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Abstract

We consider the standard Credit Default Swap (CDS) payoff and some alterna-
tive approximated versions, stemming from different conventions on the premium
and protection legs. We consider standard running CDS (RCDS), upfront CDS
and postponed-payments running CDS (PRCDS). Each different definition implies
a different definition of forward CDS rate, which we consider with some detail.
We introduce defaultable floating rate notes (FRN)’s. We point out which kind of
CDS payoff produces a forward CDS rate that is equal to the fair spread in the
considered defaultable FRN. An approximated equivalence between CDS’s and de-
faultable FRN’s is established, which allows to view CDS options as structurally
similar to the optional component in defaultable callable notes. We briefly inves-
tigate the possibility to express forward CDS rates in terms of some basic rates
and discuss a possible analogy with the LIBOR and swap default-free models.
Finally, we discuss the change of numeraire approach for deriving a Black-like
formula for CDS options or, equivalently, defaultable callable FRN’s. We also
introduce an analytical formula for CDS option prices under the CDS-calibrated
SSRD stochastic-intensity model, and discuss the impact of the different CIR++
dynamics parameters on the related CDS options implied volatilities. Hints on
possible methods for smile modeling of CDS options are given for possible future
developments of the CDS option market.

∗The author is grateful to Aurélien Alfonsi, Massimo Morini, Marco Tarenghi and three anonymous
Referees for helpful comments and correspondence.
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Thou know’st that all my fortunes are at sea;

Neither have I money nor commodity

To raise a present sum: therefore go forth;

Try what my credit can in Venice do: [...]

The Merchant of Venice, Act 1, Scene I.

1 Introduction

We consider some alternative expressions for CDS payoffs, stemming from different con-

ventions on the payment flows and on the protection leg for these contracts. We con-

sider standard running CDS (RCDS), postponed payments running CDS (PPCDS), and

briefly upfront CDS (UCDS). Each different running CDS definition implies a different

definition of forward CDS rate, which we consider with some detail.

We introduce defaultable floating rate notes (FRN)’s. We point out which kind of

CDS payoff produces a forward CDS rate that is equal to the fair spread in the consid-

ered DFRN. An approximated equivalence between CDS’s and DFRN’s is established,

which allows to view CDS options as structurally similar to the optional component

in defaultable callable notes. Equivalence of CDS and DFRN’s has been known for a

while in the market, see for example Schönbucher (1998), where the simpler case with

continuous flows of payments is considered. Here we consider a discrete set of flows, as

in real market contracts, and find that the equivalence holds only after postponing or

anticipating some relevant default indicators or discount factors.

We briefly investigate the possibility to express forward CDS rates in terms of some

basic rates and discuss a possible analogy with the LIBOR and swap default-free models.

We then discuss the change of numeraire approach to deriving a Black-like formula for

CDS options, allowing us to quote CDS options through their implied volatilities. The

foundations of this work are indeed in the earlier papers by Schönbucher (2000) and

especially Jamshidian (2002). Interesting considerations are also in Hull and White

(2003). Here, using Jamshidian’s approach as a guide, and based on a result by Jeanblanc

and Rutkowski (2000), we derive CDS option prices for CDS payoffs given in the market

and for the new approximated CDS payoffs. We do so by means of a rigorous change of

numeraire technique. We consider the standard market model for CDS options resulting

from this approach. In doing so we point out some analogies with the default free

LIBOR and swap market models. This approach allows also for writing a dynamics for

CDS forward rates leading to a CDS options volatility smile.

In the final part of the paper we introduce a formula for CDS option pricing under

the CDS-calibrated CIR++ stochastic intensity model. We give patterns of implied

volatilities as functions of the CIR++ model parameters.

The paper is structured as follows: Section 2 introduces notation, different kind of

CDS discounted payoffs, and the main definition of CDS forward rate. The notion of

CDS implied hazard function and its possible use as quoting mechanism is recalled.
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Notation Description
τ = τC Default time of the reference entity “C”

Ta, (Ta+1, . . . , Tb−1), Tb initial and final dates in the protection schedule of the CDS
Tβ(τ), Tβ(t) First of the Ti’s following τ and t, respectively

αi year fraction between Ti−1 and Ti

L(S, T ) LIBOR rate at time S for maturity T

Ra,b Rate in the premium leg of a CDS, paid by “A”, the protection buyer
REC Recovery fraction on a unit notional

LGD = 1− REC Protection payment against a Loss (given default of “C” in [Ta, Tb])
ΠRCDSa,b(t) Discounted payoff of a running CDS to “B”, the protection seller

CDS(t, Ta, Tb, R, LGD) Price of a running CDS to “B”, protecting against default of “C” in [Ta, Tb]
ΠDFRNa,b(t) Discounted payoff of a floating rate note (FRN) spanning [Ta, Tb]

DFRNa,b(t,X, REC) Price of the floating rate note with spread X and recovery REC

Xa,b Par spread in a prototypical floating rate note spanning [Ta, Tb].
ΠCallCDSa,b(t; K) Discounted payoff of a payer CDS option to enter at Ta a CDS at strike rate K

CallCDSa,b(t,K,LGD) Price of payer CDS option to enter at Ta a CDS with strike rate K

1{τ>T} Survival indicator, is one if default occurs after T and zero otherwise
1{τ≤T} Default indicator, is one if default occurs before or at T , and zero otherwise
D(t, T ) Stochastic discount factor at time t for maturity T

P (t, T ) Zero coupon bond at time t for maturity T

1{τ>t}P̄ (t, T ) Defaultable Zero coupon bond at time t for maturity T

Ĉa,b(t), Q̂a,b Defaultable “Present value per basis point” numeraire and associated measure
Ft Default free market information up to time t

Gt Default free market information plus explicit monitoring of default up to time t

Table 1: Main notation in the paper. The postponed versions “PR” and “PR2” of the

payoffs are omitted.

Upfront CDS’s are hinted at.

Section 3 examines some possible variant definitions of CDS rates. Furthermore, we

examine the relationship between CDS rates on different periods and point out some

parallels with the default free LIBOR and swap market rates.

Section 4 introduces defaultable floating rate notes and explores their relationship

with CDS payoffs, finding equivalence under some payment schedules.

Section 5 describes the payoffs and structural analogies between CDS options and

callable DFRN.

Section 6 introduces the market formula for CDS options and callable DFRN, based

on a rigorous change of numeraire technique.

Section 7 discusses possible developments towards a compete specifications of the

vector dynamics of CDS forward rates under a single pricing measure, based on one

period or co-terminal CDS rates.

Section 8 gives some hints on modeling of the volatility smile for CDS options, based

on the general framework introduced earlier.

Finally, Section 9 introduces a formula for CDS option pricing under the CDS-

calibrated CIR++ stochastic intensity model. The formula is based on Jamshidian’s

decomposition. We investigate patterns of implied volatilities as functions of the CIR++

model parameters.
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2 Credit Default Swaps: Different Formulations

2.1 CDS payoffs

We recall briefly some basic definitions for CDS’s. Consider a CDS where we exchange

protection payment rates R at times Ta+1, . . . , Tb (the “premium leg”) in exchange for a

single protection payment LGD (loss given default, the “protection leg” ) at the default

time τ of a reference entity “C”, provided that Ta < τ ≤ Tb. This is called a “running

CDS” (RCDS) discounted payoff. Formally, we may write the RCDS discounted value

at time t as

ΠRCDSa,b(t) := D(t, τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb} +
b∑

i=a+1

D(t, Ti)αiR1{τ≥Ti} + (1)

−1{Ta<τ≤Tb}D(t, τ) LGD

where t ∈ [Tβ(t)−1, Tβ(t)), i.e. Tβ(t) is the first date among the Ti’s that follows t, and

where αi is the year fraction between Ti−1 and Ti. The stochastic discount factor at time

t for maturity T is denoted by D(t, T ) = B(t)/B(T ), where B(t) = exp(
∫ t

0
rudu) denotes

the bank-account numeraire, r being the instantaneous short interest rate.

We explicitly point out that we are assuming the offered protection amount LGD to

be deterministic and, in particular, not to depend on the CDS rate but only on the

reference entity and on the payment dates. Typically LGD = 1−REC, where the recovery

rate REC is assumed to be deterministic and the notional is set to one.

Sometimes a slightly different payoff is considered for RCDS contracts. Instead of

considering the exact default time τ , the protection payment LGD is postponed to the

first time Ti following default, i.e. to Tβ(τ). If the grid is three-or six months spaced,

this postponement consists in a few months at worst. With this formulation, the CDS

discounted payoff can be written as

ΠPRCDSa,b(t) :=
b∑

i=a+1

D(t, Ti)αiR1{τ≥Ti} −
b∑

i=a+1

1{Ti−1<τ≤Ti}D(t, Ti) LGD, (2)

which we term “Postponed payoffs Running CDS” (PRCDS) discounted payoff. Compare

with the earlier discounted payout (1) where the protection payment occurs exactly at

τ : The advantage of the postponed protection payment is that no accrued-interest term

in (τ − Tβ(τ)−1) is necessary, and also that all payments occur at the canonical grid

of the Ti’s. The postponed payout is better for deriving market models of CDS rates

dynamics, as we shall see shortly. Yet, unless explicitly specified, in the following we

consider the first payout (1) since this is the formulation most resembling market practice

(Prampolini (2002)). When we write simply “CDS” we refer to the RCDS case.

A slightly different postponed discounted payoff would be more appropriated. Indeed,

if we consider

ΠPR2CDSa,b(t) :=
b∑

i=a+1

D(t, Ti)αiR1{τ>Ti−1} −
b∑

i=a+1

1{Ti−1<τ≤Ti}D(t, Ti) LGD (3)
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(notice the Ti−1 in the indicators of the first summation), we see that we are including

one more R-payment with respect to the earlier postponed case. This is appropriate,

since by pretending default is occurring at Tβ(τ) instead of τ we are in fact introducing

one more whole interval we have to account for in the “premium leg”.

From a different point of view, and since the protection leg, even if postponed, is dis-

counted with the appropriate discount factor taking into account postponement, notice

that in cases where τ is slightly larger than Ti then the first postponed payoff (2) is a

better approximation of the actual one. Instead, in cases where τ is slightly smaller than

Ti, the postponed payoff (3) represents a better approximation. We will see the different

implications of these two payoffs.

Recently, there has been some interest in “upfront CDS” contracts (Perdichizzi and

Veronesi (2003)). In this version, the present value of the protection leg is paid upfront

by the party that is buying protection. In other terms, instead of exchanging a possible

protection payment for some coupons, one exchanges it with an upfront payment.

The discounted payoff of the protection leg is simply

ΠUCDSa,b(t) := 1{Ta<τ≤Tb}D(t, τ) LGD =
b∑

i=a+1

1{Ti−1<τ≤Ti}D(t, τ) LGD. (4)

Alternatively, one can approximate this leg by a “postponed payment” version, where

we postpone the protection payment until the first Ti following default τ :

ΠUPCDSa,b(t) :=
b∑

i=a+1

1{Ti−1<τ≤Ti}D(t, Ti) LGD. (5)

2.2 CDS pricing and Cox Processes

We denote by CDS(t, [Ta+1, . . . , Tb], Ta, Tb, R, LGD) the price at time t of the above stan-

dard running CDS. At times some terms are omitted, such as for example the list of

payment dates [Ta+1, . . . , Tb]. We add the prefixes “PR1” or “PR2” to denote, respec-

tively, the analogous prices for the postponed payoffs (2) and (3). We add the prefix

“U” (upfront) to denote the present value at t of the protection leg (4) of the CDS, and

“UP” (upfront postponed) in case we are considering the present value of (5).

The pricing formulas for these payoffs depend on the assumptions on interest-rate

dynamics and on the default time τ . Here we place ourselves in a stochastic intensity

framework, where the intensity is an Ft-adapted continuous positive process, Ft denoting

the basic filtration without default, typically representing the information flow of interest

rates, intensities and possibly other default-free market quantities. Default is modeled

as the first jump time of a Cox process with the given intensity process. In the Cox

process setting we have τ = Λ−1(ξ), where Λ is the stochastic hazard function which

we assume to be Ft adapted, absolutely continuous and strictly increasing, and ξ is

exponentially distributed with parameter 1 and independent of F . These assumptions

imply the existence of a positive adapted process λ, which we assume also to be right

continuous and limited on the left, such that Λ(t) =
∫ t

0
λsds for all t. We will not model
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the intensity directly in this paper, except in section 9. Rather, we model some market

quantities embedding the impact of the relevant intensity model that is consistent with

them. In general, we can compute the CDS price according to risk-neutral valuation (see

for example Bielecki and Rutkowski (2001)):

CDS(t, Ta, Tb, R, LGD) = E {ΠRCDSa,b(t)|Gt} (6)

where Gt = Ft ∨ σ({τ < u}, u ≤ t), and E denotes the risk-neutral expectation in

the enlarged probability space supporting τ . We will denote by Et the expectation

conditional on the sigma field Ft.

This expected value can also be written as

CDS(t, Ta, Tb, R, LGD) =
1{τ>t}

Q(τ > t|Ft)
E {ΠRCDSa,b(t)|Ft} (7)

(see again Bielecki and Rutkowski (2001) formula (5.1) p. 143, or more in particular

Jeanblanc and Rutkowski (2000) for the most general results of this kind).

This second expression, and the analogous definitions with postponed payoffs, will

be fundamental for introducing the market model for CDS options in a rigorous way.

For the time being, let us deal with the definition of (running) CDS forward rate

Ra,b(t). This can be defined as that R that makes the CDS value equal to zero at time

t, so that

CDS(t, Ta, Tb, Ra,b(t), LGD) = 0.

The idea is then solving this equation in Ra,b(t). In doing this one has to be careful.

It is best to use expression (7) rather than (6). Equate this expression to zero and derive

R correspondingly. Strictly speaking, the resulting R would be defined on {τ > t} only,

since elsewhere the equation is satisfied automatically thanks to the indicator in front

of the expression, regardless of R. Since the value of R does not matter when {τ < t},
the equation being satisfied automatically, we need not worry about {τ < t} and may

define, in general,

Ra,b(t) =
LGD E[D(t, τ)1{Ta<τ≤Tb}|Ft]∑b

i=a+1 αiQ(τ > t|Ft)P̄ (t, Ti) + E
{
D(t, τ)(τ − Tβ(τ)−1)1{Ta<τ<Tb}|Ft

} , (8)

where P̄ (t, T ) := E[D(t, T )1{τ>T}|Ft]/Q(τ > t|Ft) is the “no survival-indicator” part of

the defaultable T -maturity (no recovery) zero coupon bond, i.e.

E[D(t, T )1{τ>T}|Gt] = 1{τ>t}E[D(t, T )1{τ>T}|Ft]/Q(τ > t|Ft) = 1{τ>t}P̄ (t, T )

is the price at time t of a defaultable zero-coupon bond maturing at time T . Notice that

replacing {τ > T} by {τ ≥ T}, as we implicitly do in (8), does not change anything since

we are assuming continuous processes for the short rate and the stochastic intensity. We

will denote by P (t, T ) the default-free zero coupon bond at time t for maturity T .

This approach to define Ra,b amounts to equating to zero only the expected value

in (7), and in a sense is a way of privileging Ft expected values to Gt ones. The technical

tool allowing us to do this is the above-mentioned Jeanblanc Rutkowski (2000) result,

and this is the spirit of part of the work in Jamshidian (2002).
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2.3 Market quoting mechanism and implied hazard functions

Now we explain shortly how the market quotes running and upfront CDS prices. First we

notice that typically the T ’s are three- months spaced. Let us begin with running CDS’s.

Usually at time t = 0, provided default has not yet occurred, the market sets R to a value

RMID
a,b (0) that makes the CDS fair at time 0, i.e. such that CDS(0, Ta, Tb, R

MID
a,b (0), LGD) =

0. In fact, in the market running CDS’s used to be quoted at a time 0 through a bid and

an ask value for this “fair” RMID
a,b (0), for CDS’s with Ta = 0 and with Tb spanning a set

of canonical final maturities, Tb = 1y up to Tb = 10y. As time moves on to say t = 1day,

the market shifts the T ’s of t, setting Ta = 0 + t, . . . , Tb = 10y + t, and then quotes

RMID
a,b (t) satisfying CDS(t, Ta, Tb, R

MID
a,b (t), LGD) = 0. This means that as time moves on,

the maturities increase and the times to maturity remain constant.

Recently, the quoting mechanism has changed and has become more similar to the

mechanism of the futures markets. Let 0 be the current time. Maturities Ta, . . . , Tb

are fixed at the original time 0 to some values such as 1y, 2y, 3y etc and then, as time

moves for example to t = 1day, the CDS maturities are not shifted correspondingly of

1 day as before but remain 1y,2y etc from the original time 0. This means that the

times to maturity of the quoted CDS’s decrease as time passes. When the quoting time

approaches maturity, a new set of maturities are fixed and so on. A detail concerning

the “constant maturities” paradigm is that when the first maturity Ta is less than one

month away from the quoting time (say 0), the payoff two terms

TaD(0, Ta)R1{τ>Ta} + (Ta+1 − Ta)D(0, Ta+1)R1{τ>Ta+1}

are replaced by

Ta+1D(0, Ta+1)R1{τ>Ta+1}

in determining the “fair” R. If we neglect this last convention, once we fix the quoting

time (say to 0) the method to strip implied hazard functions is the same under the

two quoting paradigms. For example, Brigo and Alfonsi (2003) present a more detailed

section on the “constant time-to-maturity” paradigm, and illustrate the notion of implied

deterministic intensity (hazard function), satisfying

Q{s < τ ≤ t} = exp(−Γ(s))− exp(−Γ(t)).

The market Γ’s are obtained by inverting a pricing formula based on the assumption that

τ is the first jump time of a Poisson process with deterministic intensity γ(t) = dΓ(t)/dt.

In this case one can derive a formula for CDS prices based on integrals of γ, and on the

initial interest-rate curve, resulting from the above expectation:

CDS(t, Ta, Tb, R, LGD; Γ(·)) = 1{t<τ}

[
R

∫ Tb

Ta

P (t, u)(Tβ(u)−1 − u)d(e−(Γ(u)−Γ(t)))+ (9)

b∑
i=a+1

P (t, Ti)Rαie
Γ(t)−Γ(Ti) + LGD

∫ Tb

Ta

P (t, u)d(e−(Γ(u)−Γ(t)))

]
.

By equating to zero the above expression in γ for t = 0, Ta = 0, after plugging in the

relevant market quotes for R, one can extract the γ’s corresponding to CDS market
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quotes for increasing maturities Tb and obtain market implied γmkt and Γmkt’s. It is

important to point out that usually the actual model one assumes for τ is more complex

and may involve stochastic intensity either directly or through stochastic modeling of the

future R dynamics itself. Even so, the γmkt’s are retained as a mere quoting mechanism

for CDS rate market quotes, and may be taken as inputs in the calibration of more

complex models.

Upfront CDS are simply quoted through the present value of the protection leg.

Under deterministic hazard rates γ, we have

UCDS(t, Ta, Tb, R, LGD; Γ(·)) = 1{t<τ}LGD

∫ Tb

Ta

P (t, u)d(e−(Γ(u)−Γ(t))).

As before, by equating to the corresponding upfront market quote the above expres-

sion in γ, one can extract the γ’s corresponding to UCDS market quotes for increasing

maturities and obtain again market implied γmkt and Γmkt’s.

Once the implied γ are estimated, it is easy to switch from the “running CDS quote”

R to the “upfront CDS quote” UCDS, or vice versa. Indeed, we see that, without

postponed payments, the two quotes are linked by

UCDS(t, Ta, Tb, R, LGD; Γmkt(·)) = Ra,b(t)

[ ∫ Tb

Ta

P (t, u)(Tβ(u)−1 − u)d(e−(Γmkt(u)−Γmkt(t))) +

n∑
i=a+1

P (t, Ti)αie
Γmkt(t)−Γmkt(Ti)

]

3 Different Definitions of CDS Forward Rates and

Analogies with the LIBOR and SWAP Models

The procedure of equating to 0 the current price of a contract to derive a sensible

definition of forward rate is rather common. For example, the default free forward

LIBOR rate F (t, S, T ) is obtained as the rate at time t that makes the time-t price of

a Forward Rate Agreement contract (FRA) vanish. This FRA contract locks in the

interest rate between time S and T . An analogous definition of forward swap rate at

time t is obtained as the rate in the fixed leg of the swap that makes the swap value at

time t equal to 0. For a discussion on both the default free FRA and swap cases see for

example Brigo and Mercurio (2001), Chapter 1.

In the current context, we can set a CDS price to zero to derive a forward CDS rate.

Clearly, the obtained rate changes according to the different running CDS payoff we

consider. For example, by equating to 0 expression (7) and solving in R, we have the

standard running CDS forward rate given in (8). We may wonder about what we would

have obtained as definition of forward CDS rates when considering CDS payoffs PRCDS

with postponed protection payments (2) or even PR2CDS (3). By straightforwardly

adapting the above derivation, we would have obtained a CDS forward rate defined as

RPR

a,b(t) =
LGD

∑b
i=a+1 E[D(t, Ti)1{Ti−1<τ≤Ti}|Ft]∑b

i=a+1 αiE[D(t, Ti)1{τ>Ti}|Ft]
=

LGD

∑b
i=a+1 E[D(t, Ti)1{Ti−1<τ≤Ti}|Ft]∑b

i=a+1 αiQ(τ > t|Ft)P̄ (t, Ti)
,
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and

RPR2

a,b (t) =
LGD

∑b
i=a+1 E[D(t, Ti)1{Ti−1<τ≤Ti}|Ft]∑b

i=a+1 αiE[D(t, Ti)1{τ>Ti−1}|Ft]

(where “PR” and “PR2” stand for “postponed-running” payoffs of the first and second

kind, respectively).

Can we use the forward CDS rate definition, limited to a one-period interval, to

introduce defaultable one-period forward rates? A straightforward generalization of

the definition of forward LIBOR rates to the defaultable case is given for example in

Schönbucher (2000). This definition mimics the definition in the default free case, in

that from zero-coupon bonds one builds a “defaultable forward LIBOR rate”

F̄ (t; Tj−1, Tj) := (1/αj)(P̄ (t, Tj−1)/P̄ (t, Tj)− 1)

on τ > t. However, as noticed earlier, the default free F is obtained as the fair rate at

time t for a Forward Rate Agreement contract (FRA). Can we see F̄ as the fair rate for

a sort of defaultable FRA? Since the most liquid credit instruments are CDS’s, consider

a running postponed CDS on a one-period interval, with Ta = Tj−1 and Tb = Tj. We

obtain (take LGD = 1)

RPR
j (t) :=

E[D(t, Tj)1{Tj−1<τ≤Tj}|Ft]

αjQ(τ > t|Ft)P̄ (t, Tj)
=
E[D(t, Tj)1{τ>Tj−1}|Ft]− E[D(t, Tj)1{τ>Tj}|Ft]

αjQ(τ > t|Ft)P̄ (t, Tj)
(10)

where we have set RPR
j := RPR

j−1,j. The analogous part of F̄j = F̄ (·, Tj−1, Tj) would be,

after adjusting the conditioning to Ft (F̂j(t) = F̄j(t) on τ > t but F̂ is defined also on

τ ≤ t )

F̂j(t) =
E[D(t, Tj−1)1{τ>Tj−1}|Ft]− E[D(t, Tj)1{τ>Tj}|Ft]

αjQ(τ > t|Ft)P̄ (t, Tj)
.

The difference is that in RPR
j ’s numerator we are taking expectation of a quantity that

vanishes in all paths where τ > Tj, whereas in F̄ the corresponding quantity does not

vanish necessarily in paths with τ > Tj. Moreover, while Rj comes from a financial

contract, F̄ remains an abstraction not directly linked to a financial payoff.

Schönbucher (2000) defines the discrete tenor credit spread, in general, to be

Hj(t) :=
1

αj

(
P̄ (t, Tj−1)/P (t, Tj−1)

P̄ (t, Tj)/P (t, Tj)
− 1

)

(in τ > t), and it is easy to see that we get

Hj(t) = RPR
j (t),

but under independence of the default intensity and the interest rates, and not in general.

Again, in general Rj comes from imposing a one-period CDS to be fair whereas Hj does

not.

A last remark concerns an analogy with the default-free swap market model, where

we have a formula linking swap rates to forward rates through a weighted average:
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Sa,b(t) =
∑b

i=a+1[αiP (t, Ti)/(
∑b

k=a+1 αkP (t, Tk))]Fi(t) =
∑b

i=a+1 wi(t; F (t)) Fi(t). This

is useful since it leads to an approximated formula for swaptions in the LIBOR model, see

for example Brigo and Mercurio (2001), Chapter 6. A similar approach can be obtained

for CDS forward rates. It is easy to check that

RPR
a,b (t) =

∑b
i=a+1 αiR

PR
i (t)P̄ (t, Ti)∑b

i=a+1 αiP̄ (t, Ti)
=

b∑
i=a+1

w̄i(t)R
PR
i (t) ≈

b∑
i=a+1

w̄i(0)RPR
i (t). (11)

A similar relationship for RPR2
a,b involving a weighted average of one-period rates is ob-

tained when resorting to the second type of postponed payoff.

A possible lack of analogy with the swap rates is that the w̄’s cannot be expressed

as functions of the Ri’s only, unless we make some particular assumptions on the cor-

relation between default intensities and interest rates. However, if we freeze the w̄’s to

time 0, which we have seen to work in the default-free LIBOR model, we obtain easily

a useful approximate expression for Ra,b and its volatility in terms of Ri’s and their

volatilities/correlations.

More generally, when not freezing, the presence of stochastic intensities besides

stochastic interest rates adds degrees of freedom. Now the P̄ ’s (and thus the w̄’s) can

be determined as functions for example of one- and two-period rates. Indeed, it is easy

to show that

P̄ (t, Ti) = P̄ (t, Ti−1)
αi−1(R

PR
i−1(t)−RPR

i−2,i(t))

αi(RPR
i−2,i(t)−RPR

i (t))
. (12)

We have to assume RPR
i−2,i(t) − RPR

i (t) 6= 0. Actually, if we assume this to hold for the

initial conditions, i.e. RPR
i−2,i(0)−RPR

i (0) 6= 0, and then take a diffusion dynamics for the

two rates, the probability of our condition to be violated at future times is the probability

of a continuous random variable to be 0, i.e. it is zero in general.

We will see later how this formula will help us in obtaining a market model for CDS

rates. For the time being let us keep in mind that the exact weights w̄(t) in (11) are

completely specified in terms of Ri(t)’s and Ri−2,i(t)’s, so that if we include these two

rates in our dynamics the “system” is closed in that we also know all the relevant P̄ ’s.

The difference with the LIBOR/Swap model is that here to close the system we need

also two-period rates.

4 Defaultable Floater and CDS

Consider a prototypical defaultable floating rate note (FRN).

Definition 4.1. Prototypical defaultable floating-rate note. A prototypical de-

faultable floating-rate note is a contract ensuring the payment at future times Ta+1, . . . , Tb

of the LIBOR rates that reset at the previous instants Ta, . . . , Tb−1 plus a spread X, each

payment conditional on the issuer having not defaulted before the relevant previous in-

stant. Moreover, the note pays a last cash flow consisting of the reimbursement of the

notional value of the note at final time Tb if the issuer has not defaulted earlier. We
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assume a deterministic recovery value REC to be paid at the first Ti following default if

default occurs before Tb. The note is said to quote at par if its value is equivalent to the

value of the notional paid at the first reset time Ta in case default has not occurred before

Ta.

Recall that if no default is considered, then the fair spread making the FRN quote

at par is 0, see for example Brigo and Mercurio (2001b), p. 15.

When in presence of Default, the note discounted payoff, including the initial cash

flow on 1 paid in Ta, is

ΠDFRNa,b = −D(t, Ta)1{τ>Ta} +
b∑

i=a+1

αiD(t, Ti)(L(Ti−1, Ti) + X)1{τ>Ti}

+D(t, Tb)1{τ>Tb} + REC

b∑
i=a+1

D(t, Ti)1{Ti−1<τ≤Ti},

where REC is the recovery rate, i.e. the percentage of the notional that is paid in re-

placement of the notional in case of default, and it is paid at the first instant among

Ta+1, . . . , Tb following default. This is the correct definition of DFRN, consistent with

market practice. The problem with such definition is that it has no equivalent in terms

of approximated CDS payoff. This is due to the fact that, in a Cox process setting, it

is difficult to disentangle the LIBOR rate L from the indicator and stochastic discount

factor in such a way to obtain expectations of pure stochastic discount factors times de-

fault indicators. This becomes possible if we replace 1{τ>Ti} in the first summation with

1{τ>Ti−1}, as one can see from computations (13) below. The same computations, in case

we keep Ti in the default indicator, even in the simplified case where LGD = 1 and interest

rates are independent of default intensities, would lead us to a corresponding definition

of CDS forward rate where protection is paid at the last instant Ti before default, which

is not natural since one should anticipate default.

4.1 A first approximated DFRN payoff

We thus consider two alternative definitions of DFRN. The first one is obtained by

moving the default indicator of L(Ti−1, Ti) + X from Ti to Ti−1. The related FRN

discounted payoff is defined as follows:

ΠDFRN2a,b = −D(t, Ta)1{τ>Ta} +
b∑

i=a+1

αiD(t, Ti)(L(Ti−1, Ti) + X)1{τ>Ti−1}

+D(t, Tb)1{τ>Tb} + REC

b∑
i=a+1

D(t, Ti)1{Ti−1≤τ<Ti},

Recall that, in the CDS payoff, LGD = 1−REC. We may now value the above discounted

payoff at time t and derive the value of X that makes it 0. Define

DFRN2a,b(t,X, REC) = E{ΠDFRN2a,b|Gt} = 1{τ>t}E{ΠDFRN2a,b|Ft}/Q(τ > t|Ft)
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and solve E{ΠDFRN2a,b|Ft} = 0 in X. The only nontrivial part is computing

αiE[D(t, Ti)L(Ti−1, Ti)1{τ>Ti−1}|Ft] = αiE[E[D(t, Ti)L(Ti−1, Ti)1{τ>Ti−1}|FTi−1
]|Ft] = . . .

Under our Cox process setting for τ we can write

. . . = αiE[E[D(t, Ti)L(Ti−1, Ti)1{ξ>Λ(Ti−1)}|FTi−1
]|Ft] = (13)

= αiE[D(t, Ti−1)L(Ti−1, Ti) exp(−Λ(Ti−1))E[D(Ti−1, Ti)|FTi−1
]|Ft] =

= αiE[exp(−Λ(Ti−1))D(t, Ti−1)L(Ti−1, Ti)P (Ti−1, Ti)|Ft] =

= E[exp(−Λ(Ti−1))D(t, Ti−1)(1− P (Ti−1, Ti))|Ft] =

= E[D(t, Ti−1)(1− P (Ti−1, Ti))1{τ>Ti−1}|Ft] =

= E[D(t, Ti−1)1{τ>Ti−1}|Ft]− E[D(t, Ti)1{τ>Ti−1}|Ft]

Now the LIBOR flow has vanished from the above payoff and we have expressed every-

thing in terms of pure discount factor and default indicators. Some of these computations

could have been performed more simply by means of standard and model independent

arguments, but we carried them out in the explicit intensity case so that the reader may

try them when not replacing 1{τ>Ti} to see what goes wrong.

We may write also

DFRN2a,b(t,X, REC) = (1{τ>t}/Q(τ > t|Ft))

[
− Et[D(t, Ta)1{τ>Ta}] + Et[D(t, Tb)1{τ>Tb}]

−
b∑

i=a+1

Et[(D(t, Ti)−D(t, Ti−1))1{τ>Ti−1}] + X

b∑
i=a+1

αiEt[D(t, Ti)1{τ>Ti−1}]

+REC

b∑
i=a+1

Et[D(t, Ti)1{Ti−1<τ≤Ti}]
]
.

We may simplify terms in the summations and obtain

DFRN2a,b(t,X, REC) =
1{τ>t}

Q(τ > t|Ft)

[
− LGD

b∑
i=a+1

Et[D(t, Ti)1{Ti−1<τ≤Ti}]

+X

b∑
i=a+1

αiEt[D(t, Ti)1{τ>Ti−1}]
]
,

from which we notice en passant that

DFRN2a,b(t,X, REC) = PR2CDS(t, Ta, Tb, X, 1− REC). (14)

By taking into account this result, the expression for X that makes the DFRN quote

at par is clearly the running “postponed of the second kind” CDS forward rate

X
(2)
a,b (t) = RPR2

a,b (t),

i.e. the fair spread in a defualtable floating rate note is equal to the running postponed

CDS forward rate.
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4.2 A second approximated DFRN payoff

The second alternative definition of DFRN, leading to a useful relationship with approx-

imated CDS payoffs, is obtained by moving the default indicator of L(Ti−1, Ti)+X from

Ti to Ti−1 but only for the LIBOR flow, not for the spread X. This payoff is closer to

the original ΠDFRN payoff than the approximated ΠDFRN2 payoff considered above. Set

ΠDFRN1a,b = −D(t, Ta)1{τ>Ta} +
b∑

i=a+1

αiD(t, Ti)(L(Ti−1, Ti)1{τ>Ti−1} + X1{τ>Ti})

+D(t, Tb)1{τ>Tb} + REC

b∑
i=a+1

D(t, Ti)1{Ti−1<τ≤Ti}.

By calling DFRN1a,b(t, X, REC) the t-value of the above payoff and by going through the

computations we can see easily that this time

DFRN1a,b(t,X, REC) = PRCDS(t, Ta, Tb, X, 1− REC). (15)

and that, as far as fair spreads are concerned,

X
(1)
a,b (t) = RPR

a,b (t).

5 CDS Options and Callable Defaultable Floaters

Consider the option to enter a CDS at a future time Ta > 0, Ta < Tb, paying a fixed

rate K at times Ta+1, . . . , Tb or until default, in exchange for protection against possible

default in [Ta, Tb]. If default occurs a protection payment LGD is received. By noticing

that the market CDS rate Ra,b(Ta) will set the CDS value in Ta to 0, the payoff can be

written as the discounted difference between said CDS and the corresponding CDS with

rate K. We will see below that this is equivalent to a call option on the future CDS fair

rate Ra,b(Ta). The discounted CDS option payoff reads, at time t,

ΠCallCDSa,b(t; K) = D(t, Ta)[CDS(Ta, Ta, Tb, Ra,b(Ta), LGD)− CDS(Ta, Ta, Tb, K, LGD)]+,

(16)

leading to two possible expressions, depending on whether we explicit the CDS values,

given respectively by

ΠCallCDSa,b(t; K) =
1{τ>Ta}

Q(τ > Ta|FTa)
D(t, Ta)

[
b∑

i=a+1

αiQ(τ > Ta|FTa)P̄ (Ta, Ti)+ (17)

+ E
{
D(Ta, τ)(τ − Tβ(τ)−1)1{τ<Tb}|FTa

} ]
(Ra,b(Ta)−K)+

or, by remembering that by definition CDS(Ta, Ta, Tb, Ra,b(Ta), LGD) = 0, as

ΠCallCDSa,b(t; K) = D(t, Ta)[−CDS(Ta, Ta, Tb, K, LGD)]+. (18)
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This last expression points out that in holding this CDS option we would be interested

in the option to buy protection LGD at time Ta against default in [Ta, Tb] in exchange for

a premium leg characterized by the strike-rate K. These options can be introduced for

every type of underlying CDS. We have illustrated the standard CDS case, and we will

consider the postponed CDS cases below.

The quantity inside square brackets in (17) will play a key role in the following. We

will often neglect the accrued interest term in (τ − Tβ(τ)−1) and consider the related

simplified payoff: in such a case the quantity between square brackets is denoted by

Ĉa,b(Ta) and is called (“no survival-indicator”-) “defaultable present value per basis point

(DPVBP) numeraire” (and sometimes “annuity”). Actually the real DPVBP would have

a 1{τ> ·} term in front of the summation, but by a slight abuse of language we call DPVBP

the expression without indicator. More generally, at time t, we set

Ĉa,b(t) := Q(τ > t|Ft)C̄a,b(t), C̄a,b(t) :=
b∑

i=a+1

αiP̄ (t, Ti).

When including as a factor the indicator 1{τ>t}, this quantity is the price, at time t, of a

portfolio of defaultable zero-coupon bonds with zero recovery and with different matu-

rities, and as such it is the price of a tradable asset. The original work of Schönbucher

(2000) is in this spirit, in that the “numeraire” is taken with the indicator, so that it

may vanish and the measure it defines is not equivalent to the risk neutral measure. If

we keep the indicator away, following in spirit part of the work in Jamshidian (2002),

this quantity maintains a link with said price and is always strictly positive, so that we

are allowed to take it as numeraire.

The related probability measure, equivalent to the risk neutral measure, is denoted

by Q̂a,b and the related expectation by Êa,b.

Neglecting the accrued interest term, the option discounted payoff simplifies to

1{τ>Ta}D(t, Ta)

[
b∑

i=a+1

αiP̄ (Ta, Ti)

]
(Ra,b(Ta)−K)+ (19)

but this is only an approximated payoff and not the exact one.

5.1 First equivalence: PRCDS and DFRN1

Let us follow the same derivation under the postponed CDS payoff of the first kind.

Consider thus

ΠCallPRCDSa,b(t; K) = D(t, Ta)[PRCDS(Ta, Ta, Tb, R
PR
a,b (Ta), LGD)−PRCDS(Ta, Ta, Tb, K, LGD)]+,

(20)

or, since PRCDS(Ta, Ta, Tb, R
PR
a,b (Ta), LGD) = 0,

ΠCallPRCDSa,b(t; K) = D(t, Ta)[−PRCDS(Ta, Ta, Tb, K, LGD)]+,

which, by (15), is equivalent to

D(t, Ta)[−DFRN1a,b(Ta, K, REC)]+, (21)
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with LGD = 1− REC, or, since DFRN1a,b(Ta, Xa,b(Ta), REC) = 0, is equivalent to

D(t, Ta)[DFRN1a,b(Ta, Xa,b(Ta), REC)−DFRN1a,b(Ta, K, REC)]+.

By expanding the expression of PRCDS we obtain as exact discounted payoff the quantity

ΠCallPRCDSa,b(t,K) = 1{τ>Ta}D(t, Ta)

[
b∑

i=a+1

αiP̄ (Ta, Ti)

]
(RPR

a,b (Ta)−K)+, (22)

which is structurally identical to the approximated payoff (19) for the standard CDS case.

Thus we have created a link between the first postponed CDS payoff and an option on an

approximated DFRN. Notice in particular that the quantity in front of the optional part

is the same as in the earlier standard approximated discounted payoff, i.e. the DPVBP.

5.2 Second equivalence: PR2CDS and DFRN2

We may also consider the postponed running CDS of the second kind. The related

discounted CDS option payoff reads, at time t,

ΠCallPR2CDSa,b(t,K) = D(t, Ta)[PR2CDS(Ta, Tb, R
PR2
a,b (Ta), LGD)−PR2CDS(Ta, Tb, K, LGD)]+,

(23)

and given (14), this is equivalent to

D(t, Ta)[DFRN2a,b(Ta, Xa,b(Ta), REC)−DFRN2a,b(Ta, K, REC)]+, (24)

with REC = 1− LGD, or, by expanding the expression for PR2CDS, as

(1{τ>Ta}/Q(τ > Ta|FTa))D(t, Ta)
b∑

i=a+1

αiETa [D(Ta, Ti)1{τ>Ti−1}](R
PR2
a,b (Ta)−K)+. (25)

Again we have equivalence between CDS options and options on the defaultable

floater.

5.3 Callable defaultable floaters

The option on the floater can be seen as the optional component of a callable DFRN. A

DFRN with final maturity Tb is issued at time 0 with a fair rate X0,b(0) in such a way

that DFRN0,b(0, X0,b(0), REC) = 0. Suppose that this FRN includes a callability feature:

at time Ta the issuer has the right to take back the subsequent FRN flows and replace

them with the notional 1. The issuer will do so only if the present value in Ta of the

subsequent FRN flows is larger than 1 in Ta. This is equivalent, for the note holder, to re-

ceive 1{τ>Ta}+min(DFRNa,b(Ta, X0,b(0), REC), 0) = 1{τ>Ta}+DFRNa,b(Ta, X0,b(0), REC)−
(DFRNa,b(Ta, X0,b(0), REC))+ at time Ta if no default has occurred by then (recall that

in our notation DFRNa,b includes a negative cash flow of 1 at time Ta).

The component 1{τ>Ta} + DFRNa,b(Ta, X0,b(0), REC) when valued at time 0 is sim-

ply the residual part of the original DFRN without callability features from Ta on,
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so that when added to the previous payments in 0 ÷ Ta its present value is 0. This

happens because Xa,b(0) is the fair rate for the total DFRN at time 0. The component

(DFRNa,b(Ta, X0,b(0), REC))+ = (DFRNa,b(Ta, X0,b(0), REC)−DFRNa,b(Ta, Xa,b(Ta), REC))+

is structurally equivalent to a CDS option, provided we approximate its payoff with

DFRN1 or DFRN2, as we have seen earlier, and we may value it if we have a model

for CDS options. We are deriving a market model for such options in the next section,

so that we will be implicitly deriving a model for callable defaultable floaters.

6 A market formula for CDS options and callable

defaultable floaters

As usual, one may wish to introduce a notion of implied volatility for CDS options. This

would be a volatility associated to the relevant underlying CDS rate R. In order to do

so rigorously, one has to come up with an appropriate dynamics for Ra,b directly, rather

than modeling instantaneous default intensities explicitly. This somehow parallels what

we find in the default-free interest rate market when we resort to the swap market model

as opposed for example to a one-factor short-rate model for pricing swaptions. In a

one-factor short-rate model the dynamics of the forward swap rate is a byproduct of the

short-rate dynamics itself, through Ito’s formula. On the contrary, the market model for

swaptions directly postulates, under the relevant numeraire a (lognormal) dynamics for

the forward swap rate.

6.1 Market formulas for CDS Options

In the case of CDS options the market model is derived as follows. First, let us ignore

the accruing term in (τ−Tβ(τ)−1), by replacing it with zero. It can be seen that typically

the order of magnitude of this term is negligible with respect to the remaining terms in

the payoff. Failing this negligibility, one may reformulate the payoff by postponing the

default payment to the first date among the Ti’s following τ , i.e. to Tβ(τ). This amounts

to considering as underlying a payoff corresponding to (2) and eliminates the accruing

term altogether, even though it slightly modifies the option payoff. Take as numeraire

the DPVBP Ĉa,b, so that

Ra,b(t) =
LGD E[D(t, τ)1{Ta<τ≤Tb}|Ft]∑b

i=a+1 αiQ(τ > t|Ft)P̄ (t, Ti)
=

LGD E[D(t, τ)1{Ta<τ≤Tb}|Ft]

Ĉa,b(t)
, t ≤ Ta, (26)

having as numerator the price of an upfront CDS, can be interpreted as the ratio between

a tradable asset and our numeraire. As such, it is a martingale under this numeraire’s

measure and can be modeled as a Black-Scholes driftless geometric Brownian motion,

leading to a Black and Scholes formula for CDS options (notice that, when Ra,b(0) is not

quoted directly by the market, we may infer it by the market implied γmkt according to

Ra,b(0) =
−LGD

∫ Tb

Ta
P (0, u)d(e−Γmkt(u))

∑b
i=a+1 αiP (0, Ti)e−Γmkt(Ti)

)
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Indeed, by resorting to the change of numeraire starting from (19) (thus ignoring the

accruing term or working with the postponed payoff) we see that

E{1{τ>Ta}D(t, Ta)
b∑

i=a+1

αiP̄ (Ta, Ti)(Ra,b(Ta)−K)+|Gt}

=
1{τ>t}

Q(τ > t|Ft)
E{1{τ>Ta}D(t, Ta)

b∑
i=a+1

αiP̄ (Ta, Ti)(Ra,b(Ta)−K)+|Ft}

=
1{τ>t}

Q(τ > t|Ft)
E

[
E{1{τ>Ta}D(t, Ta)

b∑
i=a+1

αiP̄ (Ta, Ti)(Ra,b(Ta)−K)+|FTa}|Ft

]

=
1{τ>t}

Q(τ > t|Ft)
E

[
D(t, Ta)

b∑
i=a+1

αiP̄ (Ta, Ti)(Ra,b(Ta)−K)+E{1{τ>Ta}|FTa}|Ft

]

=
1{τ>t}

Q(τ > t|Ft)
E

[
D(t, Ta)

b∑
i=a+1

Q(τ > Ta|FTa)αiP̄ (Ta, Ti)(Ra,b(Ta)−K)+|Ft

]

=
1{τ>t}

Q(τ > t|Ft)
E

[
D(t, Ta)Ĉa,b(Ta)(Ra,b(Ta)−K)+|Ft

]

=
1{τ>t}

Q(τ > t|Ft)
Ĉa,b(t)Êa,b[(Ra,b(Ta)−K)+|Ft]

= 1{τ>t}C̄a,b(t)Êa,b[(Ra,b(Ta)−K)+|Ft]

and we may take

dRa,b(t) = σa,bRa,b(t)dW a,b(t), (27)

where W a,b is a Brownian motion under Q̂a,b, leading to a market formula for the CDS

option. We have

E{1{τ>Ta}D(t, Ta)C̄a,b(Ta)(Ra,b(Ta)−K)+|Gt} = 1{τ>t}C̄a,b(t)[Ra,b(t)N(d1(t))−KN(d2(t))]

(28)

d1,2 =

(
ln(Ra,b(t)/K)± (Ta − t)σ2

a,b/2

)
/(σa,b

√
Ta − t).

As happens in most markets, this formula could be used as a quoting mechanism rather

than as a real model formula. That is, the market price can be converted into its implied

volatility matching the given price when substituted in the above formula.

6.2 Market Formula for callable DFRN

Since we are also interested in the parallel with DFRN’s, let us derive the analogous

market model formula under running CDS’s postponed payoffs of the first kind. The

derivation goes trough as above and we obtain easily the same model as in (27) and (28)

with RPR replacing R everywhere.

If we consider the second kind of approximation for FRN’s, the option price is ob-

tained as the price of a CDS option, where the CDS is a postponed CDS of the second

kind. Compute then
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E
{

D(t, Ta)[PR2CDS(Ta, Ta, Tb, R
PR2
a,b (Ta), LGD)− PR2CDS(Ta, Ta, Tb, K, LGD)]+|Gt

}

= E
{

1{τ>Ta}
Q(τ > Ta|FTa)

D(t, Ta)
b∑

i=a+1

αiETa [D(Ta, Ti)1{τ>Ti−1}](R
PR2
a,b (Ta)−K)+|Gt

}

= E
{

1{τ>Ta}D(t, Ta)
b∑

i=a+1

αi

ETa [D(Ta, Ti)1{τ>Ti−1}]
Q(τ > Ta|FTa)

(RPR2
a,b (Ta)−K)+|Gt

}
= . . .

This time let us take as numeraire

Ča,b(t) :=
b∑

i=a+1

αiEt[D(t, Ti)1{τ>Ti−1}], (notice Ĉa,b(t) =
b∑

i=a+1

αiEt[D(t, Ti)1{τ>Ti}])

This quantity is positive, and when including the indicator 1{τ>t} this is, not surprisingly,

a multiple of the premium leg of a PR2CDS at time t. We may also view it as a

(“no survival-indicator”-) portfolio of defaultable bonds where the default maturity is

one-period-displaced with respect to the payment maturity. Thus this quantity is only

approximately a numeraire. Compute

. . . = E
{

1{τ>Ta}D(t, Ta)
Ča,b(Ta)

Q(τ > Ta|FTa)
(RPR2

a,b (Ta)−K)+|Gt

}

=
1{τ>t}

Q(τ > t|Ft)
Et

{
1{τ>Ta}D(t, Ta)

Ča,b(Ta)

Q(τ > Ta|FTa)
(RPR2

a,b (Ta)−K)+

}

1{τ>t}
Q(τ > t|Ft)

Et

{
ETa

[
1{τ>Ta}D(t, Ta)

Ča,b(Ta)

Q(τ > Ta|FTa)
(RPR2

a,b (Ta)−K)+

]}

=
1{τ>t}

Q(τ > t|Ft)
Et

{
D(t, Ta)

Ča,b(Ta)

Q(τ > Ta|FTa)
(RPR2

a,b (Ta)−K)+ETa

[
1{τ>Ta}

]}

=
1{τ>t}

Q(τ > t|Ft)
Et

{
D(t, Ta)Ča,b(Ta)(R

PR2
a,b (Ta)−K)+

}

=
1{τ>t}

Q(τ > t|Ft)
Ča,b(t)Ěa,b

t

{
(RPR2

a,b (Ta)−K)+

}

Now notice that RPR2 can be also written as

RPR2
a,b (t) =

∑b
i=a+1 E[D(t, Ti)1{Ti−1<τ≤Ti}|Ft]

Ča,b(t)
,

so that it is a martingale under Q̌a,b. As such, we may model it as

dRPR2
a,b (t) = σa,bR

PR2
a,b (t)dW̌ a,b(t) (29)

and compute the above expectation accordingly. We obtain, as price of the option,

E{1{τ>Ta}D(t, Ta)
Ča,b(Ta)

Q(τ > Ta|FTa)
(RPR2

a,b (Ta)−K)+|Gt} = (30)

= 1{τ>t}
Ča,b(t)

Q(τ > t|Ft)
[RPR2

a,b (t)N(d1)−KN(d2)]



D. Brigo, Market and CIR++ models for CDS Options and Callable Floaters 20

where d1 and d2 are defined as usual in terms of RPR2
a,b (t), K and σ.

Which model should one use between DFRN1 and DFRN2 when dealing with DFRN

options? DFRN1 has the advantage of better approximating the real DFRN; further,

the related market model is derived under a numeraire; DFRN2 is derived only under

and approximated numeraire and is a worse approximation of the real DFRN, but the

related CDS payoff PR2CDS is in some cases a better approximation of a real CDS than

PRCDS.

6.3 Examples of Implied Volatilities from the Market

We present now some CDS options implied volatilities obtained with the postponed

payoff of the first and second kind. We consider three companies C1, C2 and C3 on the

Euro market and the related CDS options quotes as of March 26, 2004; the recovery

is REC = 0.4; C1 and C3 are in the telephonic sector, whereas C2 is a car industry;

LGD = 1 − 0.4 = 0.6; T0 = March 26 2004 (0); We consider two possible maturities

Ta =June 20 2004 (86d≈3m) and T ′
a =Dec 20 2004 (269d≈9m); Tb = june 20 2009

(5y87d); we consider receiver option quotes (puts on R) in basis points (i.e. 1E-4 units

on a notional of 1). We obtain the results presented in Table 2.

Option: bid mid ask R0,b(0) RPR
a,b (0) RPR2

a,b (0) K σPR
a,b σ

PR(2)
a,b

C1(Ta) 14 24 34 60 61.497 61.495 60 50.31 50.18

C2 32 39 46 94.5 97.326 97.319 94 54.68 54.48

C3 18 25 32 61 62.697 62.694 61 52.01 51.88

C1(T ′
a) 28 35 42 60 65.352 65.344 61 51.45 51.32

Table 2: CDS forward rates and implied volatilites on three companies on March 26,

2004. Rates are in basis points and volatilities are percentages.

Implied volatilities are rather high when compared with typical interest-rate default

free swaption volatilities. However, the values we find have the same order of magnitude

as some of the values found by Hull and White (2003) via historical estimation. Further,

we see that while the option prices differ considerably, the related implied volatilities are

rather similar. This shows the usefulness of a rigorous model for implied volatilities. The

mere price quotes could have left one uncertain on whether the credit spread variabilities

implicit in the different companies were quite different from each other or similar.

We analyze also the implied volatilities and CDS forward rates under different payoff

formulations and under stress. Table 2 shows that the impact of changing postponement

from PR to PR2 (maintaining the same R0,b(0)’sand re-stripping Γ’s) leaves both CDS

forward rates and implied volatilities almost unchanged.

In Table 3 we check the impact of the recovery rate on implied volatilities and CDS

forward rates. Every time we change the recovery we re-calibrate the Γ’s, since the only

direct market quotes are the R0,b(0)’s, which we cannot change, and our uncertainty is

on the recovery rate that might change. As we can see from the table the impact of the

recovery rate is rather small, but we have to keep in mind that the CDS option payoff is



D. Brigo, Market and CIR++ models for CDS Options and Callable Floaters 21

REC = 20% REC = 30% REC = 40% REC = 50% REC = 60%

σPR
a,b :

C1(Ta) 50.02 50.14 50.31 50.54 50.90

C2 54.22 54.42 54.68 55.05 55.62

C3 51.71 51.83 52.01 52.25 52.61

C1(T ′
a) 51.13 51.27 51.45 51.71 52.10

RPR
a,b :

C1(Ta) 61.488 61.492 61.497 61.504 61.514

C2 97.303 97.313 97.326 97.346 97.374

C3 62.687 62.691 62.697 62.704 62.716

C1(T ′
a) 65.320 65.334 65.352 65.377 65.415

Table 3: Impact of recovery rates on the implied volatility and on the CDS forward rates

for the PR payoff. Vols are expressed as percentages and rates as basis points

built in such a way that the recovery direct flow in LGD cancels and the recovery remains

only implicitly inside the initial condition Ra,b(0) for the dynamics of Ra,b, as one can see

for example from (22), where LGD does not appear explicitly. It is Ra,b(0) that depends

on the stripped Γ’s which, in turn, depend on the recovery.

shift −0.5% 0 +0.5%

C1(Ta) 49.68 50.31 50.93

C2 54.02 54.68 55.34

C3 51.36 52.01 52.65

shift −0.5% 0 +0.5%

61.480 61.497 61.514

97.294 97.326 97.358

62.677 62.697 62.716

Table 4: Implied volatilities σa,b (left, as percentages) and forward CDS rates RPR
a,b (right,

as basis points) as the simply compounded rates are shifted uniformly for all maturities.

In Table 4 we check the impact of a shift in the simply compounded rates of the zero

coupon interest rate curve on CDS forward rates and implied volatilities. Every time

we shift the curve we recalibrate the Γ’s, while maintaining the same R0,b(0)’s. We see

that the shift has a more relevant impact than the recovery rate, an impact that remains

small.

We also include the zero coupon curve we used in Table 5 and the CDS market quotes

we used in Table 6.
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Date Discount Date Discount Date Discount

26-mar-04 1 30-dec-04 0.985454616 28-mar-13 0.701853679

29-mar-04 0.999829196 30-mar-06 0.956335676 31-mar-14 0.665778313

31-mar-04 0.9997158 30-mar-07 0.9261161 30-mar-15 0.630686684

06-apr-04 0.999372341 31-mar-08 0.891575268 30-mar-16 0.597987523

30-apr-04 0.99806645 30-mar-09 0.85486229 30-mar-17 0.566052224

31-may-04 0.996398755 30-mar-10 0.816705705 29-mar-18 0.535085529

30-jun-04 0.994847843 30-mar-11 0.777867013 29-mar-19 0.505632535

30-sep-04 0.99014189 30-mar-12 0.739273058

Table 5: Euro curve for Zero coupon bonds P (0, T ) as of march 26, 2004.

Maturity Tb R0,b (C1) R0,b (C2) R0,b (C3)

1y 30 38.5 27

3y 49 72.5 49

5y 60 94.5 61

7y 69 104.5 73

Table 6: Quoted CDS rates for the three names in basis points as of march 26, 2004

7 Towards a Completely Specified Market Model

J’onn: ”I fear the Justice League’s greatest challenge lies just ahead...”

Kal: ”Doesn’t it always, J’onn?”

“Death Star”, DC One Million 4, 1998, DC Comics

So far we have been able to rigorously justify the market CDS option formula. How-

ever, to completely specify the market model we need to show how the dynamics of

Ra,b changes when changing numeraire. We describe the essential steps briefly in two

important cases, and we refer to the PR payoff.

7.1 One- and Two-period CDS rates market model

The first case we address is a family of one-period rates. This is to say that we are

trying to build a sort of forward LIBOR model for CDS rates. As the LIBOR model is

based on one-period forward rates, our first choice of a market model for CDS options

will be based on one-period rates. The fundamental components of our numeraires Ĉ

are the P̄ ’s. The P̄ ’s, through (12), can be reduced to a function of a common initial

P̄ (that cancels when considering the relevant ratios) and of one- and two-period rates

Rk, Rk−2,k in the relevant range. We start then by writing the (martingale) dynamics

of one- and two-period rates Rk Rk−2,k each under its canonical numeraire Q̂k−1,k and

Q̂k−2,k. At this point we use the change of numeraire technique on each of this rates to

write their dynamics under a single preferred Q̂·,·. This is possible in terms of quadratic
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covariations between the one- and two-period rates being modeled and the analogous

rates concurring to form the P̄ ’s entering the relevant Ĉ. We detail this scheme in the

following subsection. Now we have the dynamics for all the relevant Rk, Rk−2,k’s under a

common measure Q̂·,·. Since Ra,b is completely specified in terms of one and two-period

rates through (11) and (12), we have indirectly also Ra,b’s dynamics.

Notice that if first we assign the dynamics of one period rates, then the dynamics of

the two-period rates has to be selected carefully. For example, two-period rates will have

to be selected into a range determined by one-period rates to avoid P̄ (t, Tk)/P̄ (t, Tk−1)

to be negative or larger than one. The use of suitable martingale dynamics for each

Rk−2,k under Q̂k−2,k ensuring this property is currently under investigation.

If we are concerned about lognormality of R’s, leading to Black-like formulas for

CDS options, one of the possible choices is to impose one-period rates Rk to have a

lognormal distribution under their canonical measures. It suffices to postulate a driftless

geometric Brownian motion dynamics for each such rate under its associated measure.

The resulting Ra,b will only be approximately lognormal, especially under the freezing

approximation for the weights w̄, but this is the case also with LIBOR vs SWAP models,

since lognormal one-period swap rates (i.e. forward LIBOR rates) and multi period

swap rates cannot be all lognormal (each under its canonical measure). The important

difference with the LIBOR model is that here we need also two-period rates to close

the system. The need for two-period rates stems from the additional degrees of freedom

coming from stochastic intensity whose “maturities”, in rates like R’s, are not always

temporally aligned with the stochastic interest rates maturities. More precisely, the fact

that in the numerator of the last term in (10) we have not only P̄ (second term in the

numerator) but also a term in D(t, Tj)1{τ>Tj−1} (first term in the numerator, notice the

misaligned Tj−1 and Tj) adds degrees of freedom that are accounted for by considering

two period rates.

A final remark is that the freezing approximation is typically questionable when

volatilities are very large. Since, as we will see below, at the moment implied volatilities in

the CDS option market are rather large, the freezing approximation has to be considered

with care.

7.1.1 Detailed scheme for the change of numeraire technique

Let us postulate the following dynamics for one- and two- period CDS forward rates.

Recall that Rj = Rj−1,j.

dRj(t) = σj(t)Rj(t)dZ
j
j (t)

dRj−2,j(t) = νj(t; R)Rj−2,j(t)dV j−2,j
j (t)

In the Brownian shocks Z and V the upper index denotes the measure (i.e. the

measure associated with the numeraires Ĉj−1,j, Ĉj−2,j in the above case) and the lower

index denotes to which component of the one- and two- period rate vectors the shock

refers. The volatilities σ are deterministic, whereas the ν’s depend on the

one-period R’s. We assume correlations
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dZidZj = ρi,jdt, dVidVj = ηi,jdt, dZidVj = θi,jdt

and Ri−2,i(t) ∈ (min(Ri−1(t), [Ri−1(t) + Ri(t)]/2), max(Ri−1(t), [Ri−1(t) + Ri(t)]/2)).

This latter condition ensures that the resulting P̄ from formula (12) be posi-

tive and decreasing with respect to the maturity, i.e. 0 < P̄ (t, Ti)/P̄ (t, Ti−1) < 1.

The specific definition of ν ensuring this property is currently under investi-

gation.

We aim at finding the drift of a generic Rj under the measure associated with Ĉi−1,i,

let us say for j ≥ i.

The change of numeraire toolkit provides the formula relating shocks under Ĉi−1,i

to shocks under Ĉj−2,j, see for example Formula (2.13) in Brigo and Mercurio (2001),

Chapter 2. We can write

d

[
Zj−2,j

V j−2,j

]
= d

[
Zi

V i

]
− CorrMatrix× VectorDiffusionCoefficient

(
ln

(
Ĉj−2,j

Ĉi−1,i

))′

dt

Let us abbreviate “Vector Diffusion Coefficient” by “DC”.

This is actually a sort of operator for diffusion processes that works as follows.

DC(Xt) is the row vector v in

dXt = (...)dt + v d

[
Zt

Vt

]

for diffusion processes X with Z and V column vectors Brownian motions common to

all relevant diffusion processes. This is to say that if for example dR1 = σ1R1dZ
1
1 , then

DC(R1) = [σ1R1, 0, 0, . . . , 0].

Let us call Q the total correlation matrix including ρ, η and θ. We have

d

[
Zj−2,j

V j−2,j

]
= d

[
Zi

V i

]
−Q DC

(
ln

(
Ĉj−2,j

Ĉi−1,i

))
dt
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Now we need to compute

DC

(
ln

(
Ĉj−2,j

Ĉi−1,i

))
= DC

(
ln

(
αj−1P̄ (t, Tj−1) + αjP̄ (t, Tj)

αiP̄ (t, Ti)

))
=

= DC

(
ln

(
αj−1

αi

αi

αj−1

j−1∏

k=i+1

Rk−1 −Rk−2,k

Rk−2,k −Rk

+
αj

αi

αi

αj

j∏

k=i+1

Rk−1 −Rk−2,k

Rk−2,k −Rk

))

= DC

(
ln

([
j−1∏

k=i+1

Rk−1 −Rk−2,k

Rk−2,k −Rk

][
1 +

Rj−1 −Rj−2,j

Rj−2,j −Rj

]))

= DC

(
j−1∑

k=i+1

ln

(
Rk−1 −Rk−2,k

Rk−2,k −Rk

))
+ DC

(
ln

(
Rj−1 −Rj

Rj−2,j −Rj

))

=

j−1∑

k=i+1

DC

(
ln

(
Rk−1 −Rk−2,k

Rk−2,k −Rk

))
+ DC

(
ln

(
Rj−1 −Rj

Rj−2,j −Rj

))
=

=

j−1∑

k=i+1

[DC(ln(Rk−1 −Rk−2,k))−DC(ln(Rk−2,k −Rk))] +

+DC(ln(Rj−1 −Rj))−DC(ln(Rj−2,j −Rj))

=

j−1∑

k=i+1

DC( Rk−1 −Rk−2,k)

Rk−1 −Rk−2,k

−
j−1∑

k=i+1

DC( Rk−2,k −Rk)

Rk−2,k −Rk

+

+
DC( Rj−1 −Rj)

Rj−1 −Rj

− DC( Rj−2,j −Rj)

Rj−2,j −Rj

=

=

j−1∑

k=i+1

( DC(Rk−1)−DC(Rk−2,k))

Rk−1 −Rk−2,k

−
j−1∑

k=i+1

( DC(Rk−2,k)−DC(Rk))

Rk−2,k −Rk

+
DC(Rj−1)−DC(Rj)

Rj−1 −Rj

− DC(Rj−2,j)−DC(Rj)

Rj−2,j −Rj

It follows that

dZj−2,j
m − dZi

m = −
j−1∑

k=i+1

(ρk−1,mσk−1Rk−1 − θm,kνkRk−2,k)

Rk−1 −Rk−2,k

dt +

j−1∑

k=i+1

(θm,kνkRk−2,k − ρk,mσkRk)

Rk−2,k −Rk

dt

−ρj−1,mσj−1Rj−1 − ρj,mσjRj

Rj−1 −Rj

dt +
θm,jνjRj−2,j − ρj,mσjRj

Rj−2,j −Rj

dt

and

dV j−2,j
m − dV i

m = −
j−1∑

k=i+1

(θk−1,mσk−1Rk−1 − ηm,kνkRk−2,k)

Rk−1 −Rk−2,k

dt +

j−1∑

k=i+1

(ηm,kνkRk−2,k − θk,mσkRk)

Rk−2,k −Rk

dt +

−θj−1,mσj−1Rj−1 − θj,mσjRj

Rj−1 −Rj

dt +
ηj,mνjRj−2,j − θj,mσjRj

Rj−2,j −Rj

dt =: φ̄i,j
m dt
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Therefore, by subtracting from the first equation, taking h > i:

dZh
m − dZi

m = dZj−2,j
m − dZi

m − (dZj−2,j
m − dZh

m) =

= −
h∑

k=i+1

(ρk−1,mσk−1Rk−1 − θm,kνkRk−2,k)

Rk−1 −Rk−2,k

dt+
h∑

k=i+1

(θm,kνkRk−2,k − ρk,mσkRk)

Rk−2,k −Rk

dt =: µ̄i,h
m dt

so that we finally obtain (taking h = j)

dRj(t) = σjRj(t)(µ̄
i,j
j dt + dZi

j(t))

dRj−2,j(t) = νjRj−2,j(t))(φ̄
i,j
j dt + dV i

j (t)),

or, by setting

µi
j := µ̄i,j

j σj, φi
j := φ̄i,j

j νj,

we have

dRj(t) = Rj(t)(µ
i
jdt + σjdZ

i
j(t)), dRj−2,j(t) = Rj−2,j(t)(φ

i
jdt + νjdV i

j (t)),

and since µ and φ are completely determined by one- and two- period rates vectors

R = [Ri−1,i]i and R(2) = [Ri−2,i]i, the system is closed. We can write a vector SDE

which is a vector diffusion for all the one- and two- period rates under any of the Ĉi−1,i

measures:

d

[
R

R(2)

]
= diag(µ(R,R(2)), φ(R,R(2)))

[
R

R(2)

]
dt + diag(σ, ν)

[
R

R(2)

]
d

[
Zi

V i

]

At this point a Monte Carlo simulation of the process, based on a discretization

scheme for the above vector SDE is possible. One only needs to know the initial CDS

rates R(0), R(2)(0), which if not directly available one can build by suitably stripping spot

CDS rates. Given the volatilities and correlations, one can easily simulate the scheme

by means of standard Gaussian shocks.

If C is the Cholesky decomposition of the correlation Q (Q = CC ′ with “C” lower

triangular matrix) and W is a standard Brownian motion under Ĉi−1,i, we can write

d

[
R

R(2)

]
= diag(µ(R,R(2)), φ(R, R(2)))

[
R

R(2)

]
dt + diag(σ, ν)

[
R

R(2)

]
C dW (31)

The log process can be easily simulated with a Milstein scheme.
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7.2 Co-terminal and one-period CDS rates market model

Our second choice is based on co-terminal CDS rates. Indeed, let us take a family of

CDS rates Ra,b, Ra+1,b, Rb−1,b. Keep in mind that we are always referring to PR rates.

Can we write the dynamics of all such rates under (say) Q̂a,b? The answer is affirmative

if we take into account the following equality, which is not difficult to prove with some

basic algebra:

Ĉi,b(t) = Q(τ > t|Ft)P̄ (t, Tb)
b−1∏

k=i+1

Rk,b(t)−Rk(t)

Rk−1,b(t)−Rk(t)
, i = a, . . . , b− 2. (32)

Notice that the term in front of the product is just Ĉb−1,b(t). Notice also that the one-

period rates canonical numeraires P̄ can be obtained from the above numeraires via

Ĉi,b− Ĉi−1,b’s. Take into account that we need to assume Rk−1,b(t) 6= Rk(t). Analogously

to what seen previously for the one- and two- period rates case, we can assume this to

hold at time 0 and then the probability that this condition is violated at future times

will be zero in general under a diffusion dynamics for the relevant rates.

As before, the set of rates and of different-numeraires ratios is not a closed system. To

close the system we need to include one-period rates Ra+1, . . . , Rb. In this framework we

may derive the joint dynamics of Ra,b, Ra+1,b, Ra+2,b, . . . , Rb−1,b; Ra+1, Ra+2, Rb−1 under

a common measure (say Q̂a,b) as follows. First assume a lognormal driftless geometric

Brownian motion dynamics for Ra,b under Q̂a,b and suitable martingale dynamics for

every other rate under its canonical measure. These different dynamics have to be chosen

so as to enforce the needed constraints on the Ĉk,b(t), such as for example Ĉk−1,b(t) >

Ĉk,b(t) and similar inequalities implying the correct behavior of the embedded P̄ ’s. Take

then a generic rate in the family and write its dynamics under Q̂a,b with the following

method. Thanks to the change of numeraire technique, the drift of this rate dynamics

under Q̂a,b will be a function of the quadratic covariation between the rate being modeled

and the ratio of Ĉa,b(t) with the canonical numeraire of the selected rate itself. Thanks

to (32), this ratio is a function of the rates in the family and therefore the relevant

quadratic covariation can be expressed simply as a suitable function of the volatilities

and correlation (“diffusion coefficients” and “instantaneous Brownian covariations” are

more precise terms) of the one- and multi-period rates in our family. As before no

inconsistency is introduced, thanks to the additional degrees of freedom stemming from

stochastic intensity. Under this second “co-terminal” formulation we can obtain the

Black-like market formula above for the Ta ÷ Tb tenor in the context of a consistent and

“closed” market model. The definition of suitable martingale dynamics for CDS rates

with different tenor is under investigation.

8 Hints at Smile Modeling

Finally, we consider the possibility of including a volatility smile in our CDS options

model. Since the derivation is general, we may replace the dynamics (27) or (29) by a
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different “local volatility” dynamics

dRPR
a,b (t) = νa,b(t, R

PR
a,b (t))RPR

a,b (t)dW̌ a,b(t)

with ν a suitable deterministic function of time and state. We might choose the CEV

dynamics, a displaced diffusion dynamics, an hyperbolic sine densities mixture dynamics

or a lognormal mixture dynamics. Several tractable choices are possible already in the

local volatility diffusion setup, and one may select a smile dynamics for the LIBOR or

swap model and use it to model R. There are several possible choices. For example, one

may select νa,b from Brigo and Mercurio (2003) or Brigo Mercurio and Sartorelli (2003).

Also, the uncertain volatility dynamics from Brigo, Mercurio and Rapisarda (2004) can

be adapted to this context.

9 CDS Option pricing with the SSRD stochastic in-

tensity model

In this final section we move to explicit modelling of the stochastic intensity process λ

driving the Cox process whose first jump-time represents the default time τ . We consider

the shifted square root diffusion (SSRD) model introduced in Brigo and Alfonsi (2003).

9.1 The SSRD intensity and interest rates model

We now describe our assumptions on the short-rate process r and on the intensity λ

dynamics. For more details on shifted r diffusion dynamics see also Brigo and Mercu-

rio (2001, 2001b).

CIR++ interest-rate model (Brigo and Mercurio (2001))

We write the short-rate rt as the sum of a deterministic function ϕ and of a Markovian

process xα
t :

rt = xα
t + ϕ(t; α) , t ≥ 0, (33)

where ϕ depends on the parameter vector α (which includes xα
0 ) and is integrable on

closed intervals. Notice that xα
0 is indeed one more parameter at our disposal: we are

free to select its value as long as ϕ(0; α) = r0− x0. We take as reference model for x the

Cox-Ingersoll-Ross (CIR) process:

dxα
t = k(θ − xα

t )dt + σ
√

xα
t dWt,

where W is a Ft Brownian motion, and the parameter vector is α = (k, θ, σ, xα
0 ), with k,

θ, σ, xα
0 positive deterministic constants. The condition 2kθ > σ2 ensures that the origin

is inaccessible to the reference model, so that the process xα is well defined and remains

positive. As is well known, this process xα features a noncentral chi-square distribution,

and yields an affine term-structure of interest rates. Denote by f instantaneous forward
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rates, i.e. f(t, T ) = −∂ ln P (t, T )/∂T . The initial market zero-coupon interest-rate curve

T 7→ PM(0, T ) is automatically calibrated by our model if we set ϕ(t; α) = ϕCIR(t; α)

where ϕCIR(t; α) = fM(0, t)− fCIR(0, t; α),

fCIR(0, t; α) =
2kθ(eth − 1)

2h + (k + h)(eth − 1)
+ x0

4h2eth

[2h + (k + h)(eth − 1)]2

with h =
√

k2 + 2σ2 . For restrictions on the α’s that keep r positive see Brigo and

Mercurio (2001, 2001b). Moreover, the price at time t of a zero-coupon bond maturing

at time T is

P (t, T ) =
PM(0, T )A(0, t; α) exp{−B(0, t; α)x0}
PM(0, t)A(0, T ; α) exp{−B(0, T ; α)x0}P CIR(t, T, rt − ϕCIR(t; α); α) (34)

where P CIR(t, T, xt; α) = E(e−
R T

t xα(u)du|Ft) = A(t, T ; α) exp{−B(t, T ; α)xt} is the bond

price formula for the basic CIR model with the classical expressions for A and B given

for example in (3.25) of Brigo and Mercurio (2001b). From P ’s the spot LIBOR rate

L(t, T ) at t for maturity T , the forward LIBOR rates F (t, T, S) at t for maturity T and

expiry S, and all other rates can be computed as explicit functions of rt.

The cap price formula for the CIR++ model can be derived in closed form from

the corresponding formula for the basic CIR model. This formula is a function of the

parameters α. One may calibrate the parameters α to cap prices, by inverting the

analytical CIR++ formula, so that the interest rate model is calibrated to the initial

zero coupon curve through ϕ and to the cap market through α, as in Brigo and Mercurio

(2001, 2001b).

CIR++ intensity model (Brigo and Alfonsi (2003))

For the intensity model we adopt a similar approach, in that we set

λt = yβ
t + ψ(t) , t ≥ 0, (35)

where ψ is a positive deterministic function that is integrable on closed intervals. As

before, the parameter vector is β = (κ, µ, ν, yβ
0 ), with κ, µ, ν, yβ

0 positive deterministic

constants such that 2κµ > ν2, and we take y again of the form:

dyβ
t = κ(µ− yβ

t )dt + ν

√
yβ

t dZt,

where the process Z is a Ft-Brownian motion. This ensures that λ be strictly positive,

as should be for an intensity process. Notice incidentally that this basically forces the

choice of a tractable y to the CIR model among all one factor short-rate diffusion models.

Dependence of ψ on β and possibly on other parameters will be specified later when

dealing with CDS calibration. We will often use the integrated process, that is Λ(t) =∫ t

0
λsds, and also Y β(t) =

∫ t

0
yβ

s ds and Ψ(t) =
∫ t

0
ψ(s)ds. We assume the short rate r and

the intensity λ processes to be correlated, by assuming the driving Brownian motions W

and Z to be instantaneously correlated according to dWt dZt = ρ dt.
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9.2 Joint SSRD model calibration to CDS: Separability

The SSRD model is characterized by the terms P = (α, ϕ, β, ψ, ρ) and can be seen as an

extension of the CIR++ model for interest rates. As we explained before, ϕ is chosen to

fit exactly the default-free zero-coupon bonds and α is then selected to have the better

approximation of the cap prices. This procedure for the CIR++ interest rate part of the

model r still remains valid in presence of a correlated λ since the products used for that

calibration do not depend on the dynamics of λ and of (β, ρ, ψ).

Once α and ϕ are fixed, we would like to fit the three remaining terms to the credit

derivatives market. To do so, we need first to calculate the price of CDS’s in the SSRD

model. We find easily, through iterated expectations and the definition of τ , that (see

Brigo and Alfonsi (2003) for the details)

CDS(0, Ta, Tb, R, LGD;P) = R

∫ Tb

Ta

E[exp

(
−

∫ u

0

(rs + λs)ds

)
λu](u− Tβ(u)−1)du (36)

+
b∑

i=a+1

αiRE[exp

(
−

∫ Ti

0

(rs + λs)ds

)
]− LGD

∫ Tb

Ta

E[exp

(
−

∫ u

0

(rs + λs)ds

)
λu]du.

We plan to use ψ to calibrate exactly the market CDS quotes (given for Ta = 0

and Tb spanning a set of increasing final maturities). More precisely, we want to

find, for each (β, ρ), a function ψα(·; β, ρ) that makes the CDS present values null,

CDS(0, 0, Tb, R
MID
0,b (0), LGD,P) = 0. This could be done if we were able to calculate

analytically the above expectations in general, taking as in the deterministic case a spe-

cific shape for ψα. Since these expectations are known only when ρ = 0, we first restrict

ourselves to calibrate the subclass of models with ρ = 0. Interest rates and default in-

tensities are independent with ρ = 0. By switching expectation and differentiation with

respect to u and Fubini’s theorem it is easy to see that the price of the CDS satisfies

the deterministic case formula (9) when replacing terms such as exp(Γ(t) − Γ(u)) by

E(exp(Λ(t) − Λ(u))) (with u ≥ t). Therefore, at time t = 0, for any β we can calibrate

automatically our model to the CDS by choosing ψ such that

e−Γmkt(u) = E(e−Λ(u)) = e−Ψ(u)E(e−Y β(u)) = e−Ψ(u)P CIR(0, u, y0; β).

The remarkable point is that ψ does not depend on α (the zero-coupon bonds have been

calibrated exactly earlier), so that this calibration to CDS can be done independently of

the interest rate calibration. This “separability” is of practical interest. We thus denote

by ψ(.; β) the obtained ψ function, given by

ψ(u; β) = γmkt(u) +
d

du
ln(E(e−Y β(u))) = γmkt(u) +

d

du
ln(P CIR(0, u, y0; β)). (37)

The shape of ψ is partly implicitly specified by our choice for γmkt (piecewise linear or

otherwise).

So far we have described an analytical and exact calibration of the SSRD model in case

ρ = 0. However, numerical tests in Brigo and Alfonsi (2003) show that ρ has practically
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a negligible impact on CDS prices computed under the SSRD model. Therefore, we may

assume ρ = 0, even if this is not true, and calibrate the model with the above procedure.

The error induced by this approximation will be negligible.

Now that CDS’s are automatically calibrated, we would like to calibrate the param-

eters β to some options on the credit derivatives market in the same way as α is used to

fit cap prices. To do this, we need a way to compute CDS options prices in the SSRD

model. We will see a formula where this is possible under deterministic r (and stochastic

CIR++ CDS-calibrated λ), and provide some hints on possible solutions in presence of

stochastic r and nonzero ρ as well.

9.3 CDS options pricing with the calibrated CIR++ λ model

We developed this formula by an initial hint of Ouyang (2003). Consider the option to

enter a CDS at a future time Ta > 0, Ta < Tb, receiving protection LGD against default

up to time Tb, in exchange for a fixed rate K. We have that the payoff at Ta reads, as

we have seen earlier, as

Πa := ΠCallCDSa,b(Ta) = [CDS(Ta, Ta, Tb, Ra,b(Ta), LGD)− CDS(Ta, Ta, Tb, K, LGD)]+

= [−CDS(Ta, Ta, Tb, K, LGD)]+ = 1{τ>Ta}

(
E

{
−D(Ta, τ)(τ − Tβ(τ)−1)K1{τ<Tb}

−
b∑

i=a+1

D(Ta, Ti)αiK1{τ>Ti} + 1{τ<Tb}D(Ta, τ) LGD|GTa

})+

= 1{τ>Ta}

{
−K

∫ Tb

Ta

E
[
exp

(
−

∫ u

Ta

(rs + λs)ds

)
λu|FTa

]
(u− Tβ(u)−1)du

−K

b∑
i=a+1

αiE
[
exp

(
−

∫ Ti

Ta

(rs + λs)ds

)
|FTa

]

+LGD

∫ Tb

Ta

E
[
exp

(
−

∫ u

Ta

(rs + λs)ds

)
λu|FTa

]
du

}+

If we take deterministic interest rates r this reads

Πa = 1{τ>Ta}

{
−K

∫ Tb

Ta

E
[
exp

(
−

∫ u

Ta

λsds

)
λu|FTa

]
P (Ta, u)(u− Tβ(u)−1)du

−K

b∑
i=a+1

αiP (Ta, Ti)E
[
exp

(
−

∫ Ti

Ta

λsds

)
|FTa

]

+LGD

∫ Tb

Ta

P (Ta, u)E
[
exp

(
−

∫ u

Ta

λsds

)
λu|FTa

]
du

}+

Define

H(t, T ; yβ
t ) := E

[
exp

(
−

∫ T

t

λsds

)
|Ft

]

and notice that

E
[
exp

(
−

∫ T

t

λsds

)
λT |Ft

]
= − d

dT
E

[
exp

(
−

∫ T

t

λsds

)
|Ft

]
= − d

dT
H(t, T )
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Write then

Πa = 1{τ>Ta}

{
K

∫ Tb

Ta

P (Ta, u)(u− Tβ(u)−1)
d

du
H(Ta, u)du

−K

b∑
i=a+1

αiP (Ta, Ti)H(Ta, Ti)− LGD

∫ Tb

Ta

P (Ta, u)
d

du
H(Ta, u)du

}+

Note that the first two summations add up to a positive quantity, since they are ex-

pectations of positive terms. By integrating by parts in the first and third integral, we

obtain, by defining q(u) := −dP (Ta, u)/du,

Πa = 1{τ>Ta}

{
LGD−

∫ Tb

Ta

[
LGDq(u) + KP (Ta, Tβ(u))δTβ(u)

(u)−K(u− Tβ(u)−1)q(u)

−KP (Ta, Tβ(u))δTβ(u)
(u) + LGDδTb

(u)P (Ta, u) + KP (Ta, u)
]
H(Ta, u)du

}+

where δx denotes the Dirac delta function centered at x. Define

h(u) := LGDq(u)−K(u− Tβ(u)−1)q(u) + LGDδTb
(u)P (Ta, u) + KP (Ta, u)

so that

Πa = 1{τ>Ta}

{
LGD−

∫ Tb

Ta

h(u)H(Ta, u; yβ
Ta

)du

}+

(38)

It is easy to check, by remembering the signs of the terms of which the above coefficients

are expectations, that

h(u) > 0 for all u.

Now we look for a term y∗ such that

∫ Tb

Ta

h(u)H(Ta, u; y∗)du = LGD. (39)

It is easy to see that in general H(t, T ; y) is decreasing in y for all t, T . This equation

can be solved, since h(u) is known and deterministic and since H is given in terms of the

CIR bond price formula. Furthermore, either a solution exists or the option valuation is

not necessary. Indeed, consider first the limit of the left hand side for y∗ →∞. We have

lim
y∗→∞

∫ Tb

Ta

h(u)H(Ta, u; y∗)du = 0 < LGD,

which shows that for y∗ large enough we always go below the value LGD. Then consider

the limit of the left hand side for y∗ → 0:

lim
y∗→0+

∫ Tb

Ta

h(u)H(Ta, u; y∗)du =
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= LGD +

∫ Tb

Ta

[LGDP (Ta, u)
∂H(Ta, u; 0)

∂u
+ (K(u−Tβ(u)−1)q(u) + KP (Ta, u))H(Ta, u; 0)]du

Now if the integral in the last expression is positive then we have that the limit is larger

than LGD and by continuity and monotonicity there is always a solution y∗ giving LGD.

If instead the integral in the last expression is negative, then the limit is smaller than

LGD and we have that (39) admits no solution, in that its left hand side is always smaller

than the right hand side. However, this implies in turn that the expression inside curly

brackets in the payoff (38) is always positive and thus the contract loses its optionality

and can be valued by taking the expectation without positive part, giving as option

price simply −CDS(0, Ta, Tb, K, LGD) > 0, the opposite of a forward start CDS. In case

y∗ exists, instead, we may rewrite our discounted payoff as

Πa = 1{τ>Ta}

{ ∫ Tb

Ta

h(u)(H(Ta, u; y∗)−H(Ta, u; yβ
Ta

))du

}+

Since H(t, T ; y) is decreasing in y for all t, T , all terms (H(Ta, u; y∗)−H(Ta, u; yβ
Ta

)) have

the same sign, which will be positive if yβ
Ta

> y∗ or negative otherwise. Since all such

terms have the same sign, we may write

Πa =: 1{τ>Ta}Qa = 1{τ>Ta}

{∫ Tb

Ta

h(u)(H(Ta, u; y∗)−H(Ta, u; yβ
Ta

))+du

}

Now compute the price as

E[D(0, Ta)Πa] = P (0, Ta)E[1{τ>Ta}Qa] = P (0, Ta)E[exp(−
∫ Ta

0

λsds)Qa] =

=

∫ Tb

Ta

h(u)E[exp(−
∫ Ta

0

λsds)(H(Ta, u; y∗)−H(Ta, u; yβ
Ta

))+]du

From a structural point of view, H(Ta, u; yβ
Ta

) are like zero coupon bond prices in a

CIR++ model with short term interest rate λ, for maturity Ta on bonds maturing at

u. Thus, each term in the summation is h(u) times a zero-coupon bond like call option

with strike K∗
u = H(Ta, u; y∗). A formula for such options is given for example in (3.78)

p. 94 of Brigo and Mercurio (2001b).

If one maintains stochastic interest rates with possibly non-null ρ, then a possibility is

to use the Gaussian mapped processes xV and yV introduced in Brigo and Alfonsi (2003)

and to reason as for pricing swaptions with the G2++ model through Jamshidian’s

decomposition and one-dimensional Gaussian numerical integration, along the lines of

the procedures leading to (4.31) in Brigo and Mercurio (2001b). Clearly the resulting

formula has to be tested against Monte Carlo simulation.

Finally, in the general SSRD model, one may compute the CDS option price by means

of Monte Carlo simulations, equate this Monte Carlo price to Formula (28) applied to

the same CDS option at t = 0, and solve in σa,b. This σa,b is then the implied volatility

corresponding to the SSRD pricing model. The first numerical results we found in

a number of cases point out the following patterns of σa,b in terms of SSRD model

parameters:
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Param : κ ↑ µ ↑ ν ↑ y0 ↑ ρ↑

σimp
a,b : ↓ ↑ ↑ ↑ ↓

For more details see Brigo and Cousot (2004). The patterns are reasonable. When

κ increases (all other things being equal) the time-homogeneous core of the stochastic

intensity has a higher speed of mean reversion and then randomness reduces more quickly

in time, so that the implied volatility reduces. When µ increases, the asymptotic mean

of the homogeneous part of the intensity increases, so that we have higher intensity and

thus, since instantaneous volatility is proportional to the increased
√

y, more randomness.

When ν increases, clearly randomness of λ increases so that it is natural for the implied

volatility to increase. We also find that increasing y0 (the initial point of the time-

homogeneous part of the intensity) increases the implied volatility, while increasing the

correlation ρ decreases the implied volatility.

10 Conclusions and Further Research

We considered several CDS payoff formulations. For some of them, we established equiv-

alence with approximated defaultable floaters. We explained the CDS market quoting

mechanisms and considered CDS pricing in an intensity framework. We derived a mar-

ket model for CDS options, and thus for callable defaultable floaters, given the above

equivalence. We hinted at possible CDS options smile models and at a comparison of the

market models with classic stochastic intensity models, such as for example the CDS-

calibrated CIR++ model in Brigo and Alfonsi (2003), a comparison that is under more

detailed investigation in Brigo and Cousot (2004). We also gave a CDS option formula

under CIR++ stochastic intensity based on Jamshidian’s decomposition. Moreover, fur-

ther investigation on the possibility to link different CDS forward rate models, based on

a fundamental set of candidate liquid CDS rates, is to be investigated, starting from the

observed parallels with the LIBOR vs SWAP market models in the default free interest

rate derivatives setting.
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