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Abstract

We review both full-rank and reduced-rank parameterizations for correlation matrices.
In particular, the full-rank parameterizations of Rebonato (1999d) and Schoenmakers and
Coffey (2000), the reduced-rank angle parameterization of Rebonato (1999d) and Rebonato
and Jäckel (1999), and the well known zeroed-eigenvalues reduced-rank approximation are
described in detail. Numerical examples are provided for the reduced-rank parameterizations
and results are compared.

1 Introduction

This technical note is meant to present some known and established results in rank-reduction
techniques for correlation matrices, with a few new developments. Besides being an interesting
problem in its own right, rank reduction is an important technique in several applications, including
image processing and, when applied to correlation matrices, mathematical finance (interest rate
modeling, risk management). Here we will deal with the application to the LIBOR market model
(as in Brigo and Mercurio (2001), Chapter 6), although the results reported here can be used also
in different fields.

We start with a given M × M full-rank correlation matrix. In general the full instantaneous
correlation matrix is characterized by M (M − 1)/2 entries, given symmetry and the ones in the
diagonal. This number of entries can be too high for practical purposes. Therefore, a parsimonious
parametric form has to be found for ρ, based on a reduced number of parameters.

∗Draft. To be checked again. This note is meant to be an expansion of Section 6.9 of the first edition of
the book “Interest-Rate Models: Theory and Practice”, Springer, 2001, by D. Brigo and F. Mercurio. This note
is available at http://www.damianobrigo.it. Helpful suggestions and references provided by Raymond Lacey are
gratefully acknowledged.
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As a first possibility, we may decide to maintain a full-rank correlation matrix involving a
number of parameters that is smaller than M(M − 1)/2. Such an approach has been followed
by Schoenmakers and Coffey (2000), in connection to swaptions calibration in the LIBOR market
model. We summarize some of their findings in Section 2.

Alternatively, reduced-rank correlations can be obtained, either through Rebonato’s angles pa-
rameterization, or through eigenvalues zeroing. We review both possibilities in Section 3.

Finally, we mention Zhang and Wu (2001) for their work on optimal low-rank approximations
of correlation matrices based on Lagrange multipliers techniques.

2 Some convenient full rank parameterizations

Schoenmakers and Coffey (2000) propose the following full-rank parametric form for the correlation
matrix ρ. They consider a finite sequence of positive real numbers

1 = c1 < c2 < . . . < cM ,
c1

c2

<
c2

c3

< . . . <
cM−1

cM

,

and they set
ρF (c)i,j := ci/cj, i ≤ j, i, j = 1, . . . ,M.

Notice that the correlation between changes in adjacent rates is ρF
i+1,i = ci/ci+1. The above re-

quirements on c’s translate into the requirement that the sub-diagonal of the resulting correlation
matrix ρF (c) be increasing when moving from NW (“North-West”) to SE (“South-East”). This
bears the interpretation that when we move along the yield curve, the larger the tenor, the more
correlated changes in adjacent forward rates become. This corresponds to the experienced fact that
the forward curve tends to flatten and to move in a more “correlated” way for large maturities than
for small ones. Correlations in the sub-diagonal (i.e. referring to changes in adjacent rates) thus
tend to grow as the maturity increases (as the index in the sub-diagonal increases). This holds also
for lower levels below the diagonal: In general the map

i 7→ ρi+p,i

is increasing for all p. All changes between equally spaced forward rates become more correlated
as their expiries increase, not only changes in adjacent forward rates.

A second property that can be important for applications to the LIBOR market model is that
correlations decrease when moving away from the “1” diagonal term along a row or a column.
Indeed, we see that

ρi,j < ρi,j+1, j < i.

This follows immediately from the fact that the c’s are increasing, since

ρi,j = ρj,i = cj/ci < cj+1/ci = ρi,j+1, j < i.

An analogous behaviour is found when moving off the diagonal in the opposite direction:

ρi,j < ρi,j−1, j > i.

The number of parameters needed in this formulation is M , versus the M(M − 1)/2 number of
entries in the general correlation matrix. It is easy to prove that ρF (c) is always a viable correlation
matrix if defined as above (symmetric, positive semidefinite and with ones in the diagonal).
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Schoenmakers and Coffey (2000) observe also that this parameterization can be always charac-
terized in terms of a finite sequence of non-negative numbers ∆2, . . . , ∆M :

ci = exp

[
i∑

j=2

j∆j +
M∑

j=i+1

(i− 1)∆j

]
.

Some particular cases in this class of parameterizations that Schoenmakers and Coffey (2000)
consider to be promising can be formulated through suitable changes of variables as follows. The
first is the case where all ∆’s are equal (∆2 = . . . = ∆M−1) except the last one: by a change of
variable one has

Stable, full rank, two-parameters, “increasing along sub-diagonals” parameteriza-
tion for instantaneous correlation:

ρi,j = exp

[
− |i− j|

M − 1

(
− ln ρ∞ + η

M − 1− i− j

M − 2

)]
.

Stability here is meant to point out that relatively small movements in the c-parameters con-
nected to this form (and thus in the correlations themselves) cause relatively small changes in ρ∞
and η. Notice that ρ∞ = ρ1,M is the correlation between the farthest forward rates in the family
considered, whereas η is related to the first non-zero ∆, i.e. η = ∆M−1(M − 1)(M − 2)/2.

A three-parameters form is obtained with the ∆i’s following a straight line (two parameters)
for i = 2, 3, . . . ,M −1 and set to a third parameter for i = M . Again through a change of variable,
this form can be expressed in a laborious expression generalizing the previous one. The calibration
experiments of Schoenmakers and Coffey (2000) pointed out, however, that the parameter associ-
ated with the final point ∆M−1 of our straight line in the ∆’s is practically always close to zero.
Setting thus ∆M−1 = 0 and maintaining the other characteristics of the last parameterization leads
to the following

Improved, stable, full rank, two-parameters, “increasing along sub-diagonals” pa-
rameterization for instantaneous correlations:

ρi,j = exp

[
− |i− j|

M − 1

(
− ln ρ∞

+ η
i2 + j2 + ij − 3Mi− 3Mj + 3i + 3j + 2M2 −M − 4

(M − 2)(M − 3)

)]
.

As before, ρ∞ = ρ1,M , whereas η is related to the steepness of the straight line in the ∆’s.
Finally, consider the
Classical, two-parameters, exponentially decreasing parameterization

ρi,j = ρ∞ + (1− ρ∞) exp[−β|i− j|], β ≥ 0,

where now ρ∞ is only asymptotically representing the correlation between the farthest rates in
the family.

Schoenmakers and Coffey (2000) point out that Rebonato’s (1999c,d) full-rank parameteriza-
tion, consisting in the following perturbation of the classical structure:

Rebonato’s three parameters full rank parameterization

ρi,j = ρ∞ + (1− ρ∞) exp[−|i− j|(β − α max(i, j))],
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has still the desirable property of being increasing along sub-diagonals. However, this form
does not fit the above general framework based on the c parameters, and moreover the domain of
positivity for the resulting matrix is not specified “off-line” in terms of the parameters α, β, ρ∞.
One has to check at every step of a hypothetical calibration/optimization that the resulting matrix
is positive semidefinite. On the contrary, the above formulations based on the c parameters are au-
tomatically positive semidefinite and thus do not require an iterative check in a calibration session.
Since an unconstrained optimization is preferable to a constrained one, the above parameterizations
of Schoenmakers and Coffey (2000) can be preferred from this point of view.

3 Reduced-rank formulations: Angles and eigenvalues ze-

roing

We know that, being ρ a positive definite symmetric matrix, it can be written as

ρ = PHP ′,

where P is a real orthogonal matrix, P ′P = PP ′ = IM , and H is a diagonal matrix of the positive
eigenvalues of ρ. The columns of P are the eigenvectors of ρ, associated to the eigenvalues located
in the corresponding position in the diagonal matrix H. Let Λ be the diagonal matrix whose entries
are the square roots of the corresponding entries of H, so that if we set A := PΛ we have both

AA′ = ρ, A′A = H .

We can try and mimic the decomposition ρ = AA′ by means of a suitable n-rank M ×n matrix
B such that BB′ is an n-rank correlation matrix, with typically n << M .

The advantage of doing so is that we may take as new noise a standard n-dimensional Brownian
motion W and replace the original M -dimensional random shocks dZ(t) by B dW (t). In other
terms, we move from a noise correlation structure

dZ dZ ′ = ρ dt

to
B dW (B dW )′ = B dWdW ′ B′ = BB′dt.

Therefore, with noise given by B dW our new instantaneous noise-correlation matrix is BB′ whose
rank is n << M , and the dimension of our random shocks has decreased to n. We set

ρB = BB′.

If we decide to adopt indeed a reduced-rank approach, we are left with the problem of choosing
a suitable parametric form for the B matrix, such that BB′ is a possible correlation matrix.

3.1 Rebonato’s angles formulation

Rebonato (1999d) suggests the following general form for the i-th row of the above B matrix:

bi,1 = cos θi,1 (1)

bi,k = cos θi,k sin θi,1 · · · sin θi,k−1, 1 < k < n,

bi,n = sin θi,1 · · · sin θi,n−1,
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for i = 1, 2, . . . , M . Notice that with this parameterization ρB =: ρ(θ) is clearly positive semidefinite
and its diagonal terms are ones. It follows that ρ(θ) is a possible correlation matrix. The number
of parameters in this case is M × (n− 1).

A particular case of the above formulation (Morini (2002)) is obtained when considering θi,j =
θi for all j, resulting in angles that are homogeneous with respect to the column index. This
formulation lowers the number of angles considerably. One may wonder whether there is a compact
formula for the correlation resulting from this suggestion. We now briefly investigate this problem.
The M parameters n-rank correlation matrix ρ(θ) reads, by straightforward calculations,

ρi,j(θ) = cos θi cos θj +
n−2∑

k=1

cos θi cos θj (sin θi sin θj)
k + (sin θi sin θj)

n−1.

By recalling that 1 + x + . . . + xm = (1− xm+1)/(1− x) and setting sin θi = αi, we obtain easily
that the above expression is equivalent to the following n-rank parameterization:

n-rank, column-homogeneous angles parameterization:

(ρH)i,j =
√

(1− α2
i )(1− α2

j )
1− (αiαj)

n−1

1− αiαj

+ (αiαj)
n−1, αk ∈ (−1, 1),

with ρH = BHB′
H , where

(bH)i,j = (1− α2
i )

1{j<n}
2 α

(j−1)
i ,

1{·} denoting the indicator function of the argument inside curly brackets.
Let us now consider a simple two-factor structure, n = 2, consisting of M parameters. This is

obtained as

bi,1 = cos θi,1, bi,2 = sin θi,1 . (2)

Dropping the second subscript for θ, we have

ρB
i,j = bi,1bj,1 + bi,2bj,2 = cos(θi − θj). (3)

This structure consists of M parameters θ1, . . . , θM .
Notice the following interesting feature of the general angle parameterization. Assume we use

this parameterization while keeping full-rank n = M . The number of angle parameters is then
M(M − 1), and is twice the M(M − 1)/2 significant entries in the correlation matrix. The angle
parameterization in this case increases the dimension, and this is usually considered a drawback.
One has to remember, however, that the angle parameterization embeds the constraints on the
one-entries diagonal and on symmetry and positive semidefiniteness. The excess in parameters is
understood with a toy example in dimension two. Take n = M = 2. Then we have only one
correlation parameter ρ1,2 = ρ2,1 = c, but two angles:

[
1 c
c 1

]
=

[
1 cos(θ2 − θ1)

cos(θ2 − θ1) 1

]
.

As we see, what matters here is the difference between the angles (1 parameter) and not the
particular angles themselves (2 parameters).
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Incidentally, we see that the reduction of the number of parameters in the correlation matrix
cannot be solved simply by slightly reducing the rank through the angle formulation. If we wish
the number M(n − 1) of parameters of the angle parameterization to be much smaller than the
significant number of M(M − 1)/2 entries in the full rank matrix, we need ask not only n < M , as
the rank reduction implies, but rather

n << (M + 1)/2.

This is a possibly disturbing feature, making also the correspondence θ 7→ ρ(θ) not one to one, since
in the full-rank case the domain has dimension M(M − 1), while the image space has dimension
M(M − 1)/2. However, Rapisarda (2002) describes a way to “standardize” the angles specification
so as to restore the one-to-one nature of the correspondence, and we will hint at this result in
Section 3.4.

Now let us assume we have selected n = 2 as above. If M is large (typically 20), we can still
have troubles with a too large number of parameters θ. We can then select a subparameterization
for the θ’s of the type

θk = ϑ(k) ,

where ϑ(·) is a function depending on a small (say four or five) number of parameters. Such a
function could be for example a linear-exponential combination. However, in our experience keeping
the θ’s free from a subparameterization can be necessary if we are calibrating the LIBOR market
model to a large number of swaptions, when using instantaneous correlations as swaptions-fitting
parameters.

In general, when we calibrate the LIBOR market model to swaptions using instantaneous cor-
relations ρ as fitting parameters, we are free to select a priori a parametric form for the correlation
matrix. We may for example take the n rank matrix ρB = BB′ defined above in terms of angles θ.
Here the reduced rank is built into the parameterization and we are sure that, once the model has
been calibrated, an n-dimensional independent shocks structure dW (t) will be sufficient to perform
simulations with M dimensional correlated shocks B dW (t).

However, in some parameterizations of the instantaneous covariance structure of the LIBOR
market model, such as for example in Brigo and Mercurio (2001) Section 7.4, and Brigo and
Mercurio (2002), the correlation matrix is given exogenously (say through historical estimation),
instead of being calibrated to the swaption market. When the correlation matrix ρ is given as an
exogenous input to the calibration, instead of being kept as a fitting parameter, it will have full
rank M in general. The problem in this situation is that when decomposing ρ as BB′, the resulting
B will be a M ×M matrix, so that the independent random shocks structure dW (t) in the LIBOR
market model will have full dimension M , exactly as the correlated noise structure. When in need
of performing Monte Carlo simulation to value exotics, this full-dimensionality is an undesirable
feature.

This problem can be alleviated if we can find a way to obtain a reduced rank correlation matrix
ρ(n) that is, in some sense, the best approximation of the exogenously-given full-rank correlation
matrix ρ. Then the swaption calibration proceeds by keeping ρ(n) as exogenous correlation matrix.

We now list some possible approaches to this problem,

M -rank-ρ −→ n-rank-ρ(n).

Summing up, we are given in input a full rank M ×M correlation matrix ρ. We aim at
approximating this matrix through an at most n-rank correlation matrix ρ(n), n < M .
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3.2 The approach of zeroing the smallest eigenvalues and rescaling

As before, we can try and mimic the decomposition ρ = AA′ by means of a suitable n-rank M × n
matrix B such that BB′ is an n-rank correlation matrix, with typically n << M . But this time,
instead of taking B as an angle-parameterized matrix, we define B as follows.

Consider the diagonal matrix Λ̄(n) defined as the matrix Λ with the M − n smallest diagonal
terms set to zero.

Define then B̄(n) := P Λ̄(n), and the related candidate correlation matrix

ρ̄(n) := B̄(n)(B̄(n))′.

Notice that we can also equivalently define Λ(n) as the n× n (instead of M ×M) diagonal matrix
obtained from Λ by taking away (instead of zeroing) the M − n smallest diagonal elements and
shrinking the matrix correspondingly. Analogously, we can define the M × n matrix P (n) as the
matrix P from which we take away the columns corresponding to the diagonal elements we took
away from Λ. More precisely, if we call

Λi1,i1 , Λi2,i2 , . . . , ΛiM−n,iM−n

the M−n smallest diagonal elements of Λ, then P (n) is obtained from P by taking away the columns
i1, i2, . . . , iM−n. The result does not change, in that if we define the M × n matrix B(n) = P (n)Λ(n)

we have

ρ̄(n) = B̄(n)(B̄(n))′ = B(n)(B(n))′.

We keep the B(n) formulation. Now the problem is that, in general, while ρ̄(n) is positive
semidefinite, it does not feature ones in the diagonal. Throwing away some eigenvalues from Λ has
altered the diagonal. The solution is to interpret ρ̄(n) as a covariance matrix, and to derive the
correlation matrix associated with it. We can do this immediately by defining

ρ
(n)
i,j :=

ρ̄
(n)
i,j√

ρ̄
(n)
i,i ρ̄

(n)
j,j

.

Now ρ
(n)
i,j is an n-rank approximation of the original matrix ρ. But how good is the approxi-

mation, and are there more precise methods to approximate a full rank correlation matrix with a
n-rank matrix?

3.3 The approach of optimizing on a low rank parametric form

Rebonato and Jäckel (1999) suggest the following alternative to the above procedure and then
compare the two results.

We can start from an n-rank matrix ρ(θ) = B(θ)B′(θ) defined in terms of the angles as before:
the i-th row of B is again

bi,1(θ) = cos θi,1

bi,k(θ) = cos θi,k sin θi,1 · · · sin θi,k−1, 1 < k < n,

bi,n(θ) = sin θi,1 · · · sin θi,n−1,

where now the dependence on θ has been pointed out explicitly.
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When a target full-rank correlation matrix ρ̂ is given as input, we can try and find the parameters
θ that minimize a norm of the difference between the target matrix ρ and our parameterized matrix
ρ(θ). In other terms, we try and minimize with respect to θ the quantity

M∑
i,j=1

(|ρi,j − ρi,j(θ)|2).

An important feature of this formulation is that the θ’s are completely free: The resulting
matrix ρ(θ) is always symmetric, positive semidefinite and with ones in the diagonal, so that we
need to pose no constraints in the optimization.

Rebonato and Jäckel (1999) argue that the differences between this method, giving the optimal
solution, and the “eigenvalues zeroing” method above is typically small, and show some examples.
We are going to confirm these results with a few numerical experiments of our own in the following.

Assume we have a 10 × 10 full-rank correlation matrix coming from the full-rank classical
parametric form:

ρ̂i,j = 0.5 + (1− 0.5) exp[−0.05|i− j|],
and that we first try to fit this matrix with a rank-2 correlation structure.

The input matrix ρ̂ to be fitted is

1 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523 0.8352 0.8188
0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523 0.8352
0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523
0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704
0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094 0.8894
0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304 0.9094
0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524 0.9304
0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756 0.9524
0.8352 0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1 0.9756
0.8188 0.8352 0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1

In this case we show also the orthogonal (eigenvectors) matrix P and the diagonal (eigenvalues)
matrix H such that ρ = PHP ′. The matrix P is

-0.0714 0.1398 0.2072 0.2657 0.3224 0.3652 -0.4045 -0.4261 0.4293 0.3081
0.2039 -0.3624 -0.4416 -0.424 -0.3099 -0.1325 -0.0844 -0.2703 0.4003 0.3135

-0.3164 0.4468 0.3137 -0.0024 -0.3193 -0.4466 0.3067 -0.0081 0.3247 0.3175
0.3982 -0.3612 0.0715 0.4252 0.3131 -0.1406 0.4401 0.2577 0.2113 0.3202

-0.4412 0.1379 -0.3981 -0.2623 0.3162 0.3603 0.2038 0.423 0.0733 0.3216
0.4412 0.1379 0.3981 -0.2623 -0.3162 0.3603 -0.2038 0.423 -0.0733 0.3216

-0.3982 -0.3612 -0.0715 0.4252 -0.3131 -0.1406 -0.4401 0.2577 -0.2113 0.3202
0.3164 0.4468 -0.3137 -0.0024 0.3193 -0.4466 -0.3067 -0.0081 -0.3247 0.3175

-0.2039 -0.3624 0.4416 -0.424 0.3099 -0.1325 0.0844 -0.2703 -0.4003 0.3135
0.0714 0.1398 -0.2072 0.2657 -0.3224 0.3652 0.4045 -0.4261 -0.4293 0.3081

whereas H is the 10 × 10 diagonal matrix whose diagonal elements (ρ̂’s eigenvalues) are, from
NW to SE:

0.0128 0.0138 0.0157 0.0191 0.0249 0.0359 0.0594 0.1268 0.4207 9.2709
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In this case the smallest eight eigenvalues are the first eight. We are thus left with the matrix
P (2) given by the last two columns of P , and Λ(2) given by

√
0.4207 0

0
√

9.2709

By defining the 10× 2 matrix B(2) := P (2)Λ(2) and by following the above procedure we obtain,
through scaling of ρ̄(2) = B(2)(B(2))′ the final rank-2 correlation matrix ρ(2):

1 0.9997 0.9973 0.9889 0.9713 0.9437 0.9097 0.8761 0.8503 0.838
0.9997 1 0.9987 0.9921 0.9765 0.9511 0.919 0.887 0.8622 0.8503
0.9973 0.9987 1 0.9972 0.9863 0.9656 0.938 0.9094 0.887 0.8761
0.9889 0.9921 0.9972 1 0.9959 0.9824 0.9613 0.938 0.919 0.9097
0.9713 0.9765 0.9863 0.9959 1 0.9953 0.9824 0.9656 0.9511 0.9437
0.9437 0.9511 0.9656 0.9824 0.9953 1 0.9959 0.9863 0.9765 0.9713
0.9097 0.919 0.938 0.9613 0.9824 0.9959 1 0.9972 0.9921 0.9889
0.8761 0.887 0.9094 0.938 0.9656 0.9863 0.9972 1 0.9987 0.9973
0.8503 0.8622 0.887 0.919 0.9511 0.9765 0.9921 0.9987 1 0.9997
0.838 0.8503 0.8761 0.9097 0.9437 0.9713 0.9889 0.9973 0.9997 1

This is the rank-2 matrix resulting from the “eigenvalues zeroing” quick procedure. Notice that
we can express this rank-2 matrix by means of its angles parameters. By inverting the relevant
transformation, we see that this matrix is associated with the angles θ(2) given by

θ(2) = [1.2886 1.3081 1.3586 1.4333 1.5233 1.6183 1.7083 1.7830 1.8335 1.8530]′.

As a more refined alternative, we now consider the above rank-2 parameterization in the θ’s
and minimize the difference

M∑
i,j=1

(|ρ̂i,j − ρi,j(θ)|2)

through a numerical optimization. The numerical optimization takes a few seconds in an inter-
preted language such as MATLAB and yields

θ∗(2) = [1.2367 1.2812 1.3319 1.3961 1.4947 1.6469 1.7455 1.8097 1.8604 1.9049].

Compare these angles θ∗(2) to θ(2) to see how close the quickly-computed zeroed-eigenvalues
matrix ρ(2) = ρ(θ(2)) is to the optimal rank-2 correlation matrix ρ(θ∗(2)).

The resulting optimal rank-2 matrix ρ(θ∗(2)) is given by

1 0.999 0.9955 0.9873 0.9669 0.917 0.8733 0.8403 0.8117 0.7849
0.999 1 0.9987 0.9934 0.9773 0.9339 0.8941 0.8636 0.8369 0.8117

0.9955 0.9987 1 0.9979 0.9868 0.9508 0.9157 0.888 0.8636 0.8403
0.9873 0.9934 0.9979 1 0.9951 0.9687 0.9396 0.9157 0.8941 0.8733
0.9669 0.9773 0.9868 0.9951 1 0.9885 0.9687 0.9508 0.9339 0.917
0.917 0.9339 0.9508 0.9687 0.9885 1 0.9951 0.9868 0.9773 0.9669

0.8733 0.8941 0.9157 0.9396 0.9687 0.9951 1 0.9979 0.9934 0.9873
0.8403 0.8636 0.888 0.9157 0.9508 0.9868 0.9979 1 0.9987 0.9955
0.8117 0.8369 0.8636 0.8941 0.9339 0.9773 0.9934 0.9987 1 0.999
0.7849 0.8117 0.8403 0.8733 0.917 0.9669 0.9873 0.9955 0.999 1
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To compare the difference between the original matrix ρ̂, the zeroed-eigenvalues rank-2 matrix
ρ(2) and finally the optimal rank-2 matrix ρ(θ∗(2)), we plot the second columns of the three matrices
in the left hand side of figure 1.
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Figure 1: On the left: Second columns of ρ̂, ρ(2), and ρ(θ∗(2)). On the right: Second columns of ρ̂,
ρ(4), and ρ(θ∗(4))

From the left figure we see that both rank-2 formulations are in troubles because of the sigmoid-
like shape they are forced to assume. On the contrary, the original correlations move away from
the diagonal in an almost straight pattern. The optimal rank-2 matrix is the best we can do with
a rank-2 approximation, and we see that “on average” it recovers the true correlation columns,
in that it stays partly above and partly below the true correlation (almost straight) plot. Indeed,
being forced to assume sigmoid-like columns, the rank-2 optimal approximation oscillates from
above to below said column. The rougher zeroed-eigenvalues rank-2 reduction does not even do
that, remaining always above the true correlation column. Differences are not huge but are however
not negligible. Moreover, if decorrelation is more pronounced, the approximation can worsen.

We now check the analogous approximations if we resort to rank 4 approximation. The resulting
correlation matrices are as follows. The zeroed-eigenvalues matrix ρ(4) is given by

1 0.9951 0.9708 0.9379 0.9148 0.8979 0.8821 0.867 0.8448 0.8237
0.9951 1 0.9897 0.966 0.9435 0.9206 0.8985 0.8819 0.8627 0.8448
0.9708 0.9897 1 0.9922 0.9742 0.9463 0.9174 0.8986 0.8819 0.867
0.9379 0.966 0.9922 1 0.9925 0.9685 0.9388 0.9174 0.8985 0.8821
0.9148 0.9435 0.9742 0.9925 1 0.9904 0.9685 0.9463 0.9206 0.8979
0.8979 0.9206 0.9463 0.9685 0.9904 1 0.9925 0.9742 0.9435 0.9148
0.8821 0.8985 0.9174 0.9388 0.9685 0.9925 1 0.9922 0.966 0.9379
0.867 0.8819 0.8986 0.9174 0.9463 0.9742 0.9922 1 0.9897 0.9708

0.8448 0.8627 0.8819 0.8985 0.9206 0.9435 0.966 0.9897 1 0.9951
0.8237 0.8448 0.867 0.8821 0.8979 0.9148 0.9379 0.9708 0.9951 1
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whereas the optimal four-rank matrix ρ(θ∗(4)) based on the optimal angles is this time

1 0.9957 0.9633 0.9267 0.8999 0.8867 0.8752 0.8598 0.8346 0.8136
0.9957 1 0.9839 0.9559 0.9295 0.9078 0.8893 0.8715 0.8524 0.8346
0.9633 0.9839 1 0.9904 0.9673 0.9317 0.9012 0.8796 0.8715 0.8598
0.9267 0.9559 0.9904 1 0.9911 0.9603 0.9276 0.9012 0.8893 0.8752
0.8999 0.9295 0.9673 0.9911 1 0.9865 0.9603 0.9317 0.9078 0.8867
0.8867 0.9078 0.9317 0.9603 0.9865 1 0.9911 0.9673 0.9295 0.8999
0.8752 0.8893 0.9012 0.9276 0.9603 0.9911 1 0.9904 0.9559 0.9267
0.8598 0.8715 0.8796 0.9012 0.9317 0.9673 0.9904 1 0.9839 0.9633
0.8346 0.8524 0.8715 0.8893 0.9078 0.9295 0.9559 0.9839 1 0.9957
0.8136 0.8346 0.8598 0.8752 0.8867 0.8999 0.9267 0.9633 0.9957 1

The two matrices are associated respectively with the angles

θ(4) θ∗(4)

1.6695 1.7239 1.2837 1.6844 1.7328 1.2775
1.5914 1.6672 1.3068 1.6088 1.6828 1.2965
1.496 1.5737 1.358 1.4688 1.581 1.3444

1.4634 1.4784 1.4319 1.4435 1.4708 1.4267
1.5211 1.4194 1.5226 1.5051 1.3957 1.5203
1.6205 1.4194 1.6189 1.6365 1.3957 1.6213
1.6782 1.4784 1.7097 1.6981 1.4708 1.7149
1.6456 1.5737 1.7836 1.6728 1.581 1.7972
1.5502 1.6672 1.8348 1.5328 1.6828 1.8451
1.4721 1.7239 1.8579 1.4571 1.7328 1.864

We can plot again the second columns of the three matrices in the right-hand side of figure 1.
As we see both from the figures and the tables, the approximation has improved.
When moving to rank 7 matrices, the approximation becomes very good and few differences are

noticeable in the three matrices.
We now examine a more extreme case where the rates decorrelate very quickly and steeply from

1 to 0. Consider the 10 × 10 full-rank correlation matrix ρ̂ coming from the full-rank classical
parametric form:

ρ̂i,j = exp[−|i− j|].
The matrix ρ̂ is this time

1 0.3679 0.1353 0.0498 0.0183 0.0067 0.0025 0.0009 0.0003 0.0001
0.3679 1 0.3679 0.1353 0.0498 0.0183 0.0067 0.0025 0.0009 0.0003
0.1353 0.3679 1 0.3679 0.1353 0.0498 0.0183 0.0067 0.0025 0.0009
0.0498 0.1353 0.3679 1 0.3679 0.1353 0.0498 0.0183 0.0067 0.0025
0.0183 0.0498 0.1353 0.3679 1 0.3679 0.1353 0.0498 0.0183 0.0067
0.0067 0.0183 0.0498 0.1353 0.3679 1 0.3679 0.1353 0.0498 0.0183
0.0025 0.0067 0.0183 0.0498 0.1353 0.3679 1 0.3679 0.1353 0.0498
0.0009 0.0025 0.0067 0.0183 0.0498 0.1353 0.3679 1 0.3679 0.1353
0.0003 0.0009 0.0025 0.0067 0.0183 0.0498 0.1353 0.3679 1 0.3679
0.0001 0.0003 0.0009 0.0025 0.0067 0.0183 0.0498 0.1353 0.3679 1
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If we focus on a rank-4 approximation, the zeroed-eigenvalues procedure yields a matrix ρ(4)

given by

1 0.9474 0.5343 -0.0116 -0.1967 -0.0427 0.1425 0.1378 -0.042 -0.1511
0.9474 1 0.775 0.2884 0.0164 -0.03 0.0316 0.0538 0 -0.042
0.5343 0.775 1 0.8137 0.4993 0.0979 -0.1229 -0.1035 0.0538 0.1378

-0.0116 0.2884 0.8137 1 0.8583 0.3725 -0.0336 -0.1229 0.0316 0.1425
-0.1967 0.0164 0.4993 0.8583 1 0.7658 0.3725 0.0979 -0.03 -0.0427
-0.0427 -0.03 0.0979 0.3725 0.7658 1 0.8583 0.4993 0.0164 -0.1967
0.1425 0.0316 -0.1229 -0.0336 0.3725 0.8583 1 0.8137 0.2884 -0.0116
0.1378 0.0538 -0.1035 -0.1229 0.0979 0.4993 0.8137 1 0.775 0.5343
-0.042 0 0.0538 0.0316 -0.03 0.0164 0.2884 0.775 1 0.9474

-0.1511 -0.042 0.1378 0.1425 -0.0427 -0.1967 -0.0116 0.5343 0.9474 1

The optimization on an angle-parameterized rank-4 matrix yields the following output matrix
ρ(θ∗(4)):

1 0.9399 0.4826 -0.0863 -0.2715 -0.0437 0.1861 0.1808 -0.077 -0.2189
0.9399 1 0.7515 0.234 -0.0587 -0.0572 0.0496 0.0843 -0.0135 -0.077
0.4826 0.7515 1 0.7935 0.4329 0.015 -0.1745 -0.1195 0.0843 0.1808

-0.0863 0.234 0.7935 1 0.8432 0.3222 -0.0872 -0.1745 0.0496 0.1861
-0.2715 -0.0587 0.4329 0.8432 1 0.7421 0.3222 0.015 -0.0572 -0.0437
-0.0437 -0.0572 0.015 0.3222 0.7421 1 0.8432 0.4329 -0.0587 -0.2715
0.1861 0.0496 -0.1745 -0.0872 0.3222 0.8432 1 0.7935 0.234 -0.0863
0.1808 0.0843 -0.1195 -0.1745 0.015 0.4329 0.7935 1 0.7515 0.4826
-0.077 -0.0135 0.0843 0.0496 -0.0572 -0.0587 0.234 0.7515 1 0.9399

-0.2189 -0.077 0.1808 0.1861 -0.0437 -0.2715 -0.0863 0.4826 0.9399 1

If we resort to a rank-7 approximation, the zeroed-eigenvalues approach yields the following
matrix ρ(7):

1 0.5481 0.0465 0.0944 0.0507 -0.0493 0.034 0.0169 -0.0441 0.0284
0.5481 1 0.6737 0.0647 0.0312 0.112 -0.0477 -0.0162 0.0691 -0.0441
0.0465 0.6737 1 0.579 0.1227 0.0353 0.0562 0.0012 -0.0162 0.0169
0.0944 0.0647 0.579 1 0.5822 0.0674 0.0806 0.0562 -0.0477 0.034
0.0507 0.0312 0.1227 0.5822 1 0.6472 0.0674 0.0353 0.112 -0.0493

-0.0493 0.112 0.0353 0.0674 0.6472 1 0.5822 0.1227 0.0312 0.0507
0.034 -0.0477 0.0562 0.0806 0.0674 0.5822 1 0.579 0.0647 0.0944

0.0169 -0.0162 0.0012 0.0562 0.0353 0.1227 0.579 1 0.6737 0.0465
-0.0441 0.0691 -0.0162 -0.0477 0.112 0.0312 0.0647 0.6737 1 0.5481
0.0284 -0.0441 0.0169 0.034 -0.0493 0.0507 0.0944 0.0465 0.5481 1
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The optimization on an angle-parameterized rank-7 matrix yields the following output matrix
ρ(θ∗(7)):

1 0.5592 -0.0177 0.1085 0.0602 -0.0795 0.0589 0.018 -0.0734 0.0667
0.5592 1 0.5992 0.0202 0.0277 0.1123 -0.0652 -0.008 0.0797 -0.0734

-0.0177 0.5992 1 0.5464 0.0618 0.0401 0.0561 -0.012 -0.008 0.018
0.1085 0.0202 0.5464 1 0.5556 0.018 0.0834 0.0561 -0.0652 0.0589
0.0602 0.0277 0.0618 0.5556 1 0.5819 0.018 0.0401 0.1123 -0.0795

-0.0795 0.1123 0.0401 0.018 0.5819 1 0.5556 0.0618 0.0277 0.0602
0.0589 -0.0652 0.0561 0.0834 0.018 0.5556 1 0.5464 0.0202 0.1085
0.018 -0.008 -0.012 0.0561 0.0401 0.0618 0.5464 1 0.5992 -0.0177

-0.0734 0.0797 -0.008 -0.0652 0.1123 0.0277 0.0202 0.5992 1 0.5592
0.0667 -0.0734 0.018 0.0589 -0.0795 0.0602 0.1085 -0.0177 0.5592 1

We plot the fifth columns of the original matrix and of the rank-4 approximations in the left
part of figure 2. It is clear that, due to the steep decorrelation pattern when moving off the
diagonal, both 4-rank approximations are worse than with our earlier example. To obtain a better
approximation we have to resort to 7-rank matrices, and the related plots are on the right hand
side of figure 2. Keep in mind, however, that this is an extreme case and that in general rank-4
approximations are satisfactory in most situations.
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Figure 2: On the left: Fifth columns of ρ̂, ρ(4), and ρ(θ∗(4)). On the right: Fifth columns of ρ̂, ρ(7),
and ρ(θ∗(7))

3.4 Reducing the angles

There are some problems left with the general angles parameterization. We pointed out in Sec-
tion 3.1 that the θ parameters are redundant. Let us consider the full rank case n = M for a start.
In this case we have M(M − 1) angle parameters θ, whereas we just need half these parameters
to characterize a correlation matrix. Recently, Rapisarda (2002) found an interesting solution to
this problem, based on a geometric interpretation of the angles parameterization. Rapisarda (2002)



D. Brigo, P&BD, Banca IMI: Notes on Correlation and Rank Reduction 14

bases his interpretation on the idea of subsequent Jacobi rotations. Roughly speaking, it turns out
that the correlation matrix can be obtained by mutual projections of versors obtained by subsequent
rotations of a starting versor. The redundancy in the angles parameterization comes essentially
from not fixing this initial versor. If we establish this initial versor to be for example [1, 0, . . . , 0]′,
then redundancy vanishes, and if further we take θi,j = 0 for each j ≥ i when i < n, we obtain
a “canonical” version of the angle parameterization that is as rich as the initial one in terms of
correlation matrices. Incidentally, notice that now the number of nonzero angles is M(M − 1)/2 in
the full-rank case (n = M), exactly the number of different entries in a general full-rank correlation
matrix. For example, in case M = n = 5, we have the angles matrix

0 0 0 0
θ2,1 0 0 0
θ3,1 θ3,2 0 0
θ4,1 θ4,2 θ4,3 0
θ5,1 θ5,2 θ5,3 θ5,4

to which corresponds a triangular matrix B(θ):

1 0 0 0 0
b2,1 b2,2 0 0 0
b3,1 b3,2 b3,3 0 0
b4,1 b4,2 b4,3 b4,4 0
b5,1 b5,2 b5,3 b5,4 b5,5

which is the Cholesky decomposition of the correlation matrix ρ(θ).
More generally, when the rank is smaller than the matrix size, n < M , we have a similar

triangular matrix on top, followed below by a rectangular matrix. For example, in case n = 5 and
M = 10, we have

0 0 0 0
θ2,1 0 0 0
θ3,1 θ3,2 0 0
θ4,1 θ4,2 θ4,3 0
θ5,1 θ5,2 θ5,3 θ5,4

θ6,1 θ6,2 θ6,3 θ6,4

θ7,1 θ7,2 θ7,3 θ7,4

θ8,1 θ8,2 θ8,3 θ8,4

θ9,1 θ9,2 θ9,3 θ9,4

θ10,1 θ10,2 θ10,3 θ10,4

and a similar structure holds for the B(θ) matrix.
The above standardization of the θ’s (and the induced standardization on the B’s) helps by

reducing the number of parameters in the optimization and also in other respects. It is further
possible to constrain the angles in suitable intervals in order to avoid further redundancy. These
problems are discussed in Rapisarda (2002).

As an example, we consider again the matrix
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ρ̂i,j = exp[−|i− j|]
given earlier, with M = 10. If we take n = 4, the resulting canonical “triangularized” angles,

replacing the partly redundant θ∗(4) given earlier, are

θ∗∗(4)

0 0 0
0.3387 0 0
1.0656 0.0221 0
1.6565 0.3039 0.6206
1.8519 0.8419 0.7275
1.6264 1.5406 0.9085
1.3974 1.8835 1.2993
1.3922 1.8061 1.9873
1.6417 1.4174 2.5489
1.7839 1.212 2.8069

The related matrices ρ(θ∗(4)) and ρ(θ∗∗(4)), although being very close, are not exactly equal,
since the final result depends on approximations and details concerning the optimization procedure.
Since by taking away the first (zeroed) row of this canonical θ’s matrix one is left with a lower
triangular matrix on top, we refer to this canonical θ parameterization as to the “triangular angles
parameterization”.

For more details and a geometric insight on this procedure see Rapisarda (2002) and Brigo,
Mercurio and Rapisarda (2002).
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