.
This volatility is related to high volatility of credit spreads (see e.g.
Brigo 2005), high volatility of exposure and wrong way risk.
To deal with CVA mark to market risk, according to regulators,
there are mainly two choices: Collateral/CSA and margins
posting or CVA VaR and related capital requirements. Both
ways are likely to worsen the liquidity landscape.
In other terms, we now look at the question: ”What do we do
with Counterparty Risk?”
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Restructuring Counterparty Risk

Restructuring Counterparty Credit Risk II

The industry has been looking at different possible ways to deal
with CVA risks and requirements. We will analyze here ways to
Restructure CVA.
Historically, Contingent CDS would be a good hedge for
counterparty risk. However, such products are opaque, they are
not liquid, can be expensive, and are themselves subject to
counterparty risk. As such, their effectiveness has been quite
limited.
A subsequent more recent attempt in the industry has been based
on securitization of CVA through traditional cash CDO type
structures (e.g. ”Papillon” and ”Score” deals). More on this in a
minute.
Part of the press reported that ”Papillon” failed because the
regulators did not recognize capital relief for the bank that was
selling it.
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Restructuring Counterparty Risk

Restructuring Counterparty Credit Risk III

”Score” had the originating bank more in line with regulators.
However, the press reported that the deal failed presumably
because, even if regulators approved it for capital relief, no
investor has manifested great interest.
These traditional structures would offer a fixed periodic premium
or an upfront as a compensation for the protection being bought.
However, as we shall see below, this implies the volatility of CVA
to go the wrong way.
We will therefore look at a different way to restructure CVA,
namely a form of securitization based both on Margin Lending and
on a floating rate notion of CVA. But first we’ll look at CCDS and at
these cash CDO type deals a little more in detail.
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Restructuring Counterparty Risk CCDS

Restructuring CVA: Contingent CDS (CCDS)

Definition
When the reference credit defaults at τ , the protection seller pays
protection on a notional that is not fixed but given by the NPV of a
reference Portfolio Π at that time if positive. This amount is:
(EτC Π(τC ,T ))+, minus a recovery REC fraction of it.

CCDS default leg payoff = asymmetric counterparty risk adjustm

The payoff of the default leg of a Contingent CDS is exactly

(1− REC)1{(t<τC<T )}D(t , τC)(EτC Π(τC ,T ))+

Precise Valuation? Liquidity?
Counterparty risk of the Protection Seller? Standardization?
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Restructuring Counterparty Risk CCDS

General Remarks on CCDS
”[...]Rudimentary and idiosyncratic versions of these

so-called CCDS have existed for five years, but they have
been rarely traded due to high costs, low liquidity and limited
scope. [...] Counterparty risk has become a particular
concern in the markets for interest rate, currency, and
commodity swaps - because these trades are not always
backed by collateral.[...] Many of these institutions - such as
hedge funds and companies that do not issue debt - are
beyond the scope of cheaper and more liquid hedging tools
such as normal CDS. The new CCDS was developed to
target these institutions (Financial Times, April 10, 2008).”

Being the two payoffs equivalent, UCVA valuation will
hold as well for the default leg of a CCDS.

Interest on CCDS has come back in 2011 now that CVA
capital charges risk to become punitive.
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Restructuring Counterparty Risk Basel III and CVA

Basel III and CVA I

When the valuation of a risk is more dangerous than the risk itself
“Under Basel II, the risk of counterparty default and credit migration
risk were addressed but mark-to-market losses due to credit valuation
adjustments (CVA) were not. During the financial crisis, however,
roughly two-thirds of losses attributed to counterparty credit risk were
due to CVA losses and only about one-third were due to actual
defaults.”

Basel Committee on Banking Supervision, BIS (2011). Press release
available at http://www.bis.org/press/p110601.pdf

Given the above situation, Basel III is imposing very severe capital
requirements for CVA.
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Restructuring Counterparty Risk Basel III and CVA

Basel III and CVA II

This may lead to forms of securitization of CVA such as margin lending
on the whole exposure or on tranches of the exposure.

Such ”securitization of CVA” would be very difficult to model and to
manage, requiring a global valuation perspective.
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Restructuring Counterparty Risk Basel III and CVA

Restructuring Counterparty Risk with CDO type
structures I

There have been a few deals that tried to restructure away
counterparty risk in the hope to get capital relief from regulators. In the
Financial Times blog Alphaville Pollack (2012) [78] reports that

Barcap Bistro
”In short, Barclays has taken a pool of loans and securitised them, but
retained all but the riskiest piece. On that riskiest Euro 300m, Barclays
has bought protection from an outside investor, e.g. hedge fund. That
investor will get paid coupons over time for their trouble, but will also be
hit with any losses on the loans, up to the total amount of their
investment. To ensure that the investor can actually absorb these
losses, collateral is posted with Barclays.”
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Restructuring Counterparty Risk Basel III and CVA

Restructuring Counterparty Risk with CDO type
structures II

Looks like a CDO equity tranche backed by collateral. Regulators did
not like this and did not concede capital relief. Why?

The trick: Paying the expected loss to free capital

”Collateral: in theory Barclays is not exposed to the counterparty risk
of the hedge fund. This is especially important because the hedge
fund is outside the normal sphere of regulation, i.e. they aren’t
required to hold capital against risk-weighted assets in the way banks
are.” [...] But in some cases premiums paid over time to the hedge
fund are actually equal to or above the expected loss of the
transaction. That the Fed and Basel Committee were concerned
enough to issue guidance on this is noteworthy. It’ll be down to
individual national regulators to prevent ”over-engineering”, and some
regulators are more hands-on than others.”
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Restructuring Counterparty Risk Basel III and CVA

Restructuring Counterparty Risk with CDO type
structures III

Bank buys protection: equity tranche corresponding to the
expected loss of the pool from a hedge fund.
Bank makes sure hedge fund is interested by offering a premium
equivalent or even superior to the expected loss itself.
hedge fund posts collateral as guarantee for protection payment.
The hedge fund does not need to have capital in place for its
potential loss, since it is outside the sphere of regulation.
The bank has now bought protection at the cost of expected loss,
but has obtained that immediately back in form of collateral
But, what was the bank objective, the bank has now capital relief
for the risk on which protection has been bought. This may be a
very large effect and the main objective of the bank.
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Restructuring Counterparty Risk with CDO type
structures IV

Notice this point of transferring risk outside the regulated system. This
is a point that is stressed also in the OECD paper [11]. The blog
continues:
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Restructuring Counterparty Risk with CDO type
structures V

RBS SCORE
In Pollack (2012b) [79]. ”RBS had a good go at securitising these
exposures, but the deal didn’t quite make it over the line. However,
Euroweek reports that banks are still looking into it:

’Royal Bank of Scotlands securitisation of counterparty credit risk,
dubbed Score 2011, was pulled earlier this year, but other banks are
said to be undeterred by the difficulties of the asset class, and are still
looking at the market. However, other hedging options for counterparty
risk may have dulled the economics of securitising this risk since the
end of last year.’

Difficulties: A CDO of CVA’s. Pricing? Hedging? Risk management?
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Restructuring Counterparty Risk with CDO type
structures VI

Credit Suisse Bonus policy
Again Pollack (2012c) [80]: ”Last week Credit Suisse announced it had
bought protection on the senior slice of its unusual employee
compensation plan. The Swiss bank pays some of its senior bankers
using a bond referencing counterparty risk, which also involves shifting
some counterparty credit risk from the bank to its workers.”

This is like buying protection from your own employees. Interesting
concept if you think about it. That way the employee, in theory, is
incentivized in improving the risk profile of the company.
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Restructuring Counterparty Risk with CDO type
structures VII

CVA Volatility the wrong way
The problem with the above solutions, and also with the traditional
upfront charge or fixed periodic fee for unilateral CVA is that it leaves
CVA volatility with the investor/bank and not with the risky counterparty
that generated it. This also affects current attempts to restructure
Counterparty Risk (”Papillon/ Barcap, Score/ RBS”)

In the unilateral case, the bank charges an upfront for CVA to the
counterparty and then implements a hedging strategy. The bank is
thus exposed to CVA mark to market volatility in the future.

Alternatively the bank may request collateral from the counterparty, but
not all counterparties are able to regularly post collateral, and this can
be rather punitive for some corporate counterparties.
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Restructuring Counterparty Risk with CDO type
structures VIII

See recent example on Lufthansa from Risk magazine:

The airline’s Cologne-based head of finance, Roland Kern,
expects its earnings to become more volatile ’ not because of
unpredictable passenger numbers, interest rates or jet fuel
prices, but because it does not post collateral in its derivatives
transactions”.

Floating Margin Lending, based on a floating CVA, is a possible
solution this problem with volatility going the right way.
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Floating Margin Lending: I

Traditionally, the CVA is typically charged by the structuring bank B
(investor) either on an upfront basis or it is built into the structure as a
fixed coupon stream.

Floating Margin lending instead is predicated on the notion of floating
rate CVA.

Floating rate CVA in a bi-partite transaction: The bank requires a CVA
payment at time 0 for protection on the exposure up to 6 months. Then
in 6 months the bank will require a CVA payment for protection for
further six months, prevailing at that time, on what will be the exposure
then, and on and on, up to the final maturity.
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Floating Margin Lending: II

Floating Margin lending is designed in such a way to transfer the
conditional credit spread volatility risk and the mark-to-market volatility
risk, or in other terms CVA volatility, from the bank to the
counterparties.

We may explain this more in detail by following the arrows in the
Figure.
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Floating Margin Lending: III
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Floating Margin Lending: IV

To avoid posting collateral, C enters into a floating margin lending
transaction.

C pays periodically (say semi-annually) a floating rate CVA to margin
lender A (‘premium’ arrow connecting C to A), which A pays to
investors (premium arrow connecting A to Investors). This latest
payment can have a seniority structure similar to that of a cash CDO.

In exchange, for six months the investors provide A with daily collateral
posting (‘collateral’ arrow connecting Investors to A) and A passes the
collateral to a custodian (‘collateral’ arrow connecting A to the
custodian).

This collateral need not be cash, but it can be in the form of hypothecs
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Floating Margin Lending: V

If C defaults within the semi-annual period, the collateral is paid to B to
provide protection (‘protection’ arrow connecting the custodian to B)
and the loss in taken by the Investors who provided the collateral.

At the end of the six months period, the margin lender may decide
whether to continue with the deal or to back off.

With this mechanism C is bearing the CVA volatility risk, whereas B is
not exposed to CVA volatility risk, which is the opposite of what
happens with traditional upfront CVA charges.

In traditional CVA, Albanese, B. and Oertel (2011) argue that
whenever an entity’s credit worsens, it receives a subsidy from its
counterparties in the form of a DVA positive mark to market which can
be monetized by the entity’s bond holders only upon their own default.
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Floating Margin Lending: VI

Whenever an entity’s credit improves instead, it is effectively taxed as
its DVA depreciates.

Wealth is thus transferred from firms with improving credit quality to
firms with deteriorating credit quality, the transfer being mediated by
the traditional CVA/DVA mechanics.

Again, Albanese, B. and Oertel (2011) submit that floating margin
lending structures may help reversing this macroeconomic effect.

There are a number of possible problems with the above floating
margin lending scheme.

First problem, proper valuation and hedging of this to the investor who
are providing collateral to the lender is going to be tough. There is no
satisfactory standard for even simple synthetic CDOs.
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Floating Margin Lending: VII
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Floating Margin Lending: VIII
Admittedly this requires and effective global valuation framework, see
for example the discussion in Albanese et al (2011).

A second problem is: what if all margin lenders pull off at some point
due to a systemic crisis?

One may argue that the market is less likely to arrive in such a
situation in the first place if the wrong incentives to defaulting firms are
stopped and an opposite structure, such as floating margin lending, is
implemented.

There is also a penta-partite version including a clearing house.
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Floating Margin Lending: IX
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CVA Restructuring: Global Valuation? I

A fair valuation and risk management of CVA restructuring through
floating margin lending requires a global model, in order to have
consistency and sensible greeks

But even when staying with traditional upfront CVA and DVA in large
portfolios, as our examples above pointed out, different models are
typically used in different asset classes.

This can lead to models that are inconsistent with each other.

For example, our equity example above used a firm value model,
whereas in the other asset classes we used reduced form models.
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CVA Restructuring: Global Valuation? II

What if one has a portfolio with all asset classes together?

More generally, how does one ensure a consistent modeling
framework that is needed to get meaningful prices and especially
cross correlation sensitivities?

The problem is rather difficult and involves important computational
resources and intelligent systems architecture.

Few papers have appeared in the literature that are attempting a global
valuation framework, see for example Albanese et al (2010, 2011).

Delicate points include:
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CVA Restructuring: Global Valuation? III

Modeling dependencies across defaults (we do not have even a good
standard model for synthetic corporate CDO, base correlation still used
there, see for example Brigo Pallavicini and Torresetti (2010))

Modeling dependencies between defaults and each other asset class

Modeling dependencies between different asset classes

Properly including credit volatility with positive credit spreads
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Conclusions I

Counterparty Risk adds one level of optionality.
Analysis including underlying asset/ counterparty default
correlation requires a credit model.
Highly specialized hybrid modeling framework.
Accurate scenarios for wrong way risk.
Outputs vary and can be very different from Basel multipliers
Outputs are strongly model dependent and involve model risk and
model choices
Bilateral CVA brings in symmetry but also paradoxical statements
Bilateral CVA requires a choice of closeout (risk free or
substitution), and this is relevant.
The DVA term in bilateral CVA is hard to hedge, especially in the
jump-to-default risk component.
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Conclusions II

Approximations ignoring first to default risk (sometimes used in
the industry) do not work well.

Inclusion of Collateral and netting rules is possible

Gap risk in collateralization remains relevant in presence of strong
contagion

Funding costs can be included consistently but they break the law
of one price

Funding is not just a spread but a complex nonlinear and recursive
pricing problem

Credit Debit and Funding costs can alter the structure of the bank
organization and are politically sensitive
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Conclusions III

The creation of a CVA (DVA/FVA) trading desk is an attempt to
isolate these advanced effects so that classical trading can work
as before, but this is difficult as risks are not isolated from each
other and hedging may not be separable
Basel III will make capital requirements rather severe and values
CVA in a simplistic way, especially wrt WWR
Contingent CDS as hedging instruments have limited
effectiveness
CVA restructuring through floating margin lending and hypothecs
is a possible alternative
Proper valuation and management of CVA and especially CVA
restructuring requires a Consistent Global Valuation approach
This also holds for possible forms of CVA Securitization

(c) 2012 D. Brigo (www.damianobrigo.it) LGS MF6 PhD Imperial College London 302 / 325



Conclusions and References Conclusions

Conclusions IV

CCPs will become more and more central, but they hardly
represent the end of CVA problems

Fair initial margin, CCP default risk, CCP fractioning across
geographical areas, lack of coordination, incentive to lower
margins to compete and attract clients, too big to fail features...
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