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Abstract

In this work we derive an approximated no-arbitrage market valuation formula
for Constant Maturity Credit Default Swaps (CMCDS). We move from the CDS
options market model in Brigo (2004), and derive a formula for CMCDS that
is the analogous of the formula for constant maturity swaps in the default free
swap market under the LIBOR market model. A “convexity adjustment”-like
correction is present in the related formula. Without such correction, or with zero
correlations, the formula returns an obvious deterministic-credit-spread expression
for the CMCDS price. To obtain the result we derive a joint dynamics of forward
CDS rates under a single pricing measure, as in Brigo (2004). Numerical examples
of the “convexity adjustment” impact complete the paper.
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1 Introduction

Constant Maturity Credit Default Swaps (CMCDS) are receiving increasing attention in

the financial community. In this work, we aim at deriving an approximated no-arbitrage

market valuation formula for CMCDS. We move from the CDS options market model

in Brigo (2004), and derive a formula for CMCDS that is the analogous of the formula

for constant maturity swaps in the default free swap market under the LIBOR market

model.

In Brigo (2004) the focus is somehow different, since in that paper we derive CDS

option prices for CDS payoffs given in the market and for some postponed approximated

CDS payoffs. We do so by means of a rigorous change of numeraire technique following

Jamshidian (2002) and based on a result of Jeanblanc and Rutkowski (2000). We also

establish a link with callable defaultable floaters.

This paper starts by recalling again one alternative expression for CDS payoffs, stem-

ming from different conventions on the premium flows and on the protection leg. We

briefly introduce CDS forward rates, postponing the detailed definitions. We define

CMCDS and give immediately the main result of the paper, the approximated pric-

ing formula, in terms of CDS forward rates and of their volatilities and correlations.

We point out some analogies with constant maturity swaps, showing that a “convexity

adjustment”-like correction is present. Without such correction, or with zero corre-

lations, the formula returns an obvious deterministic-credit-spread expression for the

CMCDS price.

Once the main result has been described, we move to introduce the formal apparatus

that allows to prove it. We introduce rigorously CDS forward rates. This leads to an

investigation on the possibility to express such rates in terms of some basic one-period

rates and to a discussion on a possible analogy with the LIBOR and swap default-free

models. We discuss the change of numeraire approach to deriving a joint dynamics of

forward CDS rates under a single pricing measure, derivation that is only hinted at

in Brigo (2004) for deriving the Black-like formula for CDS options. Through a drift-

freezing approximation we then prove the formula for CMCDS pricing and give some

numerical examples highlighting the role of the participation rate and of the convexity

adjustment.

Remark 1.1. (How to use this paper) The CDS Options market model is the same

as in Brigo (2004) and is based on a complex change of numeraire involving two families

of forward CDS rates. This apparatus is reported in Section 4 but there is no need to go

through it if one does not plan to test the formula against Monte Carlo simulation. As

far as the formula derivation is concerned, the reader may skip Section 4 and go directly

to the much simpler approximated model in Section 5.
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2 Credit Default Swaps (CDS) and Constant Matu-

rity CDS

We recall briefly some basic definitions for CDS’s.

Definition 2.1. (Credit Default Swap). A CDS is a contract where the “protection

buyer” “A” pays rates R (“R” stands for Rates) at times Ta+1, . . . , Tb (the “premium

leg”) in exchange for a single protection payment LGD (loss given default, the protection

leg). “A” receives the protection leg by the “protection seller” “B” at the default time τ

of a reference entity “C”, provided that Ta < τ ≤ Tb. The rates R paid by “A” stop in

case of default. We thus have

Protection Seller → protection LGD at default τC of “C” if in [Ta, Tb] → Protection Buyer

“B” ← rate R at Ta+1, . . . , Tb or until default τC ← “A”

This is called a “running CDS” (RCDS) discounted payoff.

We explicitly point out that we are assuming the offered protection amount LGD to

be deterministic. Typically LGD = 1 − REC, where the recovery rate REC is assumed to

be deterministic and the notional is set to one.

Sometimes a slightly different payoff is considered for RCDS contracts. Instead of

considering the exact default time τ , the protection payment LGD is postponed to the first

time Ti following default. If the grid is three or six months spaced, this postponement

consists in a few months at worst.

We term “Postponed payments Running CDS” (PRCDS) the CDS payoff under the

postponed formulation. The advantage of the postponed protection payment is that no

accrued-interest term is necessary, and also that all payments occur at the canonical grid

of the Ti’s. The postponed payout is better for deriving market models of CDS rates

dynamics, as we shall see shortly. It is also fundamental in establishing the “defaultable

floater analogy” as we have seen in Brigo (2004).

We denote by CDSa,b(t, R, LGD) the price at time t of the above standard running

CDS flows to the protection seller “B”. We add the prefix “PR” to denote the analogous

price for the postponed payoff. The pricing formulas for these payoffs depend on the

assumptions on interest-rate dynamics and on the default time τ . In general the CDS

forward rate Ra,b(0) for protection in Ta, Tb at initial time 0 is obtained (in the postponed

case) by solving the equation PRCDSa,b(0, Ra,b(0), LGD) = 0. We will give details on

this later: now we only say that the market provides quotes for R0,b(0)’s for increasing

maturities Tb (notice that T0 = 0, so that only “spot” CDS rates are quoted in the

market). The Ra,b(0) rate makes the CDS contract fair at the valuation time. A special

role in our work will be covered by one-period rates Ri(0) = Ri−1,i(0) (protection in

[Ti−1, Ti]). These rates may seem artificial but they can be easily computed from quoted

spot rates. An important role is also assigned to the corporate zero-coupon bond price

P̄ (0, T ), which is the price at time 0 of one unit of currency made available by name “C”
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at maturity T if no default occurs, and with no recovery in case of early default. The

corresponding default-free zero coupon bond is denoted by P (0, T ).

We are now ready to introduce CMCDS’s.

In a CMCDS with first reset in Ta and with final maturity Tb, protection LGD on a

reference credit “C” against default in [Ta, Tb] is given from a protection seller “B” to a

protection buyer “A”. However, in exchange for this protection, a “constant maturity”

CDS rate is paid.

We know by definition that the fair rate to be paid at Ti for protection against default

in [Ti−1, Ti] would be Ri. This leads us to the following

Remark 2.2. (A “floating-rate” CDS). A contract that protects in Ta, Tb can be

in principle decomposed into a stream of contracts, each single contract protecting in

[Tj−1, Tj], for j = a+1, . . . , b, say with protection payment LGD postponed to Tj if default

occurs in [Tj−1, Tj]. In each single period, the rate Rj(Tj−1) paid at Tj makes the exchange

fair, so that in total a contract offering protection LGD on a reference credit “C” in

[Ta, Tb] in exchange for payment of rates Ra+1(Ta), . . . , Rj(Tj−1), . . . , Rb(Tb−1) at times

Ta+1, . . . , Tj, . . . , Tb is fair, i.e. has zero initial present value. This product can be seen

as a sort of floating rate CDS.

However, in CMCDS’s the rate that is paid at each period for protection is not the

related one-period CDS rate, as would be natural from the above remark, but a longer

period CDS rate. Consider indeed the following

Definition 2.3. (Constant Maturity CDS). Consider a contract protecting in [Ta, Tb]

against default of a reference credit “C”. If default occurs in [Ta, Tb], a protection payment

LGD is made from the protection seller “B” to the protection buyer “A” at the first Tj

following the default time. This is called “protection leg”. In exchange for this protection

“A” pays to “B” at each Tj before default a “c + 1–long” (constant maturity) CDS rate

Rj−1,j+c(Tj−1) (times a year fraction αj = Tj − Tj−1), with “c” an integer larger than

zero. Notice that for c = 0 we would obtain the fair “floating rate” CDS above, whose

initial value would be zero.

Given that c > 0 in our definition, the value of the contract will be nonzero in general,

so that we have to find this value at the initial time 0 if we are to price this kind of

transaction. We face this task by resorting to the market model derived below.

The value of the CMCDS to “B” is the value of the premium leg minus the value of

the protection leg. The protection leg valuation is trivial, since this is the same leg as in

a standard forward start [Ta, Tb] CDS. As such, it is for example equal to

Ra,b(0)
b∑

j=a+1

αjP̄ (0, Tj) =
b∑

j=a+1

αjRj(0)P̄ (0, Tj).

This value has to be subtracted to the premium leg. The non-trivial part is indeed

computing the premium leg value at initial time 0. Notice that the final formula can be

implemented easily on a spreadsheet, requiring no numerical apparatus.



D. Brigo, constant maturity CDS pricing with the Market model 6

Proposition 2.4. (Main Result: An approximated formula for CMCDS) Con-

sider the Constant Maturity CDS defined in Definition 2.3. The present value at initial

time 0 of the CMCDS to the protection seller “B” is

CDSCMa,b,c(0,LGD) =
b∑

j=a+1

αjP̄ (0, Tj)

{
j+c∑
i=j

αiP̄ (0, Ti)∑j+c
h=j αhP̄ (0, Th)

· (1)

R̃i(0) exp

[
Tj−1σi ·

(
i∑

k=j+1

ρj,k
σkR̃k(0)

R̃k(0) + LGD/αk

)]
−Rj(0)

}

where Rk(0) are the one-period CDS forward rates for protection in [Tk−1, Tk]. These

CDS forward rates can be computed from quoted spot CDS rates R0,k(0) and corporate

zero coupon bonds P̄ (0, Tk) via

Rk(0) =
R0,k(0)

∑k
h=1 αhP̄ (0, Th)−R0,k−1(0)

∑k−1
h=1 αhP̄ (0, Th)

αkP̄ (0, Tk)

while R̃k(0) are approximations of the Rk(0) (equal in case of independence of interest

rates and credit spreads) in terms of corporate P̄ and default free P zero coupon bonds

given by

Rk(0) ≈ R̃k(0) = LGD

P̄ (0, Tk−1)P (0, Tk)/P (0, Tk−1)− P̄ (0, Tk)

αkP̄ (0, Tk)

and where: σk is the volatility of Rk(t), assumed constant (we deal with the time-varying

volatility in the proof below);

ρi,j is the instantaneous correlation between Ri and Rj;

One-period forward CDS rates volatilities σk can in principle be stripped from longer

period CDS volatilities, similarly to how forward LIBOR rates volatilities can be stripped

from swaptions volatilities in the LIBOR model. This stripping is made possible from an

approximated volatility formula based on drift freezing (formula (6.58) for the LIBOR

case in Brigo and Mercurio (2001)). Cascade methods are also available for this (as in

Brigo and Morini (2004)), although for the time being the only available CDS options all

have short maturities and the lack of a liquid market discourages this kind of approach.

For the time being the above formula can be employed with stylized values of volatilities

to have an idea of the impact of the “convexity adjustments”. Finally, one may consider

using historical volatilities and correlations in the formula as first guesses.

As a further remark we notice that, if not for the exponential term (which vanishes

for example when ρ’s are set to zero) this expression would be, not surprisingly,

CDSCMa,b,c(0,LGD; ρ = 0) =
b∑

j=a+1

αjP̄ (0, Tj)(Rj−1,j+c(0) −Rj−1,j(0)) (2)
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Notation Description
τ = τC Default time of the reference entity “C”

Ta, (Ta+1, . . . , Tb−1), Tb initial and final dates in the protection schedule of the CDS and CMCDS
Tβ(τ), Tβ(t) First of the Ti’s following τ and t, respectively

αi year fraction between Ti−1 and Ti

L(S, T ) LIBOR rate at time S for maturity T

Ra,b Rate in the premium leg of a CDS, paid by “A”, the protection buyer
Ri CDS Rate to be paid by “A”, the protection buyer at Ti for protection in [Ti−1, Ti]

Ri−2,i CDS Rate to be paid by “A” at Ti−1 and Ti for protection in [Ti−2, Ti]
REC Recovery fraction on a unit notional

LGD = 1− REC Protection payment against a Loss (given default of “C” in [Ta, Tb])
ΠPRCDSa,b(t) Discounted payoff of a postponed running CDS to “B”, the protection seller

PRCDSa,b(t, R, LGD) Price of a running postponed CDS to “B”, protecting against default of “C” in [Ta, Tb]
CDSCMa,b,c(t,LGD) Price at time t of a CMCDS to “B”, protecting against default

of “C” in [Ta, Tb] in exchange for a periodic constant maturity ”c + 1”-long CDS rate
1{τ>T} Survival indicator, is one if default occurs after T and zero otherwise
1{τ≤T} Default indicator, is one if default occurs before or at T , and zero otherwise
B(t) Bank account numeraire of the risk neutral measure at time t

D(t, T ) = B(t)/B(T ) Stochastic discount factor at time t for maturity T

P (t, T ) Zero coupon bond at time t for maturity T

1{τ>t}P̄ (t, T ) Defaultable Zero coupon bond at time t for maturity T

Ĉa,b(t), Q̂a,b Defaultable “Present value per basis point” numeraire and associated measure
Ft Default free market information up to time t

Gt Default free market information plus explicit monitoring of default up to time t

DC(·) DC(Xt) is the row vector v in dXt = (...)dt + v dWt for diffusion processes X

with W vector Brownian motion common to all relevant diffusion processes

Table 1: Main notation in the paper.

The exponential term can be considered indeed to be a sort of “convexity adjustment”

similar in spirit to the convexity adjustment needed to value constant maturity swaps

with the LIBOR model in the default-free market.

Finally, this formula should be tested against prices obtained via Monte Carlo simu-

lation of the dynamics (11) before being employed massively. One should make sure that

for the order of magnitude of volatilities, correlations and initial CDS rates present in

the market at a given time the freezing approximation works well. We plan to analyze

this approximation against Monte Carlo simulation in further work. This future work is

the reason why we derive the exact rates dynamics below.
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3 CDS Option Market Model Dynamics

In the remaining part of the paper we build the apparatus allowing us to prove the main

result rigorously. We specify the probabilistic framework in the following remark.

Remark 3.1. (Probabilistic Framework: τ as first jump of a Cox process)

Here we place ourselves in a probability space (Ω,G,Q) where the default time random

variable τ will be defined. The probability measure Q is the risk neutral probability.

This space is endowed with a filtration (Ft)t, typically representing the basic filtration

without default, i.e. the “information flow” of interest rates, intensities and possibly

other default-free market quantities. Obviously Ft ⊆ G for all t.

We consider a non-negative, (Ft)t progressively measurable process λ with integrable

sample paths in (Ω,G,Q).

The space (Ω,G,Q) is assumed to be sufficiently rich to support a random variable U

uniformly distributed on [0, 1] and independent of (Ft)t. The random default time τ can

then be defined as

τ := inf

{
t ≥ 0 : exp

(
−

∫ t

0

λsds

)
≤ U

}

With this definition λ is indeed the Ft stochastic intensity of the default time τ , in

that Q(τ > t|Ft) = exp(− ∫ t

0
λsds).

We consider also the filtration Gt = Ft ∨ σ({τ < s}, s ≤ t) and assume Gt ⊆ G.

The second sigma field σ({τ < s}, s ≤ t) contributing to Gt represents the information

on whether default occurred before t, and if so when exactly. Since this information is

available to us when we price, we need to condition on Gt rather than on Ft alone.

For more details on the canonical construction of a default time with a given hazard

rate see e.g. Bielecki and Rutkowski (2001), p. 226.

The remark above amounts to saying that default τ is modeled as the first jump time

of a Cox process with the given intensity process. We will not model the intensity directly

but rather some market quantities embedding the impact of the relevant intensity model

that is consistent with them. An explicit tractable stochastic intensity/ interest-rate

model with automatic analytical and separable calibration to interest rate derivatives

and CDS’s is given for example in Brigo and Alfonsi (2003), where an analytical formula

for CDS options based on Jamshidian’s decomposition is also presented.

Formally, we may write the RCDS discounted value at time t as

ΠRCDSa,b(t) := DiscountedPremiumLeg−DiscountedProtectionLeg (3)

= D(t, τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb} +
b∑

i=a+1

D(t, Ti)αiR1{τ≥Ti} − 1{Ta<τ≤Tb}D(t, τ) LGD

where t ∈ [Tβ(t)−1, Tβ(t)), i.e. Tβ(t) is the first date among the Ti’s that follows t, and

where αi is the year fraction between Ti−1 and Ti. The stochastic discount factor at time

t for maturity T is denoted by D(t, T ) = B(t)/B(T ), where B(t) denotes the risk-neutral

measure bank-account numeraire.
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Under the postponed formulation, where the protection payment is moved from τ to

Tβ(τ), the CDS discounted payoff can be written as

ΠPRCDSa,b(t) :=
b∑

i=a+1

D(t, Ti)αiR1{τ≥Ti} −
b∑

i=a+1

1{Ti−1<τ≤Ti}D(t, Ti) LGD, (4)

which we term “Postponed payments Running CDS” (PRCDS) discounted payoff. Com-

pare with the earlier discounted payout (3) where the protection payment occurs exactly

at τ : The advantage of the postponed protection payment is that no accrued-interest

term in (τ −Tβ(τ)−1) is necessary, and also that all payments occur at the canonical grid

of the Ti’s.

In general, we can compute the CDS price according to risk-neutral valuation (see

for example Bielecki and Rutkowski (2001) for the most general result of this kind):

CDSa,b(t, R, LGD) = E {ΠRCDSa,b(t)|Gt} (5)

where we recall that Gt = Ft ∨ σ({τ < u}, u ≤ t). In the Cox process setting default

is unpredictable and this is why observation of Ft alone does not imply observation of

the default time, contrary to standard structural (Merton, Black and Cox, etc) models

where instead Ft = Gt. At times we denote by Et and Qt the expectation and probability

conditional on the default-free sigma field Ft. The above expected value can also be

written as

CDSa,b(t, R, LGD) =
1{τ>t}

Q(τ > t|Ft)
E {ΠRCDSa,b(t)|Ft} (6)

(see again Bielecki and Rutkowski (2001), or more in particular Jeanblanc and Rutkowski
(2000), where the most general form of this result is reported). This second expression,
and especially the analogous definitions with postponed payoffs, is fundamental for intro-
ducing the market model for CDS options in a rigorous way. We explicit the postponed
expression by substituting the payoff:

PRCDSa,b(t, R) =
1{τ>t}
Qt(τ > t)

{− LGD

b∑

i=a+1

Et[1{Ti−1<τ≤Ti}D(t, Ti)] + R
b∑

i=a+1

Et[D(t, Ti)αi1{τ≥Ti}]
}

(7)

Let us deal with the definition of postponed (running) CDS forward rate Ra,b(t). This

can be defined as that R that makes the PRCDS value equal to zero at time t, so that

PRCDSa,b(t, Ra,b(t), LGD) = 0

(notice that this Ra,b is the RPR
a,b of Brigo (2004)). The idea is then solving this

equation in Ra,b(t). In doing this one has to be careful. It is best to start moving

from expression (6) rather than (5). Equate this expression to zero and derive R corre-

spondingly. Strictly speaking, the resulting R would be defined on {τ > t} only, since

elsewhere the equation is satisfied automatically thanks to the indicator in front of the

expression, regardless of R. Since the value of R does not matter when {τ < t}, the
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equation being satisfied automatically, we need not worry about {τ < t} and may define,

in general, R =ProtectionLegValue/PremiumLegValue,

Ra,b(t) =
LGD

∑b
i=a+1 E[D(t, Ti)1{Ti−1<τ≤Ti}|Ft]∑b

i=a+1 αiQ(τ > t|Ft)P̄ (t, Ti)
. (8)

where

1{τ>t} P̄ (t, T ) := E[D(t, T )1{τ>T}|Gt] = 1{τ>t} E[D(t, T )1{τ>T}|Ft]/Q(τ > t|Ft)

is the price at time t of a defaultable zero-coupon bond maturing at time T . The corre-

sponding default free zero coupon bond is denoted by P (t, T ). This approach amounts

to equating to zero only the expected value part in (6), and in a sense is a way of privi-

leging “partial information” Ft expected values to “complete information” Gt ones. Our

R above is defined everywhere and not only conditional on τ > t. The technical tool

allowing us to do this is the above-mentioned Jeanblanc Rutkowski (2000) result, and

this is the spirit of part of the work in Jamshidian (2002).

A remark on how the market quotes running CDS prices is in order at this point.

First we notice that typically the T ’s are three- months spaced. Usually at time t = 0,

provided default has not yet occurred, the market sets R to a value RMID
a,b (0) that makes

the CDS fair at time 0, i.e. such that CDSa,b(0, R
MID
a,b (0), LGD) = 0. Actually, bid and

ask levels are quoted for R. Typically in quoted CDS we have Ta = 0 and Tb spanning

a set of increasing maturities, even though in recent times the quoting mechanism has

changed in some respects. Indeed, the quoting mechanism has become more similar to

the mechanism of the futures markets. Let 0 be the current time. Maturities Ta, . . . , Tb

are fixed at the original time 0 to some values such as 1y, 2y, 3y etc and then, as time

moves for example to t = 1day, the CDS maturities are not shifted correspondingly of

1 day as before but remain 1y,2y etc from the original time 0. This means that the

times to maturity of the quoted CDS’s decrease as time passes. When the quoting time

approaches maturity, a new set of maturities are fixed and so on. A detail concerning

the “constant maturities” paradigm is that when the first maturity Ta is less than one

month away from the quoting time (say 0), the payoff two terms

TaD(0, Ta)R1{τ>Ta} + (Ta+1 − Ta)D(0, Ta+1)R1{τ>Ta+1}

are replaced by

Ta+1D(0, Ta+1)R1{τ>Ta+1}

in determining the “fair” R. If we neglect this last convention, once we fix the quoting

time (say to 0) the method to strip implied hazard functions is the same under the

two quoting paradigms. The same happens when not neglecting the convention if we are

exactly at one of the “0 dates”, so that for example T1−t = 1y. Brigo and Alfonsi (2003)

present a more detailed section on the “constant time-to-maturity” earlier paradigm, and

illustrate the notion of implied deterministic intensity (hazard function).

We also set

Ĉa,b(t) :=
b∑

i=a+1

αiQ(τ > t|Ft)P̄ (t, Ti),
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the denominator in (8), so that Ra,b is a tradable asset (upfront CDS) divided by Ĉa,b(t).

It follows that under the measure Q̂a,b having Ĉa,b(t) as numeraire, Ra,b follows a mar-

tingale. For more details see Brigo (2004). We will be interested in the particular cases

a = i− 1, b = i and a = i− 2, b = i.

In the following it will be useful to consider a running postponed CDS on a one-period

interval, with Ta = Tj−1 and Tb = Tj. We obtain, for the related CDS forward rate:

Rj(t) := LGD

E[D(t, Tj)1{Tj−1<τ≤Tj}|Ft]

αjQ(τ > t|Ft)P̄ (t, Tj)
= LGD

E[D(t, Tj)1{Tj−1<τ≤Tj}|Ft]

Ĉj−1,j(t)

where we have set Rj := Rj−1,j.

A last remark concerns an analogy with the default-free swap market model, where

we have a formula linking swap rates to forward rates through a weighted average. This

is useful since it leads to an approximated formula for swaptions in the LIBOR model, see

for example Brigo and Mercurio (2001), Chapter 6. A similar approach can be obtained

for CDS forward rates. It is easy to check that

Ra,b(t) =

∑b
i=a+1 αiRi(t)P̄ (t, Ti)∑b

i=a+1 αiP̄ (t, Ti)
=

b∑
i=a+1

w̄a,b
i (t)Ri(t) ≈

b∑
i=a+1

w̄a,b
i (0)Ri(t). (9)

A possible lack of analogy with the swap rates is that the w̄’s

w̄a,b
i (t) :=

αiP̄ (t, Ti)∑b
h=a+1 αhP̄ (t, Th)

cannot be expressed as functions of the Ri’s only, unless we make some particular as-

sumptions on the correlation between default intensities and interest rates. However, if

we freeze the w̄’s to time 0, which we have seen to work in the default-free LIBOR model,

we obtain easily a useful approximated expression for Ra,b and its volatility in terms of

Ri’s and their volatilities/correlations. A similar approach is pursued in Section 5

below, and the reader who is interested only in the derivation of the approx-

imated formula given in the beginning may go there directly. Here instead

we hint at deriving the real dynamics without compromises, which will be

useful in future work for Monte Carlo tests of the numerical approximation.

In general, when not freezing, the presence of stochastic intensities besides stochastic

interest rates adds degrees of freedom. Now the P̄ ’s (and thus the w̄’s) can be determined

as functions for example of one- and two-period rates. Indeed, it is easy to show that

P̄ (t, Ti) = P̄ (t, Ti−1)
αi−1(Ri−1(t)−Ri−2,i(t))

αi(Ri−2,i(t)−Ri(t))
,

P̄ (t, Tj)

P̄ (t, Ti)
=

αi

αj

j∏

k=i+1

Rk−1 −Rk−2,k

Rk−2,k −Rk

(10)

To have the formula working we need to assume Ri−2,i(t) 6= Ri(t). We will therefore

assume in the paper that at the initial time Ri−2,i(0) 6= Ri(0). Under the approximated

frozen dynamics for these two quantities we will derive below, we can see that the proba-

bility of them to be equal at any future time t is generally 0, since this can be computed
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as the probability of the difference of two correlated continuous random variables to be

zero.

We show below how this formula helps us in obtaining a market model for CDS rates.

For the time being let us keep in mind that the exact weights w̄(t) in (9) are completely

specified in terms of Ri(t)’s and Ri−2,i(t)’s, so that if we include these two rates in our

dynamics the “system” is closed in that we also know all the relevant P̄ ’s. The difference

with the LIBOR/Swap model is that here to close the system we need also two-period

rates.

We close this section by summarizing our notation in Table (1).

4 One- and Two- Period CDS Rates joint Dynamics

under a single pricing measure

Let us postulate the following dynamics for one- and two- period CDS forward rates.

Recall that Rj = Rj−1,j.

dRj(t) = σj(t)Rj(t)dZ
j
j (t)

dRj−2,j(t) = νj(t; R)Rj−2,j(t)dV j−2,j
j (t)

In the Brownian shocks Z and V the upper index denotes the measure (i.e. the

measure associated with the numeraires Ĉj−1,j, Ĉj−2,j in the above case) and the lower

index denotes to which component of the one- and two- period rate vectors the shock

refers. The volatilities σ are deterministic, whereas the ν’s depend on the

one-period R’s. We assume correlations

dZidZj = ρi,jdt, dVidVj = ηi,jdt, dZidVj = θi,jdt

and Ri−2,i(t) ∈ (min(Ri−1(t), [Ri−1(t) + Ri(t)]/2), max(Ri−1(t), [Ri−1(t) + Ri(t)]/2)).

This latter condition ensures that the resulting P̄ from formula (10) be posi-

tive and decreasing with respect to the maturity, i.e. 0 < P̄ (t, Ti)/P̄ (t, Ti−1) < 1.

The specific definition of ν ensuring this property is currently under investi-

gation.

We aim at finding the drift of a generic Rj under the measure associated with Ĉi−1,i,

let us say for j ≥ i.

The change of numeraire toolkit provides the formula relating shocks under Ĉi−1,i

to shocks under Ĉj−2,j, see for example Formula (2.13) in Brigo and Mercurio (2001),

Chapter 2. We can write

d

[
Zj−2,j

V j−2,j

]
= d

[
Zi

V i

]
− CorrMatrix× VectorDiffusionCoefficient

(
ln

(
Ĉj−2,j

Ĉi−1,i

))′

dt

Let us abbreviate “Vector Diffusion Coefficient” by “DC”.
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This is actually a sort of operator for diffusion processes that works as follows.

DC(Xt) is the row vector v in

dXt = (...)dt + v d

[
Zt

Vt

]

for diffusion processes X with Z and V column vectors Brownian motions common to

all relevant diffusion processes. This is to say that if for example dR1 = σ1R1dZ
1
1 , then

DC(R1) = [σ1R1, 0, 0, . . . , 0].

Let us call Q the total correlation matrix including ρ, η and θ. We have

d

[
Zj−2,j

V j−2,j

]
= d

[
Zi

V i

]
−Q DC

(
ln

(
Ĉj−2,j

Ĉi−1,i

))
dt

Now we need to compute

DC

(
ln

(
Ĉj−2,j

Ĉi−1,i

))
= DC

(
ln

(
αj−1P̄ (t, Tj−1) + αjP̄ (t, Tj)

αiP̄ (t, Ti)

))
=

= DC

(
ln

(
αj−1

αi

αi

αj−1

j−1∏

k=i+1

Rk−1 −Rk−2,k

Rk−2,k −Rk

+
αj

αi

αi

αj

j∏

k=i+1

Rk−1 −Rk−2,k

Rk−2,k −Rk

))

= DC

(
ln

([
j−1∏

k=i+1

Rk−1 −Rk−2,k

Rk−2,k −Rk

][
1 +

Rj−1 −Rj−2,j

Rj−2,j −Rj

]))

= DC

(
j−1∑

k=i+1

ln

(
Rk−1 −Rk−2,k

Rk−2,k −Rk

))
+ DC

(
ln

(
Rj−1 −Rj

Rj−2,j −Rj

))

=

j−1∑

k=i+1

DC

(
ln

(
Rk−1 −Rk−2,k

Rk−2,k −Rk

))
+ DC

(
ln

(
Rj−1 −Rj

Rj−2,j −Rj

))
=

=

j−1∑

k=i+1

[DC(ln(Rk−1 −Rk−2,k))−DC(ln(Rk−2,k −Rk))] +

+DC(ln(Rj−1 −Rj))−DC(ln(Rj−2,j −Rj))

=

j−1∑

k=i+1

DC( Rk−1 −Rk−2,k)

Rk−1 −Rk−2,k

−
j−1∑

k=i+1

DC( Rk−2,k −Rk)

Rk−2,k −Rk

+

+
DC( Rj−1 −Rj)

Rj−1 −Rj

− DC( Rj−2,j −Rj)

Rj−2,j −Rj

=

=

j−1∑

k=i+1

( DC(Rk−1)−DC(Rk−2,k))

Rk−1 −Rk−2,k

−
j−1∑

k=i+1

( DC(Rk−2,k)−DC(Rk))

Rk−2,k −Rk

+
DC(Rj−1)−DC(Rj)

Rj−1 −Rj

− DC(Rj−2,j)−DC(Rj)

Rj−2,j −Rj

It follows that
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dZj−2,j
m − dZi

m = −
j−1∑

k=i+1

(ρk−1,mσk−1Rk−1 − θm,kνkRk−2,k)

Rk−1 −Rk−2,k

dt +

j−1∑

k=i+1

(θm,kνkRk−2,k − ρk,mσkRk)

Rk−2,k −Rk

dt

−ρj−1,mσj−1Rj−1 − ρj,mσjRj

Rj−1 −Rj

dt +
θm,jνjRj−2,j − ρj,mσjRj

Rj−2,j −Rj

dt

and

dV j−2,j
m − dV i

m = −
j−1∑

k=i+1

(θk−1,mσk−1Rk−1 − ηm,kνkRk−2,k)

Rk−1 −Rk−2,k

dt +

j−1∑

k=i+1

(ηm,kνkRk−2,k − θk,mσkRk)

Rk−2,k −Rk

dt +

−θj−1,mσj−1Rj−1 − θj,mσjRj

Rj−1 −Rj

dt +
ηj,mνjRj−2,j − θj,mσjRj

Rj−2,j −Rj

dt =: φ̄i,j
m dt

Therefore, by subtracting from the first equation, taking h > i:

dZh
m − dZi

m = dZj−2,j
m − dZi

m − (dZj−2,j
m − dZh

m) =

= −
h∑

k=i+1

(ρk−1,mσk−1Rk−1 − θm,kνkRk−2,k)

Rk−1 −Rk−2,k

dt+
h∑

k=i+1

(θm,kνkRk−2,k − ρk,mσkRk)

Rk−2,k −Rk

dt =: µ̄i,h
m dt

so that we finally obtain (taking h = j)

dRj(t) = σjRj(t)(µ̄
i,j
j dt + dZi

j(t))

dRj−2,j(t) = νjRj−2,j(t))(φ̄
i,j
j dt + dV i

j (t)),

or, by setting

µi
j := µ̄i,j

j σj, φi
j := φ̄i,j

j νj,

we have

dRj(t) = Rj(t)(µ
i
jdt + σjdZ

i
j(t)), dRj−2,j(t) = Rj−2,j(t)(φ

i
jdt + νjdV i

j (t)),

and since µ and φ are completely determined by one- and two- period rates vectors

R = [Ri−1,i]i and R(2) = [Ri−2,i]i, the system is closed. We can write a vector SDE

which is a vector diffusion for all the one- and two- period rates under any of the Ĉi−1,i

measures:

d

[
R

R(2)

]
= diag(µ(R,R(2)), φ(R,R(2)))

[
R

R(2)

]
dt + diag(σ, ν)

[
R

R(2)

]
d

[
Zi

V i

]

At this point a Monte Carlo simulation of the process, based on a discretization

scheme for the above vector SDE is possible. One only needs to know the initial CDS
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rates R(0), R(2)(0), which if not directly available one can build by suitably stripping spot

CDS rates. Given the volatilities and correlations, one can easily simulate the scheme

by means of standard Gaussian shocks.

If C is the Cholesky decomposition of the correlation Q (Q = CC ′ with “C” lower

triangular matrix) and W is a standard Brownian motion under Ĉi−1,i, we can write

d

[
R

R(2)

]
= diag(µ(R,R(2)), φ(R, R(2)))

[
R

R(2)

]
dt + diag(σ, ν)

[
R

R(2)

]
C dW (11)

The log process can be easily simulated with a Milstein scheme.

5 An approximated model with a single family of

rates and proof of the main result

Consider now the approximation

Rj(t) := LGD

E[D(t, Tj)1{Tj−1<τ≤Tj}|Ft]

αjQ(τ > t|Ft)P̄ (t, Tj)
= LGD

E[D(t, Tj)1{τ>Tj−1}|Ft]− E[D(t, Tj)1{τ>Tj}|Ft]

αjQ(τ > t|Ft)P̄ (t, Tj)
=

= LGD

E[D(t, Tj−1)1{τ>Tj−1} D(t, Tj)/D(t, Tj−1) |Ft]− E[D(t, Tj)1{τ>Tj}|Ft]

αjQ(τ > t|Ft)P̄ (t, Tj)
= . . .

At this point we approximate the boxed ratio of stochastic discount factors with the

related zero-coupon bonds, obtaining

≈ LGD

E[D(t, Tj−1)1{τ>Tj−1}|Ft] P (t, Tj)/P (t, Tj−1) − E[D(t, Tj)1{τ>Tj}|Ft]

αjQ(τ > t|Ft)P̄ (t, Tj)

= LGD

P̄ (t, Tj−1)P (t, Tj)/P (t, Tj−1)− P̄ (t, Tj)

αjP̄ (t, Tj)
=

LGD

αj

(
P̄ (t, Tj−1)

(1 + αjFj(t))P̄ (t, Tj)
− 1

)

≈ LGD

αj

(
P̄ (t, Tj−1)

(1 + αjFj(0))P̄ (t, Tj)
− 1

)
= R̃j(t)

where F is the forward LIBOR rate between Tj−1 and Tj. This last definition can be

inverted so as to have

P̄ (t, Tj−1)

P̄ (t, Tj)
=

( αj

LGD

R̃j + 1
)

(1 + αjFj(0)) > 1 (12)

as long as R̃ > 0, provided that Fj(0) > 0 as should be. This means that we are free

to select any martingale dynamics for R̃j under Q̂j−1,j, as long as R̃j remains positive.

Choose than such a family of R̃ as building blocks

dR̃i(t) = σi(t)R̃i(t)dZ
i
i(t), for all i
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and define the P̄ by using (12) to obtain inductively P̄ (t, Tj) from P̄ (t, Tj−1) and

from R̃j. This way, the numeraires P̄ become functions only of the R̃’s, so that

now the system is closed and all one has to model is the one-period rates R̃

vector. No need to model two-period rates in this framework.

In this context the change of numeraire becomes

dZj = dZi − ρDC

(
ln

(
Ĉj−1,j

Ĉi−1,i

))′

dt = dZi − ρDC

(
ln

(
P̄ (t, Tj)

P̄ (t, Ti)

))′
dt =

= dZi − ρDC ln

[(
i∏

h=j+1

( αh

LGD

R̃h + 1
)

(1 + αhFh(0))

)]′
dt

= dZi − ρ

i∑

h=j+1

DC ln
(( αh

LGD

R̃h + 1
)

(1 + αhFh(0))
)′

dt =

= dZi − ρ

i∑

h=j+1

DC ln
(( αh

LGD

R̃h + 1
))′

dt = dZi − ρ

i∑

h=j+1

1

R̃h + LGD

αh

DC(R̃h)
′dt

so that we can write

dZj
k = dZi

k −
i∑

h=j+1

ρk,h
σh(t)R̃h

R̃h + LGD

αh

dt

from which we have the dynamics of R̃i under Qj:

dR̃i = σiR̃idZ
i
i = σiR̃i


dZj

i +
i∑

h=j+1

ρj,h
σhR̃h

R̃h + LGD

αh

dt


 =: R̃i(µ̃

j
i (R̃)dt + σidZ

j
i ) (13)

Consider the drift term in the last formula. If we compute Ej−1,j[R̃i(Tj−1)] we obtain

Ej−1,j[R̃i(Tj−1)] ≈ R̃i(0) exp

{∫ Tj−1

0

µ̃j
i (R̃(0))du

}

= R̃i(0) exp

{
i∑

k=j+1

R̃k(0)

R̃k(0) + LGD/αk

ρj,k

∫ Tj−1

0

σi(u)σk(u)du

}
(14)

and, if we take volatilities σ to be constant, we have

≈ R̃i(0) exp

{
Tj−1σi ·

(
i∑

k=j+1

ρj,k
σkR̃k(0)

R̃k(0) + LGD/αk

)}

Under independence between intensities and interest rates (and in particular under

deterministic intensities, which are a common assumption when stripping one-period
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CDS rates from multi-period ones), by definition of Rj it is easy to show that at time 0,

both the original Rj(0) and the approximated R̃j(0) are given in terms of the survival

probabilities as

Rj(0) = R̃j(0) = LGD/αj

(
Q(τ > Tj−1)

Q(τ > Tj)
− 1

)
(15)

and hence (14) is reduced to

Ej−1,j[R̃i(Tj−1)] =
LGD

αi

(
Q(τ > Ti−1)

Q(τ > Ti)
− 1

)
exp

{
Tj−1σi

i∑

k=j+1

ρj,kσk

(
1− Q(τ > Tk)

Q(τ > Tk−1)

)}

(16)

It follows that the convexity effect vanishes if the ratio
Q(τ>Tj)

Q(τ>Tj−1)
is close to one.

Now, based on the approximated dynamics (13) and the related expectation above,

we prove the main result of the paper, i.e. Proposition 2.4.

Proof. To prove the proposition, we compute the price of the premium leg as

b∑
j=a+1

αjE0[D(0, Tj)1{τ>Tj}Rj−1,j+c(Tj−1)] = . . .

The first approximation we consider is (9) applied to Rj−1,j+c(Tj−1), so that

Rj−1,j+c(Tj−1) ≈
j+c∑
i=j

w̄j
i (0)Ri(Tj−1), w̄j

i (0) =
αiP̄ (0, Ti)∑j+c

h=j αhP̄ (0, Th)

Then by substituting this in the premium leg expression we have

. . . ≈
b∑

j=a+1

j+c∑
i=j

αjw̄
j
i (0)E0[D(0, Tj)1{τ>Tj}Ri(Tj−1)] =

=
b∑

j=a+1

j+c∑
i=j

αjw̄
j
i (0)E0[D(0, Tj)Ri(Tj−1)E(1{τ>Tj}|FTj

)]

=
b∑

j=a+1

j+c∑
i=j

w̄j
i (0)E0

[
B(0)

B(Tj)
(Ri(Tj−1) Ĉj−1,j(Tj))

]

=
b∑

j=a+1

j+c∑
i=j

w̄j
i (0)Ĉj−1,j(0)Êj−1,j

0 [Ri(Tj−1)] =
b∑

j=a+1

j+c∑
i=j

αjw̄
j
i (0)P̄ (0, Tj)Êj−1,j

0 [Ri(Tj−1)] = . . .

where we have applied the change of numeraire, moving from the risk neutral numeraire

B to the numeraires Ĉj−1,j’s. The last expected value can be computed based on (16).

By substituting the expected value expression, we obtain the final formula.
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6 A few numerical examples

We report input data and outputs for a name with relatively large CDS forward rates.

We consider the FIAT car company CDS market quotes as of December 20, 2004. Since

in Brigo and Alfonsi (2003) we have some evidence on the fact that CDS prices depend

very little on the correlation between interest rates and credit spreads, when stripping

credit spreads from CDS data we may assume independence between interest rates and

credit spreads. This leads to a model where it is easy to strip default probabilities

(hazard rates) from CDS prices, as hinted at again in Brigo and Alfonsi (2003). Using

this independence assumption, we strip default (or survival) probabilities from CDS

quotes with increasing maturities.

6.1 Inputs

We take as inputs the following Fiat CDS rates and use mid quotes

Tb RBID
0,b (bps) RASK

0,b

1Y 99.9 175.57

2Y 172.5 231.38

3Y 243.73 286.13

5Y 348.85 366.54

7Y 380 410

10Y 395.16 412.73

We take REC = 0.4 (so that LGD = 0.6). The input zero coupon curve, and the

survival risk-neutral probabilities stripped from the above CDS quotes are reported in

Appendix 1 below.

6.2 Outputs

We start by giving a table for

Conv(σ, ρ) := CDSCMa,b,c(0, LGD, σ, ρ)− CDSCMa,b,c(0, LGD; ρ = 0).

The first term is computed by assuming the volatilities σi of forward one-period CDS

rates Ri to have a common value σ and the pairwise correlations ρi,j to have a common

value ρ. This first term is then given by formula (1). The second term is the simpler

value (2) where no correction due to CDS forward rate dynamics is accounted for. This

difference then gives us the impact of volatilities and correlations of CDS rates on the

CMCDS price. The difference is always positive, similarly to what happens to analogous

constant maturity swaps in default free markets under similar conditions on volatilities

and correlation. It is the impact of “convexity” on the CMCDS valuation. We take
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a = 0, b = 20 (5y final maturity) and c = 20 (which means we are considering non-

standard 5y3m CDS rates in the CMCDS premium leg, c = 19 would amount to a 5y

CDS rate).

We obtain

Conv(σ, ρ) ρ: 0.7 0.8 0.9 0.99

σ: 0.1 0.000659 0.000754 0.000848 0.000933

0.2 0.002662 0.003047 0.003435 0.003784

0.4 0.011066 0.012742 0.014442 0.015995

0.6 0.026619 0.030964 0.035464 0.039652

The “convexity difference” increases with respect both to correlation and volatility,

as expected.

The next table reports the so called “participation rate” φa,b,c(σ, ρ) for a CMCDS

with final Tb = 5y (a = 0, b = 20, recalling that resets occur quarterly), with 5y3m

constant maturity CDS rates (c = 20),

φ0,20,20(σ, ρ) =
“premium leg CDS”

“premium leg CMCDS”
=

∑20
j=1 αjP̄ (0, Tj)R0,20(0)

∑20
j=1 αjEj−1,j

0 [D(0, Tj)1{τ>Tj}Rj−1,j+20(Tj−1)]
,

The CMCDS premium leg is computed with our approximated market model based

on one-period rates R̃. As we see from the outputs, the participation rate increases with

volatility and correlation, as is expected from the “convexity adjustment” effect.

φ0,20,20(σ, ρ) ρ: 0.7 0.8 0.9 0.99

σ: 0.1 0.71358 0.71325 0.71292 0.71262

0.2 0.70664 0.70532 0.704 0.70281

0.4 0.67894 0.67368 0.66842 0.66368

0.6 0.63302 0.62128 0.60957 0.59907

Finally, we fix volatilities and correlations and check how the patterns change when

changing final maturity Tb = Ti. We consider the following quantities at time 0 and with

Ta = 0:

xi =
“Constant maturity rate”

“standard rate”
=

Ri−1,i+c(0)

R0,b(0)
, i = 1, . . . , b

yi =
Ei−1,i

0 [D(0, Ti)1{τ>Ti}Ri−1,i+c(Ti−1)]

P̄ (0, Ti)R0,b(0)
, i = 1, . . . , b

zi =
Ei−1,i

0 [D(0, Ti)1{τ>Ti}Ri−1,i+c(Ti−1)]

P̄ (0, Ti)Ri−1,i+c(0)
, i = 1, . . . , b

ψi =
“premium leg CDS”

“premium leg CMCDS”
=

∑i
j=1 αjP̄ (0, Tj)R0,i(0)

∑i
j=1 αjP̄ (0, Tj)Rj−1,j+c(0)

, i = 1, . . . , b
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φi =
“premium leg CDS”

“premium leg CMCDS with convexity”
=

∑i
j=1 αjP̄ (0, Tj)R0,i(0)

∑i
j=1 αjEj−1,j

0 [D(0, Tj)1{τ>Tj}Rj−1,j+c(Tj−1)]
.

xi yi zi ψi φi

σ = 0.4;

ρ = 0.9;

1.0668 1.0668 1 0.37773 0.37773

1.1288 1.1359 1.0063 0.36281 0.36162 REC = 0.4;

1.1914 1.2075 1.0135 0.35281 0.35039 a=0;

1.2525 1.2792 1.0214 0.34359 0.33993 c = 20;

1.3107 1.3495 1.0297 0.33512 0.33024 b = 20;

1.3673 1.4193 1.038 0.34187 0.33548

1.4171 1.4826 1.0462 0.36905 0.36064

1.4515 1.53 1.0541 0.40755 0.39664

1.4716 1.5622 1.0616 0.45262 0.43881

1.4798 1.5818 1.0689 0.49477 0.47785

1.4837 1.5979 1.0769 0.52661 0.50671

1.4905 1.6175 1.0852 0.55072 0.52799

1.4999 1.6403 1.0936 0.56931 0.54384

1.5122 1.666 1.1018 0.58674 0.55846

1.5236 1.69 1.1092 0.60704 0.57574

1.5275 1.706 1.1168 0.62715 0.5928

1.5274 1.7174 1.1244 0.64681 0.60938

1.5249 1.7236 1.1303 0.67017 0.62939

1.5106 1.7173 1.1368 0.69254 0.64843

1.4924 1.7047 1.1422 0.71589 0.66842

The xi’s measure how the constant maturity CDS rate differs multiplicatively from

the standard CDS rate, so they are a measure of how the constant maturity CDS differs

from a standard CDS in the premium rate paid at each period. We find an increasing

pattern in Ti as partly expected from the fact that the input CDS rates RBID,ASK
0,b are

increasing with respect to maturity Tb.

The yi’s measure the same effect while taking into account “convexity”, i.e. future

randomness of the payoff and correlation. The yi’s would reduce to the xi’s if correlations

ρ were taken equal to 0. The y maintain the increasing pattern with respect to Ti.

The zi’s measure the multiplicative impact of “convexity”, in that they are due to

contributions stemming from volatilities σ and correlations ρ of CDS rates. The impact

is increasing with maturity Ti, as expected from the sign in the exponent of the convexity

adjustments and from the positive signs of correlations (and volatilities).

Finally, as seen above, the ψi’s are the so called “participation rates” for different

terminal maturities Ti. They give the ratio between the premium leg in a standard CDS
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protecting in [0, Ti] and the premium leg in CMCDS for the same protection interval when

ignoring the convexity adjustment due to correlation and volatilities. The φi’s are the

participation rates computed when taking into account convexity due to volatilities and

correlations. We have seen a particular participation rate φ earlier. In the table above

for φi we obtain an initially decreasing pattern followed by a longer increasing pattern

for both ψ and φ. Notice that, on the longest participation rate, in the last row of the

related table, convexity has an impact moving from a 71.59% participation rate when not

including “convexity” (ignoring correlations and volatilities) to a 66.84% participation

rate when including convexity. There is a 4.8% difference in the participation rate of

this FIAT 5y-5y3m CMCDS with correlations set at 0.9 and volatilities at 40%.

7 Further work

In further research we need to propose a realistic dynamics for one- and two- period rates

that completely specifies the market model, along the guidelines given in this paper and

in Brigo (2004). Then we may test the market formula proposed here against Monte

Carlo simulation of the exact dynamics. Moreover, examining the formula outputs for

ρ matrices with more realistic decorrelation patterns and for different names can be

appropriated.
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Appendix 1. Input data and survival probabilities

The input zero coupon curve, and the survival risk-neutral probabilities stripped from

FIAT CDS quotes are:
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αi Ti P (0, Ti) Q(τ > Ti)

0 0 0.99994 0.99994

0.24444 0.24444 0.99459 0.99429

0.25556 0.5 0.989 0.98856

0.25556 0.75556 0.98309 0.98279

0.25278 1.0083 0.97709 0.97712

0.25 1.2583 0.97098 0.97155

0.25556 1.5139 0.96458 0.96433

0.25556 1.7694 0.958 0.95409

0.25278 2.0222 0.95133 0.94108

0.25 2.2722 0.94448 0.92552

0.25556 2.5278 0.9373 0.9086

0.25556 2.7833 0.92995 0.89227

0.25278 3.0361 0.92251 0.87669

0.25278 3.2889 0.91502 0.86165

0.25556 3.5444 0.90731 0.84618

0.25556 3.8 0.89929 0.82931

0.25278 4.0528 0.89139 0.81203

0.25 4.3028 0.88373 0.79449

0.25556 4.5583 0.87544 0.77495

0.25556 4.8139 0.8673 0.75531

0.25278 5.0667 0.85906 0.73503

0.25 5.3167 0.85085 0.7142

0.25556 5.5722 0.84255 0.69403

0.25556 5.8278 0.83417 0.67559

(continues in the next page)
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αi Ti P (0, Ti) Q(τ > Ti)

0.25278 6.0806 0.82572 0.65879

0.25 6.3306 0.81735 0.64351

0.25556 6.5861 0.80892 0.62968

0.25556 6.8417 0.80035 0.61709

0.25278 7.0944 0.79182 0.60594

0.25278 7.3472 0.78344 0.59601

0.25556 7.6028 0.77494 0.58651

0.25556 7.8583 0.76641 0.57685

0.25278 8.1111 0.75794 0.56715

0.25 8.3611 0.74977 0.55744

0.25556 8.6167 0.74141 0.5474

0.25556 8.8722 0.73303 0.53726

0.25278 9.125 0.72474 0.52713

0.25 9.375 0.7168 0.51705

0.25556 9.6306 0.70869 0.50667

0.25556 9.8861 0.70041 0.49601

0.25278 10.139 0.69241 0.48565

0.25 10.389 0.6849 0.4756


