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Abstract

In this work we consider three problems of the standard market approach to pricing of credit
index options: the definition of the index spread is not valid in general, the usually considered payoff
leads to a pricing which is not always defined, and the candidate numeraire one would use to define
a pricing measure is not strictly positive, which would lead to a non-equivalent pricing measure.

We give a general mathematical solution to the three problems, based on a novel way of modelling
the flow of information through the definition of a new subfiltration. Using this subfiltration, we take
into account consistently the possibility of default of all names in the portfolio, that is neglected
in the standard market approach. We show that, while the related mispricing can be negligible for
standard options in normal market conditions, it can become highly relevant for different options or
in stressed market conditions.

In particular, we show on 2007 market data that after the subprime credit crisis the mispricing of
the market formula compared to the no arbitrage formula we propose has become financially relevant
even for the liquid Crossover Index Options.
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in Armstrong and Rutkowski (2007)
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1 Introduction

In this paper we address the issue of the correct pricing of options on credit swaps, where the reference
entity is a portfolio of defaultable names. The most common case in the market are Credit Index Options,
which are options on the equilibrium level of the spread of a Credit Index, consisting of a standardized
portfolio of credit default swaps. Liquidity had improved in the years preceding the subprime crisis in
summer 2007, in particular in Europe. Monthly volumes for the option on the i-Traxx Crossover Index
were upwards 13 billion at the end of 2006, with options available also on the Main and High Volatility
Indices and on Index Tranches. During the credit crisis in 2007, payer options have protected investors
from the rise of the credit indices, and trading has restarted on these products just two weeks after the
pitch of the crisis at the end of July 2007.

Thus the main reference in the paper will be Credit Index swaptions, although the results apply
in general to all market cases in which a spread defined with reference to a portfolio of defaultable
entities must be modelled in an arbitrage-free way under an appropriate pricing measure. This includes
dynamic notes linked to the performances of Index Spreads and embedded optionality in multiname credit
derivatives.

The Credit Index Option gives to the investor the possibility to enter a Forward Credit Index at a
prespecified spread, and to receive upon exercise a Front End Protection corresponding to index losses
from option inception to option expiry. The initial market approach for pricing Credit Index Options
was the use of a Black formula to price the option as a call on the spread, adding then the value of
the Front End Protection to the price of the call. This approach has a first major flaw. It neglects the
fact that one cannot separate the option from the Front End Protection, since the protection enters the
exercise decision. This was pointed out first by Pedersen (2003). This observation led to an improved
market standard, taking Front End Protection into account correctly without losing the tractability of
the market Black formula approach, based on a redefinition of the underlying Index spread.

However, as we show in this work, also the latter approach presents some relevant problems.
First, there is still one scenario in which a Black formula, even if improved by the use of a Loss-

adjusted Index Spread, does not take into account correctly the Front End Protection. In this scenario
the pricing formula does not give the correct price of the option, while instead this could be computed in
closed-form. We show in this work that, while this mispricing can be negligible for standard options in
normal market conditions, it can become highly relevant for less standard options or in stressed market
conditions. In particular, we show on 2007 market data that after the subprime credit crisis the mispricing
of the market formula compared to the no arbitrage formula we propose has become financially relevant
even for the most liquid Crossover Index Options.

A related second problem is that the formula used in market practice to compute the Index Spread
is not defined in all states of the world.

The third problem regards the theoretical justification of the use of a Black formula in this context.
According to the Fundamental Theorem of Asset Pricing, a rigorous derivation of a Black formula for
the pricing of a Credit Index Option requires the definition of an appropriate numeraire for change to
the pricing measure under which the underlying spread is a martingale (see Delbaen and Schachermayer
(1994), Geman et al. (1995), and Jamshidian (1997)). The problem here is that, since we are dealing
with portfolios or indices of defaultable names, the quantity that appears to be the natural choice for
a numeraire to simplify pricing is not strictly positive. This makes the standard change of numeraire
theory, based on strictly positive numeraires, inapplicable.

One may use a kind of survival measure such as the one introduced by Schonbucher (1999) for single
name products, based on a numeraire which is not strictly positive. But such a measure would not
be equivalent to the standard risk neutral, forward and swap measures used in mathematical finance,
but only absolutely continuous with respect to them. This is practically undesirable, since in a such a
case one can describe the dynamics of credit spreads under the survival measure, but cannot use the
standard Girsanov Theorem to see the dynamics of credit spreads under the standard measures used in
mathematical finance. Thus one could not, for example, extend a standard implementation of a Libor
Market Model (Brace, Gatarek and Musiela (1997)) for default-free forward rates, usually done under a
forward measure, to include also forward credit spreads.

To the best of our knowledge, the current literature does not solve the above three problems. The
only partial exception is Jackson (2005), that deals with the first problem while not solving the second
and third ones (in particular he uses a numeraire which is not strictly positive). Instead, here we show
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that the definition of an index spread valid in general, the correct description of the market payoff leading
to a price defined in all states of the world, and the use of a valid strictly positive quantity to define
an equivalent pricing measure can be given a general and elegant mathematical solution. The solution
is based on the definition of appropriate subfiltrations. Empirical tests show that this solution can also
have a relevant impact on the correct price of multiname credit options.

In Section 2 we introduce the setting and describe the Credit Forward Index, that will be the reference
underlying of the options considered in the paper. Then we describe the Credit Index Option Payoff and
we describe previous literature and market practice on the pricing of Index options. In Section 3 we show
the problems in the market approach and we introduce the main technical instrument that will allow us to
solve them: subfiltrations. In particular we introduce a new subfiltration apt to credit portfolio products.
Then we use this instrument to compute a consistent and arbitrage-free definition of the underlying Index
spread. In Section 4 we introduce a new pricing measure and prove the main result of the paper, the
formula for no-arbitrage pricing of Index Options, different from the standard market approach. We also
show how, performing generalization of some fundamental results of Jamshidian (2004), it is possible to
express this formula in terms of numeraire pricing. In Section 5 we apply our results to market data,
before and after the summer 2007 subprime crisis, and we show how, in stressed market conditions like
those the credit market is experiencing now, the no-arbitrage formula we introduce has a relevant impact
on valuation of Credit Index Options, avoiding a mispricing which is associated to the market standard
valuation formula.

2 The Market

We are in a complete filtered probability space (Ω,F , P,Ft), where the filtration Ft satisfies the usual
hypothesis and we set F0 = (Ω, ∅) and F = F T̄ for a terminal date 0 < T̄ < ∞. We assume the existence
of a bank-account numeraire with price process Bt and an associated risk neutral measure Q ∼ P .
Defining, in line with Jamshidian (2004), a claim X = XT̄ as an F-measurable random variable such
that X

BT̄
is Q-integrable, the price process of any claim is given by

Xt = E
[
D

(
t, T̄

)
X|Ft

]

where E indicates expectation under the risk-neutral measure and

D (t, T ) =
Bt

BT

is the discount factor from T to t. We consider n defaultable issuers in a portfolio, and we indicate by τi

the time of default of the i-th issuer, i = 1, . . . , n.
In the following we are going to use Credit Indices as a reference. However our results can be extended

to different multiname credit swaps (such as tranches) mainly through a redefinition of the loss from which
protection is sought. The Credit Index is a swap contract providing protection against the default of a
pool of n names, from the beginning of the contract TA and until maturity TM . A spread or premium
K is paid for the Index protection, proportional to an outstanding notional that diminishes as names in
the pool default.

There are two main families of indices. The Dow Jones i-Traxx Indices represent (mainly) the Euro-
pean market. The CDX family represent the North American market. In particular, for Main Indices
the portfolio is set up to include only investment grade names (in fact the Main Indices are also called
Investment Grade Indices), while the Crossover Indices include names with a lower credit quality. In the
CDX family there is also a High Yield Index usually including issuers with credit reliability lower than
Crossover names.

2.1 The Forward Credit Index

For a unit of Index notional each name has a notional of 1
n . It is market standard to give index quotations

assuming that also the recovery rate (R) is the same for all names. The cumulated loss at t is

L (t) =
(1−R)

n

n∑

i=1

1{τi≤t}
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At time t the Outstanding Notional is

N (t) = 1− L (t)
(1−R)

.

In a Credit Index the Protection Leg pays, at default times τi, the corresponding loss dL (τi), from
start date TA to maturity TM or until all names have defaulted. The Premium Leg pays, at times Tj ,
j = A+1, . . . ,M or until all names have defaulted, a premium K on the average N̂ (Tj) of the outstanding
notional N (t) for t ∈ (Tj−1, Tj ]. The discounted payoff of the Protection Leg is

ΦTA,TM

t =
∫ TM

TA

D (t, u) dL (u) (1)

≈
M∑

j=A+1

D (t, Tj) [L (Tj)− L (Tj−1)] ,

where the approximation discretizes loss payment times to the standard payment times of the Premium
Leg.

The discounted payoff of the Premium Leg is

ΨTA,TM

t (K) =





M∑

j=A+1

D (t, Tj)
∫ Tj

Tj−1

N (t) dt



 K (2)

≈




M∑

j=A+1

D (t, Tj)αj

(
1− L (Tj)

(1−R)

)

K,

where the discretization considers the outstanding notional as computed at the end of the interval
(Tj−1, Tj ]. The interval has length αj . The value of the two legs is computed by expectation under
the risk neutral probability measure Q. We use the notation Π (Xt, s) = E [Xt| Fs]. When s = t, we omit
the argument s writing simply Π (Xt). For the value of the two legs we have

Π
(
ΦTA,TM

t

)
:= E

[
ΦTA,TM

t

∣∣∣Ft

]
, Π

(
ΨTA,TM

t (K)
)

:= E
[
ΨTA,TM

t (K)
∣∣∣Ft

]

The quantity in curly brackets in (2) is called in market practice the Index Defaultable present Value per
Basis Point,

Π
(
γTA,TM

t

)
=: E

[
γTA,TM

t

∣∣∣Ft

]
:= E




M∑

j=A+1

D (t, Tj)αj

(
1− L (Tj)

(1−R)

)∣∣∣∣∣∣
Ft




The Payer Forward Index starting at TA and lasting until TM has a payoff discounted at t given by

ITA,TM

t (K) = ΦTA,TM

t −ΨTA,TM

t (K) .

while its price is given by

Π
(
ITA,TM

t (K)
)

:= E
[
ITA,TM

t (K)
∣∣∣Ft

]
:= E

[
ΦTA,TM

t −ΨTA,TM

t (K)
∣∣∣Ft

]

We have introduced forward index quantities because the Forward Index is the underlying of the most
common credit portfolio option, the Index Swaption. It is useful to analyze these quantities in terms
of single name defaults in order to understand how forward index quotations are made available in the
market. In terms of single name quantities, the Protection Leg has value

Π
(
ΦTA,TM

t

)
=

M∑

j=A+1

n∑

i=1

(1−R)
n

E
[
D (t, Tj)

(
1{Tj−1<τi≤Tj}

)∣∣Ft

]
,
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while the Premium Leg has value

Π
(
ΨTA,TM

t (K)
)

=
M∑

j=A+1

n∑

i=1

1
n

αjE
[
D (t, Tj) 1{τi>Tj}

∣∣Ft

]
K.

Forward Index quotations Π
(
ITA,TM

t (K)
)

are not directly provided by the market, since only spot

indices are quoted, namely Π
(
I0,TM

0 (K)
)

with TM ∈ T, where T is a standardized set of annual ma-
turities. Forward quotations are extracted from spot quotations according to the following homogeneity
modelling assumptions. The first simplification for quoting indices is to assume that interest rates are
independent of default, so

Π
(
ΦTA,TM

t

)
=

M∑

j=A+1

1
n

(1−R)
n∑

i=1

P (t, Tj)Q (Tj−1 < τi ≤ Tj | Ft) ,

Π
(
ΨTA,TM

t (K)
)

=
M∑

j=A+1

1
n

n∑

i=1

αjP (t, Tj)Q (τi > Tj | Ft)×K,

where P (t, T ) is the price at t of the default-free bond with maturity T . The second simplification
introduced for quoting indices is the assumption of homogeneous portfolio, corresponding to assuming
that all names have the same credit risk, and consequently the same survival and default probability.
This default probability common to all names is expressed through intensity modelling (Lando (1998)),
with a deterministic, time-dependent intensity λs. One finally obtains

Π
(
ΦTA,TM

t

)
= N (t) (1−R)

M∑

j=A+1

P (t, Tj)
(

e−
∫ Tj−1

t λsds − e−
∫ Tj

t λsds

)
, (3)

and

Π
(
ΨTA,TM

t (K)
)

= N (t)
M∑

j=A+1

αjP (t, Tj)× e−
∫ Tj

t λsds ×K (4)

The default intensity is obtained through calibration to Spot Indices, with TA = 0, and then used to
compute quotations for forward indices, providing the underlying of Credit Index options. Credit Index
options are introduced in the next section. In treating Index Options we will not confine ourselves to the
simplifying hypotheses used by the market standard for index quotations.

2.2 The Credit Index Option

A payer Credit Index Option with inception 0, strike K and exercise date TA, written on an index with
maturity TM , is a contract giving the right to enter at TA into an Index with final payment at TM , as
a protection buyer paying a fixed rate K, thus entitled to receive protection from losses in the period
between TA and TM . In addition the protection buyer receives, upon exercise, also the so-called Front
End Protection, covering the losses from the option inception at time 0 to the exercise date TA. The Front
End Protection and its financial rationale are described below.

The purpose of a Credit Index Option is to allow the protection buyer to lock in a particular premium
spread K, that the protection buyer has the right (and not the obligation) to make effective at a future
time. However, if the above simple payoff was considered without Front End Protection, there would be
an additional side-effect: the option buyer would not be protected from losses in the period between 0
and maturity TA. In order to attract more investors, the standard Credit Index Option payoff includes,
in case the option is exercised, the Front End Protection, whose discounted payoff FTA

t is given by

FTA
t = D (t, TA)L (TA)

Π
(
FTA

t

)
= E [D (t, TA)L (TA)| Ft] .

In this section we present the market approach to the pricing of Credit Index Options, and then in
the next sections we point out the open problems and present our solutions. In the simplest market
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approach, the Index Option is priced as a call option on the Index spread, and then the value of the
front-end protection is added to the option price. The Index Spread is defined as the value of K that
sets the index value Π

(
ITA,TM

t (K)
)

to zero,

STA,TM

t =
Π

(
ΦTA,TM

t

)

Π
(
γTA,TM

t

) .

allowing to write the index value as

Π
(
ITA,TM

t (K)
)

= Π
(
γTA,TM

t

)(
STA,TM

t −K
)

The Index option is then priced by decomposing its value as follows

E
[
D (t, TA)Π

(
γTA,TM

TA

)(
STA,TM

TA
−K

)+
∣∣∣∣Ft

]
+Π

(
FTA

t

)

and then by expressing the first component through a standard Black formula,

Π
(
γTA,TM

t

)
Black

(
STA,TM

t ,K, σTA,TM
√

TA − t
)

+Π
(
FTA

t

)
(5)

where σTA,TM is the volatility of the forward spread and

Black (S, K, σ) = S×N (d1)−K×N (d2)

d1 =
ln

(
S
K

)
+ 1

2σ2

σ
, d2 =

ln
(

S
K

)− 1
2σ2

σ
.

This standard market approach to pricing the index option has a main flaw, as noticed by Pedersen
(2003). The above formula neglects the fact that the front end protection is received only upon exercise.
Pedersen (2003), defines the option payoff as

D (t, TA)
(
Π

(
γTA,TM

TA

)(
STA,TM

TA
−K

)
+ FTA

TA

)+

(6)

and suggests a numerical integration to compute the expectation of payoff (6). The prices of Index
swaptions computed with Pedersen’s Formula confirm that the standard approach overprices out-of-the
money payer options. Pedersen (2003) results have led to an improved Black Formula approach, based
on the redefinition of the underlying Index Spread.

The procedure is described for example in Doctor and Goulden (2007). One defines a Loss-Adjusted
index spread by taking Front End Protection into account directly. In fact the actual underlying of the
credit index option is the Loss-Adjusted Index,

ĨTA,TM

t (K) = ΦTA,TM

t −ΨTA,TM

t (K) + FTA
t . (7)

Thanks to the market standard quotation system, seen in Section 2.1, one has market liquid information
available to compute all the above quantities. So it is natural to give a new spread definition, setting
to zero Π

(
ĨTA,TM

t (K)
)

rather than Π
(
ITA,TM

t (K)
)
. This leads to the following Loss-Adjusted Market

Index Spread

S̃TA,TM

t =
Π

(
ΦTA,TM

t

)
+ Π

(
FTA

t

)

Π
(
γTA,TM

t

) (8)

that allows to write (6) as

D (t, TA)
(
Π

(
γTA,TM

TA

)(
S̃TA,TM

t −K
))+

. (9)

Now one can think of taking Π
(
γTA,TM

t

)
as numeraire and S̃TA,TM

t as lognormal underlying variable so
as to price the option with the Market Credit Index Option Formula:

Π
(
γTA,TM

t

)
Black

(
S̃TA,TM

t ,K, σ̃TA,TM
√

TA

)
. (10)
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A receiver Credit Index Option with the same contract specifications as the payer above, is a contract
giving the right to enter at TA into the same Index with final payment at TM , as a protection seller
receiving a fixed rate K. Following the same steps as above, the payoff is

D (t, TA)
(
Π

(
γTA,TM

TA

)(
K − STA,TM

TA

)
− FTA

TA

)+

and the price is given by

Π
(
γTA,TM

t

)
×

(
K×N (−d2)− S̃TA,TM

t ×N (−d1)
)

.

3 Towards an arbitrage-free Index Spread

We have seen in the previous Section that it appears possible to take Front End Protection into account
correctly without losing the tractability of the market Black formula approach.

This is an important issue for building a solid and standardized option market. A Black formula
approach is for example the standard for pricing swap options in the interest rate world, as justified by
the market model framework introduced by Jamshidian (1997) for swaptions and Brace, Gatarek and
Musiela (1997) for caps. In this pricing approach, the complexity of the no-arbitrage dynamics of the
underlying asset is consistently transferred to a correct numeraire, through change of measure.

However, the market option formula (10) does not represent yet a consistent extension of this approach
to Credit Index Options. If one wants to reach a consistent definition of the Index spread and a safely
arbitrage-free valuation formula, one needs a specific treatment of the information sets involved, which in
presence of default portfolios is more subtle than in the default-free case or even the single-name default
case. This is shown in the following.

3.1 Problems of the market formulas

The approach leading to the market option formula (10) has highly improved on the initial market
approach leading to (5). However, even the most recent approach fails. The two approaches share the
following problems.

1. The definition of the spread S̃TA,TM

t is not valid globally, but only when the denominator

Π
(
γTA,TM

t

)
=

M∑

j=A+1

E
[
D (t, Tj) αj

(
1− L (Tj)

(1−R)

)∣∣∣∣Ft

]

is different from zero. Since Π
(
γTA,TM

t

)
is the price of a portfolio of defaultable assets, this quantity

may vanish, it is not bounded away from zero in all states of the world having positive probability.

2. When Π
(
γTA,TM

t

)
= 0 the pricing formula (10) is undefined, while instead we will see that the

option price is known exactly in such a scenario. We will see, additionally, that in this scenario the
above spread S̃TA,TM

t does not set the value of the adjusted index to zero.

3. Since it is not strictly positive, Π
(
γTA,TM

t

)
would lead to the definition of a pricing measure not

equivalent to the standard risk-neutral measure.

To the best of our knowledge, the current literature does not solve these problems. The only partial
exception is Jackson (2005), that deals with 2) while not considering 1) and 3). Instead, here we give a
solution to the above problems based on the definition of appropriate subfiltrations.

3.2 Subfiltrations for single issuer

Problems similar to those presented in the last section appear also in modelling default of a single name
for pricing an option on a Credit Default Swap (CDS). A CDS is like an index swap with one single name.
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The CDS price for protection from Ta and Tb, in a simple formulation neglecting the accrual terms, is

Π
(
CDSTa,Tb

t (K)
)

= (1−R)
b∑

i=a+1

EQ
[
D (t, Ti)1{Ti−1<τ≤Ti}|Ft

]−K

b∑

i=a+1

EQ
[
D(t, Ti)αi1{τ>Ti}|Ft

]
,

(11)
where τ indicates the default time of the single reference credit entity.

When faced with an option on a CDS, it is natural to define the CDS equilibrium spread KTa,Tb
t as

the level of K setting the above price to zero, and to chose as a numeraire for change of measure the
single name defaultable present value per basis point

b∑

i=a+1

EQ
[
D(t, Ti)αi1{τ>Ti}|Ft

]

However, this is not a viable numeraire since it has zero value in all states of the world where the underlying
name defaults before the option maturity, a set with positive measure. Thus, in all such states of the
world the above definition of the CDS equilibrium spread KTa,Tb

t is not valid. These problems of single
name credit modelling are dealt with by Jamshidian (2004) and Brigo (2005, 2008). Although the solution
proposed in these works cannot be trivially extended to the multiname setting, we recall them in the
following since they are the foundations of the results we present here.

Jamshidian (2004) and Brigo (2005, 2008) make use of a subfiltration structure. Following Jeanblanc
and Rutkowski (2000), define Ft = Jt ∨Ht, where

Jt = σ ({τ > u} , u ≤ t) ,

namely the filtration generated by τ , thus representing default monitoring up to t, while Ht is a filtration
representing the flow of all information except default itself (default-free information). A market operator
observing only this second filtration can have information on the probability of default but cannot say
exactly when, or even if, default has happened. This structure is typical for instance of the Cox process
setting, where default is defined as the first jump of a Cox Process. A Cox Process is a process that,
conditional on the path (λt)t≥0 followed by the stochastic default intensity λt, is a Poisson Process of
intensity (λt)t≥0. This definition hinges on assuming default intensity λt to be Ht-adapted. However, the
use of subfiltrations is not limited to Cox Processes.

The advantage of subfiltrations in the context of credit option pricing is that a subfiltration structure
allows to define pricing formulas in terms of conditional survival probability Q (τ > t|Ht) which can be
assumed to be strictly positive in any state of the world (or at least a.s.). In particular it allows to
use a result by Jeanblanc and Rutkowski (2000), based on the definition of conditional expectation. A
defaultable payoff with maturity T discounted to t, YT

t , is a payoff that satisfies

YT
t = 1{τ>T}YT

t , (12)

allowing us to write the Jeanblanc and Rutkowski Formula

ΠYT
t = E

[
YT

t |Ft

]
=

1{τ>t}
Q (τ > t|Ht)

E
[
YT

t |Ht

]
. (13)

Since a CDS is a defaultable contract, CDSTa,Tb
t (K) = 1{τ>Ta}CDSTa,Tb

t (K), one can write

Π
(
CDSTa,Tb

t (K)
)

=
1{τ>t}

Q (τ > t|Ht)
EQ

[
CDSTa,Tb

t (K) |Ht

]
. (14)

Setting expression (14) to zero and solving in K one find a definition of KTa,Tb
t with a regular behaviour

in all scenarios

KTa,Tb
t = (1−R)

∑b
i=a+1 EQ

[
D (t, Ti)1{Ti−1<τ≤Ti}|Ht

]
∑b

i=a+1 αiEQ
[
D (t, Ti)1{τ>Ti}|Ht

]

since the denominator, being a.s. strictly positive, will also allow to define a probability measure that,
under a Cox Process setting, leads to a simple Black formula, as shown in Brigo (2005, 2008):

1{τ>t}
Q (τ > t|Ht)

{
b∑

i=a+1

EQ
[
D (t, Ti)αi1{τ>Ti}|Ht

]
}

Black
(
KTa,Tb

t ,K, σ̄a,b

√
Ta − t

)
.
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In order to understand the following developments, it is important to notice why the use of the Ht

subfiltration, excluding information on default of the underlying single name, has effectively allowed to
solve the above problems in a single name context. The corporate zero-coupon bonds considered in the
CDS numeraire definition and the CDS itself are defaultable payoffs, whose value goes to zero at default,
so we can use (13) and we can confine ourselves to making assumptions on the stochastic dynamics of the
credit spread only on the Ht subfiltration, which is all we need for pricing when {τ > t}. We do not need
to treat explicitly the case {τ ≤ t} since all involved payoffs have in this case a value which is known to
be zero.

Then, for applying these results to options, we need the option itself to be priced with (13), and this
is possible because single name Credit Options are knock-out options, namely their value is zero after
default.

The situation in a multiname setting is different, so it requires a related but different approach,
outlined in the next section.

3.3 A new subfiltration for multiname credit derivatives

In a multiname setting we have a plurality of reference entities that can default, so the above subfiltration
setting gives us a plurality of possible subfiltrations,

Ft = J i
t ∨Hi

t, (15)
J i

t = σ ({τi > u} , u ≤ t) ,

so that J i
t is the filtration generated by the default time τi of the name i, with i = 1, 2, . . . , n, while Hi

t

is a filtration representing the flow of all information except the default of the name i. When the infor-
mation structure of a single name default valuation model is defined implicitly through (15), Jamshidian
(2004) calls the resulting model complementary. Complementary models are central in the framework of
Jamshidian (2004).

It would be enough to consider any of these possible subfiltrations Hi
t to avoid the multiname Index

spread S̃TA,TM

t to have an irregular behaviour (jump to infinity) at default of the entire pool. In terms
of single name default times, the value of the spread denominator is

Π
(
γTA,TM

t

)
=

n∑

i=1

1
n

M∑

j=A+1

E
[
D (t, Tj) αj1{τi>Tj}

∣∣Ft

]

If we could price through a Hk
t -expectation, analogously to the single name case, we would exclude

information on default of the k-th name. In this case E
[
D (t, Tj)αj1{τk>Tj}

∣∣Hk
t

]
would never jump to

zero, keeping the Hk
t -expectation of the entire portfolio strictly positive. However, the choice of a single

pivotal name would be arbitrary, and, more importantly, using (13) requires that the payoff Y T
t goes to

zero when τk ≤ t, which does not happen with the above portfolio.
We find that the most effective possibility for using (13) in this context is the following. We define

a sub-filtration that only excludes information on the event that sets Π
(
γTA,TM

t

)
to zero. Define a new

stopping time
τ̂ = max (τ1, τ2, . . . , τn)

and define implicitly a new filtration Ĥt such that

Ft = Ĵt ∨ Ĥt

Ĵt = σ ({τ̂ > u} , u ≤ t) ,

so that Ĥt excludes, from the total flow of market information, the information on the happening of
a so-called portfolio “armageddon event”, corresponding to the default of all names in a portfolio. An
extremely unlikely event when the option is on an a large Index with high-rating names and the market
situation is normal, but that can have a non-negligible risk-neutral probability for products involving
optionality on smaller portfolios or in stressed market conditions, as we show in Section 5.

In the following we assume that
Q

(
τ̂ > t|Ĥt

)
> 0 a.s.
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Exploiting that γTA,TM

t = 1{τ̂>TA}γ
TA,TM

t , define

Π̂
(
γTA,TM

t

)
:= E

[
γTA,TM

t |Ĥt

]

so as to write

Π
(
γTA,TM

t

)
= E

[
γTA,TM

t |Ft

]
=

1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E
[
γTA,TM

t |Ĥt

]
(16)

=
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

) Π̂
(
γTA,TM

t

)
.

The quantity Π̂
(
γTA,TM

t

)
is never null, and we will see that it is what we need for an effective definition

of the Index Spread and of an equivalent pricing measure for Index Options.

3.4 Consistent computation of the Index Spread

Now, for reaching a valid definition of the spread, there is one remaining step. We need to price the
Loss-Adjusted index (7) through the Ĥt subfiltration. Unfortunately, we notice that applying (13) with τ̂
playing the role of τ does not work, since (12) does not hold. In fact the Loss-Adjusted index, differently
from γTA,TM

t , is never null, because even in case τ̂ ≤ TA we receive front end protection. Now we need a
generalization of (13). We can generalize (13) as follows

YT
t = 1{τ̂>t}YT

t +1{τ̂≤t}YT
t ,

E
[
YT

t |Ft

]
= E

[
1{τ̂>t}YT

t |Ft

]
+ E

[
1{τ̂≤t}YT

t |Ft

]

The first component can now be computed through (13), since 1{τ̂>t}YT
t is a defaultable payoff:

E
[
1{τ̂>t}YT

t |Ft

]
=

1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E
[
1{τ̂>t}YT

t |Ĥt

]

As for the second component,

E
[
1{τ̂≤t}YT

t |Ft

]
= E

[
1{τ̂≤t}YT

t |Ĵt ∨ Ĥt

]
= E

[
1{τ̂≤t}YT

t |σ (τ̂) ∨ Ĥt

]
(17)

= 1{τ̂≤t}E
[
YT

t |σ (τ̂) ∨ Ĥt

]

See Bielecki and Rutkowski (2001) for more details on the above passages. The final formula is

E
[
YT

t |Ft

]
=

1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E
[
1{τ̂>t}YT

t |Ĥt

]
+ 1{τ̂≤t}E

[
YT

t |σ (τ̂) ∨ Ĥt

]
. (18)

The second component corresponds to the value of the payoff when we know that all defaults have
already happened, and we know the exact “armageddon” time. It is possible to use (18) for pricing a
Loss-Adjusted index only if we are able to compute the second component (17) without using assumptions
on the dynamics of the forward spread, that, analogously to the single name case, we are going to give
only for the Ĥt filtration.

We now apply (18) to the Loss-Adjusted index payoff (7):

Π
(
ĨTA,TM

t (K)
)

= 1{τ̂≤t}E
[
ΦTA,TM

t −ΨTA,TM

t (K) + FTA
t |σ (τ̂) ∨ Ĥt

]

+
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E
[
1{τ̂>t}Φ

TA,TM

t − 1{τ̂>t}Ψ
TA,TM

t (K) + 1{τ̂>t}F
TA
t |Ĥt

]

= : I1 + I2
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We analyze first I1. Notice that

1{τ̂≤t}E
[
ΦTA,TM

t |σ (τ̂) ∨ Ĥt

]
= 0, 1{τ̂≤t}E

[
ΨTA,TM

t (K) |σ (τ̂) ∨ Ĥt

]
= 0,

while

1{τ̂≤t}E
[
FTA

t

∣∣∣ σ (τ̂) ∨ Ĥt

]
= 1{τ̂≤t}E

[
D (t, TA)L (TA)|σ (τ̂) ∨ Ĥt

]

= 1{τ̂≤t} (1−R)E
[
D (t, TA)|σ (τ̂) ∨ Ĥt

]
= 1{τ̂≤t} (1−R)P (t, TA)

Indeed, since we are conditioning to knowledge that all names have already defaulted, the expectation of
front end protection corresponds to the entire notional diminished by the recovery.

We now analyze I2. Notice that

1{τ̂>t}Φ
TA,TM

t = ΦTA,TM

t

1{τ̂>t}Ψ
TA,TM

t (K) = ΨTA,TM

t (K)

since protection and premium leg payoffs go to zero when all names in the portfolio default, so, calling

E
[
ΦTA,TM

t |Ĥt

]
=: Π̂

(
ΦTA,TM

t

)
, E

[
ΨTA,TM

t (K) |Ĥt

]
=: Π̂

(
ΨTA,TM

t (K)
)

we have

Π
(
ĨTA,TM

t (K)
)

= 1{τ̂≤t} (1−R)P (t, TA) (19)

+
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)
{

Π̂
(
ΦTA,TM

t

)
− Π̂

(
ΨTA,TM

t (K)
)

+ E
[
1{τ̂>t}F

TA
t |Ĥt

]}

Now it is convenient to perform the following decomposition:

E
[
1{τ̂>t}F

TA
t |Ĥt

]
= E

[
1{t<τ̂≤TA}F

TA
t |Ĥt

]
+ E

[
1{τ̂>TA}F

TA
t |Ĥt

]

= (1−R)E
[
1{t<τ̂≤TA}D (t, TA) |Ĥt

]
+ E

[
1{τ̂>TA}F

TA
t |Ĥt

]

so that

Π
(
ĨTA,TM

t (K)
)

= (20)

=
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)
{

Π̂
(
ΦTA,TM

t

)
− Π̂

(
ΨTA,TM

t (K)
)

+ E
[
1{τ̂>TA}F

TA
t |Ĥt

]}

+
1{τ̂>t} (1−R)

Q
(
τ̂ > t|Ĥt

) ×E
[
1{t<τ̂≤TA}D (t, TA) |Ĥt

]
+

+1{τ̂≤t} (1−R)P (t, TA)

Formula (20) shows the actual components of the value of the Loss-Adjusted index, and will lead us
in the next passages required for reaching a consistent valuation of the Index Option. We see that in a
Loss-Adjusted portfolio we cannot define in all scenarios the equilibrium spread as the value of the spread
setting the index value (19) to zero, since when {τ̂ ≤ t} the index value will always be (1−R) P (t, TA).
Therefore a consistent definition of the Index spread must avoid the hopeless attempt of globally setting
to zero a value that in some scenarios can never be zero.

The financially meaningful definition of the Index Spread, that, as we will see in Section 4.2, also
makes it a martingale under a natural pricing measure, considers the level of K setting the Index value to
zero in all scenarios where some names survive until maturity. Only in such scenarios, in fact, the payoff
actually depends on the Index Spread. This corresponds to setting to zero only the first component of
the index value (20),

1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)
{

Π̂
(
ΦTA,TM

t

)
− Π̂

(
ΨTA,TM

t (K)
)

+ E
[
1{τ̂>TA}F

TA
t |Ĥt

]}
,
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which is the price of an armageddon-knock out tradable asset. We obtain the following definition of the
equilibrium Arbitrage-free Index Spread

ŜTA,TM

t =
Π̂

(
ΦTA,TM

t

)
+ E

[
1{τ̂>TA}F

TA
t |Ĥt

]

Π̂
(
γTA,TM

t

) (21)

This definition of the index spread is both regular, since Π̂
(
γTA,TM

t

)
is bounded away from zero, and its

definition has a reasonable financial meaning, since it does not claim to set to zero a value that cannot
be set to zero with probability 1.

4 Arbitrage-free pricing of Index Options

The Index Option has payoff

Y TA,TM

t (K) = D (t, TA)
(
Π

(
ĨTA,TM

TA
(K)

))+

.

In this section we evaluate the option, through change to a newly defined pricing measure. However we
first need to analyze in more details the payoff.

4.1 Analysis of the Index Option Payoff

From (19) and (21),

Π
(
ĨTA,TM

TA
(K)

)
=

1{τ̂>TA}

Q
(
τ̂ > TA|ĤTA

) Π̂
(
γTA,TM

TA

)(
ŜTA,TM

TA
−K

)
+ 1{τ̂≤TA} (1−R)

The use of subfiltrations and pricing formula (18) induces a redefinition not only of the underlying spread,
but also of the value of the Index at Maturity and thus of the Index Option payoff:

Y TA,TM

t (K) = D (t, TA)


 1{τ̂>TA}

Q
(
τ̂ > TA|ĤTA

) Π̂
(
γTA,TM

TA

)(
ŜTA,TM

TA
−K

)
+ 1{τ̂≤TA} (1−R)




+

= D (t, TA)
1{τ̂>TA}

Q
(
τ̂ > TA|ĤTA

) Π̂
(
γTA,TM

TA

)(
ŜTA,TM

TA
−K

)+

+ 1{τ̂≤TA} (1−R) ,

where the last passage follows from the properties of indicators. Notice the correct payoff is split in two
parts, and differently from (9) it does not lead to Problem 2 of Section 3.1, but instead it represents
the actual payoff in all states of the world. Now, using again pricing formula (18), we can reach a fully
consistent computation of the value of the Credit Index Option.

Π
(
Y TA,TM

t (K)
)

= 1{τ̂≤t}E
[
Y TA,TM

t (K) |σ (τ̂) ∨ Ĥt

]

+
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E
[
1{τ̂>t}Y

TA,TM

t (K) |Ĥt

]

= O1 + O2

Notice 1{τ̂≤t}×1{τ̂>TA} = 0, 1{τ̂≤t}×1{τ̂≤TA} = 1{τ̂≤t}, so

O1 = 1{τ̂≤t}1{τ̂≤TA}E
[
D (t, TA) (1−R) |σ (τ̂) ∨ Ĥt

]

= 1{τ̂≤t} (1−R)P (t, TA) ,
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and

O2 =
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E

D (t, TA)

1{τ̂>TA}

Q
(
τ̂ > TA|ĤTA

) Π̂
(
γTA,TM

TA

)(
ŜTA,TM

TA
−K

)+

|Ĥt


 +

1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E
[
D (t, TA)1{t<τ̂≤TA} (1−R) |Ĥt

]

This leads to the option pricing formula

Π
(
Y TA,TM

t (K)
)

(22)

=
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E

D (t, TA)

1{τ̂>TA}

Q
(
τ̂ > TA|ĤTA

) Π̂
(
γTA,TM

TA

)(
ŜTA,TM

TA
−K

)+

|Ĥt




+
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E
[
D (t, TA)1{t<τ̂≤TA} (1−R) |Ĥt

]

+1{τ̂≤t} (1−R) P (t, TA)

= : Ô1 + Ô2 + Ô3

So we have reached a formula that really shows the different components of the option value, and allows
us to compute them in a convenient way. The third part Ô3 is just the present value of the option when
a portfolio “armageddon event” happens before t. The second part Ô2 takes correctly into account the
probability of such an event between now and the option expiry. The first part Ô1, that erroneously
was the only one considered in the simpler formula (10), is the part that we will compute through a
closed-form standard option formula.

This requires the definition of a viable change of measure, therefore it means solving also Problem 3.
We see in the next section that, although this is technically the most demanding of the three problems,
the preceding analysis and in particular the introduction of an appropriate subfiltration already gives us
the correct tools to deal with this issue.

4.2 An Equivalent measure for Credit Multiname Options

Now we deal with the evaluation of the first part of (22), that as we have seen is the only part that
contains optionality. First of all we compute

Ô1 =
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E

D (t, TA)

1{τ̂>TA}

Q
(
τ̂ > TA|ĤTA

) Π̂
(
γTA,TM

TA

)(
ŜTA,TM

TA
−K

)+

|Ĥt




=
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E

E


D (t, TA)

1{τ̂>TA}

Q
(
τ̂ > TA|ĤTA

) Π̂
(
γTA,TM

TA

)(
ŜTA,TM

TA
−K

)+

|ĤTA


 |Ĥt




=
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E

D (t, TA)

1

Q
(
τ̂ > TA|ĤTA

) Π̂
(
γTA,TM

TA

)(
ŜTA,TM

TA
−K

)+

E
[
1{τ̂>TA}|ĤTA

]
|Ĥt




Since
E

[
1{τ̂>TA}|ĤTA

]
= Q

(
τ̂ > TA|ĤTA

)

we have

Ô1 =
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E
[
D (t, TA) Π̂

(
γTA,TM

TA

)(
ŜTA,TM

TA
−K

)+

|Ĥt

]
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Now it is natural to take the quantity

Π̂
(
γTA,TM

t

)
= E

[
γTA,TM

t |Ĥt

]
= E




M∑

j=A+1

D (t, Tj)αj

(
1− L (Tj)

(1−R)

)
|Ĥt




to define a probability measure Q̂TA,TM allowing to simplify the computation. In fact, differently from
Π

(
γTA,TM

t

)
which would be the quantity that one should select if subfiltrations had not been introduced,

Π̂
(
γTA,TM

t

)
is strictly positive. Only with a strictly positive quantity we remain in the context of

probability measures which are equivalent to the risk neutral measure and, by transitivity, to the real
world probability measure.

We define the TA, TM -no-armageddon pricing measure Q̂TA,TM through definition of the Radon-
Nykodim derivative of this measure with respect to Q , restricted to ĤTA

,

ZTA
=

dQ̂TA,TM

dQ

∣∣∣∣∣
ĤTA

. (23)

Recall that, by definition of Radon-Nykodim derivative,

Q̂TA,TM (A) =
∫

A

ZTA
dQ, A ∈ ĤTA

.

The definition of ZTA that allows a computational simplification of option pricing is

ZTA =
B0 Π̂

(
γTA,TM

TA

)

Π̂
(
γTA,TM

0

)
BTA

.

Notice that Bt, the locally risk-free bank account, is Ĥt-adapted. For derivatives pricing we need to define
the restriction of Q̂TA,TM to Ĥt, t ≤ TA. It is clear that if we define Zt, t ≤ TA, as an Ĥt martingale

Zt = E


 dQ̂TA,TM

dQ

∣∣∣∣∣
ĤTA

∣∣∣∣∣∣
Ĥt




we have that Zt is exactly the restriction we are looking for, Zt = dQ̂TA,TM

dQ

∣∣∣
Ĥt

, since for all C ∈ Ĥt

∫

C

dQ̂TA,TM

dQ

∣∣∣∣∣
Ĥt

dQ =
∫

C

E


 dQ̂TA,TM

dQ

∣∣∣∣∣
ĤTA

∣∣∣∣∣∣
Ĥt


 dQ =

∫

C

dQ̂TA,TM

dQ

∣∣∣∣∣
ĤTA

dQ = Q̂TA,TM (C) .

where the last but one passage comes from Kolmogorov’s definition of conditional expectation. Then
notice that

dQ̂TA,TM

dQ

∣∣∣∣∣
Ĥt

= E


 B0 Π̂

(
γTA,TM

TA

)

Π̂
(
γTA,TM

0

)
BTA

∣∣∣∣∣∣
Ĥt




=
B0

Π̂
(
γTA,TM

0

)E

E




M∑

j=A+1

1
BTj

αj

(
1− L (Tj)

(1−R)

)
|ĤTA




∣∣∣∣∣∣
Ĥt




=
B0

Π̂
(
γTA,TM

0

)
Bt

E




M∑

j=A+1

Bt

BTj

αj

(
1− L (Tj)

(1−R)

)∣∣∣∣∣∣
Ĥt




=
B0Π̂

(
γTA,TM

t

)

Π̂
(
γTA,TM

0

)
Bt
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so also the Radon-Nykodim derivative restricted to all Ĥt, t ≤ TA, can be expressed in closed form
through market quantities. This is sufficient to apply the well-known Bayes rule for conditional change
of measure.

Consider a sub σ-algebra N of σ-algebra M and an M-measurable X, integrable under the measures
P1 and P2, P1 ∼ P2. We have the following result.

Proposition 1 (Bayes rule for conditional change of measure) When X is M-measurable

EP2 [X|N ] = EP1

[
X
EP1

[
dP2
dP1 |M

]

EP1
[

dP2
dP1 |N

]
∣∣∣∣∣N

]
.

Proof. The RHS is by definition N -measurable. Exploiting

EP2 [1CX] = EP1

[
1CXEP1

[
dP2
dP1

|N
]]

,

for any C ∈ N
∫

C

EP1

[
XEP1

[
dP2
dP1

|M
]

1
EP1

[
dP2
dP1 |N

]
∣∣∣∣∣N

]
dP2

=
∫

C

EP1

[
XEP1

[
dP2
dP1

|M
]∣∣∣∣N

]
dP1 =

∫

C

EP1

[
X

dP2
dP1

∣∣∣∣N
]

dP1

By definition of conditional expectation,

=
∫

C

EP1

[
X

dP2
dP1

∣∣∣∣N
]

dP1 =
∫

C

X
dP2
dP1

dP1 =
∫

C

XdP2.

In our context, we have to compute

Ô1 =
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E
[
D (t, TA) Π̂

(
γTA,TM

TA

)(
ŜTA,TM

TA
−K

)+

|Ĥt

]
.

and we have

EP1
[

dP2
dP1 |M

]

EP1
[

dP2
dP1 |N

] =
E

[
dQ̂TA,TM

dQ |ĤTA

]

E
[

dQ̂TA,TM

dQ |Ĥt

] =
Bt Π̂

(
γTA,TM

TA

)

BTA
Π̂

(
γTA,TM

t

) .

Thus

Ô1 =
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

) Π̂
(
γTA,TM

t

)
E


E

[
dQ̂TA,TM

dQ |ĤTA

]

E
[

dQ̂TA,TM

dQ |Ĥt

]
(
ŜTA,TM

TA
−K

)+

|Ĥt


 .

Noticing that
(
ŜTA,TM

TA
−K

)+

is ĤTA
-measurable, we apply Proposition 1,

Ô1 =
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

) Π̂
(
γTA,TM

t

)
ÊTA,TM

[(
ŜTA,TM

TA
−K

)+

|Ĥt

]
(24)

= Π
(
γTA,TM

t

)
ÊTA,TM

[(
ŜTA,TM

TA
−K

)+

|Ĥt

]
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Now we analyze the behaviour of the underlying spread under Q̂TA,TM

ÊTA,TM

[
ŜTA,TM

TA
|Ĥt

]
= E


 ŜTA,TM

TA

Bt Π̂
(
γTA,TM

TA

)

BTA
Π̂

(
γTA,TM

t

)
∣∣∣∣∣∣
Ĥt




=
E

[
E

[
ΦTA,TM

t + 1{τ̂>TA}D (t, TA) L (TA) |ĤTA

]∣∣∣ Ĥt

]

Π̂
(
γTA,TM

t

)

=
E

[
ΦTA,TM

t + 1{τ̂>TA}D (t, TA) L (TA) |Ĥt

]

Π̂
(
γTA,TM

t

)

=
Π̂

(
ΦTA,TM

t

)
+ E

[
1{τ̂>TA}F

TA
t |Ĥt

]

Π̂
(
γTA,TM

t

) = ŜTA,TM

t

So ŜTA,TM

t is a Ĥt-martingale under Q̂TA,TM . If we assume

dŜTA,TM

t = σ̂TA,TM ŜTA,TM

t dV TA,TM , t ≤ Ta

where V TA,TM is a standard brownian motion under Q̂TA,TM and σ̂TA,TM is the instantaneous volatility,
we have the following Arbitrage-free Credit Index Option formula

Π
(
Y TA,TM

t (K)
)

= Π
(
γTA,TM

t

)
Black

(
ŜTA,TM

t ,K, σ̂TA,TM
√

TA − t
)

(25)

+
1{τ̂>t}

Q
(
τ̂ > t|Ĥt

)E
[
D (t, TA)1{t<τ̂≤TA} (1−R) |Ĥt

]

+1{τ̂≤t} (1−R) P (t, TA)

= Ô1 + Ô2 + Ô3

We might have selected a different martingale dynamics, including any smile dynamics, since our results
are completely general. We stick to lognormality for consistency with market standards in the pricing of
credit options.

4.3 Numeraire Pricing

The TA, TM -no-armageddon pricing measure Q̂TA,TM introduced above is all we need for arbitrage-free
pricing of Index Options. However, it has been defined only on Q̂TA,TM and only Ĥt-martingales have
been considered for developing a pricing formula. This is a strong restriction if we want to extend the
above results to more general products, that may depend on the joint dynamics of the Index spread and
other quantities, or on the dynamics of the Index spread under different measures. Therefore it appears
convenient to introduce an extension of Q̂TA,TM to the global σ-algebra F , and it would be particularly
advantageous if this extension could be defined as a measure associated to a standard numeraire, as in
Geman et al. (1996).

The TA, TM -no-armageddon pricing measure Q̂TA,TM introduced above has been defined and used in
a way similar to the numeraire measures introduced by Geman et al. (1995) and Jamshidian (1997).
However, it is not a numeraire measure, since the quantity Π̂

(
γTA,TM

t

)
used to define this measure is

not the price of a tradable asset. In fact Π̂
(
γTA,TM

t

)
is an expectation with respect to Ĥt, a filtration

that does not include all available market information. This is why we went through such a detailed
derivation.

For having a numeraire measure we need the Radon-Nikodym derivative to be defined using prices of
tradable assets, which by no-arbitrage need to be Ft expectation of F-measurable claims. Such a definition
implies all the properties typical of the numeraire measures, such as the fact that prices of tradable assets
expressed in terms of a numeraire N are Ft-martingales under the associated QN measure.
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The issue of extending a measure initially given on a subfiltration of the filtration (Ft)t≥0, and to
define this extension as a probability measure associated to a standard numeraire, is dealt with for the
single name case by Jamshidian (2004). With reference to Jamshidian (2004) for details on the analytical
derivations, in this section we briefly see how this extension can be performed for Q̂TA,TM , adapting
results to our context (therefore with τ̂ stopping time replacing the single name stopping time τ).

The quantity

γTA,TM =
M∑

j=A+1

B

BTj

αj

(
1− L (Tj)

(1−R)

)
,

where B = BT̄ , is called prenumeraire. Notice it is a terminal payoff, corresponding to the index annuity
observed at the terminal date in our time horizon. Notice that Π̂

(
γTA,TM

TA

)
, the quantity we used for

defining Q̂TA,TM , is

Π̂
(
γTA,TM

TA

)
= BTA

E
[
γTA,TM

B
|ĤTA

]
.

Jamshidian (2004) now suggests to choose as a numeraire any claim CTA,TM such that its TA fair price is

CTA,TM

TA
= BTA

E
[
CTA,TM

B
|FTA

]
= Π̂

(
γTA,TM

TA

)
, (26)

and to define on F a measure Q̂TA,TM as

dQ̂TA,TM

dQ
=

B0 CTA,TM

CTA,TM

0 B
. (27)

This is sufficient to define an associated probability measure such that its restriction to ĤTA
does not

depend on the choice of CTA,TM as long as (26) is satisfied. This restriction, in particular, coincides with
Q̂TA,TM as defined on ĤTA

in Section 4.2, thus justifying the notation used (the easy proof is left to the
reader). A very natural choice that we propose is to choose

CTA,TM =
B

BTA

Π̂
(
γTA,TM

TA

)
.

With this choice, the Radon-Nikodym derivative of Q̂TA,TM with respect to the risk neutral measure is

dQ̂TA,TM

dQ
=

B0 Π̂
(
γTA,TM

TA

)

Π̂
(
γTA,TM

0

)
BTA

and trivially coincides with the Radon-Nikodym derivative computed in Section 4.2.
Following Theorem 3.8 in Jamshidian (2004), always with τ̂ stopping time replacing the single name

stopping time τ , one can check that, with this definition of the pricing measure, the pricing formula for
an Index option coincides with (24), with the difference that now the pricing measure is Q̂TA,TM defined
by (27), rather than only the restriction defined by ZTA

= dQ̂TA,TM

dQ

∣∣∣
ĤTA

. The fundamental assumptions

used by Jamshidian (2004) for proving this result are that the model is complementary, namely

Ft = Ĵt ∨ Ĥt,

and positive, namely
P β

(
τ̂ > t|Ĥ

)
> 0 a.s.

for any numeraire β. Both properties are natural in our framework. Complementarity has already been
explicitly assumed in the model definition, while positivity had been assumed only for the risk neutral
measure, but can be with no harm extended to all numeraire measures.

Therefore in this setting the pricing formula (24) can be expressed through a global, numeraire-based
measure.
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5 Empirical Analysis

In the previous part of this work we have provided a rigorous theoretical framework for the pricing of Index
options, that was missing in the market approach. This has led to replacing the market option formula
(10) with the arbitrage-free option formula (25). In this section we point out that the improvement of
the arbitrage-free option formula (25) on the market option formula (10) is not limited to the fact that
(25) has a rigorous justification that lacked in the market approach.

Indeed, for options on particular portfolios, or for peculiar market situations, the correct accounting
of the portfolio armageddon risk avoids painful mistakes in valuation. As a consequence of the crisis
that struck credit markets in summer 2007, related to the burst of the subprime loans-linked structured
finance bubble, the market is currently in one of those situations when the correct accounting of the
portfolio armageddon risk is crucial. In the following empirical tests we consider market data of March
2007, before the subprime crisis, market data of August 2007, in the middle of the crisis, and finally
more recent data of December 2007. We focus on options on the i-Traxx Europe Crossover index, that
have a short maturity (less than one year) and have been particularly traded and liquid in recent years.
Following the JPM quotation terminology, we name Call Options the options on the Receiver side (that
allow an investor to be long on credit risk), and Put Options the options on the Payer side (that allow
an investor to be short on credit risk).

5.1 The data

In Table 1 and in Figures 1 and 2 one sees market quotations for the main reference credit market
products. Notice that they include information on Index Tranches, quoted through the so-called base
correlation. In fact the arbitrage-free option formula (25) introduces an explicit dependence on default
correlation information, that instead does not enter directly the market option formula (10).

This comes from the definition of the spread in (21) and from the Ô2 component of the option price,
that, under the assumption of independence of interest rate and default risk, is

1{τ̂>t} (1−R) P (t, TA)Q
(
τ̂ ≤ TA|τ̂ > t, Ĥt

)
.

It depends on the conditional Ĥt-probability of a portfolio armageddon in (t, TA] given that there was
no armageddon before t. Ceteris paribus, an armageddon event will be more likely in a context of higher
correlation. We have included also correlation information from the CDX (American) market, since the
two credit markets have been historically very close.

iTraxx Europe 5y Correlation by detachment
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Figure 1: Quoted Base Correlation for Tranches on the iTraxx Europe Main Index.
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iTraxx Europe 0-22% Correlation by Maturity

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

4.5 5.5 6.5 7.5 8.5 9.5 10.5 Maturity

Mar-21

Aug-14

Dec-06

Figure 2: Quoted Base Correlation for Tranches on the iTraxx Europe Main Index.

i-Traxx Main Spread (bps) i-Traxx Crossover Spread (bps) i-Traxx ρ22% CDX ρ30%

March 21, 2007 25.5 219 0.60 0.74
August 14, 2007 53 361 0.82 0.95
December 6, 2007 56 350 0.80 0.97

Table 1: Credit market data (5y mat) on the 3 trading days considered.

A brief explanation of the correlation quotation system, and of how it is used in market practice is
here in order. The credit market associates to each portfolio tranche [0, x), with detachment x expressed
in percentage points, a correlation value ρx, called base correlation. This value, together with the default
intensities of the single names, allows to compute the price of a tranche with the market standard
Gaussian Copula conventional model, for which we refer for example to Glasserman et al. (2007) and
references therein. The fact that a single correlation is provided is a consequence of the homogeneous
portfolio assumption, implying that all names in a portfolio have identical features, including equal
interdependence across all couples of issuers in the pool. This provides a relatively easy and intuitive
valuation and quotation method, that we comply with in the following. We may use some advanced loss
model such as the GPL model of Brigo et al. (2006), able to calibrate consistently market tranches. We
prefer to follow the Gaussian Copula since it is a recognized market standard.

For pricing i-Traxx Crossover Index Options we need computing τ̂ probabilities, thus one needs the
correlations associated to the most senior tranche possible: the one that is affected when, and only when,
all portfolio issuers default. It is the tranche that covers losses from a fraction (n−1)(1−R)

n to a fraction
(1−R) of the portfolio notional. For the 50 name Crossover Index, with 40% recovery, these detachment
points correspond to [0, x) tranches where x ∈ {58.8%; 60%}. We have two problems in terms of market
availability of the data. First, market quotations are given only up to x = 22%. Second, correlation is not
quoted directly for the i-Traxx Crossover but only for the i-Traxx Main Index. When the correlation for
a non-standard portfolio, or for a non-standard detachment, is not provided by the market, it is common
practice (see Baheti and Morgan (2007)) to use interpolation/extrapolation and mapping techniques for
obtaining these correlations from the array of available base correlations in Figure 1. However, due to
lack of standardization and theoretical justification, we prefer to take a more conservative and robust
approach, explained in the following.

It is market common agreement that correlation clearly increases with size of equity tranches, as one
can see in Figure 1. In the i-Traxx market there is also a less marked tendency of correlation to decrease
with maturity (see Figure 2). We are interested in tranches {58.8%; 60%}, with maturities lower than
one year. Therefore, according to both market tendencies visible on iTraxx data, and in particular to the
first one, we should consider a correlation higher than ρ22% of Table 1, the i-Traxx correlation for the
largest tranche and shortest maturity quoted. We may expect a correlation even higher than the highest
level quoted by the CDX market, ρ30%.

However we do not increase correlation further, but instead we consider a range of equally spaced
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correlations in-between the most senior base correlations of i-Traxx (ρ22%) and CDX (ρ30%). Thus,
while extrapolation would suggest, for the seniority we need, to increase correlation beyond any quoted
ρ, we limit this correlation to the market quoted CDX ρ30%. This has two advantages. First we are
robust towards a possible limit to the increase of correlation, due to the fact that the Crossover is a
less senior Index.1 Secondly, our choice tends to underestimate the probability of τ̂ , compared to the
standard market approach of extrapolating correlations. This implies also that, in the following tests, the
difference between our arbitrage-free pricing of Index Options and the standard Market pricing is more
likely to be underestimated, rather than overestimated.

5.2 Results: before and after the Subprime crisis

Consider now Tables 2 and 3, reporting our Credit Index option pricing results. In the upper subtables
we see results for the 20 December 2007 maturity index option on March 21 2007. In the first row is
the price of a standard Index Option using the market option formula (10). This price is fully consistent
with market quotations, that include both a price quotation and an implied volatility quotation. From
the implied volatility quotation one can compute the price through the market option formula (10), and
check that it coincides with the price quotation.

Below is the price computed with the arbitrage-free option formula (25), using the same implied
volatility provided by market quotations, and with the different correlation values considered.

The two formulas give very similar results, with differences around 1 bp or even lower. Such a
difference does not appear to be relevant under a financial point of view, also considering that, as shown
in Table 4, for the 20 December 2007 Index Option the upside part of the bid/offer spread (difference
between ask price and mid price) for Put options is always more than 10 bps and the downside part of
the bid/offer spread (difference between mid price and bid price) for the Call option is smaller but in any
case larger than 1 bps. Notice that the upside part is the relevant one when the No-Arbitrage option
overprices the market quotes, and viceversa. This appears to be a good estimate of the threshold over
which a pricing difference starts to be financially relevant.

Now we move to August 14, 2007. We see in Table 1 that, although the pitch of the credit indices
rally was already over (Crossover spread touched 463 bps at the end of July 2007), the market situation
has changed radically compared to March 2007. Both Index spreads and Tranche correlations have
dramatically increased.

Taking into account the new market conditions shown in Table 1, we evaluate a 9 month maturity
option, thus corresponding to the option evaluated on March 21. Results are presented in the mid
subtables of Tables 2 and 3. Here the difference between the price computed with the market option
formula (10) and the price with the arbitrage-free option formula (25) is much larger. Looking at Call
Options in Table 2, we see that the option with the lowest strike has a price with the arbitrage-free option
formula (25) which is little more than a half of the price computed with the market option formula (10),
because the perceived higher systemic risk, triggered by the subprime crisis, has made the risk-neutral
probability of an armageddon event not negligible anymore.

The price differences appear particularly large, under a financial point of view, if compared to the
values of Table 4, that reports the appropriate market bid-ask quotations for the longest maturity Index
Options quoted in any of the three trading days considered. Indeed, for all strikes and all possible
correlation values, the difference between market pricing and no arbitrage pricing is higher than the
appropriate bid-ask spread.

Therefore taking correctly into account the possibility of portfolio armageddon is not only an issue that
allows the definition of the spread and of the pricing measure to be regular under a mathematical point
of view, but for options on the Crossover Index it is also of financial relevance in some peculiar market
situations, such as the credit crunch of summer 2007.

1As explained in Baheti and Morgan (2007), a less senior index such as the Crossover Index is more subject to idiosyncratic
rather than systemic risk, thus correlation should be somewhat reduced. However, analysis of the most senior index in the
North America market, the CDX.NA.IG, and the most junior, CDX.NA.HY, shows that this difference is very low for very
senior tranches such as those we are interested in. Indeed, correlation is high for very senior tranches to represent that
their risk is related mainly to systemic credit events. Such events, by definition, do not depend on the specific portfolio
considered.
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March 21, 2007
Strike 200 225 250 275 300
Market Formula 73.72 115.32 165.57 226.46 291.95
No-Arbitrage Formula ρ = 0.6 73.61 115.22 165.48 226.38 291.88
No-Arbitrage Formula ρ = 0.65 73.44 115.06 165.34 226.26 291.77
No-Arbitrage Formula ρ = 0.7 73.07 114.73 165.04 225.99 291.53
No-Arbitrage Formula ρ = 0.75 72.25 113.99 164.38 225.40 291.00

August 14, 2007
Strike 300 325 350 375 400
Market Formula 120.56 155.38 196.01 240.53 290.56
No-Arbitrage Formula ρ = 0.8 113.14 148.27 189.20 234.00 284.30
No-Arbitrage Formula ρ = 0.85 106.09 141.51 182.72 227.80 278.36
No-Arbitrage Formula ρ = 0.9 92.33 128.32 170.10 215.72 266.79
No-Arbitrage Formula ρ = 0.95 63.06 100.31 143.33 190.13 242.29

Dec 6, 2007
Strike 325 350 375 400 425
Market Formula 123.38 162.10 205.62 253.52 305.32
No-Arbitrage Formula ρ = 0.79 117.27 156.32 200.18 248.40 300.50
No-Arbitrage Formula ρ = 0.85 110.37 149.81 194.05 242.64 295.09
No-Arbitrage Formula ρ = 0.91 92.87 133.32 178.54 228.07 281.41
No-Arbitrage Formula ρ = 0.97 49.61 92.68 140.44 192.38 247.99

Table 2: Prices in bps of Call Options on i-Traxx Crossover 5y On-the-Run. Maturity 9m

March 21, 2007
Strike 200 225 250 275 300
Market Formula 299.73 250.74 210.42 180.73 155.64
No-Arbitrage Formula ρ = 0.6 299.76 250.78 210.47 180.79 155.70
No-Arbitrage Formula ρ = 0.65 299.80 250.85 210.54 180.88 155.81
No-Arbitrage Formula ρ = 0.7 299.90 250.98 210.71 181.08 156.04
No-Arbitrage Formula ρ = 0.75 300.13 251.28 211.09 181.53 156.55

August 14, 2007
Strike 300 325 350 375 400
Market Formula 559.60 519.46 485.13 454.69 429.76
No-Arbitrage Formula ρ = 0.8 561.20 521.36 487.33 457.18 432.52
No-Arbitrage Formula ρ = 0.85 562.75 523.20 489.46 459.58 435.18
No-Arbitrage Formula ρ = 0.9 565.85 526.88 493.70 464.37 440.47
No-Arbitrage Formula ρ = 0.95 572.82 535.11 503.17 475.02 452.22

Dec 06, 2007
Strike 325 350 375 400 425
Market Formula 452.15 410.36 373.37 340.75 312.04
No-Arbitrage Formula ρ = 0.79 453.88 412.43 375.77 343.48 315.07
No-Arbitrage Formula ρ = 0.85 455.86 414.80 378.53 346.60 318.53
No-Arbitrage Formula ρ = 0.92 461.09 421.03 385.74 354.75 327.58
No-Arbitrage Formula ρ = 0.98 475.32 437.89 405.14 376.56 351.66

Table 3: Prices in bps of Put Options on i-Traxx Crossover 5y On-the-Run. Maturity 9m.
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March 21
Strike 200 225 250 275 300
Mid-Bid for Call options 8 6 4 2 2
Ask-Mid for Put options 20 16 14 14 15

August 14
Strike 300 325 350 375 400
Mid-Bid for Call options 7 5 3 1 1
Ask-Mid for Put options 11 12 13 17 20

December 6
Strike 325 350 375 400 425
Mid-Bid for Call options 4 1 0.1 0.1 0.3
Ask-Mid for Put options 8 7 6 7 9

Table 4. Market Bid-Ask on quoted Index Options.

For Put options of Table 3, price differences appear more moderate, since only for the highest corre-
lation considered (corresponding to the CDX correlation2) the difference exceeds the relevant bid-ask, in
spite of the fact that in some cases such differences are higher than 20 bps.

One may reasonably argue that the liquidity of the market in August 2007 was particularly low, and
the situation, being the immediate aftermath of an unexpected crisis, was extremely peculiar and not
likely to last for any relevant time or to appear again in the market.

In order to verify this argument, we wait until December 2007, and we price a 9-month option taking
into account the December 06, 2007, market situation. The results appear to belie the above argument.
In spite of the slightly lower Crossover spreads, the market still discounts a high perceived systemic risk,
expressed by extremely high base correlation quotes. As a consequence, the correct accounting of the
market-implied risk-neutral probability of a portfolio armageddon is still very relevant. This is shown
both by Call prices, where the differences range from 15% to almost 60% of the Market Formula Price,
and by Put quotations, where the number of cases when the difference between the two formulas exceeds
the available bid-ask is even higher than in August 14. This relevant impact on option prices of the risk
of a systemic crisis appears one of the possible reasons for the fact that the liquidity in the credit option
market, after summer 2007, is concentrated on the shortest maturities.

We also mention that, although the historical probability of total portfolio default appears clearly
negligible when we are considering large portfolios of investment grade issuers (such as the i-Traxx 125-
name Main Index), there is evidence in the literature that also this risk is priced, so that its risk-neutral
probability is not negligible. An example is in Brigo et al. (2006), where it is shown that the Generalized
Poisson Loss Model needs to include a jump process associated to an armageddon event, if one wants
to price correctly market tranches of different subordination and maturity written on the iTraxx Main
Index.

Additionally, there is a category of credit portfolio options for which, even in normal market conditions,
the probability of the portfolio to be wiped out by defaults is never negligible, even in normal market
conditions: it is the case of Tranche options, in particular for the most risky equity or mezzanine tranches.
For such options, that are often embedded in cancelable tranches, this issue is always crucial in all market
situations. Thus, for an option on a [0, x) Tranche, using a formula analogous to the arbitrage-free option
formula (25) is fundamental for correct pricing in all market situations. Clearly, for a tranche option, the
Tranched Loss

Lx,y (t) =
1

y − x

[
(L (t)− x)+ − (L (t)− y)+

]

must replace the Loss L (t) and τ̂ is the first time when Lx,y (t) = 1.

6 Conclusion

In this work we have considered three fundamental problems of the standard market approach to the
pricing of portfolio credit options: the definition of the index spread is not valid in general, the payoff
considered leads to a pricing which is not defined in all states of the world, the candidate numeraire to
define a pricing measure is not strictly positive, which would lead to an non-equivalent pricing measure.

2The correlation values we report for the CDX market on August and December 2007 may appear exceptionally high,
however we point out that ρ30% for CDX exceeded 99% on the last trading week of November 2007.
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We have given to the three problems a general mathematical solution, based on a novel way of
modelling the flow of information through the definition of a new subfiltration. Using this subfiltration,
we take into account consistently the possibility of default of all names in the portfolio, that is neglected in
the standard market approach. We have shown that, while this mispricing can be negligible for standard
options in normal market conditions, it can become highly relevant for less standard options or in stressed
market conditions. In particular, we show on 2007 market data that after the subprime credit crisis the
mispricing of the market formula compared to the no arbitrage formula we propose has become financially
relevant even for the liquid Crossover Index Options.

The definition of an equivalent pricing measure through subfiltrations, and the related results on the
dynamics of a well defined portfolio credit spread, lay the foundations of an extension to a multiname
credit setting of the no-arbitrage approach known as Market Models, dating back to Brace, Gatarek and
Musiela (1997) and Jamshidian (1997). Such extension is considered by Jamshidian (2004), Brigo (2005)
and Brigo and Morini (2005) for the case of single name credit products. Here, instead, we consider
the extension to a multiname setting, that is technically from the case of single name modelling, and
also shows a different market applicability. In fact the Market Models approach is characterized by the
fact of allowing precise arbitrage-free consistency in the modelling of market rates and spreads, and of
requiring information on volatilities and correlations of such rates and spreads. These features have made
the approach very successful in the interest rate derivatives market, but they hardly hold for single name
credit derivatives, split among different reference with rare options. Instead, the reference iTraxx and
CDX Indices now absorb the larger part of the credit derivative market, providing a reference market
from which information for modelling market quantities can be extracted. Even after the credit spread
rally in summer 2007, multiname indices experienced a return to trading activity while the single name
credit market was still dried out.
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