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Blessed are the poor in spirit, for theirs is the kingdom of heaven.
Blessed are those who mourn, for they will be comforted.
Blessed are the meek, for they will inherit the earth.
Blessed are those who hunger and thirst for righteousness,
for they will be filled.
Blessed are the merciful, for they will be shown mercy.
Blessed are the pure in heart, for they will see God.
Blessed are the peacemakers, for they will be called sons of God.
Blessed are those who are persecuted because of righteousness,

for theirs is the kingdom of heaven.

Matthew V.3-10

How sure his pathway in this wood,
Who follows truth’s unchanging call!
How blessed, to be kind and good,
And practice self-restraint in all!
How light, from passion to be free,
And sensual joys to let go by!
And yet his greatest bliss will be
When he has quelled the pride of ‘I’

Paul Carus, from the Gospel of Buddha.
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Chapter 1

Introduction

It looked insanely complicated, and this was one of the reasons
why the snug plastic cover it fitted into had the words
DON’T PANIC printed on it in large friendly letters.

D. Adams, The Hitch—Hikers Guide to the Galaxy.

1.1 General introduction

The present thesis concerns the finite—dimensional approximation of distribu-
tions obtained via differential-geometric methods and exponential families. We
treat mainly the nonlinear filtering problem, although some results on diffu-
sion processes and stochastic differential equations (SDE’s) are given. In the
present introductory chapter we describe the filtering problem, our approach
to its solution, the particular role that exponential families and differential
geometry play in our method, and our results. We present some hints about
possible and potential applications of our results. This introductory chapter is
written in very general terms, and is meant to be readable by mathematicians,

econometricians and engineers who are not necessarily probabilists.

The filtering problem

The filtering problem consists of estimating the state of a stochastic system
from noise perturbed observations. One has a system whose state evolves ac-
cording to a stochastic (difference or differential) equation, and one observes a
related process which is generally a function of the state process plus a distur-

bance. This function is not bijective in general, so that it cannot be inverted
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to recover the state (even in the case where no disturbance is present in the
observations). This is usually referred to as the case of partial observations.
The filtering problem consists of estimating the signal at any time instant from
the history of the observation process up to the same instant. As a simple
example, consider a population growth model. Let X (¢) be the population at
time t € R, ¢ > 0. The simplest model for the population growth is obtained
by assuming that the growth rate is proportional to the current population.

This can be translated into the ordinary differential equation:
X(t) = kX (t), X(0)=X,, k>0.

Now suppose that, due to some complications, it is no longer realistic to assume
both k and X{ to be deterministic constants. Then we may decide to let Xg be
a random variable, and to model the population growth by taking in account

a noise process {v1(t), t > 0}, so that
X(t) = (k4 v (1)) X(t), X(0)=X,, k>0.

Now assume that we cannot observe X but, due to some limitations in the

observation procedure, we can observe only a disturbed measure of X (¢):
Y (t) = X(t) + v2(t),

where {va(t), t > 0} is a second noise process. The filtering problem, in this
example, consists of estimating X (¢) on the basis of {Y(s): 0< s <t} In
general, in our framework, the state X will evolve according to a stochastic
differential equation describing what is known as a diffusion process, which has
a structure more complicated than in the example above. The observations
have also a more complicated structure in general.

If the evolution of the state X and the observations Y are described by linear
equations, under some assumptions which completely specify the probabilistic
behaviour of the initial condition Xy, the solution of the problem is the well
known Kalman Filter. This filter consists of a finite set of recursive equations
which permit to update the estimates including at each time instant the new
observations (more precisely, if the system evolves in discrete time we have a
finite set of difference equations, whereas in continuous time we have a finite
set of differential equations). In this case the optimal filter is termed finite
dimensional. Although the Kalman filter works only in the context of linear
systems, it turned out to be very useful in many applications. In the past it
was used for example in aerospace applications (Ranger, Mariner, Apollo), in
water—level prediction and in underwater applications. Currently, the linear

filter is applied in many fields of engineering and economics. Still, as Michiel
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Hazewinkel wrote in the editor’s preface for the series Mathematics and Its

Applications published by Kluwer Academic :

In addition, the applied scientist needs to cope increasingly with
the nonlinear world and the extra mathematical sophistication that
this requires. For that is where the rewards are. Linear models
are honest and a bit sad and depressing: proportional efforts and
results. It is in the monlinear world that infinitesimal inputs may
result in macroscopic outputs (or vice versa). To appreciate what I
am hinting at: if electronics were linear we would have no fun with
transistors and computers; we would have no TV; in fact you would

not be reading these lines.

The more general nonlinear filtering problem is far more complicated because
the resulting nonlinear filter is not finite dimensional in general. Finite dimen-
sionality of a filter is loosely defined as a filter consisting of a finite set of recur-
sive equations which update the conditional distribution of the state based on
the past observations. In general there is no such finite set of equations for the
nonlinear filtering problem. In such a case the solution cannot be implemented
by a computer with finite memory. The solution of the filtering problem in
continuous time is a conditional density which is described by a mathematical
object called a stochastic partial-differential equation. This is in general an
infinite-dimensional equation, in the sense that its solution cannot be charac-
terized by the solution of a finite set of (stochastic) differential equations. A
well known approximation method to find a remedy to this infinite dimension-
ality is the extended Kalman filter (EKF). The EKF is obtained by linearizing
the equations for X and Y around the current estimates and by applying the
linear filter. This procedure is usually justified on the basis of heuristic consid-
erations, and not much is known about the quality of its performances, except
in the case of small observation noise. Another choice in the nonlinear case is
what is known as Gaussian assumed—density filter (GADF). Roughly speaking,
the optimal filter can be ’characterized‘ by an infinite number of parameters.
Now, it is possible to privilege a finite number of these parameters and to ig-
nore the others so as to obtain a finite set of recursive equations describing the
evolution of the privileged parameters. In other words, one arbitrarily assumes
the infinite dimensional filter to be characterized by the privileged parameters.
This procedure produces a finite dimensional filter. Still, this is very dangerous
from a mathematical standpoint, because from a false hypothesis no interesting

scientific statements can be deduced.
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Our approach

We present a new way to obtain a finite set of (stochastic) differential equa-
tions which approximate the infinite—dimensional equation for the optimal fil-
ter. The projection filter (PF) is a finite—dimensional nonlinear filter based on
the differential-geometric approach to statistics. By using geometry, we con-
struct a procedure to project the infinite-dimensional equation for the optimal
filter onto a finite—dimensional space. This projection is mathematically well
defined. Moreover, there is ample choice about what finite—dimensional space

one can project upon.

Exponential families

In this thesis we use this geometric framework to define and study in detail
the projection filter for exponential families. The choice of exponential families
is somehow natural, since they simplify both the obtained equations and the
conditions under which such equations admit solutions. Moreover, we need
exponential families in order to be able to define a single quantity (called total
projection residual) which measures the local approximation involved in the
projection around each time instant. For general parametric families we do
not know how to define such a quantity. We also prove that the projection
filter is equivalent to the assumed—density filter based on the McShane-Fisk-
Stratonovich (MFS) representation and exponential families. This equivalence
holds only for exponential families. Simulations have been performed for the
exponential projection filter applied to a particular system called cubic sensor.
Finally, some results on the nice asymptotic behaviour of the Gaussian projec-
tion filter with small observation noise are given. The Gaussian densities are a

particular case of exponential densities.

Potential applications

The theory developed so far has only be tested on an academic example, the
cubic sensor. Applications in economics and engineering are under study. We
are currently investigating the possible use of projection filters for estimat-
ing the volatility of bilateral exchange rates, in the context of applications to
mathematical finance. The first results in this direction can be found in [12].
Applications of nonlinear filtering require numerical tools and software. We
are planning to work on this in order to render the projection filter a possible
tool for solving concrete filtering problems in engineering, economics and other

applied fields.
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Stochastic differential equations with densities evolving in

exponential families

The theory developed for the filtering problem shows some potential for other
applications. In the thesis we solve several problems related to the existence
of stochastic differential equations the density of which evolves in a specified

exponential family.

In the above presentation we described the contribution of our work in a very
informal way. In the following we explain how to use this thesis and we describe

its contents chapter by chapter. This will require a more specific language.

1.2 How to use this thesis (strongly recom-

mended reading)

If you are interested only in the key ideas behind the projection in Fisher metric
of an equation describing the evolution of a density (for example the Fokker—
Planck equation) and you do not want to go through too many theoretical
details, the beginning of Chapter 4 can be helpful. Then you may skip the
derivation of the projection filter and just read Theorem 4.4.3 in order to see
the filter equations.

If you wish to have a quick intuitive idea of the key elements involved in
projecting the nonlinear filtering equation onto a finite-dimensional manifold
of densities you can read Section 6.6 of Chapter 6 where we treat a particular
case from an intuitive point of view. You can also read Chapter 7 where we
project the Fokker—Planck equation onto an exponential manifold of densities.
The Fokker—Planck equation corresponds to the prediction step in filtering,
and it is this step that brings in infinite dimensionality, since the update step
can be handled exactly (see Section 4.5.2, Chapter 4). Moreover, the simpler
structure of the Fokker—Planck equation can help in grasping the key ideas of
the projection technique without being overwhelmed by notation and details,
as could happen in the case of the complete nonlinear—filtering equation.

If you are not familiar with geometric concepts and would like to have a
different point of view on the projection filter, you can read Chapter 5, where
we give a characterization of the projection filter based on the assumed—density
principle (which is not intrinsically based on geometrical concepts).

If you are interested on the small observation noise approach, our results
concern the Gaussian projection filter which can be derived via the assumed—

density principle. We give an independent derivation of this filter in the chapter
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on small noise in order to keep the chapter as self contained as possible. There
are very little geometric facts in that chapter, so (again) if you are not familiar
with geometry it can be a good reading.

For the reader interested in the whole derivation and in the whole theory,

the thesis runs as follows.

1.3 Short description of contents by chapter

Chapter 2 introduces quickly some elements needed from the theory of stochas-
tic differential equations and the filtering problem. We refer to the literature
for the presented results.

Chapter 3 introduces the theory of statistical manifolds, i.e. how to install a
geometric structure in a parametrized family of probability densities. Actually,
no advanced differential-geometric tools are needed. The important geometric
concepts are: tangent vectors, projections, and Riemannian metrics. We con-
sider the Ly metric (Hellinger distance) and show that it coincides with the well
known Fisher information metric. We particularize the theory to exponential
families and give some known results on them.

Chapter 4 introduces and studies the projection filter. We start by develop-
ing some intuition on the projection in Fisher metric of an equation describing
the evolution of a density by treating informally the projection in Fisher met-
ric of the Fokker—Planck equation onto a finite—dimensional manifold of den-
sities. Next, we introduce rigorously the exponential projection filter. In the
construction of the geometrical framework we use an enveloping manifold for
the stochastic partial differential equation of the optimal filter. This manifold
framework will be useful in proving equivalence with the assumed—density filter
that will be formulated in the following chapter, otherwise one could use only
the Ly structure without worrying about the enveloping manifold. We prove
existence of the projection filter for exponential families of densities and define
the projection residuals, which are quantities meant to measure the local qual-
ity of the approximation involved in using the projection filter. We introduce
some particular manifolds defined in terms of the given filtering problem. Such
manifolds allow the simplification of the projection—filter equation and of the
projection residuals. Finally, we apply the developed theory to the cubic—sensor
problem and develop numerical simulations where we compare the resulting
projection filter with the optimal filter obtained via local-grid approximation.

In Chapter 5 we prove equivalence between projection filters and assumed-—
density filters (based on Stratonovich’s calculus) for exponential families. This

will yield both a non—geometrical characterization of the projection filter and
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logical consistency for the assumed—density filter, which is otherwise based
on logical inconsistency. The equivalence is limited to assumed—density filters
with an exponential family, anyway, as we show with an example. Moreover,
the assumed—density filter based on It6’s calculus will be proven to be different
from the corresponding Stratonovich—based one.

In Chapter 6 we treat the Gaussian projection filter with small observation
noise. The chapter is as self-contained as possible. We derive the Gaussian
projection filter via the assumed—density approach. Then we prove that the Lo
distance between the true state and the estimated state of the two—dimensional
Gaussian projection filter is at most proportional to the observation noise. We
show that the same property holds for a one-dimensional Gaussian projection
filter. We give results for different type of problems and finally we show that
the Lo distance between the optimal filter and the Gaussian projection filter is
at most proportional to the square of the observation noise.

Chapter 7 gives results concerning stochastic differential equations whose
density evolves in a finite-dimensional family. This chapter is intended to
show how the projection in Fisher metric can be a useful tool not only in the
filtering theory but also in the broader field of stochastic differential equations.
More specifically, we show that the density evolution obtained from the pro-
jection in Fisher metric of the density evolution of a diffusion process onto an
exponential manifold can be interpreted as the density evolution of a different
diffusion sharing the same diffusion coefficient. We show that, given a priori
a diffusion coefficient and an exponential family, we can define a drift such
that the density evolution of the related diffusion remains in the exponential
manifold. We apply this result to the construction of nonlinear SDE’s with
prescribed exponential-density evolution and in particular with prescribed sta-
tionary exponential density. We illustrate the usefulness of this result with an
example from mathematical finance. We present a stability result for the pro-
jected density evolution of some particular diffusions. Finally, we apply these
results to the construction of some nonlinear—filtering problems for which the
optimal filter is finite dimensional. Some of the coefficients of the problem can
be assigned a priori and we can give the remaining coefficient in such a way

that the optimal filter for the resulting problem be finite dimensional.

Material appeared in publications

Many of the results presented here have already appeared as reports or pub-
lications. Here we give a short list of these publications. The IRISA report
[13] contains (with some minor differences) material from Chapters 2, 3, and a
short part of Chapter 5.
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The proceedings [14] contain a short version of this report, and a modified
version of the proceedings was recently revised and resubmitted for publication
in IEEFE Transactions on Automatic Control.

The Tinbergen—Institute report [16] contains material from Chapters 2, 3, a
part from Chapter 4, and the whole Chapter 5.

The two papers in Systems & Control Letters, [6], [8], and the proceedings
[7] contain the results of Chapter 6, apart from the comparison optimal filter—
Gaussian projection filter, which has been submitted recently for publication
(see [10]).

The LADSEB-CNR report [9] contains results that have been perfected in
Chapter 7 of the present thesis. The conference version [11] is also related to
the material presented in [9] and in Chapter 7.

The report [17] contains results related to Chapter 7, derived in the deeper
geometrical framework of Pistone and Sempi [54].

The work [15] was recently submitted to Bernoulli. It is intended to be the
main article on the projection filter. It contains material from the Chapters 2,
3, 4, 5. The simulations of Chapter 4 are not included in this article.

The working paper [12] concerns projection filters in discrete time and has
not been included in the present thesis, which is devoted to continuous—time

models.



Chapter 2

Stochastic Differential
Equations and the
Filtering Problem

You have not played as yet? Do not do so.
Above all, avoid a martingale if you do.

W. M. Thackeray

2.1 Introduction

In this chapter we introduce the nonlinear filtering problem. The filtering prob-
lem concerns the possibility of estimating the state of a dynamical system from
the past and current observations of a related measurement process. A stochas-
tic system is given, whose state evolves according to a stochastic differential
equation (SDE). The problem consists for example of estimating the state from
nonlinear observations in additive Gaussian white noise. In the linear Gaussian
case the solution consists of the Kalman filter, a finite—dimensional algorithm
which computes the first two conditional moments of the state given the ob-
servations. Such an algorithm provides also the complete conditional density
of the state given the observations, since in the linear case this conditional
density is Gaussian and hence characterized by the first two moments. From
a probabilistic point of view, the filtering problem consists in the calculation
of the whole conditional density, which as a rule results in an infinite dimen-
sional filter in the general nonlinear case. Under some regularity conditions,

the conditional density exists and is the solution of the Kushner—Stratonovich
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equation, a stochastic partial differential equation.

For an introduction to stochastic calculus and to SDE’s we refer to the book
of Karatzas and Shreve [36]. For an extended introduction to the filtering
problem we refer to the following articles: the tutorial of Davis and Marcus [19],
and the article of van Schuppen [57]. Books on filtering are also available: for
a treatment of the filtering problem from a mathematical point of view see the
book of Liptser and Shiryayev [45], or the book of Kallianpur [34]. For books
on filtering from a more applied perspective see the book of Jazwinski [32] or

Maybeck [47].

2.2 The nonlinear filtering problem

On the probability space (2, F, P) with the filtration {F;, ¢ > 0} we consider
the following state and observation equations, see Jazwinski [32], Maybeck [47],
Davis and Marcus [19] :

dXt = ft(Xt) dt+0't(Xt) th, X(],
(2.1)

These equations are It6 stochastic differential equations (SDE’s). In this thesis
we shall use both It6 SDE’s (for example for the signal X') and McShane-Fisk—
Stratonovich (MFS) SDE’s (when dealing with manifolds and projections). The
MFS form will be denoted by the presence of the symbol ‘o’ in between the
diffusion coefficient and the Brownian motion of a SDE. The use of MFS SDE’s
is necessary in order to be able to deal with stochastic calculus on manifolds,
since in general one does not know how to interpret the second order terms
arising in Ito’s calculus in terms of manifold structures. The interested reader
is referred to [22].

In (2.1), the unobserved state process {X;, t > 0} and the observation pro-
cess {Y;, t > 0} are taking values in R™ and R respectively, the noise processes
{Wy,t > 0} and {V;, t > 0} are two Brownian motions, taking values in R?
and R? respectively, with covariance matrices Q; and R; respectively. We as-
sume that R; is invertible for all ¢ > 0, which implies that, without loss of
generality, we can assume that R, = I for all ¢ > 0. Finally, the initial state
Xy and the noise processes {W;, t > 0} and {V;,t > 0} are assumed to be
independent. We assume that the initial state X, has a density py w.r.t. the
Lebesgue measure A on R™, and has finite moments of any order, and we make
the following assumptions on the coefficients f;, a; := 0y Q; 0, and hy of the
system (2.1)
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(A) Local Lipschitz continuity : for all R > 0, there exists Kg > 0 such that
@)= f(@)] < Knlo—a'|  and  au@)-aue)]| < Knla—'],
for all t > 0, and for all z,z’ € Bg, the ball of radius R.
(B) Non—explosion : there exists K > 0 such that
el fi(z) < K (14 |z|?) and trace a;(z) < K (1 + |z]?)
for all £ > 0, and for all z € R™.
(C) Polynomial growth : there exist K > 0 and 7 > 0 such that
he(a)] <K (14 2]
for all ¢ > 0, and for all z € R™.

Under assumptions (A) and (B), there exists a unique solution {X;, ¢t > 0}
to the state equation, see [37] or [36], and X; has finite moments of any order.

Under the additional assumption (C) the following finite energy condition holds

T
E/ |he(X)|2 dt < o0, for all T > 0.
0

The nonlinear filtering problem consists in finding the conditional proba-
bility distribution 7; of the state X; given the observations up to time t, i.e.
mi(de) := P[X; € dz | V], where Y} := 0(Ys, 0 < s < t). Since the finite en-
ergy condition holds, it follows from Fujisaki, Kallianpur and Kunita [27] that
{m, t > 0} satisfies the Kushner—Stratonovich equation, i.e. for any smooth

and compactly supported test function ¢ defined on R™

t d t
7rt(¢)=7ro(¢)+/0 ws(£s¢)d8+2/0 [ms (b ¢)—ms(hE) w4 ()] [AY =y (RE) ds]
k=1

(2.2)
where for all ¢ > 0, the backward diffusion operator £, is defined by

th—+2z 4 aw&cjl

1,j=1

The MFS form of equation (2.2) is obtained, after straightforward computa-
tions, as :
t

m(9) = w@(¢>+/0 ws(cm)ds—%/0[ws<|hs|2¢>—ws(|hs|2>ws(¢>1ds

d ot
T . — Ts k T o k-
+;/0[s(hs¢> (h) mo(d)] 0 Y,
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From now on we proceed formally, and we assume that for all ¢ > 0, the
probability distribution 7; has a density p; w.r.t. the Lebesgue measure on R™.
Then {p;, t > 0} satisfies the Ito—type stochastic partial differential equation
(SPDE)

d
dp = Ly pudt + > pi b — By ARV [V — By {hbYat)  (24)
k=1
in a suitable functional space, where E,, {-} denotes the expectation w.r.t. the
probability density p;, i.e. the conditional expectation given the observations

up to time ¢, and where for all ¢ > 0, the forward diffusion operator L} is

defined by

n 8 ) n 62 y
Lip=— ; UL D G

i,j=1
for any test function ¢ defined on R™. The corresponding MFS form of the
SPDE (2.4) is :
d
dpy = L; prdt = § i [hal® = Ep {|hel*Y dt + Y pi [bf — Ep {hf}] 0 dV) .
k=1
In order to simplify notation, we introduce the following definitions, which will

be used throughout the following chapters :

Lip
ay(p) = ; : Blp) = gkl = Ep{|hf?}],
(2.5)
Bi(p) = hi—Ep{hi},
for Kk =1,---,d. Simple calculations show that
N~y O of}
a(p) = - ;[ft a2, 108P) + 51
(2.6)
N & i 0 0
1 ij ij v
3 Z:[ Fmw; 10gp) +ai’ 5 (o p) 7 (logp)
day 0 &ay
2t 1 L]
+ 8$j 6$1( ng) + 83:28% ]

The MFS form of the Kushner—Stratonovich equation reads now

d

dpy = L} pydt — py BY (py) dt + Zpt BE(pr) o dY;F .
k=1



2.2. The nonlinear filtering problem 13

We shall frequently work with square roots of densities, rather than densities

themselves. Then, we compute by formal rules, using the MFS form :

1
2P

AWp= g odn = g poulp) dt =5 /o B (o) dt
+% Zizl \/p_tﬁtk(Pt) o ink

d
= Puvp)dt — Q) di + > Qf (Vi) 0 dYF
k=1

(2.7)
where the nonlinear time dependent operators P; and QF for k = 0,1,---,d
are defined by
—1 2y _ ﬁ k(N . 1. ak(.2
P = hra(?) = 2L Qb = e pt0?) (28)

respectively.
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Chapter 3

Statistical Manifolds and

Fisher Information

DON'T PANIC
The Hitch—Hikers Guide to the Galaxy

3.1 Statistical manifolds

On the measurable space (R™, B(R™)) we consider a non—negative and o—finite
measure A, and we define M(X) to be the set of all non—negative and finite
measures p which are absolutely continuous w.r.t. A, and whose density
_ dp
Pu = ax
is positive A—a.e. For simplicity, we restrict ourselves in this thesis to the case
where A is the Lebesgue measure on R™.

In the following, we denote by H () the set of all the densities of measures
contained in M(XA). Notice that, as all the measures in M () are non-negative
and finite, we have that if p is a density in H(XA) then p € Li()), that is
/P € La()). The above remark implies that the set R(A) := {\/p : pEH(A)}
of square roots of densities of H()) is a subset of Ly(A). Notice that all \/p
in R(A) satisfy \/m > 0, for almost every x € R™. The above remarks lead
to the definition of the following metric in R(\), see Jacod and Shiryayev [31]
or Hanzon [28] : dr(\/p1,/P2) := |l\/P1 — \/P2ll, where || - || denotes the norm
of the Hilbert space Lo()). This leads to the Hellinger metric on H(A) (or
M(]A)), obtained by using the bijection between densities (or measures) and

square roots of densities : if p; and ps are the measures having densities p;

15
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and py w.r.t. A, the Hellinger metric is defined as dpq(p1, o) = du(p1,p2) =
dr(\/P1,+/P2). It can be shown, see e.g. [28], that the distance daq(p1,p2) in
M(]) is defined independently of the particular A we choose as basic measure,
as long as both uq and ps are absolutely continuous w.r.t. A. As one can always
find a A such that both p; and ps are absolutely continuous w.r.t. A (take for
example A := (uy + p2)/2), the distance is well defined on the set of all finite
and positive measures on (2, F). Notice that R()\) is not locally homeomorphic
to La()), hence is not a manifold modeled on Ly()). Indeed, any open set of
Ly () contains functions which are negative in a set with positive A-measure.
There is no open set of Lo (A\)which contains only positive functions such as the
functions of La(A).

In the following we give a very quick review of the main concepts we need
from differential geometry. For a survey on the role of differential geometry
in statistical theory see for example [4]. For the basic definitions and a more
technical introduction on manifolds, tangent vectors and related concepts we
refer to the literature, see for example [2] and the references given therein,
and [43].Consider an open subset M of La()). Let  be a point of M, and let
~v:(—€,€¢) — M be a curve on M around z, i.e. a differentiable map between
an open neighborhood of 0 € R and M such that v(0) = 2. We can define the
tangent vector to v at x as the Fréchet derivative Dy(0) : (—€,€) — Lao()\),
i.e. the linear map defined in R around 0 and taking values in Ly(A) such that
the following limit holds :

o (k) = 4(0) = Dy(©) A _

0.
|h]|—0 |h|

The map Dv(0) approximates linearly the change of v around z. Let C,(M)

be the set of all the curves on M around z. If we consider the space
Lo M :={Dv(0) : v € C(M)},

of tangent vectors to all the possible curves on M around x, we obtain again
the space La()). This is due to the fact that for every v € Lo(\) we can always
consider the straight line y?(h) := 2+ hv. Since M is open, v¥(h) takes values
in M for |h| small enough. Of course Dv?(0) = v, so that indeed L, M = Lo()).
The situation becomes different if we consider an m—dimensional manifold N
imbedded in La(\). We can consider the induced Ly structure on N as follows :

suppose z € N, and define again
L,N :={D~(0) : v €Cs(N)} .

This is a linear subspace of Ly(A) called the tangent vector space at x, which

does not coincide with Ly(A) in general (due to the finite dimension of N).
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The set of all tangent vectors at all points = of IV is called the tangent bundle,
and will be denoted by L N. In our work we shall consider finite dimensional
manifolds N embedded in Ly(\), which are contained in R(\) as a set, i.e.
N C R(A) C La(X), so that usually = ,/p. It may be important to point out
that, although we are using square roots of densities in order to keep the Lo
structure, once we have a finite dimensional manifold N, we can consider any
of the embeddings /p — pp, or \/p — p, focusing on manifolds of probability
measures f,,, or their densities p rather than on their square roots /p.

If N is m—dimensional, it is locally homeomorphic to R™, and it may be
described locally by a chart : if \/p € N, there exists a pair (51/2, ¢) with S1/2
open neighbourhood of /p in N and ¢ : S/2 _» © homeomorphism of §1/2

onto an open subset ® of R™. By considering the inverse map i of ¢,
i:® — §/?
0 — p(-0)
we can express S'/? as

7’(6) = {Vp('ae)a b€ 9}251/2'

3.2 General manifolds

We shall denote by S the following family of probability densities :
S= {p(aa) ) NS 6}7
where ® C R™ and we will work only with the single coordinate chart (51/2, ?)
as it is done in [2]. From the fact that (S/2,¢) is a chart, it follows that
86, 06,

is a set of linearly independent vectors in La(A). In such a context, let us see

what the vectors of L\/ﬂslﬂ are. We can consider a curve in S'/2 around

\/p(:,0) to be of the form v : h—+/p(-,0(h)), where h — 6(h) is a curve in ©

around 0. Then, according to the chain rule, we compute the following Fréchet

derivative:

D(0) = DV/p(- ()|, =" L;’;};’e) 0e(0) =3 > ?1(_ 5 81’8%;9) 0:.(0) .
k=1 k=1 ’

We obtain that a basis for the tangent vector space at /p(-,8) to the space

S1/2 of square roots of densities of S is given by :
1 op(-,0) 1 op(+,0)
L _—=5"? = span{ 7 ,
»(-6) 2\/ p('aa) 891 2\/ p('aa) 897”

Y. (3.1)
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As i is the inverse of a chart, these vectors are actually linearly independent,
and they indeed form a basis of the tangent vector space. One has to be careful,
because if this were not true, the dimension of the above spanned space could

drop. As an example, consider the curved exponential family
S = {p(x,0) = exp[—03z — (82 + 1)z® — (0)],0 € © C R?}

where 9 is the normalizing constant. It is immediate to check that at (61,0s) =
(0,0) — assuming this point is in ©® — the linear space defined in (3.1) above
reduces to a one dimensional subspace of Ls. This happens because (51/2, ?)
is not a chart for the manifold IV : it describes a different differential structure.
The inner product of any two basis elements is defined, according to the Lo

inner product

1 8])(,9) 1 8p(,0)

N RN o T

_1 1 09p(z,0) dp(x,H) L
o / p(z,0) 90; 06 dA(z) = 7 9i(0) -

)
(3.2)

This is, up to the numeric factor %, the Fisher information metric, see [2], [49],

and [1]. The matrix g(f) = (g¢;;(¢)) is called the Fisher information matrix.

Next, we introduce the orthogonal projection between any linear subspace
V of Ly(\) containing the finite dimensional tangent vector space (3.1) and
the tangent vector space (3.1) itself. Let us remember that our basis is not

orthogonal, so that we have to project according to the following formula:
II:V — span{wy, -, wn}

m m
v — [

W (v, w;)] w;
i=1 j=1
where {wy, - --,wn} are m linearly independent vectors, W := ({w;, w;)) is the
matrix formed by all the possible inner products of such linearly independent
vectors, and (W) is the inverse of the matrix W. In our context {wy, -+, w,,}
are the vectors in (3.1), and of course W is, up to the numeric factor %, the
Fisher information matrix given by (3.2) or (3.4). Then we obtain the follow-

ing projection formula, where (g% (6)) is the inverse of the Fisher information
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matrix (g;;(6)) :

1 8p(,0) 1 8p(,0)

2/p(0) 001 ' 2/p(0) 0w

Iy : Ly(A) OV — span{

}

m m

_ i 1 8])(,9) 1 8p(,0)
Ha[vl—;[;tg )0 5 e 5 e

(3.3)
Let us go back to the definition of tangent vectors for our statistical mani-
fold. Amari [2] uses a different representation of tangent vectors to S at p.
Without exploring all the assumptions needed, let us say that Amari defines

an isomorphism between the actual tangent space and the vector space

dlogp(,0) 310gp(-,9)}
86, ' 08, -

span{

On this representation of the tangent space, Amari defines a Riemannian metric
given by
0){810gp( 0) 8log810)(-, 0)} ’
J

where E,{-} denotes the expectation w.r.t. the probability density p. This
is again the Fisher information metric, and indeed this is the most frequent

definition of Fisher metric. In fact, it is easy to check that

Alogp(-,0) Ologp /Ologp z,0) dlogp(x,0)
Ep(-,@){ 601 } ae] (CU,

/ 1 Op(z,0) Op(z,0)
(

p(z,0)  06; 90, dX\(z) = g;(6) -

From the above relation and from (3.2) it is clear that, up to the numeric
factor =, the Fisher information metric and the Hellinger metric coincide on
the tWO representatlons of the tangent space to S at p(-,6).

There is another way of measuring how close two densities of S are. Consider

the Kullback—Leibler information between two densities p and g of H()) :

p(z)
q(z)

This is not a metric, since it is not symmetric and it does not satisfy the

K(p.q) = / log 223 p(z) d\(z) = Ey{log 2}

triangular inequality. When applied to a finite dimensional manifold such as .S,
both the Kullback—Leibler information and the Hellinger distance are particular
cases of a—divergence, see [2] for the details. One can show that the Fisher

metric and the Kullback—Leibler information coincide infinitesimally. Indeed,
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consider the two densities p(-,6) and p(-,6 + df) of S. By expanding in Taylor

series, we obtain

dlogp(-,0)

K(p(ve)vp(50+d0)) = _ZEP(HG){ 801

i=1

} db;

- Z By oy cBel:f) g;ggé )y ao; o, + O(1ael?)

3,j=1
= > gi;(0)d6; do; + O(|do*) .
ij=1

The interested reader is referred to [1].

3.3 Manifolds associated with exponential fam-
ilies

We conclude this section with some well known results about exponential fam-

ilies, which will be used in the following sections. More results on exponential

families could be found in the books of Amari [2] and Barndorff-Nielsen [3].

We shall use the following equivalent notations for partial differentiation :

B0, 00, D

(23

Definition 3.3.1 Let {c;1,---,cm} be scalar functions ¢; : R* — R,
i=1,2,---,m such that {1,c1,---,cm} are linearly independent, and assume

that the convex set
O :={f € R™ : () = log /exp[aTc(;c)] d\(z) < oo},
has non—empty interior. Then
S ={p(-,0), 0 € ©}, p(z,0) = exp[6Tc(z) — ¥ (8)] ,
where © C Oy is open, is called an exponential family of probability densities.

Remark 3.3.2 Given linearly independent scalar functions {c1, --,cm} de-
fined on R™, it may happen that the densities exp[#”c(z)] are not integrable.
However, it is always possible to extend the family so as to deal with integrable
densities only. Indeed, assume that there exist K > 0 and r > 0 such that

le(e)] < K (1+ "),
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for all z € R™. Define d(z) := |z|® for all z € R™, and some s > r. Then

Sl = {p,(’e’ﬂ) ) € RmalJ’ > 0}7

p(e,0,pn) = explfTc(z)—pd(x)—¢'(6,p)],
1s an exponential family of densities, with a non—empty open parameter set.
Lemma 3.3.3 Let
S=1{p(~8),6€0},  p(z,0) :=expls’c(x) — v(6)] ,

where @ C R™ is open, be an exponential family of probability densities. Then
the function v is infinitely differentiable in ©

Ep(p{ei} = 0ip(0) =:mi(6) ,

Ey.oy{cici} = 054(0) + 0;0(8) 8;46(0)

and more generally

O expl(6)]

Epo){ciy - ci } = exp[=¥(0)] 089, ---00,
71 1k

The Fisher information matriz satisfies
9i(0) = 054(0) = 9;m; () .

In the particular case where n =1 and

Ci(x):xi7 z':l,---,m
the following recursion formula holds, with no(8) := 1 : for any nonnegative
integer i
Nn4i(0) 1= Ep( ) {z™ "} (3:5)
ni(0)
. Ni+1(0)
= _W [ (Z + ].) 0, 205 --- (m — 1)9m,1 ] 7h+2(9)
Ni+m—1(0)

Moreover, the entries of the Fisher information matriz satisfy

9i3(0) = ni1(6) — n:(0) n; (0) - (3.6)
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PROOF : All these results may be found or immediately derived from Amari [2]
(Chapter 4) or Barndorff-Nielsen [3] (Theorem 8.1). We only notice that some
of the above properties follow easily by differentiating the identity

/exp[@Tc(w) —(f)]dz =1

w.r.t. the components (61, -+, 6,,) of f. The particular recursion formula (3.5)

is obtained via the following integration by parts:

+00
n:(0) = / zt p(z,0)dx

xz-l—l +oo xz-l—l
= [- 1 p(z, )]+ — / T 01 + 2022 4 -+ mb,, 2™ '] p(x,0) dz

1 i 3 -
=0-— i1 Ep(.,e){01 e 420, 272 4 m,, $z+m} ,
from which the formula follows easily, remembering that 7;(8) = E,. ¢ {z'}. O

Remark 3.3.4 The quantities

(771,"‘,77m) 65:77(9) CR™

form a coordinate system for the given exponential family. The two coordinate
systems 0 (canonical parameters) and n (expectation parameters) are related by
diffeomorphism, and according to the above results the Jacobian matriz of the
transformation n = n(@) is the Fisher information matriz. We shall use the
notation pg(-,n(0)) = p(-,0) to express exponential densities of S as functions
of the expectation parameters.

The canonical parameters and the expectation parameters are biorthogonal
w.r.t. the Fisher information metric : at \/p(-,g) = \/PE('J])

0 0 ..
(60.Vp('79)7_\/pE('777)>:%61']'7 1,7 =1,2,---,m.

on;




Chapter 4

The Projection Filter

Did we make a difference?
Captain James Kirk, Star Trek

4.1 Introduction

In this chapter we introduce the projection filter. We start by a section con-
sidering the projection in Fisher metric of the density evolution of a diffusion
process onto a finite—-dimensional manifold of densities. The projected density
evolution is obtained via the projected Fokker—Planck equation. In that section
we shall give more importance to intuition than to rigor. A rigorous setup for
the projection of the Fokker—Planck equation will be developed in Chapter 7.
Fully rigorous treatment of the more complicated projection of the filtering
equation is given in the following sections. The filtering problem was intro-
duced in Chapter 2. There we saw that from a probabilistic point of view, the
filtering problem consists of the calculation of the complete conditional density
of an unknown signal (state) given the observations up to the current instant.
Such conditional density results in an infinite—dimensional filter in the gen-
eral nonlinear case. Under some regularity conditions, the conditional density
exists and is the solution of the Kushner—Stratonovich equation, a stochastic
partial differential equation. In order to avoid infinite dimensionality, some
approximation schemes have been proposed, yielding finite dimensional filters
for the unobserved state. A well-known approximation method is the extended
Kalman filter (EKF). The EKF is based upon linearization of the state equa-
tion around the current estimate, and application of the Kalman filter to the
resulting linearized state equation. This procedure finds its justification in

heuristic considerations, and not much is known about its performance, except

23
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in the case of small observation noise, see Picard [51], [52] and [53].

Another approximation method in the nonlinear case is the assumed—density
filter (ADF), obtained from the selection of a few moment equations, which are
closed under the assumption that the density is of a certain form, e.g. Gaussian,
etc. We present a detailed definition of the assumed—density filters in Chap-
ter 5. In the present chapter we introduce the projection filter (PF), which
is a finite—dimensional nonlinear filter based on the differential-geometric ap-
proach to statistics. We particularize the PF to exponential families in the
framework of SDE’s on manifolds. The PF is obtained by orthogonally pro-
jecting the right—hand side of the Kushner—Stratonovich equation onto the tan-
gent space of a finite—dimensional manifold of probability densities, according
to the Fisher metric and its extension to infinite-dimensional space of square
roots of densities, known as the Hellinger distance. We shall also present some
formulae concerning auxiliary quantities, such as the projection residual (PR),
the purpose of which is to provide a local measure of the quality of the filter
behaviour. We develop explicit formulae for the particular example of the cubic
sensor. The filters are derived by using the geometric approach, but in principle
the reader can rederive them by using the assumed—density idea without using
any Riemannian geometry, as we shall see in Chapter 5. Finally, we present
some numerical simulations and comparisons for the cubic sensor, between the
projection filter and the numerical solution of the nonlinear—filtering equation.

Part of the material presented here has already appeared in [13] and [14].

4.2 Projection of the density evolution of a dif-

fusion process

On the complete probability space (2, F, P) let us consider a stochastic process
{Xi,t > 0} of diffusion type, adapted to a filtration {F3, ¢ > 0}. Let the

dynamic equation describing X be of the following form
dXt = ft(Xt)dt + O'(Xt)th,

where {W;,t > 0} is a standard Brownian motion independent of the initial
condition X.

The equation above is an Ito stochastic differential equation. In the follow-
ing derivations, in order to simplify notation, we treat the scalar case. The
following sections will deal with the vector case. Precise assumptions on the
coefficients f,o, and h will also be given in the next sections.

Under suitable assumptions the law of X, is absolutely continuous w.r.t. the

Lebesgue measure and its density, i.e. pi(z)dz := P[X; € dz], satisfies the
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Fokker-Planck equation (FPE):

3Pt N

8t ‘C)tkpta

where the backward diffusion operator £; is defined by

82

ft 2t82

At this point we introduce the geometric structure which permits to project
the FPE onto a finite-dimensional manifold of densities. Again, the technical
details can be found in the following sections, where we explain how to project
a more complicate equation (namely the Kushner—Stratonovich equation for
nonlinear filtering).

Rewrite FPE for the square root of p;:

8\/10_t _ Lip:
ot 2, /Pt'
Next, select a finite dimensional manifold of square roots of densities to

approximate ,/p;. Let the family be parametrized by # € ® C R™, where O is
open. Call such manifold §'/2,

51/2 = {Vp('aa)aa € 9}

Consider a generic curve ¢ — +/p(+,0;) on this manifold. Its tangent vector in

0, is given according to the chain rule:

«/ (.6, Zav (,6) , (4.1)

from which we see that tangent vectors in ; to all curves lie in the linear
(tangent) space

p(-,01) ov/p(+,04)
span{ 56, o8 }.

Define the following quantity

8\/p 0) 8\/p

a90; 09, )

9(0)ij =

where (-, -) is the inner product of Ly. Notice that the matrix g is symmetric.
The factor 4 is there for historical reasons, just to relate this Ly structure to

the traditional Fisher information metric g(6) (see Section 3.2).
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Now define for all 8 € © the orthogonal projection

p('agt) 0 p(agt)

Iy : Ly — span{ 26, T g }
Oy [v] := Z[Z‘lgij(e) (v, i 81);],9)” : ;)9(1,9) '

=1 j=1

At this point we project the FPE equation for ,/p; via this projection, and we
obtain the following (m-dimensional) SDE on the manifold S'/? :

& V p('agt) — H@t[z\/m]'

Writing the projection map explicitly and comparing with (4.1) yields the fol-
lowing SDE for the parameters:

d _ -1 ﬁ;p($,0t) 8p(x79t)
dtet =g (et) / p(x,gt) 90 dCC,

where integrals of vector functions are meant to be applied to their components.

The equation above holds, under suitable assumptions, for any parametrized
family of densities (not necessarily exponential). We will prove existence of
the solution of such equation for exponential families. The point of this first
section is to give to the reader a readable path of the basic steps involved in
this ‘projection idea’. The subsequent sections will formalize and generalize, in

many ways, the results obtained so far.

4.3 General definition of the projection filter

In the present section we shall introduce the general definition of the projection
filter. We begin by noticing that the stochastic calculus to be used in this
derivation is the McShane-Fisk—Stratonovich (MFS) calculus. As remarked in
Section 2.2, this is a standard choice for stochastic calculus on manifolds, as
one can see for example in Elworthy [22], and is due to the fact that one does
not know how to interpret second order terms arising in the It6 calculus in
terms of manifold structures. For an account on McShane’s integral, see the
book [48].

We shall assume that the finite dimensional family S'/2 we are working with
has a manifold structure and a well defined Fisher information metric at all
points 6 € O, according to the presentation given in Section 3.2. In order to
project the Kushner-Stratonovich equation for ,/p; given in Section 2.2 onto
the m—dimensional manifold S'/2 we require the following assumption to be
satisfied :
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(DG) Forallf € ® and allt >0

Ep(_,g){|w|2} < o0 and Ep(_,g){|h/t|4} < oo .
p(-0)

These assumptions will be explored in detail for exponential families in Sec-
tion 4.4, and explicit sufficient conditions under which they hold will be given.
These conditions ensure that for all € © and all ¢ > 0, the vectors P;(1/p(+, 0))
and QF(1/p(-,0)) (see definitions of Section 2.2) for k = 0,1,---,d are vec-
tors in Lo(A), so that indeed the projection can take place according to the
Ly(X) structure described in Sections 3.1 and 3.2.

The projection filter for the family S = {p(-,0),0 € O} is defined as the

solution of the following stochastic differential equation on the manifold S/2 :

d/p(-, ;) = Iy, o Pu(\/p(:,6:)) dt — Iy, 0 Q7 (/p(-,0:)) dt

d
+5 My, 0 QF(VP(L8)) 0dYS , (42)

k=1

where for all § € ©, the projection map IIy is defined in (3.3).

Remark 4.3.1 Notice that although at first sight (4.2) may look like a stochas-
tic partial differential equation (PDE), it is just a finite dimensional SDE
which can be equivalently written using different coordinates as an equation
in @ C R™ for the parameter 0,. The explicit form of this SDE is given in the

following theorem.

Theorem 4.3.2 Assume that, in addition to (A), (B) and (C), the coefficients
ft, ar and hy of the system (2.1), and the family S satisfy (DG), i.e.

Ep(-,a)ﬂ%
holds for all 8 € ©, and all t > 0. Assume po(-) = p(+,00) € S.

Then, for all § € © and all t > 0, the vectors Py(1/p(-,0)) and QF(\/p(-,9))
for k=0,1,---,d are vectors in La()\).

For all @ € © and all t > 0, the nonlinear operators Ily o Py and Iy o Qf for
k=0,1,---,d are vector fields on the manifold S'/2, where the projection map
Iy is defined in (3.3).

The projection filter density p(-,0;) is described by equation (4.2), and the

|2} < 00 and Ep(_,g){|h/t|4} < oo,

projection filter parameters satisfy the following stochastic differential equation :
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i = (a6 [ EEEEED SR dr o) ar

=1

13000 [P 22 i) a (43)

=1 !

d m
L300 [ b M axeyoavt 6

k=1 j=1 96

Under the assumptions on the coefficients, this equation has a unique solution
up to the a.s. positive exit time 7 := inf{t >0 : 6; ¢ O}.

Proof : Let us compute the projections of the operators in the right-hand
side of the Kushner-Stratonovich equation. Under assumption (DG) such pro-

jections always exist.

Mo, o Pulv/p(:,60)) = Hot[%] -
S ij (,6,) 0O 6:),, 0 -0,
- 2[§4gm(9t) (Ht) \/89—] \/géi—)
= e [EEE0 20wy 2

Similarly

Iy, 0 QY (\/p(+,0:)) = g, [ L \/p(-,0:) B (p =

I
Ms

LS 0 -0 0 -0
1> 4979(60) (3 Vo000 Ao “g;f 1)) 2PC.0)
j=1 J ¢

i=1

g pl.0) 0 OVP(-00)
096 [ 1m@P = By () 252 ar(ay) 22

I
Ms

—

- ij 2 Op(z,0:) 9v/p(+,04)
30700 [ § e o i) D

i=1 J

<.
Il
—

.

I
Ms

.
Il
-

.

and

Het o Q?( V p( ]:[at % VP gt ﬂt -
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for k =1,---,d. We have used the fact that the constant terms Ep. g,){|h:|*}

and Ep(.,gt){hf} give no contribution to the projection, since

8p($70t) _
[ ot e =

We conclude by rewriting equation (4.2) in the more detailed form

mm

_; [;gij(et) /%Iht(x)lz %@M d\ ()] 3272‘;900&

535> >0 [ ) 2 aria) DL o e
By expanding \/m according to the Stratonovich chain rule
d\/p(-,0,) = Z 9 V at o dbi
and comparing with (4.4) we obtain the following equation for the parameters

0; describing our projected density in S :

m

wi = g0 [ LG TG e
~ (5760 [ $ (@R 2 ax) a

d m
#0760 [ 1t 2t axeleart 6

k=1 j=1
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which is our finite dimensional filter. Consider the term

ﬁ;p($,0t) 8p(x70t)
/ p(z,0,)  06; D)

Usually, as in the case of the optimal filter, terms involving L} cause infinite—
dimensionality (due to differential operators in z involved in £7). Nonetheless,
this problem is not affecting our approximated filter. Indeed, the integral above

reduces to a function of 6;, which is a finite dimensional parameter.

4.4 The exponential projection filter

In this section we present the rigorous definition of an exponential projection
filter. We will show that if we choose S*/? as the square roots of a finite
dimensional exponential family, then under some additional assumptions the
operators P; and QF for k = 0,1,---,d introduced in (2.8) define at each point
\/m € S'/2 tangent vectors to a larger but finite dimensional (smoothly
embedded) submanifold Ei’/f of La(A), whose elements are (square roots of)

exponential densities of a larger (curved) exponential family. The manifolds

1/2
X0

the projection can take place within a finite dimensional tangent space, and

may be viewed as enveloping manifolds for $'/2. Within such a setup,

infinite dimensionality is bypassed. The additional conditions we shall impose
are necessary to ensure that the operator P; takes values in La()), so that
we can actually project the coefficients in the right hand side of the Kushner—

Stratonovich equation, according to formula (3.3).

Let us consider the following exponential family of probability densities
S :={p(-,0), 0 € O}, p(x,0) = exp[@Tc(z) — ¥ (8)] , (4.5)

where © C R™ is open. According to (2.5), we define

._ _ ‘C: p(-,g)
arg = au(p(-,0)) = PO
Ble = BL(p(0) =5 [1hlf® = Epgoy{|he|*}]

Bro = BEp(-0) =hi — By o {hi},
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for k=1,---,d. From the expression obtained in (2.6), it follows that

avo ==Y Ui g (070) + 3L

=1

iy ) )
521 % 52 amj o) +a) 5 ("T)a—xj(ﬁ’TC) (4.6)

dail 0
8£Cj 8$Z

2 ij
0%a,

2 .
+ 8:628£CJ ]

0T¢c) +
We make the following additional assumption on the coefficients f;, a; and hy
of the system (2.1), and on the coefficients ¢ of the exponential family (4.5)

(D) Forall@ € © and all t >0
By o) {lone]*} < o0 and Eyo){he]*} < o0 .

Under the assumption (D) we define below, for any 6y € © and t; > 0, a
curved exponential family ¥, ¢,, containing S. For the definition of a curved

exponential family, see [2, Section 4.2].

Proposition 4.4.1 Let {dy,---,ds}, with0 < s <d+2,d; : R - R

J

1 =1,---,5 be scalar functions depending on ty, 0y, such that
{1,c1,--,¢em,d1, - ,ds} is a basis of the linear space
2 d
Spa'n{]-acla" cmaat0,9072 |ht0| toa"'ahto} .
Define
Eto,90 = {ptoﬂo('aaaf)a #eo,§€ E} ) (47)
with

Pro,00 (2,0,€) 1= exp[fT () + €7d(x) = § |€]* |d(@)[* — ¥10,60(0,€)] ,  (4.8)

and where = C R® is an open set. If the assumption (D) holds, and if = C R*®
is a sufficiently small neighbourhood of the origin, then Zio/%o is a (m+ s)-

dimensional submanifold of Lo(\).

Remark 4.4.2 For any 6 € O, p(-,0) = py,,0,(-,0,0), hence S C Xy, 9,, which
makes Zio/,290 an enveloping manifold of S'/2. Here enveloping is meant in
the sense that all curves on S'/2 are particular curves on 40,00, and tangent

vectors to curves in S/2 are particular tangent vectors to particular curves of

Eto,ao'



32 Chapter 4. The Projection Filter

PROOF : For simplicity, we use in this proof the notations po(-,6,£) =

Pto,00 ('7 0, f)a and ¢0(07 ‘S) = ¢t0,00 (07 ‘S)
It follows from the Cauchy—Schwartz inequality, and the Young inequality :
ug%—l—iu‘l, u € R, that

pﬂ(xagaf) S eXP[HTC(x) + % - ¢0(07£)] )

hence py(+,0,€) is integrable for any 6 € ©, and any £ € R®.

Define the following ezpectation parameters

9
(0,6 = 57%0(0,6) = Epp0fci} i=1,---,m,
9
Xl(e’f) = 8_&¢0(07€) = EPU(',G,ﬁ){dl - fl |£|2 |d|4} ) l= 1,---,s,

and the tangent vectors
0 _ .
8_92'\/ pO('aeaf) = % pO('aeaf) [Cl_nl(gaf)] ) 7’:17"'7m )

0
6_& pO('aeaf) = % pO('aeaf) [dl_fl |€|2 |d|4_>zl(07€)] l= ]-7"'75 )

at point /po(-,0,§) € Eio/,%o' Under the assumption (D), it holds

Epo0.0ild’} = Epeofld? expl¢"d — 1 |¢*|d|*]} exp[¥:(8) — o (8, )]

IN

Ep.0){|d*} exp[2 +¥(8) — vo(8,€)] < o0 ,

and similarly

1€1° Epo(-0.0){1dI°}
= Ep(.0){€1° |d|® exp[¢Td — L[¢]* |d|*]} exp[¥(8) — vo(6,€)]

< By {ld]"} max{u® explu— ;u'l} expli(6) —¢o(0,)] < o0,

which proves that all the tangent vectors introduced above are in La()), and
hence the associated Fisher information matrix g(6, &) is well defined.

Finally, it is easy to prove that these tangent vectors are linearly independent,
and hence the Fisher information matrix is invertible. Indeed, the following

decomposition holds

|d(@)|* = a + T e(x) + 7" d(w) +e()
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where the scalar function e either is zero, or is linearly independent of

{17017"'7cﬂ17d17"'7d8}7

and
0 = p+ATe—n(0,0]+u"[d—&J€ |d|* — x(8, )]
= [p—A"00,0) —n"x(6,8) — nTEIEP o] + [N — pTEIE B e
= pwTENEPATd - pTEE e,
implies

p—AT7(0,8) — u''x(6,6) —prEEPa = 0
A= uTE[ERS = 0

T—~e" 1P p=p—p"€lEPy = 0.

If ¢ is sufficiently small, the matrix [I — v¢T |€]?] is invertible, hence p = 0,
from which we deduce A =0, and p = 0. |

It is easily checked that for all 6 € ©

1/2
Span{% V p(ae) ato,Goa% V p(ae) ﬂtkg,eo ) k= 07 ]-7 te 7d} g L\/ﬂzto/ﬂu .

Let us consider the equation (2.7) in MFS form for {,/p;, t > to}, starting at
time ¢y from the initial condition \/pz, = 1/p(-,0) € S/? for some 6, € O, i.e.

d
dypi = $y/Drou(p)dt — 5 /piB(p)dt+ 5> /i B (pr) 0 dVE
k=1

d
= Py dt — QY (V) dt + Y Qf () o dV} >t .
k=1
(4.9)

It is immediate to check that

Pto(vpto) = %\/pto ato(pto) = % Vp('aeo)atoﬁo € L\/zmzio/;o )

and

Of, (Vo) = § V/Pio Bl (pry) = 5 V/p(-.00) Bl 0, € L fgsSil
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for k =0,1,---,d. Then we can project at any time instant ¢y from the finite
dimensional tangent vector space L\/p(.)—go)Eio/?ou onto the finite dimensional
1/2 . . . . .
tangent vector space L\/ms since the Fisher metric in the enveloping
manifold is well defined under the assumption (D).
Let (-, -) be the Fisher information metric on the enveloping manifold at the

current point p(-, 0y) = pi,,0,(+,8,0). Consider the orthogonal projection

) 1/2 1/2
Moo+ L /gy S — LS
1 8])(-,90) 1 8})(',00)

>] 2\/1’('700) 601

(4.10)

The exponential projection filter for the exponential family S is defined as the

v 1) 497 (60) (v,
i=1 ]z:; 2\/ p(,eo) 60]

solution of the following stochastic differential equation on the manifold §/2 :
dvp(,6:) = g, o Pe(\/p(+01))dt — I, 0 QE( p(-,0:))dt (4.11)

d

+Y i, 0 QF(\/p(,60)) 0 dY} .
1

k=

Of course the operators

51/2 N le/Z

p(-,g) — Ht,9 Opt( p(,e)) €L p(-,9)51/2 )

and

51/2 N L51/2

p(',e) — Ht,G o Qf(\/ p(,a)) S LmSl/Z ,

for k=0,1,---,d, are vector fields on the manifold S'/2.

We can now state the main result of this section.

Theorem 4.4.3 Assume that, in addition to (A), (B) and (C), the coefficients
ft, ar and hy of the system (2.1), and the coefficients ¢ of the exponential

family (4.5) satisfy (D), i.e.
Ep(_,g){|at’9|2} < o0 and Ep(_,g){|ht|4} < oo,

holds for all @ € ©, and all t > 0, where the expression of oy g is given in (4.6).
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Then, for all § € © and all t > 0, the vectors Py(1/p(+,0)) and QF(\/p(:,0))
for k = 0,1,---,d are tangent vectors of a (m + s)—dimensional, with 0 <
s < d+ 2, time varying submanifold Ei)/f of La(A), where X, is the curved
exponential family defined in (4.7) and (4.8).

Let 11, o denote the projection map defined in (4.10). The nonlinear operators
Il p o Py and Iy 9 0 Qp for k = 0,1,---,d are vector fields on the original

ezponential manifold S'/2.

The projection filter density p(-,0:) is described by equation (4.11), and the

projection filter parameters satisfy the following stochastic differential equation :

g(0)odb, = Ep.on{Lictdt — By o{5 |hel? [c—n(6:)]} dt
d (4.12)
+ Y By on{bf e =n(B)]} o dV), o .
k=1

Under the assumptions on the coefficients, this equation has a unique solution
up to the a.s. positive exit time 7 := inf{t >0 : 6; ¢ O}.

Remark 4.4.4 The question of whether the exit time T is a.s. finite or infinite

will be addressed in future research work.

Remark 4.4.5 The weaker conditions
Epo){lLecl} < o0 and By o {[he]?} < o0,

for all 0 € ©, and all t > 0, are sufficient for proving existence and uniqueness
of a solution to equation (4.12) up to the exit time 7. The question of whether
the interpretation as a projected equation still holds under these weaker condi-

tions will require further investigation.

Remark 4.4.6 Notice that although (4.11) at a first sight may look like a
stochastic PDE, it is just a finite dimensional SDE for the parameter 6; ex-
pressed in different coordinates. The explicit form of this SDE is given by (4.12).

ProOF : Consider equation (4.3) derived in Section 4.3. For the special case
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of the exponential family introduced above in (4.5), we obtain
doi = Zg” (6,) /Lt cj(x) p(z,8;) dX(z)] dt

m

—[>_97(6:) /% |he(@)|? [ej(2) — nj(80)] plz, 8:) dA(2)] dt

Jj=1

d m
+3 136760 / B (2) [ej () — n;(6,)] plz,02) dA()] o dYE .

k=1 j=1
(4.13)

We have used the following duality relation

/ EE)(I;(,:C éta)t) 8pg;,jet) dA(w) / L5 p(x,0r) [ej(x) —1;(8,)] dA(w)

= /.ctcj p(z,8,) d\(z) .

Another way of writing equation (4.13) is

dg; = Zg (0:) Ep(.,0,){Lec;}] di
— 32721 97(81) By o5 |l [ej —m;(80)]}] dt (4.14)

d m
+ 5713679 (00) Eyan{ht [ej — ni(8)]}] 0 dYE .

k=1 j=1

In vector form, the above equation reads

by = [9(00)] " Ep o {Lechdt — [9(00)] " Ep0,){5 [he|* [c — n(6:)]} dt

Z o(-00) LR [c = n(00)]} 0 dYF

or equivalently

g(ﬂt) Odat = Ep(-,Gt){Et C} dt—Ep(.)gt){% |ht|2 [c—n(ﬂt)]}dt

d
+ 3 By o bt e —n(00)]} 0 dV) .
k=1
Under the assumptions, the mappings 6 — Ey(. g){L: c}, and 6 Ep(_,g){% |he|?}
are locally Lipschitz continuous. Therefore, there exists a unique solution to

equation (4.12) up to the a.s. positive exit time 7, see [37]. a
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Remark 4.4.7 The initial condition 8y for equation (4.12) is defined as fol-
lows : If pp € S, then py = p(-,00) for some unique 6y € ©, which is used
as the initial condition. Otherwise, we project pyg on S, by minimizing the

Kullback—Leibler information

K. p(,8)) = [ 1o 2L (o) are)

w.r.t. @ € ©. After straightforward calculations, and making use of Lemma 3.5.3,

this reduces to mazrimizing

(67 / () pol) dA(x) — ¥(6)] .

Assuming the mazximum is achieved in 6y € O, necessary conditions yield

ni(60) = /cxw) po(x)dN(z) ,  i=1,ee,m .

4.5 The residual and a convenient exponential

family

In this section, we are interested in defining quantities which will provide a
local measure of the quality of the projection—filter approximation. Compare

equation (2.7) for the (square root of the) true density py, i.e.

d
dy/be = Piy/Br) dt — Q) (/i) dt + Y Qf (Vr) 0 dY} (4.15)
k=1

and equation (4.11) for the (square root of the) projection—filter density pf =
p(-,0¢), i.e.

d
d\/pf =T0p,0Py(\/p}) dt—T5,0Q7(\/pPF) dt+ Y Ty,00Qf (\/pf)odY;" . (4.16)
k=1
Two steps are involved in using the projectionfilter density p] as an approx-
imation of the true density p; : We make a first approximation by evaluating
the right-hand side of equation (4.15) at the current projection—filter density
py and not at the true density p;. Even with this approximation, the resulting
coefficients P;(1/p]) and QF(1/p;) for k =0,1,---,d would make the solution
leave the manifold S'/2, and we make a second approximation by projecting
these coefficients on the linear space L\/ﬁslﬂ via the projection mapping

ITy,. In order to express the error occurring in the second approximation step
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at time ¢, we define the prediction residual operator R} and the correction

residual operators R¥ for k = 0,1,---,d as follows :
Ry = Pi—1p, oP
Rf = Qf — Hgt 0] Qf .

These operators, when applied to the square root of density \/p_l’kr =+/p(-,0:) €
S1/2 yield vectors of Ly (X). We call such vectors projection residuals : they give
a local measure of the quality of the approximation involved in the projection
filter. We can compute the norm of such vectors according to the norm |- || in
Ly()), and we define the prediction residual norm r; and correction residual

norms rf for k= 0,1,---,d as follows :

re = IRV/PDI
vk = IREG/PDI

However, we are still missing a single measure of the local error resulting
from the projection. We define below a single residual operator, only in the
case where RF = 0 for all t > 0, and all k = 1,---,d. In this case, we define

the total residual operator R} as :
Rf = Rt. - R? )
and the corresponding total residual norm ry as :

i =R (VP -

Notice that if in addition R? = 0, then r} reduces to 7. In the next section we
will introduce manifolds S}/2 and Si/2 for which such a definition is applicable.
Now we try to give some intuition for the above definition. Suppose we replace
in equations (4.15) and (4.16) the observation {Y;, ¢ > 0} with some smooth
process {u;,t > 0}, e.g. a regularized approximation, i.e. we consider the

equations
d

SVE=PlyE) - V) + Y Q) L (@)

k=1

and

d d
7 VT =T, 0 Pi/pF) =Ty, 0 QU/PT) + 3 S Tho, © Qi (v/pf) iy - (4.18)
k=1

In this case, we can define a single residual operator expressing the difference

between the rate of change in the smooth Kushner—Stratonovich equation (4.17)
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and the rate of change in the smooth projection filter equation (4.18), i.e.

d
Ry =Ry R+ > Ry iy .
k=1

Of course, if we return to the original situation, e.g. letting the regularized
approximation {u;, ¢t > 0} converge to the observation {Y;, ¢ > 0}, there is
no limit to the smooth residual operator RY, unless R¥ = 0 for all t > 0, and
all k =1,---,d. In this case only, we define the total residual operator R} as
above.

Note that R} is the residual error in the ‘dt’ term of the SDE describing the
projection filter.

From now on, and throughout the chapter, we assume for simplicity that
hi(z) = h(z) does not depend explicitly on time. This is necessary in order to

define the simplifying time invariant exponential families S, and S, below.

4.5.1 The exponential families S, and S,

Now we can state the following

Theorem 4.5.1 Assumptions (A), (B) and (C) on the coefficients fi, a; and
h of the system (2.1) in force. Let s :=rank{h',--- h% L|h|?} <d+1. There
exist s linearly independent functions {cy,---,cs} defined on R™, such that for

all z € R™
@) =Y N i), WEa) =Y Aei(a) (4.19)
=1 =1

for k=1,---,d. Remaining functions {cs+1,---,cm} are chosen such that

Se :={p(-,0),0 € O}, p(z,0) :== eXp[@TC(x) —¥(0)],

where @ C R™ is open, is an exponential family of probability densities.
Assume that, in addition to (A), (B) and (C), the coefficients f; and a; of
the system (2.1), and the coefficients ¢ of the exponential family S, are such

that :
By gy{lawsl’} < oo,
holds for all 6 € ©, and all t > 0, where the expression of cy g is given in (4.6).
Then, for the projection filter associated with the exponential family S,, the
correction residual norms ¥ are identically zero for all t > 0, and all k =
0,1,---,d, and the stochastic differential equation for the parameters reduces

to :

d
6, = [g(00)] " Ep(pp{Lechdt = X3dt+ > Asdv)F, 6. (4.20)
k=1
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where for all k = 0,1,---,d the m—dimensional vector \¥ is defined by

AT

)\k _ A.,j

* |o
. O -

Under the assumptions on the coefficients, this equation has a unique solu-

tion, up to the a.s. positive exit time 7 := inf{t >0 : 0; & O}.

PRrOOF : All the assumptions of Theorem 4.4.3 are satisfied, and therefore
the solution of the stochastic differential equation for the projection filter with
manifold S’}/2 exists and is unique up to the a.s. positive exit time 7.

Next, we prove that the correction residual norms vanish. Indeed, it follows
from (4.19) that

QV(Vp(-,61) = 1lhI> = By o0 (IR} /(- 0:)
Y N [ei = Byon{eil V(- 0)
i=1
and similarly
Qi (Vp(,0) = 5[h* = By 0){h*H /(- 0:)
= % ZAf [ci - Ep(-,Gt){ci}] V p(agt) )
i=1
for k=1,---,d. We remark that

3 lei = Ep( o {eit]l Vp(00) = 5 [ci = mi(00] V/p(-,00) =

1 8p(70t)
2 p('aat) 601 ,

hence QF(\/p(-,8,)) € L\/ZmSl/2 for k =0,1,---,d. Therefore, the projec-
tion does not modify these vectors since they already lie in the tangent space
of 51/2,

Finally, the equation for the parameters is obtained via straightforward cal-
culations. Indeed, it follows from (4.19) that

By on{% 107 [ =i (001} = DA Epiopfer leg =m0} = > gq(6:) A7
=1 =1
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hence
D970 Byt {5 1 e = ni 81} = 39" (80) 3900 N = 3_8u XY
j=1 j=1 =1 =1
and similarly
> 69(00) Byon{h* le; —mi(0)]} =D 6u Af
j=1 =1

for all kK = 1,---,d. Substituting these expressions into the right—hand side of
equation (4.14) yields

m

s d s
do; = > g7 (00) By op{Loci} dt — > 8a M dt+ > [> 6q A dYF .
=1

j=1 k=1 [=1

In vector form, the above equation reads
d
by = [g(0,)] " Ep(.pp{Lichdt —A2dt+ Y MidVf.

k=1
This finishes the proof. O

What the above theorem shows is that the projection residuals are greatly

simplified if we make use of the functions {h!, - h< %|h|2} in the definition
of the exponential manifold, i.e. if we choose the functions {ci,- -, ¢} in such

a way that the functions {h',---, A%, %|h|2} are in span{ci, -+, ¢m . Indeed,

RE(\/pF)=0forallt >0, and all k=0,1,---,k, whereas
1 . = _ 1 £ipf T -1

N Ri(vpl) =5 =5 =z le=nO)]" [90)]" By pp{fech. (421)
t t

The diffusion coefficient in the stochastic differential equation (4.20) for the

parameters ; is constant. This implies that (4.20) can be seen as either an

It6 or a MFS stochastic differential equation, so that it satisfies the formal
rules of calculus. Moreover, for the numerical solution of such an equation, the
simpler Euler scheme coincides with the Milshtein scheme, which is a strongly
convergent scheme of order 1, see [38].

Notice also that we have still some freedom left, and we may wonder whether
one can use this to select m and the remaining functions {¢sy1,- -, ¢y } in order
to reduce the total residual norm r; = r}. However, a great prudence is needed,
because the filter may become complicated and numerical problems may arise.
See examples on the cubic sensor in Section 4.6. In general, a trade—off is
necessary in order to obtain an accurate, but still not too involved, exponential
family and the associated projection filter.

Similarly to the Theorem 4.5.1 above, we have the following
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Theorem 4.5.2 Assumptions (A), (B) and (C) on the coefficients fi, a;, and
h of the system (2.1) in force. Let s := rank{h',---,h?} < d. There exist

s linearly independent functions {ci,---,cs} defined on R™, such that for all
reR"

W (e) = Aei(a)
i=1
for k=1,---,d. Remaining functions {cs+1,---,cm} are chosen such that

S* = {p(-,e), NS 6} ’ p($,9) = eXp[@TC(x) - ¢(9)] ?

where ©@ C R™ is open, is an exponential family of probability densities.

Assume that, in addition to (A), (B) and (C), the coefficients f; and a; of
the system (2.1), and the coefficients ¢ of the exponential family S. are such
that :

Epo){lowsl’} < oo,

holds for all @ € ©, and all t > 0, where the expression of ay g is given in (4.6).

Then, for the projection filter associated with the exponential family S, the

correction residual norms ¥ are identically zero for all t > 0, and all k =

1,---,d, and the stochastic differential equation for the parameters reduces to :

o, = [g(ﬂt)]’l Ep(-,Ht){‘ct C} dt

d
— (901" By {3 B [e = n(6:)]}dt + Y A dY), 6o (4.22)

k=1
where for all k = 1,---,d the m—dimensional vector \* is defined by
- \F -
* 0
L O -

Under the assumptions on the coefficients, this equation has a unique solu-

tion, up to the a.s. positive exit time 7 :=inf{t >0 : 0, ¢ O}.

The proof is analogous to the proof of Theorem 4.5.1, and is therefore omit-
ted.
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In this case, RF(\/pr) =0 for all t > 0, and all k = 1,---,d, whereas

1 . _ [* p1r B
T RE(VPF) =5 ;,Tt — 5 lc—nB)1" [9(0)] " Epo){Lic}, (4.23)
t t
and
1 s
= RY(VpD) = 1lhI* = Epo,){IRI*}]
t

— 5 le=n0)]" (907" Epi 0 {5 |1? [c = n(60)]} -
(4.24)

4.5.2 The case of discrete—time observations

We conclude this section by presenting the effect of choosing the exponential
family S,, in the case of a nonlinear filtering problem with discrete—time ob-

servations. In this model, the state process is as in equation (2.1), i.e.
dXy = fi(Xy) dt + o0 (Xy) dW,
but only discrete—time observations are available
zn = h(Xy,) + v,

at times 0 = t9 < t; < -+ < t, < --- regularly sampled, where {v,, n > 0} is
a Gaussian white noise sequence independent of {X;, ¢ > 0}.

The nonlinear filtering problem consists in finding the conditional density
pn(x) of the state X, given the observations up to time ¢,, i.e. such that
P[X., € dx | 2Z,] = pn(z)dz, where Z,, := 0(z0, -+, 2n). We define also the
prediction conditional density p,, (z)dz = P[X;, € dx | Z,—1]. The sequence
{pn, n > 0} satisfies a recurrent equation, and the transition from p,_1 to p,

is decomposed in two steps, as explained in [32], [47] :

Prediction step Between time t, 1 and t,, we solve the Fokker—Planck

equation
op;
ot

The solution at final time ¢,, defines the prediction conditional density p,; = p}’ .

= ‘C: p;l ) p;ln71 = Pn—1 -

Correction step At time t,, the observation z, is combined with the pre-

diction conditional density p,, via the Bayes rule

pn(w) =Cn \I’n(w) Pn (CC) ) (425)
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where ¢, is a normalizing constant, and ¥, (z) denotes the likelihood function

for the estimation of X; based on the observation z, only, i.e.
Up(z) :=exp{ — t|zn — h(z)” } . (4.26)

If we use the exponential family S, defined above, then we obtain the projec-
tion filter density p(-, 6, ), and the transition from 6,_; to 8, is also decomposed

in two steps :

Prediction step Between time t,,_; and ¢,, we solve the ODE

g(07) 07 = By oy {Lic}, 0 =0, .

n—1

The solution at final time ¢,, defines the prediction parameters 6, = 67 .

Correction step Substituting the approximation p(-, 8, ) into formula (4.25),
we observe that the resulting density does not leave the exponential family S,.

Indeed, it follows from (4.19) and (4.26) that

d
Uo(z) = exp{ —3[h(@)+ > h*@) 2k — Lzl }
k=1

s s d
exp{ =Y Aeale) +Y D A zplal@) =5l }
=1

=1 k=1

and the parameters are updated according to the formula
d
On =0 =20+ > AE2E
k=1
which is ezact.

4.6 Exponential projection filters for the cubic

sensor

We consider as an application of the exponential projection filter the explicit

formula for the cubic sensor, see also [29]. We consider the scalar system

dXt = 0O th

dYy

X2 dt +dv,
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with the usual independence assumptions for the standard Brownian motions
{W;, t >0} and {V;, t > 0} and where o is a real constant. This system is in-

teresting for several reasons. First, the simplicity of the state process. Secondly,

the infinite—dimensionality of the optimal filter for the cubic sensor ensures that

we are really facing a problem of approximating an infinite—dimensional filter

by a finite—dimensional one. The fact that the optimal filter for the cubic sensor

is infinite dimensional was proved in [30].

Let us apply the projection filter to this system using different exponential

families in order to illustrate how the filter depends on the manifold.

4.6.1 The six dimensional exponential projection filter

We choose the manifold S according to Theorem 4.5.1, i.e.

S = S.={p(-,0),0 €0},

p(2,0) = explfyx+02> + 0323 + 0,2 4+ 0525 + 05 2% —(9)] ,

where © is open in RS and g < 0, for all § € ©.

We notice that h(z) = 2® and § |h(z)? = { 2%, hence

I
1
|

.
SO O O = O O

o]

On the other hand, ¢j(z) = 27, for j = 1,---,6, hence

v O O O O O

L2505 _1)pi—2 forj=2..--.6
@) 507G —1)227%, orj=2,--,
Lcj(x) =50 5z =
0, forj=1
and therefore
l0'2.7.(.7'_]-)"7j*2(9)7 fOI‘j:Q,---,G

Ep(_,g){ﬂ Cj} =
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which requires the evaluation of 1 (), --,14(6). We define

0
2 7]0(0)

2 61:1(0)
1212(6)

2073(0)

| 307m4(8) ]

= Ep.g){Lc} .

Finally, the entries of the Fisher information matrix (g;;(6)) are obtained ac-

cording to (3.6), i.e.

which requires the evaluation of (), ---,712(6). However, n9(8) = 1 and it
follows from Lemma 3.3.3 that only 7, (6),- -+, 75(0) need to be evaluated, since
ne(0),- -+, m2(0) can be obtained according to (3.5).

The stochastic differential equation (4.20) for the parameters reduces to
do; = [g(0:)]7" 7e(8:) dt — A\ dt + \s dY; .

The equation (4.21) for the prediction residual reduces to
L Re(mm) = LEEE e 0] 98] (0
= Ri(VPP) = 3 3 [c=n(0)]" [9(6)] " 7e(6)

VT P}

from which the total residual norm r; = r} can be easily computed.

Finally, we indicate a quantity which can be used to estimate the state of
the system at time ¢. It is well known that, if the conditional density p; is
available, then the best (minimum-—variance) estimator of X; is the conditional

expectation
X, = E, {z} = /xpt(x) d\(z) .

As we can rely only on the approximated density p(+,6,), we shall consider, as

an estimate of the state, the expectation w.r.t. this approximated density :
n(6;) = Ep(_,gt){l'} = /xp(w,et)d)\(w) .

4.6.2 The four dimensional exponential projection filter

In this Section we choose the manifold S according to Theorem 4.5.2, i.e.
S=8.={p(-0),0 €0}, p(x,0) = exply x40 22 +03 2340, x* —(0)],

where ® C R* is open and 0, < 0, for all § € O,
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We notice that h(z) = 23, hence

A= A=

*

o = O O

On the other hand, ¢;(z) = 27, for j = 1,---,4, hence

e [AIGSDET =2
Lecj(z) = 1y J =
7 2 Ox?
0, forj=1
and therefore

yo2iG—1)m2(0),  forj=2,---,4
Ep(.’g){ﬂcj'} =

0, forj=1

which requires the evaluation of ng(6), -+, 72(0). We define

0
2mo(6)
7:(0) := £ 0? 6 (0) =Ey.o{Lc}. (4.27)
Similarly, we notice that § |h(z)|?> = § 2%, hence
3 |A(@)? [cj(x) —n;(0)] = 5 [2°F7 — 2 n; ()], j=1,--.4
and
Ep o) {3 R [e; = 0 ()]} = 5 [16+5(8) — 16(8)m;(0)] j=1,.,4

which requires the evaluation of n1(0),---,74(0) and n6(0), - - -, n10(0). We de-

fine
17(6) —6(6) m(6)
R =g | OO | = B3 a@l . (429)

Finally, the entries of the Fisher information matrix (g;;(6)) are obtained ac-

cording to (3.6), i.e.

gz](e) :nz+J(0)_nz(0)nJ(0) ) ZaJ: ]-774
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which requires the evaluation of 7;(6),---,ns(#). However, n(f) = 1 and it
follows from Lemma 3.3.3 that only n;(6), - - -, n3(6) need to be evaluated, since
n4(0),---,mo(f) can be obtained according to (3.5).

The stochastic differential equation (4.22) for the parameters reduces to

40, = [g(80] " 7 (00) dt — [g(8)] " 120 de + .Y, . (429)
The equations (4.23) and (4.24) for the prediction and correction residuals
reduce to

1

RV = LB L o)) 960 100) |

N/ Py

and

e RV = e = mo00] e~ 001" 1001 22000

t

respectively, from which the total residual norm r; can be easily computed.
Finally, as in Section 4.6.1 our approximation of the minimum variance es-

timate of the state at time ¢ is the first expectation parameter 7;(6;). We

conclude by observing that the filter given in this section can be implemented

via a numerical scheme involving numerical-integration techniques. Such a

scheme has been written as a Fortran program, yielding simulations that we

describe in the next section.

4.7 Numerical simulations for the cubic sensor

In this section we present a numerical scheme which was used to implement
the projection filter derived in Section 4.6.2, and we present also simulation
results based on this numerical scheme. From the previous discussion, we
need to compute the moments 7;,---,n10 up to order ten, but according to
Lemma 3.3.3, these moments can be computed from the first three moments
M1, +,n3 only by using the recursion formula (3.5).

We applied a Euler scheme to solve the stochastic differential equation (4.29)
numerically. Since the diffusion coefficient in this equation is constant, the
Euler scheme coincides with the Milshtein scheme, and hence the error is of
order A, where A is the chosen time step. In general, if the diffusion coefficient
would also depend on the state 8 then the error would be of order v/A only. For
a detailed treatment of numerical methods for stochastic differential equations,
see [38].

We outline the main steps of the algorithm :

(i) Let an initial 8y be given. Choose a time step A and set ¢ = 0.
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(ii)
(iii)

(iv)

v)

(vi)

(vii)

(viii)

(ix)

(%)

(xi)

(xii)

Numerical simulations for the cubic sensor 49

Assign 6 := 6.

Compute numerically the integral

+oo
I(0) :=exp[y(0)] = / explfy = + 0o 22 + 03 2 + 0, 2*] d\(z) .

— 00

Compute the three following integrals, so as to obtain the first three

expectation parameters :

ni(0) = Ey.ofz'}

1 teo
= W/ ¢’ explfy x4 0y 2 + 03 2° + 04 '] d\(z) ,

— 00

fori=1,2,3.

Compute the higher order moments 74, - - -, m19 via the algebraic recursion

formula given in (3.5).

Substitute the above quantities in equations (4.27) and (4.28), so as to
obtain the coefficients v, (#) and 72(#) respectively.

Compute the Fisher information matrix
Invert (g;;(f)) so as to obtain (g% (6)).

Collect the new observation Y;ya at time ¢ + A (here a discretization

scheme is needed), and let AY =Y;1a — Y}

Compute the approximate variation Af# of the canonical parameters be-

tween times t and t + A, according to the simple Euler scheme
A9 = [g(0)] 7 7(0) A~ [9(B)] T 2 (0) A+ A AY

Assign 0 := 0+ Af and t :=1t + A.

Start again from point (iii).

As noticed in step (v), all we need is to compute the integrals

+oo
/ z exp[91x+02$2+03$3+94x4]d)\(z)’ i=0,---,3.

— 00

We used routines from the scientific library NAG for this purpose.
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Once a numerical approximation of the projection filter parameters 6; has
been computed, we can compare the corresponding density pf = p(-,6:) to
the solution p; of the Kushner—Stratonovich equation, i.e. to the optimal fil-
ter density. Actually, a numerical approximation of p; was used, based on a
discretization of the state space with approximately 400 grid points, and on nu-
merical techniques for the solution of stochastic differential equations, see [38]
and [24].

The comparison between numerical approximations of the densities p] and
p: can be done qualitatively, based on graphical outputs, or we can compute
(a numerical approximation of) some distance, such as the Kullback—Leibler

information

o fre38

pi(z) dA(z) ,

the Hellinger distance

e ) = [ (VAT = Vo) dN@) =2 (1= [ VT(0) V(o) dhGo)]
etc. We can also compute an approximation of the total residual norm

ri = IR (VPD) = RIVPDI

which depends only on the projection filter density. As remarked in Sec-
tion 4.6.2, the remaining correction residual norms r¥ vanish for all t > 0
and all k =1,.--,d. Moreover, to compute the total residual norm r; we still
need to evaluate only the first three moments.

We begin with some general remarks about our simulation results. These
results show that the projection filter density is usually very close to the optimal
filter density, when the latter is not too sharp (i.e. not too close to a Dirac mass).
What would be missing in a Gaussian assumed—density filter or in an extended
Kalman filter is the possibility to allow bimodality in the filter density. As
the fourth degree exponential family allows such bimodality, in principle the
optimal—filter density could be approximated at least qualitatively by a density
in this family. This was actually observed in our simulations.

Moreover, we can have an a posteriori indication of the accuracy of the
projection filter from the graphical representation of the total residual norm
as a function of time. Indeed, there are time instants where the optimal-
filter density and the projection—filter density are quite different, but these are
exactly the time instants where the total residual norm exhibits large values.
An additional observation that we could make on our simulations is that after

a reasonably—small time the total residual norm returns towards zero, and
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correspondingly the projection—filter density is again very close to the optimal—
filter density. To summarize, there are some differences, but they are limited
in time, and do not seem to affect the global behaviour of the projection filter.

On time intervals where the true state is far from the singular point z = 0

of the observation function h(z) = z3

, experience shows that the smaller the
observation noise, the sharper and higher are the peaks of the total residual
norm. Notice first that if the observation noise is small, then on such time
intervals the optimal-filter densities are concentrated around the true—state
trajectory, i.e. are tracking accurately a very irregular trajectory. As a result,
the difference between the mean value of the optimal-filter density and the
mean value of the projection—filter density has to be really small, i.e. smaller
than the variance of the optimal-filter density, to guarantee that the Hellinger
distance between the optimal-filter density and the projection—filter density
is not too large. This is reflected in the fast dynamics of both the Kushner—
Stratonovich equation, and the equation for the projection—filter parameters,
and makes the numerical implementation of the projection filter difficult when
the observation noise is small.

In the following we discuss the simulations in detail, and we present some
graphical outputs which illustrate our general remarks. In the two scalar ex-
amples below, the variance R of the observation noise does not satisfy R = 1.
However, the formulas given in this chapter could easily be adapted to this

more general situation.

Example 1 : We present here a first simulation of the fourth degree expo-

nential projection filter based on the following data :

(unnormalized) initial density exp[—3 z® — 1 z*]
variance () of the state noise 1
variance R of the observation noise 0.16
time step A 0.02
final time 10

In this first example we are mainly concerned in showing that our choice
of the fourth degree exponential family is appropriate. Visualizing the time
evolution of both the optimal-filter density and the projection—filter density was
made possible with the software ZPB developed at INRIA. We observed that
qualitatively the projection filter was good, as the two densities had roughly the

same shape at every time instant. In this section we display the two densities
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at three time instants. We start by Figures 4.5 and 4.6 which show the true
state and the estimate (mean value) provided by the projection—filter density
respectively, as functions of time. This estimate is not accurate because on
this simulation the true state stays most of the time around the singular point
x = 0 of the observation function. Indeed, Figures 4.7 and 4.8 show that the
mean value of the optimal—filter density does not provide an accurate estimate
of the true state either. We are also interested in comparing the projection
filter with the optimal filter, and not only with the true state. In this respect,
Figures 4.1 and 4.3, show that the two filter estimates agree surprisingly well.
Notice also the behaviour of the total residual norm in Figures 4.2 and 4.4 :
the time instants where the two filter estimates are significantly different are
characterized by large peaks in the total residual norm. This kind of simulation,
where the conditional density is concentrated around the singular point of
the observation function, is important because it is in such situations that
Gaussian assumed—density filters and extended Kalman filters would usually
fail. The shape of the density is quickly varying, becoming often bimodal
and asymmetric, so that a Gaussian family is definitely not a good choice to
base a finite—dimensional filtering on. We make this evident by displaying the
optimal—filter and the projection—filter densities at different time instants, in
Figures 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14.

Example 2 : The second example is based on the following data :

(unnormalized) initial density exp[-3 (z—2)2 - 1 (z — 3)4]
variance () of the state noise 1
variance R of the observation noise 9
time step A 0.005
final time 10

We begin by comparing the true state with the estimate (mean value) pro-
vided by the projection filter density. This is illustrated in Figures 4.19 and 4.20.
It is clear from this graphical output that the state is not estimated accurately,
and this is due to the fact that we have a large observation noise. Anyway, this
is the case also for the optimal filter, as we can see in Figures 4.21 and 4.22.
Nonetheless, our main concern is in the comparison between the projection filter
and the optimal filter. This comparison is provided by Figures 4.15 and 4.17.
The projection filter and the optimal filter estimates agree surprisingly well,

and the time instants where they are significantly different are characterized by
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peaks of the total residual norm, which is shown in Figures 4.16 and 4.18. Fi-
nally, we remark that the numerical integrations involved in the implementation
of the numerical scheme for the projection filter resulted in a large computa-
tional time. Indeed, the software ZPB of IRISA resulted to be quicker from a
computational point of view, even though it employs a much larger number of

parameters.
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Figure 4.1: Mean projection filter and mean optimal filter between 0 and 5.
1.5 T T I I

Mean of the projection filter —
Lr Mean of the exact filter - - - -

-1.5 .
9 ! ! ! !
0 1 2 3 4 5
Figure 4.2: Projection residual between 0 and 5.
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Figure 4.3: Mean projection filter and mean optimal filter between 5 and 10.
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Figure 4.4: Projection residual between 5 and 10.
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Figure 4.5: True state and mean from the projection filter between 0 and 5.
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Figure 4.6: True state and mean from the projection filter between 5 and 10.
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Figure 4.7: True state and mean from the optimal filter between 0 and 5.
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Figure 4.8: True state and mean from the optimal filter between 0 and 5.
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Figure 4.9: Optimal filter density at 3.70.

Figure 4.10: Projection filter density at 3.70.
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Figure 4.11: Optimal filter density at 4.12.

59

Figure 4.12: Projection filter density at 4.12.
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Figure 4.13: Optimal filter density at 9.54.

Figure 4.14: Projection filter density at 9.54.
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Figure 4.15: Mean projection filter and mean optimal filter between 0 and 5.
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Figure 4.16: Projection residual between 0 and 5.
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Figure 4.17: Mean projection filter and mean optimal filter between 5 and 10.
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Figure 4.18: Projection residual between 5 and 10.
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Figure 4.19: True state and mean from the projection filter between 0 and 5.
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Figure 4.20: True state and mean from the projection filter between 5 and 10.
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Figure 4.21: True state and mean from the optimal filter between 0 and 5.
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Figure 4.22: True state and mean from the optimal filter between 5 and 10.
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4.8 Conclusion

In this Chapter we have introduced a new and systematic way of designing
approximate finite—-dimensional filters.

One major issue left is the choice of the exponential family S. A first answer
has been given in Section 4.5, but this does not completely solve the problem :
with the choice of the family S, there is still some freedom left in the choice of
the dimension m and in the choice of the remaining functions {cs41,- -, ¢m},
which could be used to reduce the total residual norm r} = ;.

This freedom could also be used to design an adaptive scheme for the choice
of the exponential family S.

It would also be useful to obtain for all ¢ > 0 an estimate of the distance
between the optimal-filter density p, and the projectionfilter density pJ, in
terms of the total residual norm history {r¥, 0 < s < t}.

Finally, we would like to define projection filters for discrete—time systems,
and relate this problem with the work of Kulhavy [40], [41]. Another motivation
for this study will be to obtain efficient numerical schemes for the solution of
the stochastic differential equation satisfied by the projection—filter parameters,
i.e. equation (4.12) for a general family S, or equation (4.20) for the family S,.

Each of these problems requires further investigation, and we hope to address

all of them in a subsequent work.
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Chapter 5

Assumed Density Filters

and Projection Filters

If with a pure mind a person speaks or acts, happiness follows him

even as his never—departing shadow

Dhammapada, 1.2

Blessed are the pure in heart, for they will see God
Matthew, V.8

5.1 Introduction

In the present chapter we shall see how two completely—different approaches
to approximate filtering lead to the same result when dealing with exponential
families.

The story so far: As we saw in Chapter 2, the filtering problem consists of
estimating the state of a stochastic differential system from noisy observations.
In the linear Gaussian case the problem is solved by the well-known Kalman
filter, a finite—dimensional system of equations for the first two conditional
moments of the state given the observations. As previously remarked, in the
linear context this system of equations provides also the complete conditional
density of the state given the observations, since this density is Gaussian and
hence characterized by the first two moments. In the general nonlinear case,
the filtering problem consists of computing the conditional density of the state
given the observations. This density is the solution of a stochastic partial dif-

ferential equation, the Kushner—Stratonovich equation, which was introduced

67
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in Section 2.2. The general nonlinear problem is far more complicated because

the resulting nonlinear filter is not finite dimensional in general.

An approximation method in the nonlinear case is the assumed—density filter
(ADF). The ADF is obtained from the selection of a few moment equations,
which are closed under the assumption that the density is of a certain form, e.g.
Gaussian, etc. We present a detailed definition of the assumed—density filters
in Section 5.2. However, the ADF is an approximation and as such has advan-
tages and disadvantages. It is illogical to assume that the conditional density is
Gaussian while in general it is not Gaussian. This logical inconsistency mani-
fests itself when one compares the assumed—density filter obtained by using It6
calculus with the assumed—density filter obtained if McShane-Fisk-Stratonovich
(MFS) calculus is used instead. We present an example which shows that the
MFS—-based ADF and the Ito—based ADF are not directly related by It6-MFS
transformations, i.e. the MFS—based ADF is not just an MFS version of the
It6-based ADF.

In Chapter 4 we introduced the projection filter (PF), which is a finite—
dimensional nonlinear filter based on the differential-geometric approach to
statistics. We also considered the projection filter particularized to exponen-
tial families in the framework of SDE’s on manifolds. The PF is obtained by
orthogonally projecting the right—hand side of the Kushner—Stratonovich equa-
tion onto the tangent space of a finite—dimensional manifold of probability den-
sities, according to the Fisher metric and its extension to infinite—dimensional
space of square roots of densities, known as the Hellinger distance. In 1991,
Hanzon and Hut have proved formally in [29] that if one projects orthogonally
onto the tangent space of the finite—dimensional manifold of Gaussian densi-
ties, the resulting PF coincides with the MFS—based Gaussian assumed—density
filter. The performance of this filter will be studied in the case of small ob-
servation noise in Chapter 6, and is based on the results given in Brigo [6]
and [8].

In the present chapter we intend to present a full proof of the abovemen-
tioned equivalence. In fact a much more general result will be shown, namely
that the PF coincides with an MFS-based ADF for any exponential family.
As a consequence the projection filter for exponential families can be obtained
as an MFS—based ADF, and the filter formulas can be obtained easily from
the moment equations. At the same time this equivalence yields a remedy to
the lack of logical consistency involved in the definition of the assumed density
filters : the MFS—based ADF that updates the moment parameters of an ex-
ponential distribution is a well-defined concept, because of its interpretation

as a projection filter.
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A short description of this chapter is as follows : The assumed—density filter
is introduced in Section 5.2. We conclude by proving the equivalence between
ADF and PF for exponential families in Section 5.3, where we also present
an example to show that this equivalence does not hold for general (non—
exponential) families. Part of the material of this chapter has already appeared
in [16].

5.2 Assumed density filters

Because the equations of nonlinear filtering are generally intractable, many
approximation methods have been proposed. A well-known approximation
method is the EKF (extended Kalman filter), in which the conditional first
and second—order moments are approximated by using a linearization proce-
dure. A potential disadvantage of such a method is that no use is made of the
general nonlinear—filtering equations : after linearization the formulas for linear
Gaussian filtering are applied. If one tries to develop approximation schemes
starting from the nonlinear—filtering equations, one is confronted with the prob-
lem that the conditional densities (if they exist) do not belong in general to
any finite—dimensional class of densities. One heuristic way to deal with this
problem is to consider the moment equations and to assume arbitrarily that the
conditional densities belong to some finite—dimensional class of densities, even
if this is known to be wrong. The resulting moment equations will in general be
inconsistent, but by selecting carefully a limited number of moment equations
one can obtain a consistent definition of an approximate filter, which is called
an assumed—density filter in the literature, see Kushner [42], and Maybeck [47,
Section 12.7].

As will be shown, it also matters whether the selected moment equations are
taken in It6 or in MFS form. In order to discuss such assumed—density filters
properly, and to prove the relation with the projection filters in Section 5.3

below, we give now a more formal definition of assumed—density filters.

Consider a function ¢ : R™ — R™. The following set of assumptions will

be in force throughout the chapter:

The function c is twice differentiable and, together with its derivatives up to
order 2, has at most polynomial growth when |z| goes to infinity. Assume that,
in addition to assumptions (A), (B) and (C) of Section 2.2, the coefficients f,
and a; of the system (2.1) have at most polynomial growth when |z| goes to

mnfinity.
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Then the conditions given in [27] are fulfilled for the c-moments to sat-
isfy (2.3), i.e.

dm(c) = m(Lic)dt — L [m(|hi|? e) — mi(|he]?) mi(c)] di

. (5.1)
S ImihE ) = muhE) mi(e)] o Y
k=1
The It6 version of this equation is obtained from (2.2) by setting ¢ = ¢, and
holds under the conditions just described.
The following is a generalization of the concept of assumed conditional—-

probability density filters as introduced in [42].

Definition 5.2.1 Consider a finite set {c1, -, cm} of twice—differentiable scalar
functions defined on R™, ¢ : R™ — R™, such that each ¢;,i = 1,---,m
and its derivatives up to order 2 have at most polynomial growth. Consider a
corresponding m—dimensional family {x(-,m), n = (m, --,nm) € E} of prob-
ability measures, where £ C R™ is open, such that each element of the family

satisfies the equations
Tli:En{Ci}a i:]-a"'am

and is uniquely specified by these equations. Here E,{-} denotes the expectation
with respect to the probability measure (-, 7).

In accordance with the ADF principle, the Ité—based ADF is defined by the
Ito stochastic differential equations

d
d’lf = Em {ﬂt Ci} dt + Z[Em {hf ci} - Em{hf} 77“ [dY—tk - Em {hf} dt] ) (52)
k=1
fori=1,--- m. Similarly the MFS-based ADF is defined by the MFS stochas-

tic differential equations

dni = En{Lic;i}dt— L[ Ey{|hf?c;} — En{|he|?} ni] dt
d .
+ S (B {hb e} — By (RS nilodYy | i=1,,m.
k=1

(5.3)

Although this may be surprising at first, the Ito6—-based ADF and the MFS—
based ADF are different filters in general. This will be shown by working out
the It6—based and MFS—based Gaussian assumed—density filters for the cubic
sensor problem. The fact that they are different is due to the inconsistency
that is inherent to the ADF—concept : selecting a different set of equations to

which it is applied leads to different results.
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Example 5.2.2 (MFS—based Gaussian ADF for the cubic sensor.) We

consider the scalar system

dXt = O th ,

dy, = X3¥dt+dV,,

with the usual independence assumptions for the standard Brownian motions
{Wy,t >0} and {Vi,t > 0}, and where o is a real constant. Let us compute
the MFS—based ADF for this system using a Gaussian family , i.e. choosing
ci(z) = @, and co(z) = x®. Then one obtains p = m = E,{z}, and no =
E,{x?}, which indeed parametrize the Gaussian family over R. Define P :=
E,{(z — u)?} =mno —n?. In the Gaussian case one has the following relations

between the centered higher order moments up to order siz, and the variance P

Ey{z —p} = E{(z — N)3} = Ey{(z - N)S} =0,

Bfe—w?} =P, BEy{(e—mw*} =3P, Ey{(s—p)}=15P°
(5.4)
Making use of relations (5.4), equation (5.38) results in the following MFS-based
Gaussian ADF :

dpy = (=3u) P —30u} P? — 45, P?)dt + (3p? P, + 3 P?)odY, ,

dP, = (0?2 —15u} P2 —90u? P} —45P})dt + 6y P? 0o dY; .
(5.5)
This should (and will) be compared with the Ito—based ADF for the same

problem, with the same family of probability densities and the same choice of

functions ¢; and cs.

Example 5.2.3 (It6—based Gaussian ADF for the cubic sensor.) Using
relations (5.4), equation (5.2) results in the following Ito—based Gaussian ADF :

dpy = (=3p; P — 124 PP — 9 py PP) dt + (3 pf P, + 3 P?)dY;
(5.6)
dP, = (0> —15u} P? —36u2P? —9P})dt+ 6 u; P?dY; .
Putting these It6 equations in MFS form one obtains the MFS version of the
Ité6—based ADF :

dpy, = (=3p; Py —30p} P? — 36 4, PP)dt + (37 P+ 3P7)0dY, ,

dP, = (0> —15u} P? —81u2 P} — 18 P})dt + 6y P2 o dY; .
(5.7)
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By comparing the MFS—based Gaussian ADF given in (5.5) with the MFS
version of the Ito—based Gaussian ADF given in (5.7), we see that these two
filters are different, because their representations as MF'S stochastic differential

equations differ.

As is clear from the definition, the construction of an ADF involves both
the choice of functions {¢1,---,¢m} and the choice of an m—dimensional fam-
ily of probability distributions which are characterized uniquely by the vector
n = (M, ,Nm), where 0, = E,{c;} for i = 1,---,m, and also the choice
of a stochastic calculus, either It6 or MFS. Suppose that one wants to work
with a number of functions {c1, -+, ¢m} and their corresponding expectation
parameters {ny,---, 7, }. Then one way to obtain a family of densities which
has the desired property is by using the concept of maximum entropy : given
{e1, -, cm} and their expectation parameters {n;,---,nm}, choose the prob-
ability density p with maximal entropy under the conditions E,{c;} = n; for
all ¢ = 1,---,m. This is possible if 7 is chosen such that there exists at least
one probability density whose moments have these values. The solution to this
problem, see Kagan, Linnik and Rao [33], is given by the exponential family
{exp[8T c(z)—1 ()], @ € O}, which was presented in Section 3.3. In the follow-
ing sections it will be shown that if such an exponential family is chosen, then
the MFS—based ADF can be interpreted as a projection filter. The projection
filters are consistently defined and therefore do not lead to the inconsistencies
which were found for the ADF’s.

5.3 Equivalence between ADF and PF

The main theorem of the chapter can now be stated, for which we shall present
two different proofs. The first proof is more elegant and concise, but it does
not give much insight in the geometric nature of the result. The second proof
will rely more on geometric concepts. It will make explicit use of projections
on the tangent spaces, and will rely on a crucial result from the theory of
information geometry, i.e. the biorthogonality relations between the tangent
vectors corresponding to the canonical parameters, and the tangent vectors
corresponding to the expectation parameters, see [2]. The initial condition is

assumed to be the same py = p(-,6p) in S for both filters.

Theorem 5.3.1 For any exponential family S , the projection filter coincides
with the MFS-based assumed density filter.
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FIRST PROOF. We start from equation (4.12) for the projection filter canon-

ical parameters, i.e.

9(0)odby = Epon{Lictdt — By on{5 || [c—n(6y)]} dt

d
+ 3 Boy {f fe = n(6)]} 0 dY}E .
k=1

According to Remark 3.3.4, the expectation parameters can be expressed in

terms of the canonical parameters as

ni =n:i(0) = Ep. oyici}t = Epp(omicit,

with derivatives 5
—n;(0) = gi;(0) .
09, n;(0) = 9:;(0)
The chain rule for MFS integrals immediately gives

dne = g(6) 0dfy = Epp(.qy{Lectdt — Epp(nn {3 |hel? [c — ]} dt

Z pe(: m){h c—'qt]}odY;k y

which is exactly equation (5.3) obtained using the assumed density filter idea.
O

For the second proof of Theorem 5.3.1, we shall need the following result.

Theorem 5.3.2 Let S'/2 and 210/,200 be respectively the manifold associated
with the exponential family (4.5), and its enveloping manifold as defined in (4.7)
and (4.8). For simplicity, we use the notations po(-,0,&) = piy,0,(-,0,€), and
¥o(0,8) = i,,0,(0,). Define the following expectation parameters

0
ni(0) == 8—9¢(9) = Ep(_’g){ci} , i=1,---,m,
and
5 (9 0 0 -
772( 75) - 892¢( f) 05){01}7 t=1L--m,
_ 0 o1 4
xi(0,€) = 26 22 %0(0,8) = Epy(0,6){di — & €17 A"} l=1,--,s,

(5.8)
respectively. Introduce also the following notations for the tangent vectors as-

sociated with the different parametrizations, i.e.

0 ; 0
81(9) = 60 p(.79) ) 82(0) = a/’]

p('ae)a iz]—a"'ama
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and
0 )
81(076) = 8_9 pO('aeaf) ) 82(076) = 877] pO('aeaf) )
0 0
am+l(07€) = 8_& V pU('aaag) ) 8m+l(07§) = 8_)21\/ pO('aeaf) )

fori=1,---mandl=1,---,s, respectively.
Given any tangent vector w to the manifold Eio/’%u at point
\/p(-,0) = \/po(+,0,0), which we decompose on the basis associated with the

expectation parameters, as

w=> w;0(0,0) + Y _ wm0™T(6,0) ,

i=1 =1

the projection of w onto the tangent space of S1/? at \/p(+,0) satisfies

Htg,Gg w = Zwi 81(9) .

i=1
PROOF : We first prove that the expectation parameters 7 = (71, -+, Tm)
and X = (X1, -, Xs) provide another parametrization of the enveloping man-

ifold, i.e. we prove that the Jacobian matrix J(6,£) of the transformation
(0,&) — (7, %) is invertible.

From Proposition 4.4.1 above, the Fisher information matrix g(8,&) of the
enveloping manifold is invertible for any # € ©, and any £ € =. It follows by

easy calculations that

j(a,f)Zg(eaf)—Epo(o,g){|d|4}[ TG

where the s x s matrix R() is given by

R(¢) = €7 T +2¢¢7,

for any £ € =Z. By the Lebesgue dominated convergence theorem

lim €1 Epoo.){1d]"}

= lim By o) {1 |d* expleTd — 7 [€]* |d|*]} exp[t(8) — 0(6,€)] =0.

Therefore, the Jacobian matrix J(6,&) is invertible, provided ¢ is sufficiently

small, and in addition

90, [J(e,f)rl:l L ] ,



5.3. Equivalence between ADF and PF 75

where the asterisks indicate entries that need not be specified here.
It results from this observation, that the following partial biorthogonality

relations hold

<8j(97£)78i(97£)> = %61',1' ) 1=1,---,m

<8J(07£)78m+l(97£)> =0 ) lzla"'as

forallj=1,---,m
Finally, it is easily checked that for all 6 € ©

9;(0) = 9;(6,0) ,

forall j =1,---,m. We notice that by definition (w — II; y w) is orthogonal to
the tangent space of S'/2 at /p(-,0), hence

<8J(9)7w - Htu,90 w) =0,
for all j = 1,---,m. Therefore

<8j(9)7ﬂt0,90 w> = (aj(970)7w>

m
=" w; (9;(8,0),0°(6,0) +Zwm+, 8;(6,0),0m(9,0)) = L w; ,
i=1 =1

because of the biorthogonality relations (5.9), hence the projected vector is of
the announced form. |

Now we can state the more geometrical proof of Theorem 5.3.1.

SECOND PROOF OF THEOREM 5.3.1. According to Theorem 4.4.3, the expo-
nential projection filter equation is obtained by projecting the tangent vectors
of Zi,/; which appear in the right-hand side of the Kushner—Stratonovich equa-
tion (2.7) onto the tangent space of $*/2. If we decompose these tangent vectors

on the basis associated with the expectation parameters, we obtain

P(pe(m) = sz (me) 8(8:,0) +me+, (me) 8™+ (8, 0)

=1
Q¥ (Vre(m)) = D afm) 0 (6:,0) + Y apii(m) 0™ (6:,0)
i=1 =1

for k = 0,1,---,d. Notice that, from the biorthogonality relations (5.9) and
the expression for P; (\/pge(-,n:)) presented in Section 4.4 it holds

pi(ne) = 4(P(/pe(-,m)),0:(0:))
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= 4(3pe(m)ane,, 5 V/pe(-,m) [ci — n;])

= EPE(',m){atﬂt [ci - 77;]} )

and similarly
qf(m) = EpE(-,m){ﬂtk,et [Ci - 77;]} )

for k = 0,1,---,d. The projections of these tangent vectors determine the
right—hand side of the stochastic differential equation for the projection filter.

According to Theorem 5.3.2, such projections read

0, © Pe(v/PE( M) Zpi(nt)ai(gt)

Mo, 0 QF(Vpe(om) = Y af(m)d'(6),
=1

for k = 0,1,---,d. Expanding d+/pg(-,n:) with the chain rule and collect-
ing tangent vectors on both sides, yields the following stochastic differential

equation for the projection filter

d

dn} = pi(m)dt — g (n) dt + Y g (m) 0 dY} i=1,2,--,m,
k=1

which concludes the proof. O

The equivalence between the MFS—based ADF and the PF is shown to hold
for exponential families. In general, for other families of distributions such
equivalence does not hold. This can be seen from the following simple example

in which we consider a particular curved (Gaussian) exponential family.

Example 5.3.3 (Projection filter with a curved Gaussian family.) We

consider the scalar system

dXt = f(Xt) dt+O'(Xt)th

dy; X, dt +dV; |

where the coefficients are supposed to satisfy the usual assumptions. Choose

the following curved family of Gaussian densities :

{p(x,0) = expl@z — 6%z — (9], 0 € R\ {0}},
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where p(-,0) is the Gaussian density with mean 1/(26), and variance 1/(26?).
We shall denote by Eg{-} the expectation w.r.t. the density p(-,0). Notice that
n = Ep{x} = 1/(20). The densities in the above curved Gaussian family may be
characterized by n as well. We denote by E,{-} the corresponding expectation,

so that for example

+oo v — )2
B 5= [0 el ) )

Consider the general equation (4.3) for the projection filter, and notice that,
since n = 1/(20), we have dn, = —1/(20%) o df,. This results in the following
projection filter :

1 2 2 2
dnt =% [Em{f}_ — Em{xf}_ — Eﬁt{g}+67]t3]dt+ —7h2 Odlft .
5 Ur Mt )

On the other hand, equation (5.3) yields instead

5
d’lt:[Em{f}—iﬂ?]dt“‘Q’I?OdYta

making use of relations (5.4).

Anyway, one of the striking features of the Theorem 5.3.1 is that it yields a
characterization of the projection filters for exponential families in terms of as-
sumed density filters, which are not intrinsically based on differential geometry,
and can be understood without using geometric concepts.

Finally we observe that as the [t6—based and MFS—based ADF are different,
the theorems proved above state that for a general exponential family S the
equivalence with the projection filter holds only for the MFS—based ADF. How-
ever, it can be shown that the MFS—based and the Ito—based ADF coincide for
special choices of the exponential family, such as the families S, and S, intro-
duced in Section 4.5 which are constructed in such a way that the observation
functions h* for k = 1,-- -, d are contained in the linear space span{c;,---,cm}.

Indeed, the following theorem holds:

Theorem 5.3.4 For the exponential family S, the Ito—based assumed density
filter coincides with the MFS-based assumed density filter.

Proof: It follows from (4.19) that

d d
TP =3 > P =5 AEXE ey .
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By specializing to the exponential family S, the general equation (5.3) for the
MFS—-based ADF, and using Lemma 3.3.3, we obtain

d

Ep{Liciydt—3 > > M A [ By {cicvei} — En {cicer }y nf ] dt
k=11,l'=1

dn;

d s
+ 3 Y M [Ep{aci} — Ep{a}ni] o dv}F

k=1 I=1
d s
= Ep{Lici}dt— Z Z gir(m) NEXE ! dt
k=11,1'=1
d s
% kz:: IZ:l 90, =it (1) A Af dt+;lz;gll ) AF o dY}F |

fori =1, -+ ,m. It is easily checked that the It6-MFS transformation yields

0
git(m) dY = ga(m) o dV — 5 IZI ag, 9 M) At dt
forall k =1,---,d and all : = 1,---,m. On the other hand, by specializing to
the exponential family S, the general equation (5.2) for the Ito—based ADF,

and using Lemma 3.3.3, we obtain directly

dni = Ep{Lic;}dt

+ZZAI E’flt {clcl} E‘l']t {cl}nt dYk ZAI’ E’flt {cl’}dt]

k=1 1=1 I'=1

d s d s
= Ep{Lici}dt =Y > gulm) \f Aint dt+> > guln) Af dV/)

k=11,I'=1 k=11=1

fori=1,---,m. O



Chapter 6

Small Observation Noise

O God, I could be bounded in a nut shell and count myself a king

of infinite space, were it not that I have bad dreams.

Hamlet, Act II, Scene II

6.1 Introduction

In the present chapter we examine the Gaussian projection filter with small
observation noise. In order to maintain the chapter as self contained as possible,
we shall repeat some facts that have already appeared in the previous chapters.
This little redundance will be helpful for readers interested only in the small
noise setting. In fact the present chapter is almost independent of geometric
concepts, and as a first reading can be read independently of the rest of the
thesis.

The story so far:

We explained in Chapter 2 that the filtering problem consists of estimating
the state of a stochastic system from noise—perturbed observations. In the lin-
ear Gaussian case the problem is solved by the Kalman filter. In that chapter
we noticed how the more—general nonlinear problem is far more complicated be-
cause of infinite dimensionality. We remarked that often the extended Kalman
filter (EKF) is used in nonlinear problems, even though its use is usually jus-
tified on the basis of heuristic considerations, and not much is known about
the quality of its performances, except in the case of small observation noise
(see [51] and [52]). In Chapter 5 we introduced the assumed—density filter
(ADF). The Gaussian ADF (GADF) represents another choice in the nonlin-
ear case, and is obtained by assuming the conditional density to be Gaussian,

closing in this way the set of exact equations for the first two moments and

79
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producing a finite-dimensional filter (see [47]). The GADF is not too strong
from a mathematical point of view, because from a false hypothesis no inter-
esting statement can be obtained. In Chapter 4 we introduced the projection
filter (PF). We saw that the PF is a finite-dimensional nonlinear filter based
on the differential-geometric approach to statistics. This filter is based on
projection of the nonlinear filtering equation onto a finite—dimensional man-
ifold of densities in Fisher metric. As we saw more in general in Chapter 5
for exponential manifolds, if one projects onto the tangent space of the finite—
dimensional manifold of Gaussian densities, the resulting Gaussian projection
filter (GPF) coincides with an assumed—density filter which is obtained as fol-
lows: one computes the first two conditional moments equations in McShane—
Fisk—Stratonovich (MFS) form, and then assumes the conditional density to
be Gaussian, closing in this way the equations for the first two moments. We
call this filter MFS-G-ADF. This result is important because it yields a simple
characterization of the GPF which is independent of geometric concepts; on
the other hand it shows that, despite the logical inconsistency of its definition,
the MFS-G-ADF has a rigorous mathematical characterization. In Chapter 5
it was also proven that what we described above is not the same as assuming a
Gaussian density in the It6 equations for the first two moments. If we do so and
afterwards we transform the obtained filter in MFS form, we obtain a different
filter: the MFS-G-ADF is not just an MFS version of the Ito-GADF. In other
words, the [t6-MFS transformations and the Gaussian—density assumption do

not commute.

Now that we have described the filter to be studied in this chapter, we briefly

describe the contents of the chapter.

We shall deal with signals modelled by one—dimensional diffusions, in order
to keep the chapter more readable and in the spirit of [51]. We shall assume
Lipschitz drift and uniformly—bounded diffusion coefficient for the signal and
a bijective output function in the observations (plus some more technical as-
sumptions). This set of assumptions on the system is rather common in small

noise analysis, as one can see in [51], [52], and [53].

We start by considering a comparison between the signal (true state) and
the GPF estimate. We will prove that, under assumptions different from the
one needed for the EKF, the GPF provides an estimate for which the mean—
square difference from the true state of the system is bounded by the magnitude
of the observation noise. This result has been proved for the exact filter in
[51], so that here we prove that our filter features a mean—square error the
magnitude of which is bounded in the same way as in the case of the optimal

filter. The chapter continues by removing the choice of dimension two for
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the Gaussian manifold. In the initial sections we use a two—dimensional GPF
obtained by projecting the optimal filter onto a two—dimensional manifold of
Gaussian probability densities. Using dimension two for an approximate filter
dealing with a one—dimensional diffusion is rather common: both the Extended
Kalman Filter and the (classical Ité-based) ADF feature dimension two in
this situation (see [47]). For this reason we begin this chapter with a two—
dimensional GPF. We introduce later a one-dimensional GPF and show that
its mean—square difference from the true state is bounded in the same way as
in the case of the two—dimensional GPF. So, under our assumptions on the
system, it turns out that the optimal filter can be tracked efficiently even by
fixing the variance on the Gaussian manifold: One has just to allow the mean
to 'move‘. Moreover, the chapter extends some of the results on the comparison
true state — GPF estimate to different models. More precisely, if the drift of
the system is bounded (and not necessarily Lipschitz) we define a filter which
has a nice behaviour and does not depend on the drift of the system.

The chapter is concluded by a comparison between the optimal filter and the
GPF. The mean—square distance has in this case a bound proportional to the
square of the observation noise. Part of the material presented in this chapter
is based on the articles [6] and [8].

6.2 The MFS-G-ADF

On the complete probability space (2, F, P) let us consider a stochastic process
{Xi,t > 0} of diffusion type, adapted to a filtration {F3,¢ > 0}, and a related
measurement process {Y;, ¢ > 0}. Let the dynamic and observation equations
be of the following form (cf. [47, 19])

dXt = f(Xt)dt+ O'(Xt)th
dY; = h(Xp)dt +/R(t)dV;. (6.1)

The above are Ito stochastic differential equations. If {vs, ¢ > 0} is a Brownian
motion, we will write [...]dv, if we are working with an Itd differential equation,
whereas we use the symbol [...] o dv; to specify a McShane-Fisk-Stratonovich
(MFS) stochastic differential equation. In (6.1) the symbols have the follow-
ing meaning: X; € R is the state vector at time ¢; f and o are real valued
functions, and {W;,¢ > 0} with W; € R a standard Brownian motion process,
independent of the initial condition Xj; Y; € R is the stochastic measurement
process, h is a real valued function and {V;,t > 0} with V; € R a standard
Brownian motion independent both of {W;, ¢t > 0} and of the initial condition
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Xo. We assume R(+) to be uniformly—positive: R(t) > é§ > 0 for all ¢, accord-
ing to [45]. R(t) represents the variance parameter of the observation noise.
At the moment assume assumptions on f,o and h given in Chapter 2 to be in
force.

Specialize equation (2.3) to our situation (and consider the obvious modifi-

cations due to the fact that we keep R(t) not necessarily equal to one):

dri(¢) = [m(Le) + %R(t)_lm(qb)ﬂ-t(hQ)] dt (6.2)

+ R()™ [mi(6h) — m(¢)m(h)] 0 Y.

o~

We use either m((-)) or (-) to denote the conditional expectation given the o—
algebra ), generated by observations up to time ¢. Then, by choosing ¢(z) =
z and @(z) = 22 respectively, one derives from (6.2) the (exact) first two

conditional moment equations in MFS form. These equations are given by

dF, = [r(f) = LRI m((X — Xo)h?)dt (6.3)

+ R(t)'m((X — Xy)h) o dYs,

dP, = [2m(f(X)(X — X)) + m(0?) (6.4)

R(t)"tmy(h*[(X — X,)? — Py))]dt

1
2

+ RO)'m([(X = X;)? — P]h) o dY;

where X, = m(X) and P, = 7 (X _2)2)_ Note that (6.3, 6.4) is not a closed
set of stochastic differential equations (SDE): the expectation m;(-) in general
involves all the moments of the conditional density p; := px,|y,, not only the
first two. According to the assumed density principle seen in Chapter 5, such
set of SDE can be closed by assuming p; to be Gaussian. This amounts to

performing the following substitutions in (6.3, 6.4):
X, - X,
P - f’t
Pt g pN()?t,};;)
This leads to the following closed set of SDE:

dX, = [B{f} - $R(&) " E{(X — X,)h*})dt (6.6)
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+ R(t)'E{(X — X,)h} 0 dY,

and

dP, = RE{f(X)(X - X))} + E{s} (6.7)

R(t)TVE{R?[(X — X,)? — P}] dt

1
2

+ R(t)'E{(X - X,)? - P]h} 0 dY;,

where we denote the expectation w.r.t. the approximated Gaussian density
PA(R, B either by the symbol (-) or by E{(-)}. Note that E{(-)} depends on
Y, via 5(; and PB,. Equations (6.6, 6.7) describe the MFS-G-ADF.

6.3 The GPF for a simplified system.

In order to be able to compare the Gaussian projection filter estimate 5(; to

the true state X; of the system we need to simplify our system.

The set of assumptions we require is given by:
(A) We assume f Lipschitz continuous with Lipschitz constant k.
(B1) We assume o2 uniformly bounded:

0 < b<o(z)’<B Vz €R.

(C1) We assume h bijective and C2, and |h;| uniformly bounded: there exist

two positive constants H; and Hs such that
0< H1 S |hz($)| S Hz Vx € R.
Finally we assume h,, Lipschitz continuous.

Under these assumptions one can assume h to be the identity function with-
out loss of generality. Indeed, we can define a new process &; := h(X;) which is
still a diffusion, the equation of which can be obtained via It6’s lemma. This

new system reads (h, and hg, denote the first two derivatives of h)

& = [hao(h (&) f (A1 (&) + 50(A71 () hoa (R (&))]dE
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+ ho(hTH(€))a (AT (&))dWy

dY, = &dt+dv,

so that the new function in the observations is the identity. Assumptions (A)
and (B1) still hold for this new system if we require (C1) for h. Notice that
uniform boundedness of |h,| is equivalent to Lipschitz continuity of h and A1,
via the mean—value theorem.

From now on we take h to be identity. Moreover, we shall put R(t) := 2.
The quantity € € R* represents the magnitude of the observation noise V;. We
are interested in studying the filter behaviour for small e.

This simplified system is:

dXt = f(Xt)dt—I-O'(Xt)th

dY, = X,dt+edV; (6.8)

By specializing equations (6.6, 6.7) to the system (6.8), and remembering
the Gaussian moments formulae, we obtain the MFS-G-ADF for the simplified

system:

dX, = [E{f} — 2P X )dt + L P, 0 dY;, X, = E{Xo}, (6.9)
and
AP, = RB{f(X)(X - X))} + B{o®} = £Plat, Py=Pp.  (6.10)

Note that we should put a superscript on the quantities defined above, as they
depend on €. A more complete notation in the above equations would be Y,
)ze, ]Ste, )/(ie and Pf. We shall henceforth omit such superscript, except in
Corollaries 6.5.2, 6.6.2 and Theorem 6.7.1. Notice also that the stochastic

differential equation for P; contains no noise term.

6.4 Bounds for E of the GPF

In this section we state a lemma which gives some bounds for ]St, proving
that this quantity is bounded by a constant proportional to the observation

noise €. Note that ]5t is not the true error variance, but just its approximation
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based on the arbitrary ‘Gaussian—density’ assumption. In the following treat-
ment, throughout the chapter, we shall frequently use the Bellman—Gronwall
inequality without explicitly referring to it. Moreover, the technique used here

recalls the work of Wonham [60] on Riccati differential equations.

Lemma 6.4.1 Assume (A), (B1) and (C1) are satisfied. Let ey be a positive
real number satisfying e < min(v/b/k,1). Then there exist two positive real
constants Cy (b, k), Ca(B, k) such that

Cy(b,k)e < P, < Co(B,k)e Vt> ey, Ve<e

where k is the Lipschitz constant for f. The two constants are given by

Ci(b,k) = min{Vb — ke,
Py
max[g, (Vb — keo)[1 — exp(—24/€2k? +b)]/2] }
2.2
C2(B,k) := max{2key+ B, 2Vkq + B }

1 — exp(—2+/k?€3 + B)

PROOF: We begin by proving
e<e, t>e = Ci(bK)e< ﬁt.

Compute

BUHCOC =T} = [0 - i@z, 7y (2)da
> [ = T((E) - Mo - By z, 7y (oo

= —k/(w - Xt)ZpN(ft,ﬁ)(x)dx = —kP,
where we have used the Lipschitz condition for f. Also,

B{o?) = / o(@)’pyy .50y (@) 2 b

2

where we have used assumption (B1) on ¢?. From these two inequalities we

deduce, by (6.10), the following one:
d ~ ~ 1 ~2
—P, > -2kP,+b— <P, . 6.11
dt ' = ot 2! ( )
Now define w; to be the solution of the following ordinary differential equation:

1 —~
W= —2kw+b—<w?, wy=PF. (6.12)
€
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From (6.11) and (6.12) it follows by standard differential inequality techniques
lgt > w, for all ¢ > 0. Equation (6.12) is a scalar Riccati differential equation.

Let us first solve the associated algebraic equation:
L,
—2kw +b— Zw” =0.
€

The solutions are given by

b
_ 2
wip =€ (—kF /K2 +€—2)-

Notice that w; is negative, whereas wsy is positive. Notice also that —w; >
wy > 0. The solution of (6.12) is

wy + wi N exp (—2t4/k% + %)
(6.13)

w =
1+ Nexp (—2t1/k2 + &)
where
Ne="22""0 1 |N|<1L
wp — wq

Now we distinguish between two possible cases:

(a) wp > wy. The solution w(t) is a decreasing function, which asymptoti-
cally approaches the value we as t — oo (in the particular case wg = wo

we have w; = wy Vt > 0). Hence, assuming € < €
Py > wy > ws > e(Vb — keg)
provided that the last term is positive (o < V/b/k).

(b) wy < wgp. The solution w(t) is an increasing function which asymp-
totically approaches we as t — oco. We need to examine two different

possibilities:

(b”) wo > 0. Then w(t) > wo > ewy/eg = eﬁo/eo provided that € < €,
and we are done.

(b”) wp = 0. In this case we obtain N = —wy/w; > 0 and from (6.13)
we deduce
1 —exp(—2t\/k? + b/e2)

w

14 N exp(—2t\/k? + b/e?)

P, >w(t) =

[1 — exp(—2t\/k2% + b/€?)]
2

>’LU2
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> wa[l — exp(—2€9\/ k2 + b/€e?)]/2
> wo[l — exp(—24/k2e2 +b)]/2
> e(Vb — kep)[1 — exp(—24/k2e2 + b)]/2

where we have used the previous bound found for ws, the fact that

the function is increasing, and we have assumed t > ¢y > €.

This completes the first part of the proof.

Let us show the second inequality:
e<e, t>e€ => B < Cy (B, k)e.
Exactly as in the first part of the proof one shows
E{f(X)(X — X,)} <kP,, E{o®}<B.
From these two inequalities we deduce, by (6.10):
%E < 2kP, + B — ;21%2. (6.14)
Now let z; be the solution of the differential equation:
z‘:2kz+B—€l222, 20 = Dp. (6.15)

From (6.14) and (6.15) it follows P, < z V¢ > 0. Equation (6.15) is again a

scalar Riccati equation. Let us solve the associated algebraic equation:

1
2kz+B——222:O.
€

B
_ 2
Z1p =€ (k¢\/k2+6—2)-

Notice that z; is negative, whereas zs is positive. Moreover, this time zo > —z;.

The solution of (6.15) is
20 — z1Mexp (—2t1/k? + &)

1— Mexp(—2t\/k*+ &)

Z0 — 22
M = .
Z0 — 21

The solutions are given by

z =

where

Let us distinguish again between two cases.
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(c) zp > zo. Then it is easily seen that 0 < M < 1 and the solution z(t) is a
decreasing function which approaches z; as t — co. As a consequence, if

we take t > €p, z(t) is maximized in ¢ = €, so that

t>e =P, < z(t) < z(€p)

_ zg — z1M exp(—2\/k?€} + Be} /e?)
1 — M exp(—2\/k?e% + BeZ/e?)

29 — 21 < 2\/k%¢2 + B
€
1 — exp(—2+/k?e2 + B) 1 — exp(—2+/k?e2 + B)

<

where we assumed also € < €.

(d) z0 < 2. In this final situation, z(¢) is an increasing function which
approaches zy as t — 0o, unless zp = zp (in this last case z(t) = zo Vt >

0). Hence

P, < 2(t) < 25 = e(\V/€2k2 + B + ek) < e(Vk2 + VB + k)

= ¢(2ke + VB) < €(2key + VB)
where we assumed € < €.

The proof is finished. O

6.5 Nice behaviour with small observation noise.

We are now ready to state our main result. Consider the GPF equations (6.9)
(6.10). Substitute the observation equation (6.8) in the filter equation:

— ~ 1 ~ — 1~
Xy = [E{f} — 5 P(Xi = X)ldt + — Py 0 dV;. (6.16)

Notice that the GPF itself in our case is in It6 as well as MFS form, as one can
verify immediately by defining the metastate [Z,ﬁt]T and checking with the
It6 - MFS transformation (e.g. [32] page 119). So, in order to proceed, as the
It6 integral has the good property that its expectation is zero, let us consider
the system (6.16)-(6.10) as in Itd6 form. Our aim is to study the distance
E{|X:— 3(7|2} between our original system state X; and the filter system state
X;.

Theorem 6.5.1 Assume (A), (B1) and (C1) are satisfied. There exist three
positive real constants L, (b, B,k) , €(b,B,k) and #(b, B,k) depending on the
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Lipschitz constant k of f and on the bounds b, B of 0 such that the following
bound holds

E{|X, — X’} < eL1(b, B, k), Ve<é(b,B,k), Vt> b, B, k).

PROOF: Let us begin by subtracting the filter equation (6.16) from the system
equation (6.8):

AX-X) = (%)~ B} - 5Pl - Kl

1~
+ O'(Xt)th - —Ptd‘/t. (617)
€

Think of the two noise terms as a two—dimensional noise term (still standard)

and apply It6’s lemma to the system (6.17) to compute

di(X,— X)) = {2(X,— X)[f(Xy) - E{f}
1~ =~ 5 1 x2
- 6—2Pt(Xt — X)) +o(X)? + e—th }dt

— 2 ~ ~
+ Q(Xt - Xt)O'(Xt)th - E(Xt - Xt)Ptd‘/t (618)

Now we can take unconditional expectation on both sides of (6.18), so that the

terms representing It6 integrals vanish:

dE[(X, — X;)?] = 2B{(X, — X,)[f(X,) — E{f}]}dt

1 ~2 2 — o~
+E{o(X;)?}dt + G—ZE{Pt }dt — 6—2E{(Xt — X;)?P,}dt.  (6.19)
From the Lipschitz assumption for f we obtain:

(Xe = X)(f(X0) - E{f})

<1 = Tl [ (00 = £z, 7 ()
<16 = X [ 1700 = SOy, ) (o)
<10 = | [ KX = sl ) (o)

<10 = S| [ KO0 = T+ 5= sy, 7y (9
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= KX, = o+ kX = Tl [ 1 = Bilny g, 7, (5)ds =
= 2P,

= kX, — X,J? + k| X, — X =L

Let us substitute this inequality in (6.19) to obtain:

2Pt

dE[(X; — X;)?] < 2E{k(X,— X;)* + k| X, — X} ~ Yt

+ E{o(X,)?}dt + lE{ﬁf}dt - G%E{(Xt — X,)?P,}dt.

Now, let us use the result of Lemma (6.4.1):

12Pt /202 B, k)e
which combined with

E[X, — X,[] < (B{(X, — X,)?})'/2
yields

2Pt

E{|X, - Xi| —s<

/202 E{ Xt })1/2 S
\/202 (1 + B{(X, - X)*})

where we have used the 1nequahty Va <1+a,VYa>0.
By including the o2 bounds given in assumption (B1) and using again Lemma
(6.4.1) there results

aB(% - %) < i+ 22 20 i x, - X
2k / w + B + Co(B, k)?)dt

As in the end we are interested in small €, we can assume € < 1, from which it

follows

aB[(% - %] < R0+ 228 2o mix - K+
2k+/ w + B + Co(B, k)?)dt. (6.20)
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By setting
C3(b, B, k) := 2k(1 + 7202(3’ k))
™
Cy(B, k) = (2k w + B + Co(B,k)?)

the above inequality (6.20) reads
AE[(X, - X1?) < [(Ca — 261 ) B{(X = X0} + Culd.
Let u(t) be the solution of the differential equation
i = (Cy — 201%)11 + Oy (6.21)
with initial condition u(0) = Py. Clearly
E{(X; — X,)?} < u(®). (6.22)

Let us assume € small enough so that the u coefficient on the right hand side

of the above equation is negative:
2C4
€< —.
=G

The solution of (6.21) is

) = 1Py ~ Gl e d (o =201t +
+ﬁ. (6.23)

Elementary calculations show that the exponential function appearing in (6.23)

is smaller than e if we take ¢t > t(¢), where

By differentiating t(€) w.r.t. € one sees that t(¢) is an increasing function if
e < exp[(—2C; + C3¢)/(2C1)], which is implied by € < exp(—1). Then let us
take € < exp(—1), so that t(¢) has maximum value t(exp(—1)). Hence

t > tlexp(—1)) =t >t(e) = exp[(Cs —2C, /e)] < €

604 ] + 604
(201 — 603) ¢ (201 — 603)

= U(t) < [P() —

C4

= U(t)<€[Po+m].



92 Chapter 6. Small Observation Noise

Now choose any positive real number € and the positive real number # according

to
€ < min{exp(—1),2C,/Cs,€6} ,
t = max{t(exp(—1)),€o}.
Then
t > t, e<ée = ut)<elp,
C4
L = [P+ ———
! [ o+ (201 — €C3)]
and (6.22) completes the proof. ad

From the theorem above the following corollary follows easily.

Corollary 6.5.2 Assume (A), (B1) and (C1) are satisfied. For every sequence
€n, N € IN such that 0 < €, < é(b, B, k) for alln € IN and Y>> | €, < +00 we
have
1 T v €n |2
T——f . |Xt_Xt "|dt—>0a.s.

as n — oo and for every T > t.

PROOF: From the theorem above, Chebychev inequality and the mean value

theorem for integrals we obtain

Llen

1 T ~
P{—— X, — X, 2dt > 6} <
(G [ =P sy <

for every § > 0 and we can conclude by Borel-Cantelli’s lemma. In fact
1T <
P limsup{T—E/ |X: — X, |?dt > 6} ] =0
n - t

which concludes the proof.
O

The above results ensure that the state X; of the system is well estimated

by )?tf for small observation noise €.

6.6 One—dimensional efficient GPF

Picard showed in [51] that, under suitable assumptions, there exists a one—

dimensional filter whose mean—square difference from the true state is bounded



6.6. One—dimensional efficient GPF 93

by a constant which is proportional to the magnitude of the observation noise.
In this section we show that there exists a one-dimensional GPF which is as
efficient as the two—dimensional one (6.9-6.10), in the sense that they yield the
same mean—square error bound when compared to the true state.

In this section we shall use the geometric derivation of the projection filter.
This is the only part of the chapter where we invoke geometry. We repeat the
derivation because we prefer to keep the chapter as self contained as possible,
and also to notice what happens when projecting the Duncan—Mortensen—Zakai
equation for nonlinear filtering instead of the Kushner—Stratonovich equation
given in Chapter 2.

Consider the Duncan—Mortensen—Zakai stochastic partial differential equa-
tion (DMZ) for an unnormalized version ¢;(-) of the optimal—filter density p:(-)
(where pi(z)dz := P{X; € dz|Y;}). For the system (6.8) such partial SDE in
MFS form reads

duge(x) = (£°q,)(@)dt — ya2qu(x)dt + 2q1(x) 0 Y, (6.24)

(this can be obtained for example by formula (40) page 72 of [19] with an
integration by parts). Projection of this equation results in the same filter as
in the case of projection of the Kushner—Stratonovich equation. This is due to
the fact that since we are projecting on a manifold of normalized densities, the
projection automatically takes care of the normalization step.

In order to use the Ly inner product, consider the DMZ equation for the

square root of ¢;(-):

T dt +x
() 2 2

Next, select a finite-dimensional manifold of square roots of densities to ap-

proximate the optimal filter \/p:(-). Let the family be parametrized by 6 €
© C R™, where O is open. Call such manifold S/2,

S12 = {\/p(-,0),0 € ©}.

Consider a generic curve ¢t — +/p(+,0;) on this manifold. Its tangent vector in

6, is given according to the chain rule:

dy /Qt(fﬂ) — (;*qﬂdt _ 1.2V q:(x) vV QS(fU) o dY,. (6.25)

m

a8y = Y VIO (6.26)

i=1 i
from which we see that tangent vectors in 6; to all curves lie in the linear

9v/p(-6:) 9v/p(-01)
20,

U 00, b

(tangent) space

span{
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Consider the Fisher information

~,0Vp(0) ov/p(-,0), . .
g(e)lj _4 69 ) 69 7 Zaj_la"'

where (-,-) is the inner product of Ly (see Chapter 3 for the details). Now

counsider for all 8 € © the orthogonal projection

9v/p(-61) 9 p(-,9t)}
99, .

00y,

Iy : Ly — span{

”]_ZZ‘“J v aa ael '

=1 j=1

At this point we project the DMZ equation (6.25) via this projection, obtaining
the following (m—dimensional) SDE on the manifold S'/2 :

L*p(-,0 -0 -0

) = 1 [E P00 1y g, 2 VRGO VPUED) gy
2 p('aet) 2 2

Writing the projection map explicitly and comparing with (6.26) yields the

following SDE for the parameters:

i = g [ SR 2 oy ay

_g—l(et)[/ 1 sz(ge’gf) da] dt +

—1(6,) [/ac Op(z,60:) dz] o dY;, (6.27)
o0

where integrals of vector functions are meant to be applied to their components.
As we saw in Chapter 4, the equation above can be simplified by selecting
suitable exponential manifolds involving the observation function h (identity
in our case) and its square. Such manifolds are called Si/? (involving both h
and h?) and SL/2 (involving only h). In our case the manifold SL/2 turns out to
be the Gaussian manifold (exponential with second degree polynomials in the
exponent, i.e. combinations of h = x and h? = z?) and hence the projection
filter is a GPF. This is actually the two—dimensional filter which coincides with
the MFS—G—-ADF (as seen in Chapter 5) and on which we worked so far in this
chapter. Lemma (6.4.1), Theorem (6.5.1) and Corollary (6.5.2) all concern this
filter.

Now we decide to use instead the manifold Si/Z, i.e. we involve only h = x

in the exponent of the exponential manifold. We can then fix the coefficient of
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the second degree term in the manifold (which amounts to fix the variance) by

defining

Si/Z = {Vp('ae) S R}7

p(z,0) = exp(fz — 52" — ¥(0)) = P(cs,)(2).
Notice that the smaller the noise €, the smaller the variance. The normalizing

constant ¥ (6) is given by
¥(8) = 5 log(2me) + 6.

This is clearly a one—dimensional Gaussian manifold. This case is slightly
different from the case treated in Chapter 4, since here the coefficient of z2
in the exponent is not a parameter. But all the relevant facts for exponential
manifolds seen in Chapter 3 still hold. Consider now the expectation parameter
as defined in Chapter 3 :

X(0) = %(om = €6, and notice that of course p(-,8) = PN(X’_,E)(')- The Fisher

information can be computed as in Lemma 3.3.3: ¢() := dj;ég) = €. Denote

by both Ey and Eg expectation w.r.t. the Gaussian density p(-,6). Observe
that by the well-known formulas for moments of Gaussian random variables
we have Fp{3X?(X — X)} = X. Notice that LX = f. Now we can write the
projection filter equation relative to the manifold S,. Then equation (6.27)

particularizes to

do, = %Eat{f} dt — %Gt dt + e% odY;
or, w.r.t. the expectation parameter

dX, = Ex, {f}dt— 1X, dt + L odY,.

The above SDE is valid both in the It6 and in the MFS sense. Compute by
It6’s lemma d[(X; — X;)?] and take expectation on both sides (expectations of

It6 integrals vanish):

dE{(Xt - Xt)2} = 2E{(Xt - Xt)(f(Xt) - EXt{f})}dt

2 _
- EE{(Xt — X;)?}dt + E{1 + o(X;)*}dt.
By the same arguments used in the proof of Theorem (6.5.1) and straightfor-

ward calculations we obtain the following differential inequality:

9pix - %)) < <2k+k\/§ - B - %07
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2
+ k= +1+B.
™

Starting from this last inequality, computations similar to those given in the

previous section yield the following theorem.

Theorem 6.6.1 Assume (A), (B1) and (C1) are satisfied. Choose the three
constants e(k), T'(k) and C(k) according to

(k) < min(1,7[1 + %\/g— \[1+ % % 1)
T(k) = 1/~ k (k)2 + 1) 220 )

2 e(k)

™

Cky=(1+B+k

) T (k).
The following bound holds:

E{(X, - X1)*} < [E{(Xo — X0)*} + C(K)]e,

Ve < e(k), Yt > T(k).
Finally, Corollary (6.5.2) can be easily translated for this one-dimensional filter:
Corollary 6.6.2 For every sequence €,, n € IN such that 0 < €, < €(k) for

all n and 377 | €, < +00 we have

1 /T o
—_— X, — X,|°dt — 0 a.s. 6.28

as n — oo and for every T > T(k).

6.7 Extension of the results to different mod-

els.

So far we have worked under assumptions (A), (B1) and (C1) given in the be-
ginning of the chapter. As far as the comparison true state—-GPF is concerned,
the results obtained so far can be extended to systems like (6.1) satisfying dif-
ferent assumptions. In this section we still assume (B1) to hold (62 uniformly
bounded). Moreover, we replace assumptions (A) and (C1) by (D) and (E):

(D) We assume f bounded.
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(E) We assume h bijective, h € C2, and |h,| uniformly bounded. Moreover,

we assume h2_ bounded.

In the present section we shall extend Corollary (6.6.2) to this situation. The
extension of Corollary (6.5.2) is analogous. The main change regards the drift

f- Aslong as the drift is bounded, we do not need it to be Lipschitz continuous.

Theorem 6.7.1 Assume (B1), (D) and (E) are satisfied. For every sequence
€n, n € IN such that 0 < €, <1 for alln and Y ." | €, < 400, let {& t >0},
n € IN be the sequence of stochastic processes defined by the SDEs

dgr = =L dt+ LodY ™, & = E{h(Xo)}

Then we have
T

ﬁ 1 |Xt—h71(vten)|2dt—>0 a.s.
-3 /1

as n — oo and for every T > %

Proof: We use Girsanov’s theorem to modify the state equation by changing

probability measure (see for example [25]). Fix an arbitrary T > 1 and set

hoz 02
¢ = - 9 hz )
z = —(b(Xi(;(j;(Xt)a % <t<T.

Define the new probability measure P; according to

t t
oy 1= exp{/1 2sdW, — %/1 22ds},
2

Pi(A) = /AaT(w)P(dw), AeF.

It is easy to check that under assumptions (B), (D) and (E) there results

T
E{exp[%/1 |2s|?ds]} < oo,

2
so that we can apply the measure transformation above and use Girsanov’s

theorem. Under Py, the system equation (6.1) becomes
dX; = ¢(Xy) dt + o(X,)dW/,

where dW,! := dW, —[¢(X;)— f(X;)]/o(X;)dt is a standard Brownian motion.
Now, the function ¢ has been purposefully defined in such a way that, by

applying It6’s lemma, one obtains

dh(X}) = he(X,)o(X,)dW}
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Set & := h(X}), t > 0. Rewrite (6.1) for h(X;) under P;:

A = ha(h ' (&))o(h ™1 (&))dW},
(6.29)
dY, = &dt + edV;.

Consider now the system (6.29). Notice that the diffusion coefficient of the
state equation is uniformly bounded according to assumptions (C1) and (E) :
0< HiVb< |ohy| < Hy V/B. Moreover, the observation function is the identity
function. The state equation is particularly simple, since its drift is zero. As a
consequence, the drift is trivially uniformly Lipschitz with arbitrary constant
k. Write the one-dimensional GPF for the system (6.29):

déf = —1& dt + Lo dYy, & = E{h(Xo)}.

Apply then Corollary 6.6.2 with &k — 0. We obtain
T ~
ﬁ/l & — §§"|2dt — 0, P —a.s.
-3 J1

as n — o0o. Since P; ~ P, the last result holds also P— a.s. Uniform bounded-

ness of |h;| implies that A~ is Lipschitz with constant 1/H;. Hence
| X = BTN ENI < & - & P/HY,

for all £ in [% ,T]. The theorem is proved. m|
Notice that the filter given in this last theorem does not depend on the drift

term f of the state equation.

6.8 GPF versus optimal filter

In this section we go back to the two—dimensional GPF given in equations (6.9,
6.10) and we assume (A), (B1), and (C1) to be in force. We present a theorem
dealing with the quality of the approximation obtained with the GPF with
respect to the optimal filter instead of the signal (true state). We consider the
mean-square difference E{|)/(\'t — )?t|2} between the optimal filter estimate )/(\'t
and the GPF estimate )Z't, and we average it over a time interval [{ T], T

arbitrarily large. The corresponding time average
! / ' E{|X, — X,[*}dt
T—1); t t

will be proved to be bounded by a quantity proportional to €2. More precisely,
the following theorem holds:
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Theorem 6.8.1 Assume (A), (B1) and (C1) are satisfied. Let € andt be given

according to Theorem 6.5.1. There exists a positive real number € < € such that

e<é T>F= 3t e[f,T), IMEH)eR:

S S _
- t

PROOF: Let us fix an arbitrary T' > t. From now on, unless differently spec-
ified, all time instants are meant to belong to the time interval 7 := [t, T].
We begin by defining the stochastic process ¢; := X; — )Aft. From (6.8, 6.9) one

sees that such a process satisfies the following SDE:

dey = [f(ce+Xi) — E{f}dt +

— eizﬁtctdt — %ﬁtd‘/t + O'(Xt)th. (631)

From such SDE it is clear that ¢; depends on the state of the system only via
the last term. Then let us consider an approximation of the process ¢; which
does not depend on the state X;. Define the process v; for t > t as the solution
of the following SDE:

dv = [f(v+ X)) — E{f})dt — L Pydt — LP,dV, + Q,dW,,

v o~ N(0,F) (6.32)

where we replaced o(X;) with the quantity Q; := \/E{(ﬂ} — ¢, which we can

assume well defined (see assumption (B1)), provided that e is small enough.

Now we consider the difference between ¢; and its approximation ;. Define
se = (e —m) 17(1), t>0,

where 17 is the indicator function of the set 7. Now we define an approx-
imation of the process {X;, t € T}. Since X; = X; + ¢, we define its

approximation x; based on the approximation of ¢; via 7;:
Xt = X¢ + 1.

Notice that xz|V; ~ N()A(;t-, ]55) From the SDE of )Z't, ~¢ and from the definition

of s; it follows easily that

dyi = [ FPsi+ )] dt+Qu dW. (6.33)
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The observation process y can be written as
dYy; = (s¢ +x¢) dt + € dV;. (6.34)

At this point, we consider the system with state equation (6.33) and observa-
tions (6.34). We plan to use Girsanov’s theorem to define a new probability
measure under which the SDE for x becomes linear and the s; term in equation
(6.34) vanishes. Consider the following SDE, expressing (6.33,6.34) in vector

form:

Wi
Vi

e%ﬁtst + f(xt)
Xt + St

Xt
Y;

d dt +

QtO]d
0

€

Define

—1
_ | Q 0 arxt + b
S ERI R (e

where a; and b; are two predictable processes (in particular they need to be

eizﬁtst + f(xt) ])

Xt + St

adapted: a; and b; are Jy—measurable for all ¢ > 0) which will be introduced
later. Let us denote by (; the first component of 1, i.e.

P,
G = grlaxe +be = fxe) — e—gst]

_ G
Ve = l —si/€ l '

Define the new probability measure Py on (Q, F) according to the following

so that

formula:
t Ws t
pri=expl [ ula AR
T Vs T
Py(A) := / pr(w) P(dw), Ae€F. (6.35)
A

The new probability measure Py is well defined if

T
E{exp[%/E |7 ds]} < +oo0. (6.36)

We shall prove later that this condition is satisfied. Girsanov’s theorem states

that under Py the stochastic process

0 t
Wi Wt]—/zbsds,teT
t

V't[)

Vi
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is a standard Brownian motion. Moreover, in (Q,F, Py) the process [x: Y|’
satisfies the following SDE:
b 0 wp
g Xe |2 | axe bl g | @ d| (6.37)
Y Xt 0 e vy

Now, consider this last system as a state process y; with observations Y;.
The system is linear and at time ¢ it has a Gaussian initial condition. As a
consequence, the optimal filter is described by a Gaussian density. Now, if we
project such filter onto the tangent space of a manifold of Gaussian densities
(cf. Chapter 4), the filter does not change. This implies that for this system
the GPF is equal to the optimal filter. Then the GPF yields exactly the two
quantities X? = Eo{x:|V:}, PP := Eo{(xs — XV)?|V:}, where Ey denotes
expectation w.r.t. the probability measure Fy. On the other hand, let us
derive the equations of the GPF for the system (6.37) above. This can be done
via the assumed—density principle (see Chapter 5 and Section 6.2). We obtain

dY = [ax) + b — SPIRY) dt + L5 PY o dY;
AP} = [2Bo{(awxt +b)(xi — XDV} + QF — &(P))?] dt.
Now we choose a; and b, in such a way that by substituting X = X, and

P® = P, in these last equations they become equations (6.9, 6.10). This can
be done by choosing

2B{/(x) (x = X)} +e

"o 2P,
by = E{f}-aX,
Then, from uniqueness of the solution,
L=X, P’=P. (6.38)
Now compute by Itd’s formula
dpy = G pr AWy — py S—: v, (6.39)

Let us consider the filtering problem with state equation (6.39) and observation
process Y; satisfying equation (6.8) (remember that both ¢ and s depend on
X). We compute the optimal filter for this system via formula (8.10) page 299
of [45]. There results the following filter:

dpy = £ [—mi(pe s¢) + m(Xepe) — Xt,b\t] dvy,

€
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dv, = L[dY, — X, dt],

t
Vg:Yg—/ X,ds. (6.40)
0

Kallianpur-Striebel formula and (6.38) yield

(Xepe) = Eo{si+xelVe} pe = (5 + XY) v
ﬂ't(stpt) ¥\~ ~
= B + Xu)pr = mi(se pr) + pr Xy
t

Substitution of this last result in (6.40) yields the following SDE
dﬁt = %ﬁt(ft - Xt)dl/ta
whose solution at time 7T is
T _ R T
pr = exp{1 / (Xs — X,)dvs — 55 / | X, — X,|?ds}. (6.41)
t t

Jensen’s inequality gives —logpr < —E{logpr |Yr}, from which, taking ex-
pectations,

—F{logpr} < —E{E{logpr |Yr}} which reads (remembering (6.35), (6.41)

and the fact that expectations of It6 integrals vanish)
T _ N T T
i [ B0 - RPhu <) [ Bt s [ Bl
which implies
T _ N T T
[ B0 - Sy < ([ Bk [ B, 62
t t t
Now we continue the proof with the two following facts a) and b):
a) The second integral in the above inequality satisfies the following estimate:
T
/ E{s2}du < Ly(t,T)e?, (6.43)
t

where Ls(f,T) is a positive real constant.

We begin the proof of this estimate by showing that

E{s%} < Cze,
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where C3 := Co(B, k) + L1 (b, B, k). This is immediate from
E{s{} = B{(cs — w)*} < 2B{c}} + 2E{77} < 2(Ca(B, k) + L1(b, B, k))e,

where the last two inequalities follow from the fact that vz ~ ./\/(0,]5{), from
Lemma 6.4.1 and from Theorem 6.5.1. Consider then the following SDE for
{St, t e T},

dSt = dCt—d"yt:

= [f(se+x0)— F(xo)] dt — 5P, sy dt + [0(Xy) — Q) W,

By It6’s formula

d s} 2s¢ [f(se+xe) — fxi) — }zﬁt s¢] dt

+  [0(Xy) — Q4)? dt 4 2s; [0(Xy) — Q4] dW. (6.44)

Lipschitz assumptions on f yield |f(s;+ x:) — f(xt)| < k|s:|, and by definition
of Q; we see that [0(X;) — Q] < (|lo(Xy)| + |Q¢])? < (VB + B)?, where we
used the uniform boundedness of o2. By substituting these last inequalities
in (6.44), using Lemma (6.4.1) for P, and taking expectations we obtain the
following differential inequality, which holds also for t < :

% E{s}} <2 (k— 1C5) E{s?}+ (VB +B)%. (6.45)

By using usual estimates for differential inequalities (see for example the final
part of the proof of Theorem (6.5.1)), we can easily conclude that there exists

a positive real number € < € small enough and a positive constant C4 such that
E{s?} < C4é® (6.46)

for all € < € and t € 7. If necessary, one can increase t to ensure (6.46), and

the proof still holds. Integration of this last inequality yields (6.43).

b) The first integral in the r.h.s. of inequality (6.42) behaves nicely with
respect to €, in the sense that it can be bounded by a constant independent of
€.

In order to prove this, notice that

G < Z0B{fY - FOa)| + 2 Pilsi|
(6.47)

LR - X)

}+€| ~
Xt — Xt| )-
2P, Ixe )
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Now observe that the following relations hold:
E{f(X)(X = X))} < kP
(see proof of Lemma (6.4.1));
|E{f}— FOul <k (1 X — xul +\/2 P/7) =k (|n] + /2 P/7)
(analogous to proof of Theorem (6.5.1));
e = Xil < o= Xel + | X0 = Xo| = [se] + | X0 — X

and, finally,

1/Q: <1/vVb—e€

(by definition of @; and bounds for o2).

By substituting such relations in (6.47) and using Lemma (6.4.1) again, we

obtain

G < \/bl_—e{k (|7l + /2 Cae/7)

1+ 2kCy

5C, (Ise] + | Xe — X))}

+ %02|St| +

By regrouping terms, assuming € < € and observing that in general
(@a+b+c+d)? <4(a®+ b +c® +d?) for all a,b,c,d € R, we obtain

C 1+ 2kC

T2 ML AL

8 C
2 < 2. 2 Y252~
G {k*y +27rk6+( 20,

— (-9
1+ 2kCy

el (X, — X,)%). (6.48)

+(

Now we can take expectations on both sides of the above inequality. Consider
then the four terms in the right hand side. The second one does not depend on
€, so that we do not need to consider it. The third one has a coefficient which
is partly divided by €?; however, since this coefficient is multiplied by E{s?},
the relation (6.46) ensures that such central term behaves nicely w.r.t. small
€. For the first term, the e depending part is E{y?}. Observe that for t € 7

and € < € we have
E{v?} = E{(c; — 51)?} <2 E{c?} + 2 E{s?} < 2eL; + 2C,é?,

where we used again (6.46) and Theorem (6.5.1). This last inequality shows
that the first term in the right hand side of (6.48) behaves nicely for small e.

Finally, the last term behaves nicely as a consequence of Theorem (6.5.1).
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Then we completed the proof of b).

By using facts a) and b) we obtain the result (6.30) stated in the theorem
via (6.42).

There remains only to prove that condition (6.36) is satisfied under assump-
tions (A), (B1) and (C1).
We begin by noticing that

T T _F
Blexply [ Pay < 5 [ Blexolt S s

(this can be proved by using Jensen inequality when we look at functions of time
as if they were random variables on the probability space (7, By, Ar/(T —t)),
where B is the Borel field of 7 and Ar is the Lebesgue measure on 7; in
this picture the integral w.r.t time is just the expectation). Hence we shall try
to find bounds for the integral in the r.h.s. of this last inequality. From the
definition of 1, from the mean value theorem for integrals and from Schwartz

inequality we deduce

1 T T-t s2
7 [ Blew Pl < Blew{(T - D} Bfexol(T - D)
I
where 7 is a suitable time instant in 7. We shall prove that
2
s
Bexp[(T ~ D21} < o0, Blexp[(T— 1)L} < o0 (6.49)

for all t € T. Now we use (6.48), which actually holds independently of (6.36),

so that no circularity is present in the proof. Set for simplicity

Cy 2~ 1+ 2kC,
= 2—k = —_—
05 o €, CG 201 )
e O 9 8
C7-—(€ +Ce)”, Cs := (b—é)(T t).

The superscript in C¥ is used to indicate explicitly that this constant depends
on €. The first condition in (6.49) reads

E{exp[Cg(k*y2 4+ Cs + Cis? + Cg(Xt — )?t)2)]} < 00

for all t of 7. Iterated applications of Schwartz’s inequality yield the following

set of sufficient conditions for the above inequality to hold:

E{exp[4Csk?77]} < 0o,  E{exp[4CsC5s?]} < 0o,  E{exp[2CsCaci]} < .
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By a last application of Schwartz’s inequality and noticing that s? < 2(c? +~7)

we obtain the following set of sufficient conditions for (6.49):

E{explucc?]} < 00, E{explucfl} < oo, (6.50)

pe := max(4Cgk?,2C3CZ, 16C5C5),

forallt e 7.

Now we prove that conditions (6.50) are satisfied. In order to do so, we can
reason as in Theorem (4.7) page 137 of [45]. Both the equations (6.31) for ¢,
and (6.32) for v; satisfy conditions (4.139) of page 138 of [45]: Boundedness of

the diffusion coefficients is immediate, whereas the drift parts satisfy

(Fle = BUA? < 2k(y/ 225 1 ),

and a similar inequality holds for 7, (these are proven analogously to the proof
of Theorem 6.5.1). The proof of the theorem is finally concluded. O




Chapter 7

Stochastic Differential
Equations with
Finite—Dimensional

Density

Hatred is never stilled through hatred in this world; by mon-hatred
alone is hatred stilled. This is the Eternal Law

Dhammapada 1.5

7.1 Introduction

In the present chapter we consider the following problem: Is it possible to
maintain the dimension of the density—evolution of a diffusion process stilled?

This chapter can be interesting also to readers who are not too interested
in nonlinear filtering. It treats problems related to stochastic differential equa-
tions (SDE’s) with densities evolving in finite-dimensional exponential fami-
lies. We consider also the possibility of projecting the density of the solution
of a SDE onto a finite—dimensional exponential manifold of densities. Readers
interested in filtering will find a way to construct nonlinear—finite-dimensional—
exponential optimal filters in the last section of the chapter.

We begin the chapter by solving a first problem: Given a diffusion coefficient
and an exponential family, we characterize the SDE’s with the given diffusion

coefficient whose densities evolve regularly in the given exponential family. This

107
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fact leads to the following result: Given an arbitrary diffusion coefficient and
an arbitrary exponential family, one can always define a drift such that the
density of the resulting diffusion process evolves in the prescribed exponential
manifold. In particular, given arbitrary nonlinear diffusion coefficients, one
can define drifts in such a way that the resulting densities evolve in a Gaussian
manifold. This gives rise to a wide class of nonlinear diffusion processes with

Gaussian density.

We then turn to the problem of projecting the Fokker—Planck equation onto
an exponential family. Here we shall allow once again a little redundancy so as
to keep the chapter as self contained as possible. In particular, notice that a
short and informal account on the projection in Fisher metric of the density of
a diffusion process onto a finite—dimensional manifold of densities was already
given in Chapter 4, Section 4.2. Here we expand that introduction specializing
it to exponential families. We saw in Chapter 2 that the solution of the filtering
problem is a Stochastic PDE which can be seen as a generalization of the
Fokker—Planck equation (FPE) expressing the density of a diffusion process.
This equation is called the Kushner—Stratonovich equation (KSE). In Chapter
4, Section 4.4, the Fisher metric was used to project the Kushner—Stratonovich
equation onto an exponential manifold of probability densities. This method
can be used also for the simpler FPE. In the present chapter we consider the
projection in Fisher metric of the density evolution of a diffusion process onto
an exponential manifold. Such projection is obtained via the projected FPE.
We examine the projected evolution and interpret it as the density evolution

of a different diffusion process via the previous result.

We continue by presenting some examples which show how this theory can
be used to construct nonlinear SDE’s with prescribed (possibly stationary)

exponential densities.
An application of the results to mathematical finance is briefly discussed.

Moreover we show that for some particular models convergence of the orig-
inal density towards an invariant distribution implies existence of a finite—
dimensional exponential family for which the projected density converges to

the same distribution.

We conclude the chapter with an application to nonlinear filtering. We use
the results derived for diffusion processes to derive existence results for filtering
problems. Problems concerning finite dimensionality of filters for nonlinear
systems have been studied in the past by several authors. In some of these works
it was stressed the importance of exponential families. This holds especially
for discrete-time systems: See for example Sawitzki (1981) [56]. Runggaldier
and Spizzichino (1997) studied finite dimensionality of filters from a Bayesian
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point of view in [55]. The effects of a non-Gaussian initial condition have been
studied by Makowski (1986) [46], and by Sowers and Makowski (1992) [58].
The reader interested in finite dimensionality of filters for nonlinear systems in
discrete time can also check [20]. The reference [5] is also of possible interest.
Some examples of finite dimensional filters for nonlinear systems are given by
Frost (1971) in [26].

Problems on finite dimensionality of nonlinear filters in continuous time
have been studied in the past with Lie—algebraic criterions, see for example
Hazewinkel, Marcus and Sussmann (1983) [30], Chaleyat—Maurel and Michel
(1984) [18], Ocone and Pardoux (1989) [50], Lévine (1991) [44]. In the present
section we treat nonlinear filtering problems with discrete time observations, as
in Chapter 4 Section 4.5.2. As usual, in order to keep the chapter as self con-
tained as possible, we shall present some facts already given in Chapter 4. Our
result shows that given a prescribed (possibly nonlinear) diffusion coefficient
for the state equation, a prescribed (possibly nonlinear) observation function
and a partially prescribed exponential family, one can define a drift for the
state equation such that the resulting nonlinear filtering problem has a solu-
tion which is finite dimensional and which stays on the prescribed exponential
family.

The material presented in this chapter has partly appeared in Brigo [9]. A
related treatment with a deeper geometrical approach can be found in Brigo
and Pistone [17]. The application to filtering with continuous time observations

is under development.

7.2 Stochastic differential equations and expo-

nential families

In this section we consider the following problem: Given a scalar diffusion co-
efficient and an exponential manifold of densities, find drifts such that the
resulting scalar stochastic differential equations (SDE’s) have densities evolv-
ing in the prescribed exponential family. This problem has a straightforward
solution.

Let us first establish the appropriate framework. On the complete probability
space (2, F, P) let us consider a stochastic process {X;,t > 0} of diffusion type.
Let the dynamic equation describing X be of the following form

dXt = ft(Xt)dt + O't(Xt)th, X[),

where {IW;,t > 0} is a standard Brownian motion independent of the initial

condition Xy. The equation above is an It6 stochastic differential equation. In
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the following derivation we treat the scalar case. Consider the following set of

assumptions.

(O) The initial state X has a density py w.r.t. the Lebesgue measure on R,

and has finite moments of any order. Moreover, po(z) > 0 for all z € R.

(A) We make the following assumptions on the coefficients f;, a; := o2
f e CH0 a e C?° which means that f is once continuously differentiable
wrt  and continuous wrt ¢t and a is twice continuously differentiable wrt
x and continuous wrt . We assume also local Lipschitz continuity in z
uniformly in ¢ : for all R > 0, there exists Kr > 0 such that

| fi(x) — ft(»’C’)| < Kpglz — fC’|a

las(z) — ar(a)|| < Kg|z —a'|
for all t > 0, and for all z,z’ € Bg, the ball of radius R.
(B) Non-explosion : there exists K > 0 such that
20 fu(w) + ar(w) < K (1+af*),
for all ¢ > 0, and for all z € R.

Under assumptions (O), (A) and (B), there exists a unique solution {X;, ¢ > 0}
to the state equation, see Stroock and Varadhan (1979) [59], Theorem 10.2.1
with ¢(z,t) = z2.

Under additional assumptions on the coefficients the density of X; is ab-
solutely continuous with respect to the Lebesgue measure, and its density
pi(z)dz ;= P[X, € dx] satisfies the Fokker-Planck equation:

Op .
8_tt = Etpt,
o . 02
Ly = fi S + 205 5>
. 0 o?
Lip = —%(ftp) + %w(atp)-

Assumptions under which this happens are related to boundedness of the co-
efficients f, a and of their partial derivatives plus uniform ellipticity of a;, see
[59] Theorem 9.1.9 or [25] Theorem 6.4.7. In order to operate in a functional—
space framework, we rewrite the Fokker—Planck equation as an equation in Ls.
In order to do so, we need to require p;(z) > 0 for all #,¢. This can be ob-

tained by the maximum principle applied to the Fokker-Planck equation in the
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case of elliptic coefficient a and bounded coefficients described above. Rewrite

Fokker—Planck equation for the square root of p;:

Oyvpe _ Lip
ot 2Pt

Next, select a finite—dimensional manifold of square roots of exponential den-

(7.1)

sities to approximate ,/p;. The definition of exponential family is given in
Chapter 3, Section 3.3. See also Remark 3.3.2. Remember that in our case n,
i.e. the dimension of the state space, amounts to one. In this chapter we shall
denote by EM(c) the exponential family whose exponent functions are given
by the function ¢ : R — R™. We shall assume the following throughout the
chapter:

(C) the exponent functions ¢y, ..., ¢, have at most polynomial growth and are

twice continuously differentiable.

Under this assumption we can always add terms in the exponent to make the
family integrable when it is not integrable, obtaining the exponential family

EM(c), as in Remark 3.3.2. Consider the set

EM(c)*/? = {\/p(-.0),0 € ©} C Ly

of square roots of densities of EM(c). The map /p(-,0) — 6 can be seen as
a coordinate system that gives a manifold structure to EM (c)'/? (see Section
3.1 of Chapter 3 for the details). Now consider a generic curve t — /p(-,6;)

on Ly. We consider the following problem.

Problem 7.2.1 Let be given a diffusion coefficient a;(-) := o2(-), t > 0, satis-
fying assumptions (A) and (B) when f = 0. Let be given an exponential family
EM/(c) satisfying (C). Characterize the SDE’s whose initial condition Xy sat-
isfies (0), and whose densities evolve reqularly in the given family EM/c).

Remark 7.2.2 Problem 7.2.1 is an extension of a problem of probability and

of stochastic processes:

(i) Which nonlinear functions of Gaussian random variables have a Gaussian

distribution ?
(i) Which nonlinear functions of Gaussian processes are Gaussian processes?

These problems are motivated by the filtering problem.

The solution of this problem is given by the following



112Chapter 7. Stochastic Differential Equations with Finite—Dimensional Density

Theorem 7.2.3 (Solution of Problem 7.2.1) Assumptions of Problem 7.2.1

in force. Consider the stochastic differential equations

dY;ﬁ = ut(y;f)dt + O't(th)th, Y[) = XO;
(7.2)
Oa Oc
u(z) = %a—g(w) + %at(fﬂ)etTa(fﬂ) +

67 [ (clw) = Boe) expl6] () — c(a)
with t — 0, describing C'—curves in the parameter space ©.

Then the SDE’s (7.2) (considered for all possible regular curves t — 6;)
solve Problem 7.2.1. Hence the density of Y; evolves in the prescribed family of
exponential densities EM (c).

Proof : Consider an arbitrary (regular) Lo—curve ¢t — +/p(:,0;) evolving in
EM(c)'/?. Define a diffusion

dYy = uy(Yy)dt + oy (Yy)dW,, Yo = X, (7.3)

with the given diffusion coefficient a. We shall define drifts u such that the
density of Y; coincides with the given p(+,6;). Let 7; be the backward differential

operator of Y;:

0 o2
T =u— +

1
la,—.
Ox 2 " 0x2

Clearly, the density of Y; coincides with p(-, ;) if

8])(, Ht)

Top(,00) = L2,

for all ¢ > 0, which we can rewrite (by the chain rule) as
T*p('agt) = gtT [C() - EgtC] p('agt)a

for all £ > 0. By simple calculations one can rewrite the above equation as the
following differential equation for u, where we do not expand the second partial

derivative of a;p(-,6):

Ouy T Oc 1 92

oz t %U = m@(atp(-ﬁt)) - étT [c(:) — Eg,c] = Bt,f)t(')-

The solution is unique by standard theory of linear differential equations and

is given by

w(z) = expl-07e(@)] [ Bua,ly) exolo ey
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as one can verify immediately by substitution. Straightforward calculations

yield

w(z) = :—(z) + %at(x)HT—x(x) + (7.4)

a

Example 7.2.4 An arbitrage—theory interpretation of the solution of Prob-
lem 7.2.1

In this example we apply the result stated in Theorem 7.2.3 to mathemati-
cal finance. More precisely, we consider an application to arbitrage theory in
continuous time. Suppose we are given a price process {By;,t € [0 T} for a

risk—free asset and a price process {S;,t € [0 T} for a stock, such as

dBt = 'I“tBtdt, B(],

dS; = Sy fi(Sy)dt+ Sy 04(Se)dWy, Sy,

and a simple contingent claim Z = ¢(St). It is known that the pricing equation,
i.e. the PDE which determines the price II;(Z) = F(t, S;) at any time ¢ of the

derivative related to Z, is given by

OF +r,s O,F +%s’0; 02, F—r, F=0, F(T,)=¢,

and does not depend on f; (short term rate of return) but only on oy (volatility)
(see for example Duffie (1988) [21] for the case of constant coefficients whose
generalization is straightforward, or Karatzas (1989) [35]). ). This means that
the pricing of Z will be based only on the diffusion coefficient (volatility) oy so
that we can replace f; as we wish and the pricing of the derivative remains the
same. According to Theorem 7.2.3, we can choose f; = u; such that the stock
price process S has a density evolving in an exponential family EM (c) selected
a priori (for example Gaussian). This implies that, as for the pricing aspect,
it is not restrictive to assume that a stock-price has an exponential density
assigned a priori. The possible implications of this result will be examined in
future research work.

Problem 7.2.1 admits a somehow dual problem that one might find interest-
ing.
Problem 7.2.5 Let be given a finite dimensional class of SDE’s. Character-

1ze those families of exponential densities which satisfy the following property:



114Chapter 7. Stochastic Differential Equations with Finite—Dimensional Density

There exists a SDE in the given class whose density evolves in the selected

exponential family.

If the class of SDE’s has the property that all SDE’s share the same diffusion
coefficient, then the exponential families EM (¢) are part of the solution of
Problem 7.2.5, but there might be other families solving the problem. This

matter will be investigated in future research work.

7.3 Projected density—evolution of a diffusion

process

At this point we introduce the geometric structure which permits to project
the Fokker—Planck equation onto a finite—-dimensional manifold of densities.

As in the previous section, we rewrite the Fokker—Planck equation as an
equation in Ls. In order to do so, we require again p;(z) > 0 for all z,t.
This can be obtained by the maximum principle applied to the Fokker-Planck
equation in the case of elliptic coefficient a and bounded coefficients described in
the preceding section. The exponential family EM(c) is also chosen according
to the framework of the previous section.

Now consider a generic curve ¢ — \/m on Ly. Its tangent vector in 6,

is given according to the chain rule:

d < 8\/ p('aet) ;@

= p(-.0,) = v Vg 7.5
dt p(7 t) ; a0, t ( )
from which we see that tangent vectors in ; to all curves lie in the linear
(tangent) space

p('agt) 0 p(agt)}
891 ey 89m .

0
span{
Recall the following quantity

\/p(" 9) 3\/p(-, 9)
09; ’ 00;

0 .
g(g)lj = 4( >7 ] = 17-'-7m7

where (-,-) is the inner product of Ly. By straightforward computations,

dlogp(:,0) dlogp(-,0) .
9:(6) = Eo{ —5 - 2o} hi=1..m,
? J

where Ep{¢} := [ ¢(x)p(x,0)dz, so that g() is the Fisher information intro-
duced in Chapter 3.1.
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Now recall the orthogonal projection defined for all € © by

Ha:L2—>span{8 gé:et),...,a ;)e(l’at)} (7.6)
= D13 g(6) (v, R VD

i=1 j=1

Now we have all the ingredients needed to state the following

Theorem 7.3.1 (Projected density—evolution of an It6 diffusion.) Con-

sider the assumption

(D) Eg{aj,} < oo ¥9€O, Vt>0,
b o 207 + 0y (7 +
v o2l D gry, T

Assume assumptions (0), (A), (B), (C) and (D) on the inital value X,
and coefficients f,a of the Ité diffusion X and on the exponent functions ¢ of
the exponential family EM (c) are satisfied. Assume po(-) = p(-,600) € EM(c).
Then the projection of the Fokker—Planck equation describing the local evolution
of p1 = px, onto EM(c)'/? reads, in Ly local coordinates:

% V(- 0:) = Eg, {Ls c}T g7 (0) [e(-) — Eq, et , Vp(00) = Vo)

and the differential equation describing the local evolution of the parameters for

the projected density—evolution is
b, =g '(6:) Eo,{Ls c}, bo.

Proof : We project the FPE equation (7.1) for /p; via the projections (7.6),
and we obtain the following (m—dimensional) differential equation on the man-
ifold EM (c) :

9 ‘Czp(a et)

p('aat) = H0 [

o S = p(-,9t)]. (7.7)

Writing the projection map explicitly and comparing with (7.5) yields the fol-
lowing differential equation for the parameters:

) — ‘C*p(xagt) 6p(z70t)
6, =g (0 ¢ d
t g ( t) / p(CC,at) 90 T,

(7.8)
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where integrals of vector functions are meant to be applied to their components.

Notice that in deriving this last equation we did not take in account the
specific structure of densities in EM(c). The reasoning given so far holds (but
only formally) for any finite-dimensional family of densities, provided densities
are regular enough. If we ask for this last equation to hold not only in a formal

sense, we need to ensure

‘C;‘,kp(a et)
2\/ p('a et)

so that the projection defined in Ly can act and transform FPE (7.1) on Lo

S Lz, (79)

into equation (7.7) on the manifold EM (c)*/2. In the following we consider
condition (7.9) when dealing with an exponential family EM (c).

In order to proceed, we keep in mind the results about exponential families
given in Lemma 3.3.3. Let us specialize equations (7.7) and (7.8) to EM(c) via
Lemma 3.3.3 and let us make sure that they hold not only formally. By using

also duality £; — £} we obtain

%vp(-,ﬂt) :Pt,gtm, (710)

2

Pt,Gt = Eet{ﬁt C}T gil(et) [C() - Egtc],
and
0, = 9" (6) Eg,{L: c}. (7.11)

Equation (7.10) (and consequently equation (7.11)) is well defined as projection
of an Ly equation and admits locally a unique solution if condition (7.9) is

satisfied. Condition (7.9) can be rewritten as

Eg{af,g} < oo, V8 EO, Vi>D0.

We conclude this section with the following remarks.

Remark 7.3.2 An example of sufficient conditions under which (D) holds is

the following. Assume

(D1) The functions f;, Onfi, ai, Ozay, 02, ay, Orc, 02 c have at most polyno-

mial growth.

Under this assumption one can add some new functions c in the exponent and
obtain a family satisfying (D), in the spirit of Remark 3.5.2

Remark 7.3.3 Ezistence of a local solution of the projected equation (7.10)

does not require existence of the solution of the original FPE.
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This remark points out that the projected equation may have a solution even
when the original FPE has no solution. Actually, consider assumptions (O),
(A), (B), (C) and (D1). They ensure existence of the solution of the projected
equation, but they do not ensure existence of a solution for the original FPE.
For example, f; can be unbounded, or a; can be not uniformly elliptic, etc. This
means that in some cases our projected density p(-,6;) represents an absolutely
continuous — finite—dimensional approximation of the marginal law of X; which

is not absolutely continuous.

7.4 Interpretation of the projected equation

Consider the projected density evolution p(-,6;), expressing the projection in
Fisher metric of the density evolution of the one—dimensional diffusion X onto

the exponential manifold EM (c¢). Consider the following problem.

Problem 7.4.1 Let be given a diffusion coefficient a,(-) := a2(:), t >0 and
a drift fi(-), t >0 satisfying assumptions (A) and (B). Consider the SDE

dXt = ft(Xt)dt + O't(Xt)th, X(),

where X¢ satisfies (O). Let be given an exponential family EM (c) satisfying
(C). Characterize the SDE’s whose initial condition is Xo, whose diffusion
coefficient is a, and whose density evolutions coincide with the projected density
evolution of X onto EM(c) given by Theorem 7.3.1.

This is just a particular case of Problem 7.2.1, where the curve t — #; is
not arbitrarily chosen but comes from a projection. We can then translate

Theorem 7.2.3 for this problem and write the following

Theorem 7.4.2 (Interpretation of the projected density evolution.)
Assume assumptions (0), (A), (B), (C) and (D) on the initial value Xy and
the coefficients f,a of the It6 diffusion X and on the exponent functions c of the
exponential family EM (c) are satisfied. Assume po(-) = p(+,00) € EM(c). Let
p(-,0:) be the projected density evolution, according to Theorem 7.3.1. Define

W = w(Vdt+ o (Y)W, Yo = Xo,
" da Oc
uj(z) = %8—;(@') + %at(x)efg(x)

(7.12)

T

—Eet{ﬁtC}Tgfl(Ht)/ (c(y) — Bo,c) expl8] (c(y) — c(x))]dy.

— 00
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Then Y is the Ité diffusion whose density evolves according to the projected
evolution p(-,0;) of X; onto EM(c).

Proof: Combine Theorem 7.2.3 and Theorem 7.3.1. O
Note that the differential equation for u and its solution can be written in

terms of the projection as

ou Oc 1 1 &
T QtT—ut: ~ 5 \at '70t
gz D \/p(.,gt){Q\/p(.,gt)GwZ( P o)
1 62
T3 73 e 8
+1I, [ LUl 0)

p(‘,gt) 8x ]}7
and
1

. C1 e
ut(w) - p(',gt) /w{2m6$2( t(y)p(yaet))

1 ?
—II,, [mw(at(')ﬂ', 0:)1(y)

i, [ L UL B)y s ST ay
p(-,gt) oz

Note that the integral appearing in equation (7.12) is well defined under as-

sumption (D) and under the assumption that densities of EM (¢) are integrable.

7.5 A simple convergence result

We shall show that in the particular case where we select a constant diffusion
coefficient, convergence of the density of the original process X implies exis-
tence of at least an exponential family such that the projected density p(-,0)
converges towards the same stationary distribution, no matter how we choose

6p. Assume then oy(z) =1 for all z,¢. We have the following

Theorem 7.5.1 (Global stability of the projected evolution) Assume
that the diffusion process

dX, = f(X})dt +dW,, X,

satisfies assumption (O), (A), (B) with f having at most polynomial growth and

nonzero in a set with positive Lebesque measure. Let F' be a primitive of f and
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assume that the conditions under which p o exp[2F] is the unique stationary

density of X are satisfied. Assume

/f(:c)4 exp(2F (z))dz < oo, /(8If)2(:c)exp(2F(:c))d:c < 0.
Then :
(i) There exists an exponential family EM (c) such that p € EM(c), and

(i) the projected density p(-,0;) for EM(c) given by Theorem 7.8.1 converges
towards p for all possible initial 8y € ©O.

Proof : Set
clx) = f(z)dz =: 2F (x

and consider the exponential family EM(¢). It is easy to verify that under
our assumptions ¢ satisfies assumptions (C) and (D). It is a classical result on
stationary distributions for diffusion processes that p o exp[lé] (see for example
Kontorovich and Lyandres (1995) [39]).

It is also known that under our assumptions this stationary density is unique.
The fact that exp[c] is a stationary distribution can be verified immediately:
Straightforward computations yield £* exp[¢] = 0. Consider now the projected
density evolution p(-,8;) onto EM(¢). Notice that p = p(-,0), 6 = 1. The
ODE describing the evolution of 6; is, by Theorem 7.3.1,

6; = g7 (6;) E,, [£: ). (7.13)
Notice that

Ez[Ly ] = /(Eté)(:c)p(w,é)dw x /é(cc)ﬁf exp(é(z))dz = 0,

so that @ is an equilibrium point for the equation of #;. Now we prove that this
equilibrium is unique and stable. From £;é = 2f2+ 0, f;, by a quick integration

by parts we obtain
Ey[L, €] =2[0 — 0] /ft(z)Zp(z,G)dz,

so that, by examining the right—hand side of (7.13) one sees that (since f is
nonzero in a set with positive Lebesgue measure) 6; strictly increases for ; < 6
and strictly decreases for §; > A. Moreover, the equilibrium point 8 is clearly
unique since the right—hand side of (7.13) is nonzero for any # different from
§. Then @ is the unique globally stable equilibrium point and the proof is

complete. O
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7.6 Examples

In this section we consider some simple applications of the above theory which
lead to nonlinear SDE’s whose solutions have Gaussian densities. We shall also

consider cases where this Gaussian density is stationary.

7.6.1 The case of a one dimensional zero-mean Gaussian

manifold

Consider the one-dimensional exponential manifold EM (z2). Its densities are

[—6
p(-,0) = — exp[fz?], # < 0.

These are Gaussian densities whose mean is zero and whose variance is —1/(26).

given by

Take f; identically zero, and notice that £L;c = a;. Moreover, the inverse of the
Fisher metric is, in this case, g~ 1(6) = 262. The projected density is described
by the solution of the ODE

ét = QQ?Egt{at}.

By applying the previously found formula (7.12) to this problem we obtain

ui(z) = %%(m) + [a¢(z) — Ep,a¢]zb;.
Consider now the particular case of a monomial as diffusion coefficient: o;(z) :=
z* k positive integer. This coefficient does not satisfy assumptions on linear
growth ensuring non—explosion. Yet, we proceed anyway and we shall see that
the projected parameter reaches the forbidden value 8 = 0 in a finite time.
This is the same as saying that the varinace in the projected Gaussian density—
evolution explodes in a finite time.

After simple computations, one finds the following result: Consider the SDE

dY, = uy(Y3)dt + YEdW,,

2!
2h=1 4 [ 2k (2k)

uy(y) = ky - m] y 04,

1

0, = (1) O + (—1)*(2k)1N(k — 1)27F ) 7=T

24 g5
t< —— 90
(k — 1)(2k)"!

1
¥y~ A0, = 50-), B0 <0,
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where (2k)!! is the product of all integer odd numbers preceding 2k. This

diffusion has Gaussian density

1
Y, ~ ——).
t N(Oa 20t)

7.6.2 The case of a one dimensional unit-variance Gaus-

sian Manifold

Consider the one-dimensional exponential manifold

EM(x) given by the following densities:

1
p(-,0) = ‘/%exp[ﬁx - %xQ - %02], 6 € R.

These are Gaussian densities whose mean is # and whose variance is 1. Notice
that the term —%wZ in the exponent defines a reference measure different from
the Lebesgue measure. No modification is necessary for the projected Fokker—
Planck equation. Notice that L;z = f;. Moreover, the inverse of the Fisher
metric is g~'(f) = 1 and does not depend on 6. The projected density is

described by the solution of the ODE
ét = Eat {ft}

By applying the previously found formula (7.12) with slight modifications due

to the fixed term —%z2 in the exponent of the exponential family we obtain,

after straightforward computations:

wi(@) = 9 (2) + Say(@)6 — 2] + Fo, Lfi)

Now, according to the choice of f;, one can obtain different results.

The case f; = 0. Then the projected equation becomes 6, = 0 and hence
0, = 6y for all £ > 0. The corresponding drift is

i (@) 2= $ 9% ) 4 ()l — a].

The SDE
dY; = uy(Yy)dt + o (V)dW, Yo ~ N (o, 1),

has stationary density Y; ~ N'(6y, 1) for all possible choices of o;. Here the

mean in the Gaussian manifold remains constant.
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The case f; = k for all ¢ > 0. Then the projected equation becomes 6, =k
and hence 6; = 6y + kt for all t > 0. The corresponding drift is

8
wl(z) == %84‘:‘;(93) + Lay(a)[00 + kt — ] + k.

The SDE
dY; = uy (Yy)dt + o (Y)dW, Yy ~ N (6, 1),

has density Y; ~ N (6 +kt, 1) for all possible o;. Here the mean in the Gaussian

manifold evolves linearly in time.

The case f;(z) =z for all t > 0 and = € R. Then the projected equation
becomes ét = 6, and hence 0; = 0y exp(t) for all t > 0. The corresponding drift
is

uy(z) = l%(x) + 2a.(z)[0 exp(t) — x| + O exp(t).

2 9z
Then the SDE
dY; = uy(Yy)dt + o (V)dWy Yo ~ N (9, 1),

has density Y; ~ N(fpexp(t),1) for all possible o;. Here the mean in the

Gaussian manifold evolves exponentially in time.

7.6.3 SDEs with densities evolving in EM (z*)

Consider the exponential family EM (z*). For this family, we have
2
f)=p o'/t —0z*), >0, pi= .
In this case () = —(log)/4 — log p, Ep[z*] = —1/(40), and g(0) = 1/(46?).
Let us consider an arbitrary diffusion coefficient a, and take a drift f defined

ad hoc according to
. 3ay(z) b
fula) = 2z 57
such that Ey{L,z*} = 46, which causes equation (7.11) to become 6, = 1. As

a consequence, #; = 6y 4+t and, according to Theorem 7.4.2, if we set

wiz) = ga‘gf) — 2a(z) (6y + 1) 2°
—exp|(6y + t)z4] /_I (—y* + m) exp[—(fo + t)y4]dy ,

we obtain that the SDE
AY; = u} (Y)dt + oo(Y))dW,, Yo ~ p 05/* exp(—6pz?),

has density Y; ~ p (6p +t)*/* exp[—(6y + t)z*] for all possible ;.
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7.6.4 SDE’s with prescribed diffusion coefficient and with

prescribed stationary exponential density

In this section we focus on the following problem. Assume we are given a one
dimensional family of exponential densities EM (c), where c is a suitable scalar
function. Consider again the diffusion process X with drift f; and diffusion

coefficient o;. Suppose we select a drift f; such that

de ¢
Lic=fi— + Lta,— =0Vt >0.
te=f py + 2453 Z
This happens if we take

8%

fi = _Ltar

T Oc
252

provided the denominator is non-zero almost everywhere. If this happens, of
course

0, =g (6:) Eg,{Ls c} =0, Vt >0,
so that the projected density is
p(-,6;) = p(-,80) ¥t > 0.

The formula for u} specializes to

. da dc
ui(e) = $ 5 (@) + bau()o o (@)

So we conclude the following: under suitable regularity and growth assumptions
on the functions ¢ and oy, the SDE

0
dy, =1 ;t

Oc
_:c(Yt)dt + %at(}/t)g()%(n)dt + 0y (Yy)dW,
Py, (I) = eXp[000($) - ¢(90)],
has stationary density

py,(z) = explfoc(z) — ¥(fo)], YVt >0

for all possible oy.

7.7 Application to filtering

In this section we present an application to nonlinear filtering. We shall consider
the filtering problem with continuous time state and discrete time observations

(see Chapter 4, Section 4.5.2). We shall consider an unobserved process X
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and a related discrete time measurement process Z. The state and observation

equations will be modeled according to

dXt = ft(Xt)dt + O't(Xt) th,

Zn = h(Xy,)+ V.

We shall assume Xy, f and a; = o} to satisfy assumptions (O), (A) and (B).

We shall also assume the following on the observation function h:

(E) h and h? are linearly independent. They satisfy assumption (C) and
assumption (D) when chosen as ¢ functions (after the possible addition

of a new term in the spirit of remark 3.3.2 of Chapter 3).

In this model only discrete-time observations are available, at time instants
0=ty <t <-+<tp<---,and {V,,n > 0} is a standard Gaussian white
noise sequence independent of {X;, ¢ > 0}.

The nonlinear filtering problem consists in finding the conditional density
pn(x) of the state X, given the observations up to time ¢,, i.e. such that
P[X,, € dz | Z,] = pn(z)dz, where Z, := 0(Zy, -+, Zn). We define also the
prediction conditional density p;, (z)dz = P[X;, € dx | Z,—1]. The sequence
{pn, n > 0} satisfies a recurrent equation, and the transition from p,_1 to p,

is decomposed in two steps, as explained in [32], [47] :

Prediction step Between time ¢, 1 and t,, we solve the Fokker—Planck
equation
opy'

ot = ‘C:p? ) p;ln71 = Pn—-1 -

The solution at final time ¢,, defines the prediction conditional density p,; = p}’ .

Correction step At time %, the observation Z,, is combined with the pre-

diction conditional density p,, via the Bayes rule

Pu(z) o< Un(2) pp, (2) (7.14)

modulo a normalizing constant, and ¥, (z) denotes the likelihood function for

the estimation of X, based on the observation Z,, only, i.e.
U, (z) :==exp{ — 3|Z, — h(z)]* } . (7.15)

Select an exponential family EM (c*) where ¢® satisfies:
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(F)

(@) = hlx),

cs(x) = (),

and the remaining components of ¢®* are chosen arbitrarily in such a
way that ¢*® satisfies assumptions (C) and (D) (¢} and c3 satisfy the

assumptions because of assumption (E)).

If we use the exponential family EM (c*) defined above, then we obtain the
projection filter (see Chapter 4) density p(+,6,,), and the transition from 6,,_;

to 6, is also decomposed in two steps :

Prediction step Between time ¢, 1 and t,, we solve the ODE coming from

the projection of the Fokker—Planck equation:

Oy = g(07) " Eop{Lic"}, 0 =0n_1.

n—1

The solution at final time ¢, defines the prediction parameters 6, = 67 .

Correction step Substituting the approximation p(-, 8, ) into formula (7.14),
we observe that the resulting density does not leave the exponential family
EM/(c*). Indeed, it follows from (7.15) that

U, (z) exp{ — L h(z)* +h(x)Z, - L 22 }

= oxp{ —L3(0) + Zact(e) = 1 22},

n

and the parameters are updated according to the formula

|
O N N
3

which is ezact.

So far we described the projection filter for a given system. Now we plan
to construct a filtering problem with the same diffusion coefficient ¢ in the

state, with the same observation function h, the same noises W,V , the same
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initial condition X, and such that its solution stays in the exponential family

EM(c*), which is partly defined by h and partly preassigned.

The method is very simple. We keep on denoting by p(+,0) the generic den-
sity in EM (c*) and g(f) the related Fisher information matrix. We describe

the construction of our filtering problem step by step.

We start with the initial condition X, and we assume its density to be in
EM(c*): px, = p(-,6p) € EM(c®). Define a drift u'(-) such that the diffusion

dY; = u; (Yy)dt + 04(Y)dW,, 0<t<ti, Yo = Xy,
has density in EM(c*). This can be done according to Theorem 7.4.2 by

defining

5. (@) +

) = 5 + o)

T

—Eo;{EtC'}Tg’l(@)/ (c*(y) — Bprc®) expl(8;)" (c*(y) — ¢*(2))ldy,

0} = g(0)) ' Ep{Lic®}, 0<t<ty, 6} =0

Consider 6, := 9%1. At time ¢; the first observation Z; = h(Y;,) + Vi is

available, and we need to correct our prediction density p(-,0;) via Bayes’

formula. This corresponds to the following update of our parameter in the

family EM (c*):

The optimal filter at time ¢; for our problem is, by construction,
Py, 1z, (1) = p(-,01) € EM(c®).
Now we continue by defining a drift u? such that the diffusion
dY; = uZ(Yy)dt + o (Y)dW,, t1 <t <ty, Yy ~p(-61),

has density in EM(c®). This can be done again by defining

9 1 0qy 1 o OC®
w3 ) = 5 9% ) 4 () (6)7 e () +
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x

—Eog{ﬁtC'}Tg‘l(é’f)/ (c*(y) — Bpzc®) exp[(87) (c*(y) — ¢*(2))ldy,

0t2 = 9(9?)71E93{£t6.}7 t1 <t <ty 9?1 =01

Consider 0, := 9?2. At time to the second observation Zp = h(Y;,) + V3 is
available, and we need to correct our prediction density p(-,0; ) via Bayes’

formula. This corresponds to the following update of our parameter in the

family EM (c*):

|
O N=
N

Oy =65 —
0
The optimal filter at time t5 for our problem is, by construction,

thz\Zz(') = p(-,02) € EM(c®).
By continuing in the same way, we have proven the following

Theorem 7.7.1 (Nonlinear—finite—dimensional-exponential optimal fil-
ters). Let be given functions f and o satisfying assumptions (A) and (B). Let
Ly be defined by

1,9 e
2t8:C27 t — U

0
Lt:ft%“‘

Let be given a Brownian motion {Wy;, t > 0}, an observation function h satis-
fying (E) and let be given a white noise process {V,, m =0,1,...} independent
of W. Let be given an exponential family

EM(c*) = {p(-,0) = exp[6Tc*(-) — ¥(8)],6 € ©}

satisfying (F), and let g be its Fisher information matriz.

Define the stochastic process {6, t > 0} according to

Ht = 9?7 tn—l S t < t’ny et = 971.7

n

for all n € IN, where O™ is the solution of the differential equation

91? = 9(9?)_1E9:‘ {LtC.}, tn—l S t < tn7 9;:71 = 971,—17
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and 0, is the random variable

.
1
2
On =07 — 0
0
for allm € IN. Define
Oay oc*®
w(z,0) %%(w) + gay(a)f” 5y @)+

—Eg{ﬂtc'}Tg_l(H) /z (c*(y) — Epc®) eXp[HT(c'(y) —c*(z))]dy.

— 00

Then the filtering problem with state {Y;, t> 0} and observations {Z,, n =
1,2,...} given by

dYy
Zn

ue (Y, 0y)dt + o (Yy)dWye, Yo ~ p(-,00),
h(Y:,) + Va,

Yy independent of V- and W, has the preassigned finite—dimensional exponential
solution p(-,0:) € EM(c®) for all possible (nonlinear) o and h satisfying the

assumptions above.

Consider the following conjecture: This result could be properly extended to
the case of continuous time observations. It seems then, at a first sight, that it
contradicts classical results on nonexistence of finite—dimensional filters, such
as Chaleyat—-Maurel and Michel (1984) [18], Ocone and Pardoux (1989) [50],
Lévine (1991) [44]. This contradiction appears a natural consequence of the
arbitrariness of o and h. Nonetheless, there is no real contradiction. Indeed,
since {6;, t > 0} depends on the observation process Z, the drift itself depends
on the past observations. The filtering problem considered above does not
satisfy the assumptions of the quoted papers. Indeed, we cannot construct a
nonlinear filtering problem with prescribed (nonlinear) o and h, with drift u
which does not depend on the observation process Z and whose solution remains
finite dimensional. We have to allow for observations-dependent drifts in order
to prove our result. However, filtering problems with a drift or diffusion term
that depends on the observations naturally arise in stochastic control theory,
see [61] and [23]. In such problems the input process, which is measurable on
the o-algebra generated by the observations, enters in the drift and diffusion

terms.
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Conclusions and further

research

And the Enlightened One uttered this stanza:

‘Through many births I sought in vain
The Builder of this House of Pain.
Now, Builder, You are plain to see,

And from this House at last I'm free;

I burst the rafters, roof and wall,
And dwell in the Peace beyond them all.’

Paul Carus, from the Gospel of Buddha.

When he had led them out to the vicinity of Bethany, he lifted up
his hands and blessed them. While he was blessing them, he left

them and was taken up into heaven.

Luke XXIV.50-51

8.1 Short description of the results

In this section we list shortly the results of the present thesis. The following

section will deal with concluding remarks and possible future developments.
The results of this thesis concern the finite—dimensional approximation of

distributions obtained via differential-geometric methods and exponential fam-

ilies, and its application to nonlinear filtering.
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The filtering problem is difficult and complicated because the optimal filter is
not finite dimensional in general. The infinite—dimensional stochastic partial—
differential equation (SPDE) describing the optimal filter cannot be character-
ized by a finite set of stochastic differential equations (SDE’s). As an alterna-
tive to the past remedies (assumed—density filter and extended Kalman filter)
based on heuristic considerations, we present a well defined and Geometry—
based filter. Our new method to obtain a finite set of SDEs which approximate
the infinite-dimensional SPDE for the optimal filter consists of the projection
filter (PF). The projection filter is obtained by projecting the SPDE for the op-
timal filter onto a finite-dimensional manifold of probability densities in Fisher
metric.

We use this geometric framework to define and study in detail the projec-
tion filter for exponential families of probability densities. The advantages of

choosing exponential families are:
¢ Exponential families allow simple filter equations;

e Exponential families give the possibility of defining the total projection
residual, an Lo vector whose norm measures the local approximation

involved in the projection at each time instant;

e Equivalence between the projection filter for exponential families and the

(previously heuristics—based) exponential assumed—density filters;

e A large class of exponential families permits a perfect update step in the

filtering algorithm in the case of discrete—time observations.

e Good simulation results for the exponential projection filter applied to

the cubic sensor problem;

e Results on the nice asymptotic behaviour of the Gaussian projection filter
with small observation noise (the Gaussian densities are a particular case

of exponential densities);

¢ Existence of finite-dimensional exponential filters for a class of nonlinear
systems. Some coefficients of such nonlinear system can be prescribed
arbitrarily (provided they are regular enough), and the remaining coeffi-
cients can be selected in such a way that the optimal filter evolves in a

finite—dimensional exponential family.

The last result comes from results related to existence of stochastic differ-
ential equations with prescribed diffusion coefficients whose densities evolve
in prescribed exponential families. This result on SDEs leads to a new in-

terpretation of the projection in Fisher metric of the density—evolution of a
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diffusion process and to the existence result of finite-dimensional optimal fil-

ters described above.

8.2 Further research and future developments

The choice of the exponential family

In Chapter 4 we have introduced a new and systematic way of designing ap-
proximate finite-dimensional filters.

One major issue left is the choice of the exponential family S. In Section 4.5
we presented a first partial answer to this problem, although with the choice of
the family S, there is still some freedom left in the choice of the dimension m
and in the choice of the remaining functions {¢s41," -, ¢m}. This freedom could
be used to reduce the total residual norm r; = r} defined in Section 4.5, or it
could be used to design an adaptive scheme for the choice of the exponential

family S.

Estimating the distance between the optimal filter and the

projection filter

It would also be useful to obtain for all ¢ > 0 an estimate of the distance
(Hellinger metric or Kullback—Leibler information) between the optimal-filter
density p; and the projection—filter density pj, in terms of the total residual
norm history {r¥, 0 <s < t}.

Projection filters in discrete time

Finally, we would like to define projection filters for discrete—time systems. We
did so by investigating the possible use of projection filters for estimating the
volatility of bilateral exchange rates, in the context of applications to mathe-
matical finance. The first results in this direction can be found in [12]. We still
have to relate this discrete—time setup with the work of Kulhavy [40], [41]. An-
other motivation for this study will be to obtain efficient numerical schemes for
the solution of the stochastic differential equation satisfied by the projection—
filter parameters, i.e. equation (4.12) for a general exponential family S, or
equation (4.20) for the family S,.

Further simulations

We hope to be able to perform simulations for systems related to more concrete

applications. Although the cubic sensor problem was helpful in studying the
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projection residual and is considered a good academic example, some simula-
tions for more complicated systems are desirable. It would also be interesting
to compute a numerical approximation of the time—evolution of the distance

optimal filter—projection filter in some examples.

Small observation noise

It would be interesting to check the effect of enlarging the manifold of densi-
ties on the error bound for the mean—square distance between optimal-filter

estimate and projection—filter estimate.

Stochastic differential equations with finite dimensional

densities

It would be interesting to try and investigate the unsolved characterization
problem 7.2.5.

Finite—dimensional optimal filters

The result on existence of finite-dimensional optimal filters for partly—arbitrary
nonlinear systems can be extended to the case of continuous time observations.
Moreover, further investigation of the possible applications of these results to
stochastic control, mathematical finance and stochastic realization theory are

planned.



Chapter 9

Summary (English, Dutch,
French, Italian)

Let one’s thoughts of boundless loving—kindness pervade the whole
world, above, below, across, without obscuration, without hatred,

without enmity.

Suttanipata 150

So in everything, do to others what you would have them do to you,

for this sums up the Law and the Prophets.

Matthew VII.12

Summary (English)

FILTERING BY PROJECTION ON THE MANIFOLD
OF EXPONENTIAL DENSITIES

The present thesis treats the finite—dimensional approximation of distributions
obtained via differential-geometric methods and exponential families. The key
ingredients in the theory developed here are: Stochastic differential equations
(SDE’s), the filtering problem, the differential geometric approach to statistics,
and the theory of exponential families.

SDE’s are roughly an extension of ordinary differential equations (ODE’s)

to the case where the evolution of the system is afflicted by randomness. This

133
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evolution then needs to be described by a mathematical object called SDE,

since ODE’s do not incorporate randomness.

The filtering problem consists of estimating the state of a stochastic system
from noise perturbed observations. One has a system whose state evolves
according to a SDE, and one observes a related process which is generally a
function of the state process plus some new randomenss. This function is not
bijective in general, so that it cannot be inverted to recover the state (even
in the case where no new randomness is present in the observations). This is
usually referred to as the case of partial observations. The filtering problem
consists of estimating the signal at any time instant from the history of the

observation process up to the same instant.

If the evolution of the state and the observations are described by linear
equations, the solution of the problem is the well known Kalman Filter (KF).
This filter consists of a finite set of recursive equations which permit to update
the estimates including at each time instant the new observations. In this case

the filter is said to be finite dimensional.

The more general nonlinear filtering problem is far more complicated be-
cause the resulting nonlinear filter is not finite dimensional in general. Finite
dimensionality of a filter is loosely defined as a filter consisting of a finite set of
recursive equations which update the optimal estimate of the state based on the
past observations. In general there is no such set of equations for the nonlinear
filtering problem. The solution of the filtering problem in continuous time is the
probability distribution of the state given the past and current observations.
This solution is described by a mathematical object called a stochastic partial—
differential equation. This is in general an infinite-dimensional equation, in
the sense that its solution cannot be characterized by the solution of a finite
set of (stochastic) differential equations. The past remedies to this infinite di-
mensionality (assumed—density filter and extended KF) were based on heuristic

considerations and not much is known on the quality of their performances.

In this thesis we present a new method to obtain a finite set of SDEs which
approximate the infinite—dimensional equation for the optimal filter. We intro-
duce the projection filter (PF), which is a finite-dimensional nonlinear filter
based on the differential-geometric approach to statistics. The projection filter
is obtained by projecting the infinite—dimensional equation for the optimal fil-
ter onto a finite—-dimensional manifold. By using geometry, we construct a pro-
cedure to project this infinite—dimensional equation onto a finite—dimensional
space. This projection is mathematically well defined. Moreover, there is ample

choice about what finite-dimensional space one can project upon.

In this thesis we use this geometric framework to define and study in de-
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tail the projection filter for exponential families of probability densities. In this
thesis we present results describing the advantages of choosing exponential fam-
ilies: Simple filter equation, possibility of defining the total projection residual
measuring the local approximation involved in the projection around each time
instant, equivalence with the (previously heuristics—based) assumed—density fil-
ters, perfect update step in the case of discrete—time observations. Moreover
we present simulation results for the exponential projection filter applied to a
particular system called cubic sensor. Finally, some results on the nice asymp-
totic behaviour of the Gaussian projection filter with small observation noise
are given. This treats roughly the case where the randomness afflicting the
observations becomes small. The Gaussian densities are a particular case of
exponential densities.

The framework of an exponential family of densities with parameters de-
scribed by SDE’s and with the differential-geometric structure developed for
the filtering problem is useful also for other applications. In the thesis we have
solved several problems related to existence of stochastic differential equations.
These results are related to areas such as stochastic realization theory, mathe-
matical finance, and existence of finite-dimensional optimal filters, as we show

in the final chapter.

Samenvatting (Dutch)

FILTERING DOOR MIDDEL VAN PROJECTIE OP DE
VARIETEIT VAN EXPONENTIELE DICHTHEDEN

Het onderhavige proefschrift behandelt de eindig—dimensionale benadering van
verdelingen verkregen via differentiaal-meetkundige methoden en exponentiéle
families. De belangrijkste ingrediénten in de hier ontwikkelde theorie zijn:
Stochastische differentiaal vergelijkingen (SDV’s), het filterprobleem, de diffe-
rentiaal- meetkundige benadering van de exponentiéle families.

SDV’s zijn ruwweg gesproken een uitbreiding van de gewone differentiaal-
vergelijkingen (GDV’s) naar het geval waarin de evolutie van het systeem on-
derhavig is aan stochastische invloeden. Deze evolutie dient dan beschreven te
worden door een mathematisch object dat SDV genoemd wordt.

Het filter probleem behelst het schatten van de toestand van een stochastisch
systeem uit door ruis aangetaste waarnemingen. Men gaat uit van een systeem
waarvan de toestand zich ontwikkelt volgens een SDV, en men observeert een
gerelateerd proces dat in het algemeen de som is van een functie van het toe-

standsproces en een nieuwe kansvariabele. Deze functie is niet bijectief in het



136 Chapter 9. Summary (English, Dutch, French, ltalian)

algemeen, zodat deze niet geinverteerd kan worden om de toestand terug te
vinden (zelfs in het geval dat er geen sprake is van een nieuwe kansvariabele).
Men spreekt hierbij gewoonlijk van het geval van partiéle observaties. Het
filterprobleem bestaat uit schatting van het signaal op ieder moment, uit de

geschiedenis van het waarnemingsproces tot op datzelfde moment.

Als de evolutie van de toestand en de waarnemingen beschreven worden door
lineaire vergelijkingen, dan is de oplossing van het probleem gegeven door het
bekende Kalman Filter (KF). Het filter bestaat uit een eindig stelsel recursieve
vergelijkingen waarmee de schattingen bijgesteld kunnen worden op ieder mo-
ment aan de hand van de nieuwe waarnemingen. In dit geval noemt men het

filter eindig dimensionaal.

Het algemenere niet-lineaire filter probleem is veel gecompliceerder omdat
het resulterende niet-lineaire filter in het algemeen niet eindig dimensionaal is.
Eindig-dimensionaliteit van een filter is vrijelijk gedefinieerd als de eigenschap
dat een filter beschreven kan worden met behulp van een eindig stelsel verge-
lijkingen voor die de optimale schatting van de toestand bijwerken gebaseerd
op de eerder gedane waarnemingen. In het algemeen is er niet zo'n stelsel
vergelijkingen voor het niet-lineaire filterprobleem. De oplossing van het fil-
terprobleem in continue tijd is de kansverdeling van de toestand gegeven de
eerdere en actuele waarnemingen. Deze oplossing wordt beschreven door een
mathematisch object dat een stochastische partiéle—differentiaal vergelijking ge-
noemd wordt. Dit is in het algemeen een oneindig—-dimensionale vergelijking,
in die zin dat zijn oplossing niet gekarakteriseerd kan worden als de oploss-
ing van een eindige stelsel van (stochastische) differentiaal—vergelijkingen. De
eerdere remedies voor deze oneindige dimensionaliteit (aangenomen—dichtheids
filter en uitgebreide KF) waren gebaseerd op heuristische overwegingen en er

is niet veel bekend over de kwaliteit van hun prestaties.

In dit proefschrift presenteren we een nieuwe methode om een eindig stelsel
van SDV-en te verkrijgen die de oneindig-dimensionale vergelijking van het
optimale filter benaderen. We introduceren het projectie filter (PF), dat een
eindig-dimensionaal niet-lineair filter is gebaseerd op de differentiaal-meetkun-
dige invalshoek tot de statistiek. Het projectie filter wordt verkregen door
projectie van de oneindig—dimensionale vergelijking voor het optimale filter op
een eindig-dimensionale varieteit. Door meetkunde te gebruiken, construeren
we een procedure om deze oneindig-dimensionale vergelijking op een eindig—
dimensionale ruimte te projecteren. Deze projectie is wiskundig goed gedefini-
eerd. Bovendien is er volop keuze voor de eindig-dimensionale ruimte waarop
men kan projecteren. In dit proefschrift gebruiken we dit meetkundige raamw-

erk om het projectie filter in detail te definiéren en te bestuderen voor ezxpo-
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nentiéle families van kansdichtheden. In het proefschrift presenteren we resul-
taten die de voordelen van de keuze van exponentiéle families beschrijven: Een
eenvoudige filter vergelijking, de mogelijkheid om een totaal projectie residu
te definiéren die de locale approximatie meet waarmee de projectie op ieder
moment gepaard gaat, equivalentie met de (voorheen op heuristiek gebaseerde)
aangenomen dichtheid filters, een prefecte bijwerkings-stap (update-step) in
het geval van discrete—tijd observaties. Bovendien presenteren we simulatie
resultaten voor het exponentiéle projectie filter toegepast op het speciale sys-
teem geheten de kubische waarnemer (cubic sensor). Tenslotte worden er enige
resultaten gegeven over het prettige asymptotische gedrag van het Gaussische
projektie filter met zachte waarnemingsruis (small observation noise). Dit be-
handelt ruwweg het geval waarbij de de stochastische meetfout klein wordt. De
Gaussische dichtheden zijn een speciaal geval van exponentiéle dichtheden.
Het raamwerk van een exponentiéle familie van dichtheden met parameters
beschreven door SDV-en en met de differentiaal-meetkundige structuur ont-
wikkeld voor het filter probleem is ook bruikbaar voor andere toepassingen. In
het proefschrift hebben we verscheidene problemen opgelost gerelateerd aan de
existentie van stochastische differentiaal vergelijkingen. Deze resultaten zijn
gerelateerd aan gebieden zoals stochastische realisatietheorie, mathematische
financiering, en existentie van eindig—dimensionale optimale filters, zoals we

aantonen in het laatste hoofstuk.

Résumé (French)

FILTRAGE PAR PROJECTION SUR LA VARIETE DES
DENSITES EXPONENTIELLES

Dans cette thése on traite par des méthodes de géométrie différentielle et de
familles exponentielles, ’approximation fini dimensionnelle de distributions.
Les ingrédients clef de cette théorie sont : les équations différentielles stochas-
tiques (EDS’s), le probleme du filtrage, 'approche géométrique de la statis-
tique, et la théorie des familles exponentielles.

Les EDS’s sont grosso modo une extension des équations différentielles ordi-
naires (EDO’s) dans le cas ou I’évolution du systeéme est perturbée de maniere
aléatoire. Une telle évolution doit étre décrite par un objet mathématique
appellé EDS, car les EDO n’incluent pas ’aléatoire.

Le probléme du filtrage traite I’estimation de I’état d’un systéme stochastique
a partir d’observations bruitées. On a un systéeme dont I’état évolue selon une

EDS, et on observe un processus qui est une fonction de 1’état plus un nouveau
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bruit aléatoire. En général, cette fonction n’est pas bijective, et ne peut donc
pas étre inversée pour obtenir ’état (meme dans le cas ol I'observation n’est
pas bruitée). C’est ce que 'on appelle le filtrage avec observations partielles.
Le probleme du filtrage consiste & estimer le signal a chaque instant, a partir

de I’histoire des observations jusqu’a l’instant courrant

Dans le cas ou I’évolution de ’état et des observations est décrite par des
équationes linéaires, la solution du probleme est donnée par le filtre de Kalman
(FK). Ce filtre est donnée par un ensemble fini d’équations qui permet de
mettre a jour I’ estimée courrante en incorporant les nouvelles observations a

chaque instant. Dans ce cas, on dit que le filtre est de dimension finie.

Le probléeme plus général du filtrage non linéaire est bien plus compliqué
parce que le filtre non linéaire résultant n’est pas de dimension finie en général.
Grosso modo, un filtre est de dimension finie s’il existe un ensemble fini d’é-
quations récursives qui permettent de mettre a jour l’estimée courrante, en
fonction des observations passées. En général il n’existe pas un tel ensemble
d’équations pour le probleme du filtrage non linéaire. La solution du probléeme
de filtrage en temps continu est la loi de probabilité de I’état conditionnellement
aux observations passées et présentes. Cette solution est décrite par un objet
mathématique appellé équation aux dérivées partielles stochastique. C’est en
général une équation de dimension infinie, ce qui signifie que sa solution ne peut
pas étre caractérisée par la solution d’un ensemble fini d’équations différentielles
(stochastiques). Les solutions utilisées dans le passé (assumed—density filter
(ADF) et le filtre de Kalman étendu) etaient basées sur des considérations

heuristiques, et on sait peu de chose sur la qualité des estimations.

Dans cette theése on donne une nouvelle méthode pour obtenir un ensemble
fini ’EDS’s qui approche 1’équation de dimension infinie du filtre optimal. On
introduit le filtre par projection (FP), qui est un filtre non linéaire de dimension
finie basé sur I’approche géometrique de la statistique. Le filtre par projection
est obtenu en projetant I’équation de dimension infinie du filtre optimal sur
une variété de dimension finie. En utilisant la géometrie, on construit une
procédure pour projeter cette équation de dimension infinie sur un espace de
dimension finie. La projection est bien définie d’un point de vue mathématique.
En outre, il y a beaucoup de liberté sur le choix de I’espace de dimension finie

sur lequel on projette.

Dans cette these on utilise la géométrie différentielle pour définir et étudier
en détail le FP pour des familles exponentielles de densités de probabilité. En
outre, on donne des résultats qui justifient I’emploi de familles exponentielles :
équation simple pour le filtre, possibilité de définir le total projection residual

qui mesure 'approximation locale causée par la projection a chaque instant,
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I’équivalence avec les ADF (qui etaient basés sur des considérations heuristique
avant l'introduction du FP), et la mise & jour exacte dans le cas des observations
en temps discret. On presente de plus des simulations pour le FP exponentiel
appliqué au systeme appellé sensor cubique. Enfin, on donne des resultats sur
le bon comportement asymptotique du FP Gaussien avec petit bruit d’ obser-
vation. On s’intéresse grosso modo au cas ou le bruit d’observation est petit.
Les densités gaussiennes sont un cas particulier des densités exponentielles.
La structure d’une famille exponentielle de densité avec parametre décrit
par des EDS et traitée par des méthodes de géometrie différentielle pour le
probleme de filtrage peut étre utilisée aussi pour d’ autres applications. Dans
cette these nous avons resolu beaucoup de problemes liés a ’existence des EDS.
Ces résultats sont reliés a des sujets comme réalisation stochastique (stochastic
realization theory), les mathématiques financieres et ’existence de filtres opti-

maux de dimension finie, comme nous ’avons montré dans le dernier chapitre.

Sunto (Italian)

FILTRAGGIO TRAMITE PROIEZIONE SULLA VARIE-
TA DELLE DENSITA ESPONENZIALI

Questa tesi tratta ’approssimazione di dimensione finita di distribuzioni, ot-
tenuta attraverso metodi geometrico—differenziali e famiglie esponenziali. Gli
ingredienti chiave della teoria sviluppata sono: equazioni differenziali stocas-
tiche (EDS), il problema del filtraggio, 'approccio geometrico—differenziale alla
statistica, e la teoria delle famiglie esponenziali.

Le EDS sono grosso modo un’estensione delle equazioni differenziali ordi-
narie (EDO) al caso in cui 'evoluzione del sistema & perturbata da rumore.
Quest’evoluzione deve essere allora descritta da un oggetto matematico chiam-
ato EDS, dato che le EDO non incorporano l’aleatorieta.

Il problema del filtraggio riguarda la stima dello stato di un sistema stocas-
tico, basata su osservazioni perturbate da rumore. Si ha un sistema il cui stato
evolve secondo un’EDS, e si osserva un secondo processo che & generalmente
una funzione del processo di stato piil una nuova aleatorieta. La funzione non
¢ biettiva in generale, sicché non puo essere invertita allo scopo di recuperare
lo stato (nemmeno nel caso in cui la nuova aleatorietd non e presente nelle
osservazioni). Questo tipo di problema ¢ generalmente detto problema con os-
servazioni parziali. 11 problema del filtraggio consiste nello stimare il segnale
a ciascun istante sulla base della storia del processo delle osservazioni fino a

quell’istante.
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Se I’evoluzione dello stato e le osservazioni sono descritte da equazioni lineart,
la soluzione del problema & data dal ben noto filtro di Kalman (FK). Tale filtro &
formato da un sistema finito di equazioni ricorsive che permettono di aggiornare
le stime includendo ad ogni istante le nuove osservazioni. In questo caso il filtro

¢ detto di dimensione finita.

Il problema pitu generale del filtraggio non lineare & molto pit complicato
perché il filtro risultante non é di dimensione finita in genere. Un filtro e detto
di dimensione finita quando, in parole povere, puo essere descritto da un sistema
finito di equazioni ricorsive che aggiornano la stima ottimale dello stato basata
sulle osservazioni passate. In generale un tale sistema di equazioni non esiste
per problemi di filtraggio non lineari. La soluzione del problema del filtraggio
a tempo continuo € un oggetto matematico chiamato equazione differenziale
stocastica alle derivate parziali. Si tratta generalmente di un’equazione di di-
mensione infinita, nel senso che la sua soluzione non puo essere caratterizzata
dalla soluzione di un insieme finito di equazioni differenziali (stocastiche). I
rimedi proposti in passato (Assumed Density Filters (ADF) e filtro di Kalman
esteso) sono basati su considerazioni euristiche e poco ¢ noto sulla qualita
delle loro prestazioni. In questa tesi presentiamo un nuovo metodo per ot-
tenere un sistema finito di EDS che approssimano ’equazione di dimensione
infinita descrivente il filtro ottimale. Introduciamo il filtro proiezione (FP). Il
FP ¢ un filtro non lineare di dimensione finita basato sull’approccio geometrico—
differenziale alla statistica. Il filtro proiezione si ottiene proiettando ’equazione
di dimensione infinita del filtro ottimale su una varieta di dimensione finita. Us-
ando la geometria, costruiamo una procedura per proiettare questa equazione
di dimensione infinita su uno spazio di dimensione finita. Tale proiezione e
matematicamente ben definita. Inoltre, si ha ampia scelta sullo spazio di di-
mensione finita sul quale proiettare. Nella tesi usiamo questa impostazione
geometrica per definire e studiare in dettaglio il FP per famiglie esponenziali di
densita. Presentiamo risultati che descrivono i vantaggi della scelta di famiglie
esponenziali: equazioni semplici per il filtro, la possibilita di definire il total pro-
jection residual per misurare 'approssmazione locale che si ha ad ogni istante,
Pequivalenza con I’ ADF (che era precedentemente basato su considerazioni
euristiche), aggiornamento esatto nel caso di osservazioni in tempo discreto.
Inoltre presentiamo simulazioni per il FP esponenziale applicato al particolare
sistema noto come sensore cubico. Infine, presentiamo alcuni risultati sul com-
portamento asintotico del FP Gaussiano con piccolo rumore nelle osservazioni.
Questo riguarda, a grandi linee, il caso in cui l'aleatorieta che disturba le os-
servazioni diviene piccola. Le densita Gaussiane sono un caso particolare delle

densita esponenziali.
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L’impostazione data da una famiglia esponenziale di densita con parametri
descritti da EDS e con una struttura geometrico—differenziale, utilizzata per
il problema del filtraggio, si dimostra utile anche in altri campi. In questa
tesi risolviamo alcuni problemi collegati all’ esistenza di equazioni differenziali
stocastiche. Questi risultati sono connessi ad aree quali realizzazione stocas-
tica (stochastic realization theory), finanza matematica, ed esistenza di filtri

ottimali di dimensione finita, come mostriamo nel capitolo finale.
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