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Abstract

We consider counterparty risk for interest rate payoffs in presence of correlation
between the default event and interest rates. The previous analysis of Brigo and
Masetti (2006), assuming independence, is further extended to interest rate payoffs
different from simple swap portfolios. A stochastic intensity model with possible jumps
is adopted for the default event. We find that correlation between interest-rates and
default has a relevant impact on the positive adjustment to be subtracted from the
default free price to take into account counterparty risk. We analyze the pattern
of such impacts as product characteristics and tenor structures change through some
fundamental numerical examples. We find the counterparty risk adjustment to decrease
with the correlation for receiver payoffs, while the analogous adjustment for payer
payoffs increases. The impact of correlation decreases when the default probability
increases. Finally, our analysis applies naturally also to Contingent Credit Default
Swaps.
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1 Introduction

In this paper we consider counterparty risk for interest rate payoffs in presence of correlation
between the default event and interest rates.

In particular we analyze in detail counterparty-risk (or default-risk) Interest Rate Swaps
(IRS), continuing the work of Sorensen and Bollier (1994), and of Brigo and Masetti (2006),
where no correlation is taken into account. We also analyze option payoffs under counterparty
risk. In general the reason to introduce counterparty risk when evaluating a contract is
linked to the fact that many financial contracts are traded over the counter, so that the
credit quality of the counterparty can be relevant. This is particularly appropriated when
thinking of the different defaults experienced by some important companies during the last
years. Also, regulatory issues related to the IAS 39 framework encourage the inclusion of
counterparty risk into valuation. Furthermore, credit hybrid products such as Contingent
Credit Default Swaps (Contingent CDS) with interest rate underlying assume exactly the
same form as the optional part in the counterparty risk valuation problem for the interest
rate payoff. This renders our approach useful also into Contingent CDS valuation.

We are looking at the problem from the viewpoint of a safe (default-free) counterparty
entering a financial contract with another counterparty having a positive probability of
defaulting before the final maturity. We formalize the general and reasonable fact that
the value of a generic claim subject to counterparty risk is always smaller than the value
of a similar claim having a null default probability, expressing the discrepancy in precise
quantitative terms.

When evaluating default-risky assets one has to introduce the default probabilities in
the pricing models. We consider Credit Default Swaps as liquid sources of market default
probabilities. Different models can be used to calibrate CDS data and obtain default prob-
abilities: In Brigo and Morini (2006) for example firm value models (or structural models)
are used, whereas in Brigo and Alfonsi (2005) a stochastic intensity model is used. In this
work we adopt the second framework, since this lends itself more naturally to interact with
interest rate modeling and allows for a very natural way to correlate the default event to
interest rates. We also consider the possible addition of jumps in the intensity model, as in
the extensions seen in Brigo and El-Bachir (2006, 2007).

In the paper we find that counterparty risk has a relevant impact on the products prices
and that, in turn, correlation between interest-rates and default has a relevant impact on the
adjustment due to counterparty risk on an otherwise default-free interest-rate payout. We
analyze the pattern of such impacts as products characteristics and tenor structures change
through some fundamental numerical examples and find stable and financially reasonable
patterns.

In particular, we find the (positive) counterparty risk adjustment to be subtracted from
the default free price to decrease with correlation for receiver payoffs. The analogous ad-
justment for payer payoffs increases with correlation. We analyze products such as standard
swaps, swap portfolios, European and Bermudan swaptions, mostly of receiver type. We
also consider CMS spread options, which being based on interest rate spreads are out of our
“payer/receiver” classification.

In general our results confirm the counterparty risk adjustment to be relevant and the
impact of correlation on counterparty risk to be relevant in turn. We comment our findings
in more detail in the conclusions.
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2 General valuation of counterparty risk

We denote by τ the default time of the counterparty and we assume the investor who is
considering a transaction with the counterparty to be default-free. We place ourselves in
a probability space (Ω,G,Gt,Q). The filtration (Gt)t models the flow of information of the
whole market, including credit. Q is the risk neutral measure. This space is endowed also
with a right-continuous and complete sub-filtration Ft representing all the observable market
quantities but the default event (hence Ft ⊆ Gt := Ft ∨Ht where Ht = σ({τ ≤ u} : u ≤ t) is
the right-continuous filtration generated by the default event). We set Et(·) := E(·|Gt), the
risk neutral expectation leading to prices.

Let us call T the final maturity of the payoff we need to evaluate. If τ > T there is
no default of the counterparty during the life of the product and the counterparty has no
problems in repaying the investors. On the contrary, if τ ≤ T the counterparty cannot
fulfill its obligations and the following happens. At τ the Net Present Value (NPV) of the
residual payoff until maturity is computed: If this NPV is negative (respectively positive)
for the investor (defaulted counterparty), it is completely paid (received) by the investor
(counterparty) itself. If the NPV is positive (negative) for the investor (counterparty), only
a recovery fraction REC of the NPV is exchanged.

Let us call ΠD(t, T ) (sometimes abbreviated into ΠD(t)) the discounted payoff of a generic
defaultable claim at t and CASHFLOWS(u, s) the net cash flows of the claim without default
between time u and time s, discounted back at u, all payoffs seen from the point of view
of the “investor” (i.e. the company facing counterparty risk). Then we have NPV(τ) =
Eτ{CASHFLOWS(τ, T )} and

ΠD(t) = 1{τ>T}CASHFLOWS(t, T ) +

1{t<τ≤T}
[
CASHFLOWS(t, τ) +D(t, τ)

(
REC (NPV(τ))+ − (−NPV(τ))+)] (2.1)

being D(u, v) the stochastic discount factor at time u for maturity v. This last expression is
the general price of the payoff under counterparty risk. Indeed, if there is no early default
this expression reduces to risk neutral valuation of the payoff (first term in the right hand
side); in case of early default, the payments due before default occurs are received (second
term), and then if the residual net present value is positive only a recovery of it is received
(third term), whereas if it is negative it is paid in full (fourth term).

Calling Π(t) the discounted payoff for an equivalent claim with a default-free counter-
party, i.e. Π(t) = CASHFLOWS(t, T ), it is possible to prove the following

Proposition 2.1. (General counterparty risk pricing formula). At valuation time t,
and on {τ > t}, the price of our payoff under counterparty risk is

Et{ΠD(t)} = Et{Π(t)}− LGD Et{1{t<τ≤T}D(t, τ) (NPV(τ))+︸ ︷︷ ︸} (2.2)

Positive counterparty-risk adjustment

where LGD = 1−REC is the Loss Given Default and the recovery fraction REC is assumed to be
deterministic. It is clear that the value of a defaultable claim is the value of the corresponding
default-free claim minus an option part, in the specific a call option (with zero strike) on the
residual NPV giving nonzero contribution only in scenarios where τ ≤ T . Counterparty risk
adds an optionality level to the original payoff.
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For a proof see for example Brigo and Masetti (2006).
Notice finally that the previous formula can be approximated as follows. Take t = 0 for

simplicity and write, on a discretization time grid T0, T1, . . . , Tb = T ,

E[ΠD(0, Tb)] = E[Π(0, Tb)]− LGD

∑b
j=1 E[1{Tj−1<τ≤Tj}D(0, τ)(EτΠ(τ, Tb))

+]

≈ E[Π(0, Tb)]− LGD

b∑
j=1

E[1{Tj−1<τ≤Tj}D(0, Tj)(ETj
Π(Tj, Tb))

+]︸ ︷︷ ︸ (2.3)

approximated (positive) adjustment

where the approximation consists in postponing the default time to the first Ti following τ .
From this last expression, under independence between Π and τ , one can factor the outer
expectation inside the summation in products of default probabilities times option prices.
This way we would not need a default model but only survival probabilities and an option
model for the underling market of Π. This is only possible, in our case, if the default interest-
rates correlation is zero. This is what led to earlier results on swaps with counterparty risk
in Brigo and Masetti (2006). In this paper we do not assume zero correlation, so that in
general we need to compute the counterparty risk without factoring the expectations. To do
so we need a default model, to be correlated with the basic interest rate market.

3 Modeling assumptions

In this section we consider a model that is stochastic both in the interest rates (underlying
market) and in the default intensity (counterparty). Joint stochasticity is needed to introduce
correlation. The interest-rate sector is modelled according to a short-rate Gaussian shifted
two-factor process (hereafter G2++), while the default-intensity sector is modelled according
to a square-root process (hereafter CIR++). Details for both model can be found, for
example, on Brigo and Mercurio (2001, 2006). The two models are coupled by correlating
their Brownian shocks.

3.1 G2++ interest rate model

We assume that the dynamics of the instantaneous-short-rate process under the risk-neutral
measure is given by

r(t) = x(t) + z(t) + ϕ(t;α), r(0) = r0, (3.1)

where α is a set of parameters and the processes x and z are Ft adapted and satisfy

dx(t) = −ax(t)dt+ σdZ1(t), x(0) = 0,

dz(t) = −bz(t)dt+ ηdZ2(t), z(0) = 0,
(3.2)

where (Z1, Z2) is a two-dimensional Brownian motion with instantaneous correlation ρ1,2 as
from

dZ1(t)dZ2(t) = ρ1,2dt,

where r0, a, b, σ, η are positive constants, and where −1 ≤ ρ1,2 ≤ 1. These are the
parameters entering ϕ, in that α = [r0, a, b, σ, η, ρ1,2]. The function ϕ(·;α) is deterministic
and well defined in the time interval [0, T ∗], with T ∗ a given time horizon, typically 10, 30
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or 50 (years). In particular, ϕ(0;α) = r0. This function can be set to a value automatically
calibrating the initial zero coupon curve observed in the market. In our numerical tests we
use the market inputs listed in Tables 1 and 2 corresponding to parameters α given by

a = 0.0558, b = 0.5493, σ = 0.0093, η = 0.0138, ρ1,2 = −0.7

3.2 CIR++ stochastic intensity model

For the stochastic intensity model we set

λt = yt + ψ(t; β) , t ≥ 0, (3.3)

where ψ is a deterministic function, depending on the parameter vector β (which includes
y0), that is integrable on closed intervals. The initial condition y0 is one more parameter at
our disposal: We are free to select its value as long as

ψ(0; β) = λ0 − y0 .

We take y to be a Cox Ingersoll Ross process (see for example Brigo and Mercurio (2001) or
(2006)):

dyt = κ(µ− yt)dt+ ν
√
ytdZ3(t),

where the parameter vector is β = (κ, µ, ν, y0), with κ, µ, ν, y0 positive deterministic con-
stants. As usual, Z is a standard Brownian motion process under the risk neutral measure,
representing the stochastic shock in our dynamics. We assume the origin to be inaccessible,
i.e.

2κµ > ν2.

We will often use the integrated quantities

Λ(t) =

∫ t

0

λsds, Y (t) =

∫ t

0

ysds, and Ψ(t, β) =

∫ t

0

ψ(s, β)ds.

3.3 CIR++ model: CDS calibration

Assume that the intensity λ, and the cumulated intensity Λ, are independent of the short
rate r, and of interest rates in general. Since in our Cox process setting τ = Λ−1(ξ) with ξ
exponential and independent of interest rates, in this zero correlation case the default time
τ and interest rate quantities r,D(s, t), ... are independent. It follows that (approximated
no-accrual receiver) CDS valuation becomes model independent and is given by the formula

CDSa,b(0, R) = R

b∑
i=a+1

P (0, Ti)αiQ(τ ≥ Ti)− LGD

b∑
i=a+1

P (0, Ti)Q(τ ∈ [Ti−1, Ti]) (3.4)

(see for example the Credit chapters in Brigo and Mercurio (2006) for the details). Here R is
the periodic premium rate (or “spread”) received by the protection seller from the premium
leg, until final maturity or until the first Ti following default, whereas LGD = 1− REC is the
loss given default protection payment to be paid to the protection buyer in the default (or
protection) leg in case of early default, at the first Ti following default.
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This formula implies that if we strip survival probabilities from CDS in a model indepen-
dent way, to calibrate the market CDS quotes we just need to make sure that the survival
probabilities we strip from CDS are correctly reproduced by the CIR++ model. Since the
survival probabilities in the CIR++ model are given by

Q(τ > t)model = E(e−Λ(t)) = E exp (−Ψ(t, β)− Y (t)) (3.5)

we just need to make sure

E exp (−Ψ(t, β)− Y (t)) = Q(τ > t)market

from which

Ψ(t, β) = ln

(
E(e−Y (t))

Q(τ > t)market

)
= ln

(
P CIR(0, t, y0; β)

Q(τ > t)market

)
(3.6)

where we choose the parameters β in order to have a positive function ψ (i.e. an increasing Ψ)
and P CIR is the closed form expression for bond prices in the time homogeneous CIR model
with initial condition y0 and parameters β (see for example Brigo and Mercurio (2001, 2006)).
Thus, if ψ is selected according to this last formula, as we will assume from now on, the
model is easily and automatically calibrated to the market survival probabilities (possibly
stripped from CDS data).

This CDS calibration procedure assumes zero correlation between default and interest
rates, so in principle when taking nonzero correlation we cannot adopt it. However, we have
seen in Brigo and Alfonsi (2005) and further in Brigo and Mercurio (2006) that the impact
of interest-rate / default correlation is typically negligible on CDSs, so that we may retain
this calibration procedure even under nonzero correlation, and we will do so in the paper.

Once we have done this and calibrated CDS data through ψ(·, β), we are left with the
parameters β, which can be used to calibrate further products. However, this will be in-
teresting when single name option data on the credit derivatives market will become more
liquid. Currently the bid-ask spreads for single name CDS options are large and suggest to
consider these quotes with caution. At the moment we content ourselves of calibrating only
CDS’s for the credit part. To help specifying β without further data we set some values of
the parameters implying possibly reasonable values for the implied volatility of hypothetical
CDS options on the counterparty.

In our tests we take stylized flat CDS curves for the counterparty, assuming they imply
initial survival probabilities at time 0 consistent with the following hazard function formu-
lation,

Q(τ > t)market = exp(−γt),

for a constant deterministic value of γ. This is to be interpreted as a quoting mechanism
for survival probabilities and not as a model. Assuming our counterparty CDS’s at time 0
for different maturities to imply a given value of γ, we will value counterparty risk under
different values of γ. This assumption on CDS spreads is stylized but our aim is checking
impacts rather than having an extremely precise valuation.

In our numerical examples we take as values of the intensity volatility parameters y0, κ, µ, ν
the following values:

y0 = 0.0165, κ = 0.4, µ = 0.026, ν = 0.14
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Paired with stylized CDS data consistent with survivals Q(τ > t)market = exp(−γt) for several
possible values of γ, these parameters imply the CDS volatilities1 listed in Table 3.

3.4 Interest-rate / credit-spread correlation

We take the short interest-rate factors x and z and the intensity process y to be correlated,
by assuming the driving Brownian motions Z1, Z2 and Z3 to be instantaneously correlated
according to

dZi dZ3 = ρi,3dt, i ∈ {1, 2}.

Notice that the instantaneous correlation between the resulting short rate and the inten-
sity, i.e. the instantaneous interest-rate / credit-spread correlation is

ρ̄ = Corr(drt, dλt) =
σρ1,3 + ηρ2,3√
σ2 + η2 + 2σηρ1,2

.

We find the limit values of −1, 0 and 1 according to Table 5.

3.5 Adding jumps to the intensity model

CDS volatilities quoted on the market are not liquid, but they are usually higher than the
CDS implied volatilities obtained with the CIR++ model. Adding jumps to the intensity
model is one means to enhance the implied volatility (see for example Brigo (2005)), and it
agrees to hystorical series of the credit spread too. Thus, by following Brigo and El-Bachir
(2006, 2007) and Brigo and Pallavicini (2008), we consider also a square-root process with
exponential jumps (hereafter JCIR++) for the default-intensity sector of our model.

dyt = κ(µ− yt)dt+ ν
√
ytdZ3(t) + dJt(ζ1, ζ2),

where the parameter vector β is now augmented to include the jump parameters, and each
parameter is a positive deterministic constant. As before, Z3 is a standard Brownian motion
process under the risk neutral measure, while the jump part Jt(ζ1, ζ2) is defined as

Jt(ζ1, ζ2) :=

Mt(ζ1)∑
i=i

Xi(ζ2)

where M is a time-homogeneous Poisson process with intensity ζ1 (independent of Z), the
Xs being exponentially distributed with positive finite mean ζ2 independent of M (and Z).

Notice that the instantaneous correlation between the resulting short rate and the inten-
sity is now reduced due to the jumps, as shown in Table 5, and it is given by

ρ̄ = Corr(drt, dλt) =
σρ1,3 + ηρ2,3√

σ2 + η2 + 2σηρ1,2

√
1 +

2ζ1ζ22
ν2yt

.

As in the CIR++ case we assume the independence of the default intensity and interest
rates while calibrating, so that, given market implied default probabilities, extracted from

1See Brigo (2005, 2006) for a precise notion of CDS implied volatility.
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CDS quotes, it is always possible to get a close form formula for ψ(·, β) such that the
JCIR++ model fits exactly the market default probabilities, see for example Brigo and
El-Bachir (2006), reported also in Brigo and Mercurio (2006).

We set the diffusion part intensity parameters for the JCIR++ model to

y0 = 0.035, κ = 0.35, µ = 0.045, ν = 0.15

Then, we consider different possibilities for the values of the jump parameters ζ1 and ζ2 for
three different choices of the CDS curves to reproduce different realistic market situations,
as shown in Table 4.

4 Numerical methods

A Montecarlo simulation is used to value all the payoffs considered in the present paper. We
adopt the following prescriptions to implement effectively the algorithm. The standard error
of each Montecarlo run is at most on the last digit of numbers reported in tables.

4.1 Discretization scheme

Payoff present values can be calculated with the joint interest-rate and credit model by
means of a Montecarlo simulation of the three underlying variables x, z and y, whose joint
transition density is needed. The transition density for the G2++ model is known in closed
form, while the CIR++ model requires a discretization scheme, leading to a three dimensional
Gaussian local discretization. For CIR++ we adopt a discretization with a weekly step and
we find similar convergence results both with the full truncation scheme introduced by Lord,
Koekkoek and Van Dijk (2006) and with the implied scheme by Brigo and Alfonsi (2005).
In the following we adopt the former scheme.

4.2 Simulating intensity jumps

In order to add the jumps on the intensity process, we first simulate the diffusive part of
the process at a fixed set of dates 0 = t0 < t1 < · · · < tn, according to the discretization
scheme (we adopt the same discretization scheme of the CIR++ model). Then, we compute
on each path the number of jumps occuring per time interval and their amplitudes. Finally,
the jumps are added by considering all the contribution as occuring at the end of each
discretization period.

4.3 Forward expectations

The simulation algorithm allows the counterparty to default on the contract payment dates,
unless the time-interval between two payment dates is longer than two months. In such case
additional checks on counterparty default are added in order to ensure that the gap between
allowed default-times is at most of two months. The calculation of the forward expectation,
required by counterparty risk evaluation, as given in equation (2.3) (inner expectation ETj

)
is taken by approximating the expectation at the effective default time Tj with a polynomial
series in the interest-rate model underlyings, x and z, valued at the first allowed default-time
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after τ , i.e. at Tj. The coefficients of the series expansion are calculated by means of a least-
square regression, as usually done to price Bermudan options, by means of the algorithm by
Longstaff and Schwarz (2001).

4.4 Callable payoffs

Counterparty risk for callable payoffs is calculated in two steps. First, given a riskless version
of the payoff, the payoff exercise boundary is calculated by a Montecarlo simulation with the
Longstaff and Schwarz algorithm. Since the default time is unpredictable from the point of
view of the interest-rate sector of the model, the same exercise boundary, as a function of
the underlying at exercise date, is assumed to hold also for the default-risky payoff. Then
the risky payoff along with the exercise boundary is treated as a standard European default-
risky option, given that the continuation value at any relevant time is now a function of the
underlying processes.

5 Results and Discussion

We consider the pricing of different payoffs in presence of counterparty risk for three different
default probability scenarios (as expressed by hazard rates γ = 3%, 5% and 7%) and for
three different correlation scenarios (ρ̄ = −1, 0 and 1). For a detailed description of the
payoffs the reader is referred to Brigo and Mercurio (2006).

5.1 Single Interest Rate Swaps (IRS)

In the following we consider payoffs depending on at-the-money fix-receiver forward interest-
rate-swap (IRS) paying on the EUR market. These contracts reset a given number of years
from trade date and start accruing two business days later. The IRS’s fixed legs pay annually
a 30E/360 strike rate, while the floating legs pay LIBOR twice per year. The first products
we analyze are simple IRS of this kind. We list in Table 6 the counterparty risk adjustment
for the 10y IRS and the impact of correlation, for different levels of default probabilities.

We price the counterparty risk for the single IRS also in the case that the default intensity
can jump. We list in Table 7 the results. Notice that, in presence of jumps on the default
intensity, the correlation impact may be enhanced.

5.2 Netted portfolios of IRS

After single IRS, we consider portfolios of at-the-money IRS either with different starting
dates or with different maturities. In particular we focus on the following two portfolios:

1. (Π1) given a set of annually spaced dates {Ti : i = 0 . . . N}, with T0 at two business
days from trade date, consider the portfolio of swaps maturing at each Ti, with i > 0,
and all starting at T0. The netting of the portfolio is equal to an amortizing swap with
decreasing outstanding.

2. (Π2) given the same set of annually spaced dates, consider the portfolio of swaps
starting at each Ti, with i < N , and all maturing at TN . The netting of the portfolio
is equal to an amortizing swap with increasing outstanding.

We list in Table 6 the counterparty risk adjustment for both portfolios.
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5.3 European swaptions

We consider contracts giving the opportunity to enter a receiver IRS at a IRS’s reset date.
The strike rate in the swap to be entered is fixed at the at-the-money forward swap level
observed at option inception, i.e. at trade date. We list in Table 8 the price of both
the riskless and the risky contract. In Table 10 the same data are cast in term of Black
implied swaption volatility, i.e. we compute the black swaption volatility that would match
the counterparty risk adjusted swaption price when put in a default-free Black formula for
swaptions. In Table 9 we show an example with payer swaptions instead.

5.4 Bermudan swaptions

We consider contracts giving the opportunity to enter a portfolio of IRS, as defined in
Section 5.2, every two business days before the starting of each accruing period of the swap’s
fix leg. We list in Table 11 the price of entering each portfolio, risky and riskless, along with
the price of entering, at the same exercise dates, the contained IRS of longest tenor.

5.5 CMS spread options

We consider a contract2 on the EUR market starting within two business days which pays,
quarterly on an ACT/360 basis and up to maturity tM , the following exotic index:

(L(Sa(ti)− Sb(ti))−K)+

where L and K are positive constants and Sk(ti), with k ∈ {a, b} and i = 0 . . .M , is the
constant maturity swap rate (hereafter CMS) fixing two business days before each accruing
period starting date ti, i.e. the at-the-money rate for a IRS with tenor of k years fixing at
ti. We list in Table 12 the option prices, default-risky and riskless.

5.6 Contingent CDS

A Contingent Credit Default Swap (CCDS) is a CDS that, upon the default of the reference
credit, pays the loss given default on the residual net present value of a given portfolio if this
is positive. The standard CDS instead pays the loss given default on a pre-specified notional
amount, which we assumed to be 1 in our earlier CDS formulation (3.4).

It is immediate then that the default leg CCDS valuation, when the CCDS underlying
portfolio constituting the protection notional is Π, is simply the counterparty risk adjust-
ment in Formula (2.2). Our adjustments calculations above can then be interpreted also as
examples of contingent CDS pricing3.

The mathematical shape of the CCDS payoff shows that in principle the CCDS would
be a ideal instrument to hedge conuterparty risk. However, the mathematical equivalence
of the payoffs does not necessarily imply that CCDS be always a convenient solution for
hedging counterparty risk, see for example the discussion in Patel (2007).

2See also Mercurio and Pallavicini (2005) for a detailed discussion of CMS spread option pricing.

3We are grateful to Gloria Ikosi of the Federal Deposit Insurance Corporation in Washington DC for
helpful correspondence on this subject
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6 Results Interpretation and Conclusions

In the paper we have found that counterparty risk has a relevant impact on interest-rate
payoffs prices and that, in turn, correlation between interest-rates and default (intensity)
has a relevant impact on the adjustment due to counterparty risk. The same applies to
Contingent Credit Default Swap pricing, given the strong analogies with counterparty risk
valuation. We have analyzed the pattern of such impacts as products characteristics and
tenor structures change through some fundamental numerical examples and we have found
stable and reasonable patterns. In particular, the (positive) counterparty risk adjustment
to be subtracted from the default free price decreases with correlation for receiver payoffs
(IRS, IRS portfolios, European and Bermudan Swaptions). This is to be expected. If de-
fault intensities increase, with high positive correlation their correlated interest rates will
increase more than with low correlation; since when interest rates increase a receiver swap-
tion value decreases, we see that ceteris paribus a higher correlation implies a lower value for
the swaptions impacting the adjustment, so that with higher correlation the adjustment ab-
solute value decreases. The analogous adjustment for payer payoffs increases with correlation
instead, as is to be expected.

In general our results, including the CMS spread options, confirm the counterparty risk
adjustment to be relevant and the impact of correlation on counterparty risk to be relevant
in turn, expecially in presence of jumps on default intensity, as can be required in order
to achieve higher implied volatilites for CDS options. We have found the following further
stylized facts, holding throughout all payoffs. As the default probability implied by the
counterparty CDS increases, the size of the adjustment due to counterparty risk increases
as well, but the impact of correlation on it decreases. This is financially reasonable: Given
large default probabilities for the counterparty, fine details on the dynamics such as the
correlation with interest rates become less relevant, everything being wiped out by massive
defaults anyway. On the contrary, with smaller default probabilities, the fine structure of
the dynamics and correlation in particular is more important.

The conclusion is that we should take into account interest-rate/ default correlation in
valuing counteparty risky interest-rate payoffs, especially when the default probabilities are
not extremely high.
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A Appendix: Detailed outputs

Date Rate Date Rate Date Rate Date Rate
26-Jun-06 2.83% 20-Sep-07 3.46% 27-Jun-16 4.19% 27-Jun-28 4.51%
27-Jun-06 2.83% 19-Dec-07 3.52% 27-Jun-17 4.23% 27-Jun-29 4.51%
28-Jun-06 2.83% 19-Mar-08 3.57% 27-Jun-18 4.27% 27-Jun-30 4.52%
04-Jul-06 2.87% 19-Jun-08 3.61% 27-Jun-19 4.31% 27-Jun-31 4.52%
11-Jul-06 2.87% 18-Sep-08 3.65% 29-Jun-20 4.35% 28-Jun-32 4.52%
18-Jul-06 2.87% 29-Jun-09 3.75% 28-Jun-21 4.38% 27-Jun-33 4.52%
27-Jul-06 2.88% 28-Jun-10 3.84% 27-Jun-22 4.41% 27-Jun-34 4.52%
28-Aug-06 2.92% 27-Jun-11 3.91% 27-Jun-23 4.43% 27-Jun-35 4.52%
20-Sep-06 2.96% 27-Jun-12 3.98% 27-Jun-24 4.45% 27-Jun-36 4.52%
20-Dec-06 3.14% 27-Jun-13 4.03% 27-Jun-25 4.47% 27-Jun-46 4.49%
20-Mar-07 3.27% 27-Jun-14 4.09% 29-Jun-26 4.48% 27-Jun-56 4.46%
21-Jun-07 3.38% 29-Jun-15 4.14% 28-Jun-27 4.50%

Table 1: EUR zero-coupon continuously-compounded spot rates (ACT/360) observed on
June,23 2006.

Tenor
Expiry 1y 2y 5y 7y 10y 15y 20y

1y 17.51% 15.86% 14.63% 14.20% 13.41% 12.14% 11.16%
2y 16.05% 15.26% 14.55% 14.09% 13.29% 12.03% 11.09%
3y 15.58% 15.06% 14.43% 13.92% 13.10% 11.87% 10.96%
4y 15.29% 14.90% 14.20% 13.67% 12.85% 11.66% 10.79%
5y 15.05% 14.67% 13.90% 13.36% 12.55% 11.42% 10.60%
7y 14.39% 14.00% 13.22% 12.70% 11.96% 10.95% 10.20%
10y 13.25% 12.94% 12.23% 11.79% 11.17% 10.31% 9.65%
15y 11.87% 11.64% 11.11% 10.76% 10.26% 9.52% 8.89%
20y 11.09% 10.92% 10.45% 10.14% 9.67% 8.91% 8.27%

Table 2: Market at-the-money swaption volatilities observed on June,23 2006.



D. Brigo, A. Pallavicini: Counterparty risk under interest-rate / default correlation 15

γ σimpl

1x1 1x4 4x1 1x9
3% 42% 25% 26% 15%
5% 25% 15% 15% 9%
7% 18% 11% 11% 7%

Table 3: Black volatilities for CDS options implied by CIR++ model (with parameters
y0 = 0.0165, κ = 0.4, µ = 0.026, ν = 0.14) for different choices of the default-probability
parameter γ. Interest rates are modelled according to section 3.1 and ρ̄ = 0 .

ζ1 ζ2 σimpl R
1x5 1 3 5 10

0 0 28% 2.59% 2.71% 2.77% 2.84%
0.1 0.1 40% 2.89% 3.37% 3.64% 3.93%
0.15 0.15 57% 3.25% 4.12% 4.58% 5.07%

Table 4: Black volatilities for CDS options implied by JCIR++ model (with parameters
y0 = 0.035, κ = 0.35, µ = 0.045, ν = 0.15) for different choices of the jump parameters.
Interest rates are modelled according to section 3.1 and ρ̄ = 0 .

ρ1,3 4.05% 0.00% -4.05%
ρ2,3 -74.19% 0.00% 74.19%

ζ1 ζ2 ρ̄
0 0 -100.00% 0.00% 100.00%

0.1 0.1 -67.29% 0.00% 67.29%
0.15 0.15 -51.67% 0.00% 51.67%

Table 5: Values of model instantaneous correlations ρ1,3 and ρ2,3 ensuring special interest-
rate / credit-spread instantaneous correlations ρ̄ for the chosen interest-rate and intensity
dynamics parameters. Notice that the instantaneous correlations are state dependent in
presence of jumps, i.e. when ζ1 > 0 and ζ2 > 0, so that the last two rows of the table are
only indicative values obtained in the limit yt −→ µ+ ζ1ζ2/κ.
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γ ρ̄ Π1 Π2 IRS
3% -1 -140 -294 -36

0 -84 -190 -22
1 -47 -115 -13

5% -1 -181 -377 -46
0 -132 -290 -34
1 -99 -227 -26

7% -1 -218 -447 -54
0 -173 -369 -44
1 -143 -316 -37

Table 6: Counterparty risk price for receiver IRS portfolio defined in section 5.2 for a ma-
turity of ten years, along with the counterparty risk price for a ten year swap. Every IRS,
constituting the portfolios, has unitary notional. Prices are in basis points.

ζ1 ζ2 ρ̄ 10y
0 0 -100% -56(0)

0 -45(0)
100% -37(0)

0.1 0.1 -67% -69(1)
0 -58(0)

67% -50(1)
0.15 0.15 -52% -93(4)

0 -71(3)
52% -57(3)

Table 7: Counterparty risk price for ten year receiver IRS defined in section 5.1 for three
different calibrations of the JCIR++ model with jumps as given in Table 4. Prices are in
basis points and are followed within brackets by the statistical error of the Monte Carlo.
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γ ρ̄ 1x5 5x5 10x5 20x5
3% -1 -14 -37 -53 -56

0 -9 -27 -42 -48
1 -6 -19 -34 -41

5% -1 -19 -50 -71 -70
0 -14 -41 -61 -65
1 -11 -35 -55 -61

7% -1 -23 -61 -84 -79
0 -19 -53 -77 -75
1 -16 -47 -72 -73

riskless 106 205 215 157

γ ρ̄ 1x10 5x10 10x10 20x10
3% -1 -38 -78 -98 -98

0 -25 -56 -78 -83
1 -16 -43 -64 -72

riskless 184 342 353 256

γ ρ̄ 1x20 5x20 10x20 20x20
3% -1 -87 -140 -160 -150

0 -61 -107 -129 -131
1 -45 -83 -107 -114

riskless 261 474 486 354

Table 8: Counterparty risk price for European receiver swaptions defined in section 5.3 for
different expiries and tenors. Riskless prices are listed too. Contracts have has unitary
notional. Prices are in basis points.

γ ρ̄ 1x5 5x5 10x5 20x5
3% -1 -6 -20 -33 -40

0 -10 -28 -44 -50
1 -16 -39 -56 -58

riskless 106 205 215 157

Table 9: Counterparty risk price for European payer swaptions defined in section 5.3 for
different expiries and tenors. Riskless prices are listed too. Contracts have has unitary
notional. Prices are in basis points.
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γ ρ̄ 1x5 5x5 10x5 20x5
3% -1 -1.96% -2.52% -3.06% -3.74%

0 -1.26% -1.82% -2.38% -3.20%
1 -0.77% -1.32% -1.93% -2.78%

5% -1 -2.60% -3.40% -4.06% -4.71%
0 -1.96% -2.78% -3.51% -4.37%
1 -1.54% -2.35% -3.16% -4.09%

7% -1 -3.19% -4.14% -4.81% -5.32%
0 -2.62% -3.60% -4.39% -5.06%
1 -2.22% -3.23% -4.11% -4.89%

riskless 14.63% 13.90% 12.23% 10.45%

γ ρ̄ 1x10 5x10 10x10 20x10
3% -1 -2.74% -2.86% -3.14% -3.72%

0 -1.84% -2.08% -2.50% -3.17%
1 -1.19% -1.59% -2.03% -2.75%

riskless 13.41% 12.55% 11.17% 9.67%

γ ρ̄ 1x20 5x20 10x20 20x20
3% -1 -3.71% -3.14% -3.19% -3.53%

0 -2.63% -2.40% -2.57% -3.09%
1 -1.95% -1.87% -2.14% -2.68%

riskless 11.16% 10.60% 9.65% 8.27%

Table 10: Counterparty risk implied volatilities for European receiver swaptions defined
in section 5.3 for different expiries and tenors. Riskless implied volatilities are listed too.
Contracts have a unit notional.

γ ρ̄ Π1 Π2 IRS
3% -1 -197 -387 -47

0 -140 -289 -34
1 -101 -219 -25

5% -1 -272 -528 -65
0 -223 -446 -54
1 -188 -387 -46

7% -1 -340 -652 -80
0 -295 -578 -70
1 -266 -529 -63

riskless 1083 1917 240

Table 11: Counterparty risk price for callable receiver IRS portfolio defined in section 5.4 for
a maturity of ten years, along with the counterparty risk price for a spot-starting ten year
bermuda swaption. Riskless prices are listed too. Every IRS, constituting the portfolios, has
unitary notional. Prices are in basis points.
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γ ρ̄ 5y 10y 20y
3% -1 -5 -16 -34

0 -4 -11 -24
1 -2 -8 -18

5% -1 -7 -22 -44
0 -6 -17 -37
1 -5 -15 -31

7% -1 -9 -26 -52
0 -7 -23 -46
1 -6 -20 -42

riskless 58 122 182

Table 12: Counterparty risk price for CMS spread options defined in section 5.5 with L = 15,
K = 15%, a = 10y, b = 2y and three different maturities tM ∈ {5y, 10y, 15y}. Riskless prices
are listed too. Prices are in basis points.


