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Blessed are the poor in spirit, for theirs is the kingdom of heaven.Blessed are those who mourn, for they will be comforted.Blessed are the meek, for they will inherit the earth.Blessed are those who hunger and thirst for righteousness,for they will be �lled.Blessed are the merciful, for they will be shown mercy.Blessed are the pure in heart, for they will see God.Blessed are the peacemakers, for they will be called sons of God.Blessed are those who are persecuted because of righteousness,for theirs is the kingdom of heaven.Matthew V.3{10
How sure his pathway in this wood,Who follows truth's unchanging call!How blessed, to be kind and good,And practice self{restraint in all!How light, from passion to be free,And sensual joys to let go by!And yet his greatest bliss will beWhen he has quelled the pride of `I'Paul Carus, from the Gospel of Buddha.



Contents
1 Introduction 11.1 General introduction : : : : : : : : : : : : : : : : : : : : : : : : 11.2 How to use this thesis (strongly recommended reading) : : : : : 51.3 Short description of contents by chapter : : : : : : : : : : : : : 62 Stochastic Di�erential Equations and the Filtering Problem 92.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.2 The nonlinear �ltering problem : : : : : : : : : : : : : : : : : : 103 Statistical Manifolds and Fisher Information 153.1 Statistical manifolds : : : : : : : : : : : : : : : : : : : : : : : : 153.2 General manifolds : : : : : : : : : : : : : : : : : : : : : : : : : 173.3 Manifolds associated with exponential families : : : : : : : : : 204 The Projection Filter 234.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 234.2 Projection of the density evolution of a di�usion process : : : : 244.3 General de�nition of the projection �lter : : : : : : : : : : : : : 264.4 The exponential projection �lter : : : : : : : : : : : : : : : : : 304.5 The residual and a convenient exponential family : : : : : : : : 374.5.1 The exponential families S� and S� : : : : : : : : : : : : 394.5.2 The case of discrete{time observations : : : : : : : : : : 434.6 Exponential projection �lters for the cubic sensor : : : : : : : : 444.6.1 The six dimensional exponential projection �lter : : : : 454.6.2 The four dimensional exponential projection �lter : : : 464.7 Numerical simulations for the cubic sensor : : : : : : : : : : : : 484.8 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65vii



viii CONTENTS5 Assumed Density Filters and Projection Filters 675.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 675.2 Assumed density �lters : : : : : : : : : : : : : : : : : : : : : : : 695.3 Equivalence between ADF and PF : : : : : : : : : : : : : : : : 726 Small Observation Noise 796.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 796.2 The MFS-G-ADF : : : : : : : : : : : : : : : : : : : : : : : : : : 816.3 The GPF for a simpli�ed system. : : : : : : : : : : : : : : : : : 836.4 Bounds for ePt of the GPF : : : : : : : : : : : : : : : : : : : : : 846.5 Nice behaviour with small observation noise. : : : : : : : : : : 886.6 One{dimensional e�cient GPF : : : : : : : : : : : : : : : : : : 926.7 Extension of the results to di�erent models. : : : : : : : : : : : 966.8 GPF versus optimal �lter : : : : : : : : : : : : : : : : : : : : : 987 Stochastic Di�erential Equations with Finite{DimensionalDen-sity 1077.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1077.2 Stochastic di�erential equations and exponential families : : : : 1097.3 Projected density{evolution of a di�usion process : : : : : : : : 1147.4 Interpretation of the projected equation : : : : : : : : : : : : : 1177.5 A simple convergence result : : : : : : : : : : : : : : : : : : : : 1187.6 Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1207.6.1 The case of a one dimensional zero-mean Gaussian manifold1207.6.2 The case of a one dimensional unit-variance GaussianManifold : : : : : : : : : : : : : : : : : : : : : : : : : : 1217.6.3 SDEs with densities evolving in EM(x4) : : : : : : : : : 1227.6.4 SDE's with prescribed di�usion coe�cient and with pre-scribed stationary exponential density : : : : : : : : : : 1237.7 Application to �ltering : : : : : : : : : : : : : : : : : : : : : : : 1238 Conclusions and further research 1298.1 Short description of the results : : : : : : : : : : : : : : : : : : 1298.2 Further research and future developments : : : : : : : : : : : : 1319 Summary (English, Dutch, French, Italian) 133Summary (English) : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133Samenvatting (Dutch) : : : : : : : : : : : : : : : : : : : : : : : : : : 135R�esum�e (French) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 137Sunto (Italian) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 139



Chapter 1IntroductionIt looked insanely complicated, and this was one of the reasonswhy the snug plastic cover it �tted into had the wordsDON'T PANIC printed on it in large friendly letters.D. Adams, The Hitch{Hikers Guide to the Galaxy.1.1 General introductionThe present thesis concerns the �nite{dimensional approximation of distribu-tions obtained via di�erential{geometric methods and exponential families. Wetreat mainly the nonlinear �ltering problem, although some results on di�u-sion processes and stochastic di�erential equations (SDE's) are given. In thepresent introductory chapter we describe the �ltering problem, our approachto its solution, the particular role that exponential families and di�erentialgeometry play in our method, and our results. We present some hints aboutpossible and potential applications of our results. This introductory chapter iswritten in very general terms, and is meant to be readable by mathematicians,econometricians and engineers who are not necessarily probabilists.The �ltering problemThe �ltering problem consists of estimating the state of a stochastic systemfrom noise perturbed observations. One has a system whose state evolves ac-cording to a stochastic (di�erence or di�erential) equation, and one observes arelated process which is generally a function of the state process plus a distur-bance. This function is not bijective in general, so that it cannot be inverted1



2 Chapter 1. Introductionto recover the state (even in the case where no disturbance is present in theobservations). This is usually referred to as the case of partial observations.The �ltering problem consists of estimating the signal at any time instant fromthe history of the observation process up to the same instant. As a simpleexample, consider a population growth model. Let X(t) be the population attime t 2 R; t � 0. The simplest model for the population growth is obtainedby assuming that the growth rate is proportional to the current population.This can be translated into the ordinary di�erential equation:_X(t) = kX(t); X(0) = X0; k � 0:Now suppose that, due to some complications, it is no longer realistic to assumeboth k and X0 to be deterministic constants. Then we may decide to let X0 bea random variable, and to model the population growth by taking in accounta noise process fv1(t); t � 0g, so that_X(t) = (k + v1(t)) X(t); X(0) = X0; k � 0:Now assume that we cannot observe X but, due to some limitations in theobservation procedure, we can observe only a disturbed measure of X(t):Y (t) = X(t) + v2(t);where fv2(t); t � 0g is a second noise process. The �ltering problem, in thisexample, consists of estimating X(t) on the basis of fY (s) : 0 � s � tg. Ingeneral, in our framework, the state X will evolve according to a stochasticdi�erential equation describing what is known as a di�usion process, which hasa structure more complicated than in the example above. The observationshave also a more complicated structure in general.If the evolution of the state X and the observations Y are described by linearequations, under some assumptions which completely specify the probabilisticbehaviour of the initial condition X0, the solution of the problem is the wellknown Kalman Filter. This �lter consists of a �nite set of recursive equationswhich permit to update the estimates including at each time instant the newobservations (more precisely, if the system evolves in discrete time we have a�nite set of di�erence equations, whereas in continuous time we have a �niteset of di�erential equations). In this case the optimal �lter is termed �nitedimensional. Although the Kalman �lter works only in the context of linearsystems, it turned out to be very useful in many applications. In the past itwas used for example in aerospace applications (Ranger, Mariner, Apollo), inwater{level prediction and in underwater applications. Currently, the linear�lter is applied in many �elds of engineering and economics. Still, as Michiel



1.1. General introduction 3Hazewinkel wrote in the editor's preface for the series Mathematics and ItsApplications published by Kluwer Academic :In addition, the applied scientist needs to cope increasingly withthe nonlinear world and the extra mathematical sophistication thatthis requires. For that is where the rewards are. Linear modelsare honest and a bit sad and depressing: proportional e�orts andresults. It is in the nonlinear world that in�nitesimal inputs mayresult in macroscopic outputs (or vice versa). To appreciate what Iam hinting at: if electronics were linear we would have no fun withtransistors and computers; we would have no TV; in fact you wouldnot be reading these lines.The more general nonlinear �ltering problem is far more complicated becausethe resulting nonlinear �lter is not �nite dimensional in general. Finite dimen-sionality of a �lter is loosely de�ned as a �lter consisting of a �nite set of recur-sive equations which update the conditional distribution of the state based onthe past observations. In general there is no such �nite set of equations for thenonlinear �ltering problem. In such a case the solution cannot be implementedby a computer with �nite memory. The solution of the �ltering problem incontinuous time is a conditional density which is described by a mathematicalobject called a stochastic partial{di�erential equation. This is in general anin�nite{dimensional equation, in the sense that its solution cannot be charac-terized by the solution of a �nite set of (stochastic) di�erential equations. Awell known approximation method to �nd a remedy to this in�nite dimension-ality is the extended Kalman �lter (EKF). The EKF is obtained by linearizingthe equations for X and Y around the current estimates and by applying thelinear �lter. This procedure is usually justi�ed on the basis of heuristic consid-erations, and not much is known about the quality of its performances, exceptin the case of small observation noise. Another choice in the nonlinear case iswhat is known as Gaussian assumed{density �lter (GADF). Roughly speaking,the optimal �lter can be 'characterized` by an in�nite number of parameters.Now, it is possible to privilege a �nite number of these parameters and to ig-nore the others so as to obtain a �nite set of recursive equations describing theevolution of the privileged parameters. In other words, one arbitrarily assumesthe in�nite dimensional �lter to be characterized by the privileged parameters.This procedure produces a �nite dimensional �lter. Still, this is very dangerousfrom a mathematical standpoint, because from a false hypothesis no interestingscienti�c statements can be deduced.



4 Chapter 1. IntroductionOur approachWe present a new way to obtain a �nite set of (stochastic) di�erential equa-tions which approximate the in�nite{dimensional equation for the optimal �l-ter. The projection �lter (PF) is a �nite{dimensional nonlinear �lter based onthe di�erential{geometric approach to statistics. By using geometry, we con-struct a procedure to project the in�nite{dimensional equation for the optimal�lter onto a �nite{dimensional space. This projection is mathematically wellde�ned. Moreover, there is ample choice about what �nite{dimensional spaceone can project upon.Exponential familiesIn this thesis we use this geometric framework to de�ne and study in detailthe projection �lter for exponential families. The choice of exponential familiesis somehow natural, since they simplify both the obtained equations and theconditions under which such equations admit solutions. Moreover, we needexponential families in order to be able to de�ne a single quantity (called totalprojection residual) which measures the local approximation involved in theprojection around each time instant. For general parametric families we donot know how to de�ne such a quantity. We also prove that the projection�lter is equivalent to the assumed{density �lter based on the McShane-Fisk-Stratonovich (MFS) representation and exponential families. This equivalenceholds only for exponential families. Simulations have been performed for theexponential projection �lter applied to a particular system called cubic sensor.Finally, some results on the nice asymptotic behaviour of the Gaussian projec-tion �lter with small observation noise are given. The Gaussian densities are aparticular case of exponential densities.Potential applicationsThe theory developed so far has only be tested on an academic example, thecubic sensor. Applications in economics and engineering are under study. Weare currently investigating the possible use of projection �lters for estimat-ing the volatility of bilateral exchange rates, in the context of applications tomathematical �nance. The �rst results in this direction can be found in [12].Applications of nonlinear �ltering require numerical tools and software. Weare planning to work on this in order to render the projection �lter a possibletool for solving concrete �ltering problems in engineering, economics and otherapplied �elds.



1.2. How to use this thesis (strongly recommended reading) 5Stochastic di�erential equations with densities evolving inexponential familiesThe theory developed for the �ltering problem shows some potential for otherapplications. In the thesis we solve several problems related to the existenceof stochastic di�erential equations the density of which evolves in a speci�edexponential family.In the above presentation we described the contribution of our work in a veryinformal way. In the following we explain how to use this thesis and we describeits contents chapter by chapter. This will require a more speci�c language.1.2 How to use this thesis (strongly recom-mended reading)If you are interested only in the key ideas behind the projection in Fisher metricof an equation describing the evolution of a density (for example the Fokker{Planck equation) and you do not want to go through too many theoreticaldetails, the beginning of Chapter 4 can be helpful. Then you may skip thederivation of the projection �lter and just read Theorem 4.4.3 in order to seethe �lter equations.If you wish to have a quick intuitive idea of the key elements involved inprojecting the nonlinear �ltering equation onto a �nite{dimensional manifoldof densities you can read Section 6.6 of Chapter 6 where we treat a particularcase from an intuitive point of view. You can also read Chapter 7 where weproject the Fokker{Planck equation onto an exponential manifold of densities.The Fokker{Planck equation corresponds to the prediction step in �ltering,and it is this step that brings in in�nite dimensionality, since the update stepcan be handled exactly (see Section 4.5.2, Chapter 4). Moreover, the simplerstructure of the Fokker{Planck equation can help in grasping the key ideas ofthe projection technique without being overwhelmed by notation and details,as could happen in the case of the complete nonlinear{�ltering equation.If you are not familiar with geometric concepts and would like to have adi�erent point of view on the projection �lter, you can read Chapter 5, wherewe give a characterization of the projection �lter based on the assumed{densityprinciple (which is not intrinsically based on geometrical concepts).If you are interested on the small observation noise approach, our resultsconcern the Gaussian projection �lter which can be derived via the assumed{density principle. We give an independent derivation of this �lter in the chapter



6 Chapter 1. Introductionon small noise in order to keep the chapter as self contained as possible. Thereare very little geometric facts in that chapter, so (again) if you are not familiarwith geometry it can be a good reading.For the reader interested in the whole derivation and in the whole theory,the thesis runs as follows.1.3 Short description of contents by chapterChapter 2 introduces quickly some elements needed from the theory of stochas-tic di�erential equations and the �ltering problem. We refer to the literaturefor the presented results.Chapter 3 introduces the theory of statistical manifolds, i.e. how to install ageometric structure in a parametrized family of probability densities. Actually,no advanced di�erential{geometric tools are needed. The important geometricconcepts are: tangent vectors, projections, and Riemannian metrics. We con-sider the L2 metric (Hellinger distance) and show that it coincides with the wellknown Fisher information metric. We particularize the theory to exponentialfamilies and give some known results on them.Chapter 4 introduces and studies the projection �lter. We start by develop-ing some intuition on the projection in Fisher metric of an equation describingthe evolution of a density by treating informally the projection in Fisher met-ric of the Fokker{Planck equation onto a �nite{dimensional manifold of den-sities. Next, we introduce rigorously the exponential projection �lter. In theconstruction of the geometrical framework we use an enveloping manifold forthe stochastic partial di�erential equation of the optimal �lter. This manifoldframework will be useful in proving equivalence with the assumed{density �lterthat will be formulated in the following chapter, otherwise one could use onlythe L2 structure without worrying about the enveloping manifold. We proveexistence of the projection �lter for exponential families of densities and de�nethe projection residuals, which are quantities meant to measure the local qual-ity of the approximation involved in using the projection �lter. We introducesome particular manifolds de�ned in terms of the given �ltering problem. Suchmanifolds allow the simpli�cation of the projection{�lter equation and of theprojection residuals. Finally, we apply the developed theory to the cubic{sensorproblem and develop numerical simulations where we compare the resultingprojection �lter with the optimal �lter obtained via local{grid approximation.In Chapter 5 we prove equivalence between projection �lters and assumed{density �lters (based on Stratonovich's calculus) for exponential families. Thiswill yield both a non{geometrical characterization of the projection �lter and



1.3. Short description of contents by chapter 7logical consistency for the assumed{density �lter, which is otherwise basedon logical inconsistency. The equivalence is limited to assumed{density �lterswith an exponential family, anyway, as we show with an example. Moreover,the assumed{density �lter based on Itô's calculus will be proven to be di�erentfrom the corresponding Stratonovich{based one.In Chapter 6 we treat the Gaussian projection �lter with small observationnoise. The chapter is as self-contained as possible. We derive the Gaussianprojection �lter via the assumed{density approach. Then we prove that the L2distance between the true state and the estimated state of the two{dimensionalGaussian projection �lter is at most proportional to the observation noise. Weshow that the same property holds for a one{dimensional Gaussian projection�lter. We give results for di�erent type of problems and �nally we show thatthe L2 distance between the optimal �lter and the Gaussian projection �lter isat most proportional to the square of the observation noise.Chapter 7 gives results concerning stochastic di�erential equations whosedensity evolves in a �nite{dimensional family. This chapter is intended toshow how the projection in Fisher metric can be a useful tool not only in the�ltering theory but also in the broader �eld of stochastic di�erential equations.More speci�cally, we show that the density evolution obtained from the pro-jection in Fisher metric of the density evolution of a di�usion process onto anexponential manifold can be interpreted as the density evolution of a di�erentdi�usion sharing the same di�usion coe�cient. We show that, given a prioria di�usion coe�cient and an exponential family, we can de�ne a drift suchthat the density evolution of the related di�usion remains in the exponentialmanifold. We apply this result to the construction of nonlinear SDE's withprescribed exponential{density evolution and in particular with prescribed sta-tionary exponential density. We illustrate the usefulness of this result with anexample from mathematical �nance. We present a stability result for the pro-jected density evolution of some particular di�usions. Finally, we apply theseresults to the construction of some nonlinear{�ltering problems for which theoptimal �lter is �nite dimensional. Some of the coe�cients of the problem canbe assigned a priori and we can give the remaining coe�cient in such a waythat the optimal �lter for the resulting problem be �nite dimensional.Material appeared in publicationsMany of the results presented here have already appeared as reports or pub-lications. Here we give a short list of these publications. The IRISA report[13] contains (with some minor di�erences) material from Chapters 2, 3, and ashort part of Chapter 5.



8 Chapter 1. IntroductionThe proceedings [14] contain a short version of this report, and a modi�edversion of the proceedings was recently revised and resubmitted for publicationin IEEE Transactions on Automatic Control.The Tinbergen{Institute report [16] contains material from Chapters 2, 3, apart from Chapter 4, and the whole Chapter 5.The two papers in Systems & Control Letters, [6], [8], and the proceedings[7] contain the results of Chapter 6, apart from the comparison optimal �lter{Gaussian projection �lter, which has been submitted recently for publication(see [10]).The LADSEB{CNR report [9] contains results that have been perfected inChapter 7 of the present thesis. The conference version [11] is also related tothe material presented in [9] and in Chapter 7.The report [17] contains results related to Chapter 7, derived in the deepergeometrical framework of Pistone and Sempi [54].The work [15] was recently submitted to Bernoulli. It is intended to be themain article on the projection �lter. It contains material from the Chapters 2,3, 4, 5. The simulations of Chapter 4 are not included in this article.The working paper [12] concerns projection �lters in discrete time and hasnot been included in the present thesis, which is devoted to continuous{timemodels.



Chapter 2Stochastic Di�erentialEquations and theFiltering ProblemYou have not played as yet? Do not do so.Above all, avoid a martingale if you do.W. M. Thackeray2.1 IntroductionIn this chapter we introduce the nonlinear �ltering problem. The �ltering prob-lem concerns the possibility of estimating the state of a dynamical system fromthe past and current observations of a related measurement process. A stochas-tic system is given, whose state evolves according to a stochastic di�erentialequation (SDE). The problem consists for example of estimating the state fromnonlinear observations in additive Gaussian white noise. In the linear Gaussiancase the solution consists of the Kalman �lter, a �nite{dimensional algorithmwhich computes the �rst two conditional moments of the state given the ob-servations. Such an algorithm provides also the complete conditional densityof the state given the observations, since in the linear case this conditionaldensity is Gaussian and hence characterized by the �rst two moments. Froma probabilistic point of view, the �ltering problem consists in the calculationof the whole conditional density, which as a rule results in an in�nite dimen-sional �lter in the general nonlinear case. Under some regularity conditions,the conditional density exists and is the solution of the Kushner{Stratonovich9



10 Chapter 2. Stochastic Di�erential Equations and the Filtering Problemequation, a stochastic partial di�erential equation.For an introduction to stochastic calculus and to SDE's we refer to the bookof Karatzas and Shreve [36]. For an extended introduction to the �lteringproblem we refer to the following articles: the tutorial of Davis and Marcus [19],and the article of van Schuppen [57]. Books on �ltering are also available: fora treatment of the �ltering problem from a mathematical point of view see thebook of Liptser and Shiryayev [45], or the book of Kallianpur [34]. For bookson �ltering from a more applied perspective see the book of Jazwinski [32] orMaybeck [47].2.2 The nonlinear �ltering problemOn the probability space (
;F ; P ) with the �ltration fFt ; t � 0g we considerthe following state and observation equations, see Jazwinski [32], Maybeck [47],Davis and Marcus [19] :dXt = ft(Xt) dt+ �t(Xt) dWt; X0;dYt = ht(Xt) dt+ dVt; Y0 = 0 : (2.1)These equations are Itô stochastic di�erential equations (SDE's). In this thesiswe shall use both Itô SDE's (for example for the signal X) and McShane{Fisk{Stratonovich (MFS) SDE's (when dealing with manifolds and projections). TheMFS form will be denoted by the presence of the symbol `�' in between thedi�usion coe�cient and the Brownian motion of a SDE. The use of MFS SDE'sis necessary in order to be able to deal with stochastic calculus on manifolds,since in general one does not know how to interpret the second order termsarising in Itô's calculus in terms of manifold structures. The interested readeris referred to [22].In (2.1), the unobserved state process fXt ; t � 0g and the observation pro-cess fYt ; t � 0g are taking values inRn andRd respectively, the noise processesfWt ; t � 0g and fVt ; t � 0g are two Brownian motions, taking values in Rpand Rd respectively, with covariance matrices Qt and Rt respectively. We as-sume that Rt is invertible for all t � 0, which implies that, without loss ofgenerality, we can assume that Rt = I for all t � 0. Finally, the initial stateX0 and the noise processes fWt ; t � 0g and fVt ; t � 0g are assumed to beindependent. We assume that the initial state X0 has a density p0 w.r.t. theLebesgue measure � on Rn, and has �nite moments of any order, and we makethe following assumptions on the coe�cients ft, at := �tQt �Tt , and ht of thesystem (2.1)



2.2. The nonlinear �ltering problem 11(A) Local Lipschitz continuity : for all R > 0, there exists KR > 0 such thatjft(x)�ft(x0)j � KR jx�x0j and kat(x)�at(x0)k � KR jx�x0j ;for all t � 0, and for all x; x0 2 BR, the ball of radius R.(B) Non{explosion : there exists K > 0 such thatxT ft(x) � K (1 + jxj2) and trace at(x) � K (1 + jxj2) ;for all t � 0, and for all x 2 Rn.(C) Polynomial growth : there exist K > 0 and r � 0 such thatjht(x)j � K (1 + jxjr) ;for all t � 0, and for all x 2 Rn.Under assumptions (A) and (B), there exists a unique solution fXt ; t � 0gto the state equation, see [37] or [36], and Xt has �nite moments of any order.Under the additional assumption (C) the following �nite energy condition holdsE Z T0 jht(Xt)j2 dt <1 ; for all T � 0:The nonlinear �ltering problem consists in �nding the conditional proba-bility distribution �t of the state Xt given the observations up to time t, i.e.�t(dx) := P [Xt 2 dx j Yt], where Yt := �(Ys ; 0 � s � t). Since the �nite en-ergy condition holds, it follows from Fujisaki, Kallianpur and Kunita [27] thatf�t ; t � 0g satis�es the Kushner{Stratonovich equation, i.e. for any smoothand compactly supported test function � de�ned on Rn�t(�) = �0(�)+Z t0 �s(Ls�) ds+ dXk=1 Z t0 [�s(hks �)��s(hks )�s(�)] [dY ks ��s(hks ) ds] ;(2.2)where for all t � 0, the backward di�usion operator Lt is de�ned byLt = nXi=1 f it @@xi + 12 nXi;j=1 aijt @2@xi@xj :The MFS form of equation (2.2) is obtained, after straightforward computa-tions, as :�t(�) = �0(�) + Z t0 �s(Ls �) ds� 12 Z t0 [�s(jhsj2 �)� �s(jhsj2)�s(�)] ds+ dXk=1 Z t0 [�s(hks �)� �s(hks )�s(�)] � dY ks : (2.3)



12 Chapter 2. Stochastic Di�erential Equations and the Filtering ProblemFrom now on we proceed formally, and we assume that for all t � 0, theprobability distribution �t has a density pt w.r.t. the Lebesgue measure on Rn.Then fpt ; t � 0g satis�es the Itô{type stochastic partial di�erential equation(SPDE) dpt = L�t pt dt+ dXk=1 pt [hkt �Eptfhkt g] [dY kt �Eptfhkt g dt] (2.4)in a suitable functional space, where Eptf�g denotes the expectation w.r.t. theprobability density pt, i.e. the conditional expectation given the observationsup to time t, and where for all t � 0, the forward di�usion operator L�t isde�ned by L�t� = � nXi=1 @@xi [f it �] + 12 nXi;j=1 @2@xi@xj [aijt �] ;for any test function � de�ned on Rn. The corresponding MFS form of theSPDE (2.4) is :dpt = L�t pt dt� 12 pt [jhtj2 �Eptfjhtj2g] dt+ dXk=1 pt [hkt �Eptfhkt g] � dY kt :In order to simplify notation, we introduce the following de�nitions, which willbe used throughout the following chapters :�t(p) := L�t pp ; �0t (p) := 12 [jhtj2 �Epfjhtj2g] ;�kt (p) := hkt � Epfhkt g ; (2.5)for k = 1; � � � ; d. Simple calculations show that�t(p) = � nXi=1 [ f it @@xi (log p) + @f it@xi ] (2.6)+ 12 nXi;j=1[ aijt @2@xi@xj (log p) + aijt @@xi (log p) @@xj (log p)+2 @aijt@xj @@xi (log p) + @2aijt@xi@xj ] :The MFS form of the Kushner{Stratonovich equation reads nowdpt = L�t pt dt� pt �0t (pt) dt+ dXk=1 pt �kt (pt) � dY kt :



2.2. The nonlinear �ltering problem 13We shall frequently work with square roots of densities, rather than densitiesthemselves. Then, we compute by formal rules, using the MFS form :dppt = 12ppt � dpt = 12 ppt �t(pt) dt� 12 ppt �0t (pt) dt+ 12 Pdk=1ppt �kt (pt) � dY kt= Pt(ppt) dt�Q0t (ppt) dt+ dXk=1Qkt (ppt) � dY kt ;(2.7)where the nonlinear time dependent operators Pt and Qkt for k = 0; 1; � � � ; dare de�ned byPt(r) := 12 r �t(r2) = L�t r22r ; Qkt (r) := 12 r �kt (r2) (2.8)respectively.



14 Chapter 2. Stochastic Di�erential Equations and the Filtering Problem



Chapter 3Statistical Manifolds andFisher InformationDON 0T PANICThe Hitch{Hikers Guide to the Galaxy3.1 Statistical manifoldsOn the measurable space (Rn;B(Rn)) we consider a non{negative and �{�nitemeasure �, and we de�ne M(�) to be the set of all non{negative and �nitemeasures � which are absolutely continuous w.r.t. �, and whose densityp� = d�d�is positive �{a.e. For simplicity, we restrict ourselves in this thesis to the casewhere � is the Lebesgue measure on Rn.In the following, we denote by H(�) the set of all the densities of measurescontained inM(�). Notice that, as all the measures inM(�) are non{negativeand �nite, we have that if p is a density in H(�) then p 2 L1(�), that ispp 2 L2(�). The above remark implies that the set R(�) := fpp : p2H(�)gof square roots of densities of H(�) is a subset of L2(�). Notice that all ppin R(�) satisfy pp(x) > 0, for almost every x 2 Rn. The above remarks leadto the de�nition of the following metric in R(�), see Jacod and Shiryayev [31]or Hanzon [28] : dR(pp1;pp2) := kpp1 �pp2k, where k � k denotes the normof the Hilbert space L2(�). This leads to the Hellinger metric on H(�) (orM(�)), obtained by using the bijection between densities (or measures) andsquare roots of densities : if �1 and �2 are the measures having densities p115



16 Chapter 3. Statistical Manifolds and Fisher Informationand p2 w.r.t. �, the Hellinger metric is de�ned as dM(�1; �2) = dH (p1; p2) =dR(pp1;pp2). It can be shown, see e.g. [28], that the distance dM(�1; �2) inM(�) is de�ned independently of the particular � we choose as basic measure,as long as both �1 and �2 are absolutely continuous w.r.t. �. As one can always�nd a � such that both �1 and �2 are absolutely continuous w.r.t. � (take forexample � := (�1 + �2)=2), the distance is well de�ned on the set of all �niteand positive measures on (
;F). Notice that R(�) is not locally homeomorphicto L2(�), hence is not a manifold modeled on L2(�). Indeed, any open set ofL2(�) contains functions which are negative in a set with positive �{measure.There is no open set of L2(�)which contains only positive functions such as thefunctions of L2(�).In the following we give a very quick review of the main concepts we needfrom di�erential geometry. For a survey on the role of di�erential geometryin statistical theory see for example [4]. For the basic de�nitions and a moretechnical introduction on manifolds, tangent vectors and related concepts werefer to the literature, see for example [2] and the references given therein,and [43].Consider an open subset M of L2(�). Let x be a point of M , and let
 : (��; �) ! M be a curve on M around x, i.e. a di�erentiable map betweenan open neighborhood of 0 2 R and M such that 
(0) = x. We can de�ne thetangent vector to 
 at x as the Fr�echet derivative D
(0) : (��; �) ! L2(�),i.e. the linear map de�ned in R around 0 and taking values in L2(�) such thatthe following limit holds :limjhj!0 k
(h)� 
(0)�D
(0) � hkjhj = 0 :The map D
(0) approximates linearly the change of 
 around x. Let Cx(M)be the set of all the curves on M around x. If we consider the spaceLxM := fD
(0) : 
 2 Cx(M)g ;of tangent vectors to all the possible curves on M around x, we obtain againthe space L2(�). This is due to the fact that for every v 2 L2(�) we can alwaysconsider the straight line 
v(h) := x+h v. Since M is open, 
v(h) takes valuesinM for jhj small enough. Of courseD
v(0) = v, so that indeed LxM = L2(�).The situation becomes di�erent if we consider an m{dimensional manifold Nimbedded in L2(�). We can consider the induced L2 structure on N as follows :suppose x 2 N , and de�ne againLxN := fD
(0) : 
 2 Cx(N)g :This is a linear subspace of L2(�) called the tangent vector space at x, whichdoes not coincide with L2(�) in general (due to the �nite dimension of N).



3.2. General manifolds 17The set of all tangent vectors at all points x of N is called the tangent bundle,and will be denoted by LN . In our work we shall consider �nite dimensionalmanifolds N embedded in L2(�), which are contained in R(�) as a set, i.e.N � R(�) � L2(�), so that usually x = pp. It may be important to point outthat, although we are using square roots of densities in order to keep the L2structure, once we have a �nite dimensional manifold N , we can consider anyof the embeddings pp 7! �p, or pp 7! p, focusing on manifolds of probabilitymeasures �p, or their densities p rather than on their square roots pp.If N is m{dimensional, it is locally homeomorphic to Rm, and it may bedescribed locally by a chart : if pp 2 N , there exists a pair (S1=2; �) with S1=2open neighbourhood of pp in N and � : S1=2 ! � homeomorphism of S1=2onto an open subset � of Rm. By considering the inverse map i of �,i : � �! S1=2� 7�! pp(�; �)we can express S1=2 asi(�) = fpp(�; �) ; � 2 �g = S1=2:3.2 General manifoldsWe shall denote by S the following family of probability densities :S = fp(�; �) ; � 2 �g;where � � Rm and we will work only with the single coordinate chart (S1=2; �)as it is done in [2]. From the fact that (S1=2; �) is a chart, it follows thatf@i(�; �)@�1 ; � � � ; @i(�; �)@�m gis a set of linearly independent vectors in L2(�). In such a context, let us seewhat the vectors of Lpp(�;�)S1=2 are. We can consider a curve in S1=2 aroundpp(�; �) to be of the form 
 : h 7!pp(�; �(h)), where h 7! �(h) is a curve in �around �. Then, according to the chain rule, we compute the following Fr�echetderivative:D
(0) = Dpp(�; �(h))���h=0 = mXk=1 @pp(�; �)@�k _�k(0) = mXk=1 12pp(�; �) @p(�; �)@�k _�k(0) :We obtain that a basis for the tangent vector space at pp(�; �) to the spaceS1=2 of square roots of densities of S is given by :Lpp(�;�)S1=2 = spanf 12pp(�; �) @p(�; �)@�1 ; � � � ; 12pp(�; �) @p(�; �)@�m g : (3.1)



18 Chapter 3. Statistical Manifolds and Fisher InformationAs i is the inverse of a chart, these vectors are actually linearly independent,and they indeed form a basis of the tangent vector space. One has to be careful,because if this were not true, the dimension of the above spanned space coulddrop. As an example, consider the curved exponential familyS = fp(x; �) = exp[��31x� (�22 + 1)x2 �  (�)]; � 2 � � R2gwhere  is the normalizing constant. It is immediate to check that at (�1; �2) =(0; 0) | assuming this point is in � | the linear space de�ned in (3.1) abovereduces to a one dimensional subspace of L2. This happens because (S1=2; �)is not a chart for the manifold N : it describes a di�erent di�erential structure.The inner product of any two basis elements is de�ned, according to the L2inner product h 12pp(�; �) @p(�; �)@�i ; 12pp(�; �) @p(�; �)@�j i= 14 Z 1p(x; �) @p(x; �)@�i @p(x; �)@�j d�(x) = 14 gij(�) : (3.2)This is, up to the numeric factor 14 , the Fisher information metric, see [2], [49],and [1]. The matrix g(�) = (gij(�)) is called the Fisher information matrix.Next, we introduce the orthogonal projection between any linear subspaceV of L2(�) containing the �nite dimensional tangent vector space (3.1) andthe tangent vector space (3.1) itself. Let us remember that our basis is notorthogonal, so that we have to project according to the following formula:� : V �! spanfw1; � � � ; wmgv 7�! mXi=1 [ mXj=1W ij hv; wji] wiwhere fw1; � � � ; wmg are m linearly independent vectors, W := (hwi; wji) is thematrix formed by all the possible inner products of such linearly independentvectors, and (W ij) is the inverse of the matrixW . In our context fw1; � � � ; wmgare the vectors in (3.1), and of course W is, up to the numeric factor 14 , theFisher information matrix given by (3.2) or (3.4). Then we obtain the follow-ing projection formula, where (gij(�)) is the inverse of the Fisher information



3.2. General manifolds 19matrix (gij(�)) :�� : L2(�) � V �! spanf 12pp(�; �) @p(�; �)@�1 ; � � � ; 12pp(�; �) @p(�; �)@�m g��[v] = mXi=1 [ mXj=1 4gij(�) hv; 12pp(�; �) @p(�; �)@�j i] 12pp(�; �) @p(�; �)@�i : (3.3)Let us go back to the de�nition of tangent vectors for our statistical mani-fold. Amari [2] uses a di�erent representation of tangent vectors to S at p.Without exploring all the assumptions needed, let us say that Amari de�nesan isomorphism between the actual tangent space and the vector spacespanf@ log p(�; �)@�1 ; � � � ; @ log p(�; �)@�m g :On this representation of the tangent space, Amari de�nes a Riemannian metricgiven by Ep(�;�)f@ log p(�; �)@�i @ log p(�; �)@�j g ;where Epf�g denotes the expectation w.r.t. the probability density p. Thisis again the Fisher information metric, and indeed this is the most frequentde�nition of Fisher metric. In fact, it is easy to check thatEp(�;�)f@ log p(�; �)@�i @ log p(�; �)@�j g = Z @ log p(x; �)@�i @ log p(x; �)@�j p(x; �) d�(x)(3.4)= Z 1p(x; �) @p(x; �)@�i @p(x; �)@�j d�(x) = gij(�) :From the above relation and from (3.2) it is clear that, up to the numericfactor 14 , the Fisher information metric and the Hellinger metric coincide onthe two representations of the tangent space to S at p(�; �).There is another way of measuring how close two densities of S are. Considerthe Kullback{Leibler information between two densities p and q of H(�) :K(p; q) := Z log p(x)q(x) p(x) d�(x) = Epflog pq g :This is not a metric, since it is not symmetric and it does not satisfy thetriangular inequality. When applied to a �nite dimensional manifold such as S,both the Kullback{Leibler information and the Hellinger distance are particularcases of �{divergence, see [2] for the details. One can show that the Fishermetric and the Kullback{Leibler information coincide in�nitesimally. Indeed,



20 Chapter 3. Statistical Manifolds and Fisher Informationconsider the two densities p(�; �) and p(�; �+ d�) of S. By expanding in Taylorseries, we obtainK(p(�; �); p(�; � + d�)) = � mXi=1 Ep(�;�)f@ log p(�; �)@�i g d�i� mXi;j=1Ep(�;�)f@2 log p(�; �)@�i@�j g d�i d�j +O(jd�j3)= mXi;j=1 gij(�) d�i d�j +O(jd�j3) :The interested reader is referred to [1].3.3 Manifolds associated with exponential fam-iliesWe conclude this section with some well known results about exponential fam-ilies, which will be used in the following sections. More results on exponentialfamilies could be found in the books of Amari [2] and Barndor�{Nielsen [3].We shall use the following equivalent notations for partial di�erentiation :@k@�i1 � � � @�ik = @ki1;���;ik :De�nition 3.3.1 Let fc1; � � � ; cmg be scalar functions ci : Rn ! R,i = 1; 2; � � � ;m such that f1; c1; � � � ; cmg are linearly independent, and assumethat the convex set�0 := f� 2 Rm :  (�) = log Z exp[�T c(x)] d�(x) <1g ;has non{empty interior. ThenS = fp(�; �) ; � 2 �g; p(x; �) := exp[�T c(x)�  (�)] ;where � � �0 is open, is called an exponential family of probability densities.Remark 3.3.2 Given linearly independent scalar functions fc1; � � � ; cmg de-�ned on Rn, it may happen that the densities exp[�T c(x)] are not integrable.However, it is always possible to extend the family so as to deal with integrabledensities only. Indeed, assume that there exist K > 0 and r � 0 such thatjc(x)j � K (1 + jxjr) ;



3.3. Manifolds associated with exponential families 21for all x 2 Rn. De�ne d(x) := jxjs for all x 2 Rn, and some s > r. ThenS0 := fp0(�; �; �) ; � 2 Rm; � > 0g;p0(x; �; �) := exp[�T c(x)� � d(x)�  0(�; �)] ;is an exponential family of densities, with a non{empty open parameter set.Lemma 3.3.3 LetS = fp(�; �) ; � 2 �g; p(x; �) := exp[�T c(x)�  (�)] ;where � � Rm is open, be an exponential family of probability densities. Thenthe function  is in�nitely di�erentiable in �Ep(�;�)fcig = @i (�) =: �i(�) ;Ep(�;�)fcicjg = @2ij (�) + @i (�) @j (�) ;and more generallyEp(�;�)fci1 � � � cikg = exp[� (�)] @k exp[ (�)]@�i1 � � � @�ik :The Fisher information matrix satis�esgij(�) = @2ij (�) = @i�j(�) :In the particular case where n = 1 andci(x) = xi ; i = 1; � � � ;mthe following recursion formula holds, with �0(�) := 1 : for any nonnegativeinteger i�m+i(�) := Ep(�;�)fxm+ig (3.5)
= � 1m�m h (i+ 1) �1 2�2 � � � (m� 1)�m�1 i 26666664 �i(�)�i+1(�)�i+2(�)...�i+m�1(�)

37777775 :Moreover, the entries of the Fisher information matrix satisfygij(�) = �i+j(�)� �i(�) �j(�) : (3.6)



22 Chapter 3. Statistical Manifolds and Fisher InformationProof : All these results may be found or immediately derived from Amari [2](Chapter 4) or Barndor�-Nielsen [3] (Theorem 8.1). We only notice that someof the above properties follow easily by di�erentiating the identityZ exp[�T c(x) �  (�)] dx = 1w.r.t. the components (�1; � � � ; �m) of �. The particular recursion formula (3.5)is obtained via the following integration by parts:�i(�) = Z +1�1 xi p(x; �) dx= [ xi+1i+ 1 p(x; �)]+1�1 � Z +1�1 xi+1i+ 1 [�1 + 2�2 x+ � � �+m�m xm�1] p(x; �) dx= 0� 1i+ 1 Ep(�;�)f�1 xi+1 + 2�2 xi+2 + � � �+m�m xi+mg ;from which the formula follows easily, remembering that �i(�) = Ep(�;�)fxig. 2Remark 3.3.4 The quantities(�1; � � � ; �m) 2 E = �(�) � Rmform a coordinate system for the given exponential family. The two coordinatesystems � (canonical parameters) and � (expectation parameters) are related bydi�eomorphism, and according to the above results the Jacobian matrix of thetransformation � = �(�) is the Fisher information matrix. We shall use thenotation pE(�; �(�)) = p(�; �) to express exponential densities of S as functionsof the expectation parameters.The canonical parameters and the expectation parameters are biorthogonalw.r.t. the Fisher information metric : at pp(�; �) =ppE(�; �)h @@�ipp(�; �); @@�jppE(�; �)i = 14 �ij ; i; j = 1; 2; � � � ;m:



Chapter 4The Projection FilterDid we make a di�erence?Captain James Kirk, Star Trek4.1 IntroductionIn this chapter we introduce the projection �lter. We start by a section con-sidering the projection in Fisher metric of the density evolution of a di�usionprocess onto a �nite{dimensional manifold of densities. The projected densityevolution is obtained via the projected Fokker{Planck equation. In that sectionwe shall give more importance to intuition than to rigor. A rigorous setup forthe projection of the Fokker{Planck equation will be developed in Chapter 7.Fully rigorous treatment of the more complicated projection of the �lteringequation is given in the following sections. The �ltering problem was intro-duced in Chapter 2. There we saw that from a probabilistic point of view, the�ltering problem consists of the calculation of the complete conditional densityof an unknown signal (state) given the observations up to the current instant.Such conditional density results in an in�nite{dimensional �lter in the gen-eral nonlinear case. Under some regularity conditions, the conditional densityexists and is the solution of the Kushner{Stratonovich equation, a stochasticpartial di�erential equation. In order to avoid in�nite dimensionality, someapproximation schemes have been proposed, yielding �nite dimensional �ltersfor the unobserved state. A well{known approximation method is the extendedKalman �lter (EKF). The EKF is based upon linearization of the state equa-tion around the current estimate, and application of the Kalman �lter to theresulting linearized state equation. This procedure �nds its justi�cation inheuristic considerations, and not much is known about its performance, except23



24 Chapter 4. The Projection Filterin the case of small observation noise, see Picard [51], [52] and [53].Another approximation method in the nonlinear case is the assumed{density�lter (ADF), obtained from the selection of a few moment equations, which areclosed under the assumption that the density is of a certain form, e.g. Gaussian,etc. We present a detailed de�nition of the assumed{density �lters in Chap-ter 5. In the present chapter we introduce the projection �lter (PF), whichis a �nite{dimensional nonlinear �lter based on the di�erential{geometric ap-proach to statistics. We particularize the PF to exponential families in theframework of SDE's on manifolds. The PF is obtained by orthogonally pro-jecting the right{hand side of the Kushner{Stratonovich equation onto the tan-gent space of a �nite{dimensional manifold of probability densities, accordingto the Fisher metric and its extension to in�nite{dimensional space of squareroots of densities, known as the Hellinger distance. We shall also present someformulae concerning auxiliary quantities, such as the projection residual (PR),the purpose of which is to provide a local measure of the quality of the �lterbehaviour. We develop explicit formulae for the particular example of the cubicsensor. The �lters are derived by using the geometric approach, but in principlethe reader can rederive them by using the assumed{density idea without usingany Riemannian geometry, as we shall see in Chapter 5. Finally, we presentsome numerical simulations and comparisons for the cubic sensor, between theprojection �lter and the numerical solution of the nonlinear{�ltering equation.Part of the material presented here has already appeared in [13] and [14].4.2 Projection of the density evolution of a dif-fusion processOn the complete probability space (
;F ; P ) let us consider a stochastic processfXt; t � 0g of di�usion type, adapted to a �ltration fFt; t � 0g. Let thedynamic equation describing X be of the following formdXt = ft(Xt)dt+ �(Xt)dWt;where fWt; t � 0g is a standard Brownian motion independent of the initialcondition X0.The equation above is an Itô stochastic di�erential equation. In the follow-ing derivations, in order to simplify notation, we treat the scalar case. Thefollowing sections will deal with the vector case. Precise assumptions on thecoe�cients f; �, and h will also be given in the next sections.Under suitable assumptions the law of Xt is absolutely continuous w.r.t. theLebesgue measure and its density, i.e. pt(x)dx := P [Xt 2 dx], satis�es the



4.2. Projection of the density evolution of a di�usion process 25Fokker{Planck equation (FPE):@pt@t = L�t pt;where the backward di�usion operator Lt is de�ned byLt = ft @@x + 12at @2@x2 :At this point we introduce the geometric structure which permits to projectthe FPE onto a �nite{dimensional manifold of densities. Again, the technicaldetails can be found in the following sections, where we explain how to projecta more complicate equation (namely the Kushner{Stratonovich equation fornonlinear �ltering).Rewrite FPE for the square root of pt:@ppt@t = L�t pt2ppt :Next, select a �nite dimensional manifold of square roots of densities toapproximate ppt. Let the family be parametrized by � 2 � � Rm, where � isopen. Call such manifold S1=2,S1=2 = fpp(�; �); � 2 �g:Consider a generic curve t 7! pp(�; �t) on this manifold. Its tangent vector in�t is given according to the chain rule:ddtpp(�; �t) = mXi=1 @pp(�; �t)@�i _�ti ; (4.1)from which we see that tangent vectors in �t to all curves lie in the linear(tangent) space spanf@pp(�; �t)@�1 ; : : : ; @pp(�; �t)@�m g:De�ne the following quantityg(�)ij := 4h@pp(�; �)@�i ; @pp(�; �)@�j i; i; j = 1; : : : ;m;where h�; �i is the inner product of L2. Notice that the matrix g is symmetric.The factor 4 is there for historical reasons, just to relate this L2 structure tothe traditional Fisher information metric g(�) (see Section 3.2).



26 Chapter 4. The Projection FilterNow de�ne for all � 2 � the orthogonal projection�� : L2 �! spanf@pp(�; �t)@�1 ; : : : ; @pp(�; �t)@�m g��[v] := mXi=1 [ mXj=1 4gij(�) hv; @pp(�; �)@�j i] @pp(�; �)@�i :At this point we project the FPE equation for ppt via this projection, and weobtain the following (m{dimensional) SDE on the manifold S1=2 :@@tpp(�; �t) = ��t [ L�t p(�; �t)2pp(�; �t) ]:Writing the projection map explicitly and comparing with (4.1) yields the fol-lowing SDE for the parameters:ddt�t = g�1(�t) Z L�t p(x; �t)p(x; �t) @p(x; �t)@� dx;where integrals of vector functions are meant to be applied to their components.The equation above holds, under suitable assumptions, for any parametrizedfamily of densities (not necessarily exponential). We will prove existence ofthe solution of such equation for exponential families. The point of this �rstsection is to give to the reader a readable path of the basic steps involved inthis `projection idea'. The subsequent sections will formalize and generalize, inmany ways, the results obtained so far.4.3 General de�nition of the projection �lterIn the present section we shall introduce the general de�nition of the projection�lter. We begin by noticing that the stochastic calculus to be used in thisderivation is the McShane{Fisk{Stratonovich (MFS) calculus. As remarked inSection 2.2, this is a standard choice for stochastic calculus on manifolds, asone can see for example in Elworthy [22], and is due to the fact that one doesnot know how to interpret second order terms arising in the Itô calculus interms of manifold structures. For an account on McShane's integral, see thebook [48].We shall assume that the �nite dimensional family S1=2 we are working withhas a manifold structure and a well de�ned Fisher information metric at allpoints � 2 �, according to the presentation given in Section 3.2. In order toproject the Kushner{Stratonovich equation for ppt given in Section 2.2 ontothe m{dimensional manifold S1=2 we require the following assumption to besatis�ed :



4.3. General de�nition of the projection �lter 27(DG) For all � 2 � and all t � 0Ep(�;�)fjL�tp(�; �)p(�; �) j2g <1 and Ep(�;�)fjhtj4g <1 :These assumptions will be explored in detail for exponential families in Sec-tion 4.4, and explicit su�cient conditions under which they hold will be given.These conditions ensure that for all � 2 � and all t � 0, the vectorsPt(pp(�; �))and Qkt (pp(�; �)) (see de�nitions of Section 2.2) for k = 0; 1; � � � ; d are vec-tors in L2(�), so that indeed the projection can take place according to theL2(�) structure described in Sections 3.1 and 3.2.The projection �lter for the family S = fp(�; �) ; � 2 �g is de�ned as thesolution of the following stochastic di�erential equation on the manifold S1=2 :dpp(�; �t) = ��t � Pt(pp(�; �t)) dt���t � Q0t (pp(�; �t)) dt+ dXk=1��t � Qkt (pp(�; �t)) � dY kt ; (4.2)where for all � 2 �, the projection map �� is de�ned in (3.3).Remark 4.3.1 Notice that although at �rst sight (4.2) may look like a stochas-tic partial di�erential equation (PDE), it is just a �nite dimensional SDEwhich can be equivalently written using di�erent coordinates as an equationin � � Rm for the parameter �t. The explicit form of this SDE is given in thefollowing theorem.Theorem 4.3.2 Assume that, in addition to (A), (B) and (C), the coe�cientsft, at and ht of the system (2.1), and the family S satisfy (DG), i.e.Ep(�;�)fjL�t p(�; �)p(�; �) j2g <1 and Ep(�;�)fjhtj4g <1 ;holds for all � 2 �, and all t � 0. Assume p0(�) = p(�; �0) 2 S.Then, for all � 2 � and all t � 0, the vectors Pt(pp(�; �)) and Qkt (pp(�; �))for k = 0; 1; � � � ; d are vectors in L2(�).For all � 2 � and all t � 0, the nonlinear operators �� � Pt and �� �Qkt fork = 0; 1; � � � ; d are vector �elds on the manifold S1=2, where the projection map�� is de�ned in (3.3).The projection �lter density p(�; �t) is described by equation (4.2), and theprojection �lter parameters satisfy the following stochastic di�erential equation :



28 Chapter 4. The Projection Filterd�it = [ mXj=1 gij(�t) Z L�t p(x; �t)p(x; �t) @p(x; �t)@�j d�(x)] dt� [ mXj=1 gij(�t) Z 12 jht(x)j2 @p(x; �t)@�j d�(x)] dt+ dXk=1 [ mXj=1 gij(�t) Z hkt (x) @p(x; �t)@�j d�(x)] � dY kt ; �i0 : (4.3)
Under the assumptions on the coe�cients, this equation has a unique solutionup to the a.s. positive exit time � := infft � 0 : �t =2 �g.Proof : Let us compute the projections of the operators in the right-handside of the Kushner-Stratonovich equation. Under assumption (DG) such pro-jections always exist.��t � Pt(pp(�; �t)) = ��t [ L�t p(�; �t)2pp(�; �t) ] == mXi=1 [ mXj=1 4gij(�t) h L�t p(�; �t)2pp(�; �t) ; @pp(�; �t)@�j i ] @pp(�; �t)@�i= mXi=1 [ mXj=1 gij(�t) Z L�t p(x; �t)p(x; �t) @p(x; �t)@�j d�(x)] @pp(�; �t)@�i :Similarly��t � Q0t (pp(�; �t)) = ��t [ 12pp(�; �t) �0t (p(�; �t)) ] == mXi=1 [ mXj=1 4gij(�t) h 12pp(�; �t) �0t (p(�; �t)); @pp(�; �t)@�j i ] @pp(�; �t)@�i= mXi=1 [ mXj=1 gij(�t) Z 12 [jht(x)j2 �Ep(�;�t)fjhtj2g] @p(x; �t)@�j d�(x)] @pp(�; �t)@�i= mXi=1 [ mXj=1 gij(�t) Z 12 jht(x)j2 @p(x; �t)@�j d�(x)] @pp(�; �t)@�i ;and ��t � Qkt (pp(�; �t)) = ��t [ 12pp(�; �t) �kt (p(�; �t)) ] =



4.3. General de�nition of the projection �lter 29= mXi=1 [ mXj=1 4gij(�t) h 12pp(�; �t) �kt (p(�; �t)); @pp(�; �t)@�j i ] @pp(�; �t)@�i= mXi=1 [ mXj=1 gij(�t) Z [hkt (x) �Ep(�;�t)fhkt g] @p(x; �t)@�j d�(x)] @pp(�; �t)@�i= mXi=1 [ mXj=1 gij(�t) Z hkt (x) @p(x; �t)@�j d�(x)] @pp(�; �t)@�i ;for k = 1; � � � ; d. We have used the fact that the constant terms Ep(�;�t)fjhtj2gand Ep(�;�t)fhkt g give no contribution to the projection, sinceZ @p(x; �t)@�i d�(x) = 0 :We conclude by rewriting equation (4.2) in the more detailed formdpp(�; �t) = mXi=1 [ mXj=1 gij(�t) Z L�t p(x; �t)p(x; �t) @p(x; �t)@�j d�(x)] @pp(�; �t)@�i dt� mXi=1 [ mXj=1 gij(�t) Z 12 jht(x)j2 @p(x; �t)@�j d�(x)] @pp(�; �t)@�i dt+ mXi=1 dXk=1 [ mXj=1 gij(�t) Z hkt (x) @p(x; �t)@�j d�(x)] @pp(�; �t)@�i � dY kt :(4.4)By expanding pp(�; �t) according to the Stratonovich chain ruledpp(�; �t) = mXi=1 @pp(�; �t)@�i � d�it ;and comparing with (4.4) we obtain the following equation for the parameters�t describing our projected density in S :d�it = [ mXj=1 gij(�t) Z L�t p(x; �t)p(x; �t) @p(x; �t)@�j d�(x)] dt� [ mXj=1 gij(�t) Z 12 jht(x)j2 @p(x; �t)@�j d�(x)] dt+ dXk=1 [ mXj=1 gij(�t) Z hkt (x) @p(x; �t)@�j d�(x)] � dY kt ; �i0;



30 Chapter 4. The Projection Filterwhich is our �nite dimensional �lter. Consider the termZ L�t p(x; �t)p(x; �t) @p(x; �t)@�j d�(x) :Usually, as in the case of the optimal �lter, terms involving L�t cause in�nite{dimensionality (due to di�erential operators in x involved in L�t ). Nonetheless,this problem is not a�ecting our approximated �lter. Indeed, the integral abovereduces to a function of �t, which is a �nite dimensional parameter. 24.4 The exponential projection �lterIn this section we present the rigorous de�nition of an exponential projection�lter. We will show that if we choose S1=2 as the square roots of a �nitedimensional exponential family, then under some additional assumptions theoperators Pt and Qkt for k = 0; 1; � � � ; d introduced in (2.8) de�ne at each pointpp(�; �) 2 S1=2 tangent vectors to a larger but �nite dimensional (smoothlyembedded) submanifold �1=2t;� of L2(�), whose elements are (square roots of)exponential densities of a larger (curved) exponential family. The manifolds�1=2t;� may be viewed as enveloping manifolds for S1=2. Within such a setup,the projection can take place within a �nite dimensional tangent space, andin�nite dimensionality is bypassed. The additional conditions we shall imposeare necessary to ensure that the operator Pt takes values in L2(�), so thatwe can actually project the coe�cients in the right hand side of the Kushner{Stratonovich equation, according to formula (3.3).Let us consider the following exponential family of probability densitiesS := fp(�; �) ; � 2 �g; p(x; �) := exp[�T c(x) �  (�)] ; (4.5)where � � Rm is open. According to (2.5), we de�ne�t;� := �t(p(�; �)) = L�t p(�; �)p(�; �) ;�0t;� := �0t (p(�; �)) = 12 [jhtj2 �Ep(�;�)fjhtj2g]�kt;� := �kt (p(�; �)) = hkt �Ep(�;�)fhkt g ;



4.4. The exponential projection �lter 31for k = 1; � � � ; d. From the expression obtained in (2.6), it follows that�t;� = � nXi=1[ f it @@xi (�T c) + @f it@xi ]+ 12 nXi;j=1[ aijt @2@xi@xj (�T c) + aijt @@xi (�T c) @@xj (�T c)+2 @aijt@xj @@xi (�T c) + @2aijt@xi@xj ] : (4.6)
We make the following additional assumption on the coe�cients ft, at and htof the system (2.1), and on the coe�cients c of the exponential family (4.5)(D) For all � 2 � and all t � 0Ep(�;�)fj�t;�j2g <1 and Ep(�;�)fjhtj4g <1 :Under the assumption (D) we de�ne below, for any �0 2 � and t0 � 0, acurved exponential family �t0;�0 , containing S. For the de�nition of a curvedexponential family, see [2, Section 4.2].Proposition 4.4.1 Let fd1; � � � ; dsg, with 0 � s � d + 2, di : Rn ! R,i = 1; � � � ; s be scalar functions depending on t0; �0, such thatf1; c1; � � � ; cm; d1; � � � ; dsg is a basis of the linear spacespanf1; c1; � � � ; cm; �t0;�0 ; 12 jht0 j2; h1t0 ; � � � ; hdt0g :De�ne �t0;�0 := fpt0;�0(�; �; �) ; � 2 � ; � 2 �g ; (4.7)withpt0;�0(x; �; �) := exp[�T c(x) + �T d(x) � 14 j�j4 jd(x)j4 �  t0;�0(�; �)] ; (4.8)and where � � Rs is an open set. If the assumption (D) holds, and if � � Rsis a su�ciently small neighbourhood of the origin, then �1=2t0;�0 is a (m + s){dimensional submanifold of L2(�).Remark 4.4.2 For any � 2 �, p(�; �) = pt0;�0(�; �; 0), hence S � �t0;�0 , whichmakes �1=2t0;�0 an enveloping manifold of S1=2. Here enveloping is meant inthe sense that all curves on S1=2 are particular curves on �t0;�0 , and tangentvectors to curves in S1=2 are particular tangent vectors to particular curves of�t0;�0 .



32 Chapter 4. The Projection FilterProof : For simplicity, we use in this proof the notations p0(�; �; �) =pt0;�0(�; �; �), and  0(�; �) =  t0;�0(�; �).It follows from the Cauchy{Schwartz inequality, and the Young inequality :u � 34 + 14 u4; u 2 R, thatp0(x; �; �) � exp[�T c(x) + 34 �  0(�; �)] ;hence p0(�; �; �) is integrable for any � 2 �, and any � 2 Rs.De�ne the following expectation parameters��i(�; �) := @@�i 0(�; �) = Ep0(�;�;�)fcig ; i = 1; � � � ;m ;��l(�; �) := @@�l 0(�; �) = Ep0(�;�;�)fdl � �l j�j2 jdj4g ; l = 1; � � � ; s ;and the tangent vectors@@�ipp0(�; �; �) = 12pp0(�; �; �) [ci � ��i(�; �)] ; i = 1; � � � ;m ;@@�lpp0(�; �; �) = 12pp0(�; �; �) [dl � �l j�j2 jdj4 � ��l(�; �)] l = 1; � � � ; s ;at point pp0(�; �; �) 2 �1=2t0;�0 . Under the assumption (D), it holdsEp0(�;�;�)fjdj2g = Ep(�;�)fjdj2 exp[�T d� 14 j�j4 jdj4]g exp[ (�) �  0(�; �)]� Ep(�;�)fjdj2g exp[ 34 +  (�)�  0(�; �)] <1 ;and similarlyj�j6 Ep0(�;�;�)fjdj8g= Ep(�;�)fj�j6 jdj8 exp[�T d� 14 j�j4 jdj4]g exp[ (�)�  0(�; �)]� Ep(�;�)fjdj2g maxu�0 fu6 exp[u� 14 u4]g exp[ (�) �  0(�; �)] <1 ;which proves that all the tangent vectors introduced above are in L2(�), andhence the associated Fisher information matrix �g(�; �) is well de�ned.Finally, it is easy to prove that these tangent vectors are linearly independent,and hence the Fisher information matrix is invertible. Indeed, the followingdecomposition holdsjd(x)j4 = �+ �T c(x) + 
T d(x) + e(x) ;



4.4. The exponential projection �lter 33where the scalar function e either is zero, or is linearly independent off1; c1; � � � ; cm; d1; � � � ; dsg;and 0 = �+ �T [c� ��(�; �)] + �T [d� � j�j2 jdj4 � ��(�; �)]= [�� �T ��(�; �)� �T ��(�; �) � �T � j�j2 �] + [�� �T � j�j2 �]T c+[�� �T � j�j2 
]T d� �T � j�j2 e ;implies �� �T ��(�; �)� �T ��(�; �)� �T � j�j2 � = 0�� �T � j�j2 � = 0[I � 
 �T j�j2] � = �� �T � j�j2 
 = 0 :If � is su�ciently small, the matrix [I � 
 �T j�j2] is invertible, hence � = 0,from which we deduce � = 0, and � = 0. 2It is easily checked that for all � 2 �spanf 12pp(�; �)�t0;�0 ; 12pp(�; �)�kt0;�0 ; k = 0; 1; � � � ; dg � Lpp(�;�)�1=2t0;�0 :Let us consider the equation (2.7) in MFS form for fppt ; t � t0g, starting attime t0 from the initial condition ppt0 =pp(�; �0) 2 S1=2 for some �0 2 �, i.e.dppt = 12 ppt �t(pt) dt� 12 ppt �0t (pt) dt+ 12 dXk=1ppt �kt (pt) � dY kt= Pt(ppt) dt�Q0t (ppt) dt+ dXk=1Qkt (ppt) � dY kt ; t � t0 :(4.9)It is immediate to check thatPt0(ppt0) = 12 ppt0 �t0(pt0) = 12pp(�; �0)�t0;�0 2 Lpp(�;�0)�1=2t0;�0 ;and Qkt0(ppt0) = 12 ppt0 �kt0(pt0) = 12pp(�; �0)�kt0;�0 2 Lpp(�;�0)�1=2t0;�0 ;



34 Chapter 4. The Projection Filterfor k = 0; 1; � � � ; d. Then we can project at any time instant t0 from the �nitedimensional tangent vector space Lpp(�;�0)�1=2t0;�0 onto the �nite dimensionaltangent vector space Lpp(�;�0)S1=2 since the Fisher metric in the envelopingmanifold is well de�ned under the assumption (D).Let h�; �i be the Fisher information metric on the enveloping manifold at thecurrent point p(�; �0) = pt0;�0(�; �; 0). Consider the orthogonal projection�t0;�0 : Lpp(�;�0)�1=2t0;�0 �! Lpp(�;�0)S1=2v 7�! mXi=1 [ mXj=1 4gij(�0) hv; 12pp(�; �0) @p(�; �0)@�j i] 12pp(�; �0) @p(�; �0)@�i :(4.10)The exponential projection �lter for the exponential family S is de�ned as thesolution of the following stochastic di�erential equation on the manifold S1=2 :dpp(�; �t) = �t;�t � Pt(pp(�; �t)) dt��t;�t � Q0t (pp(�; �t)) dt (4.11)+ dXk=1�t;�t � Qkt (pp(�; �t)) � dY kt :Of course the operatorsS1=2 �! LS1=2pp(�; �) 7�! �t;� � Pt(pp(�; �)) 2 Lpp(�;�)S1=2 ;and S1=2 �! LS1=2pp(�; �) 7�! �t;� � Qkt (pp(�; �)) 2 Lpp(�;�)S1=2 ;for k = 0; 1; � � � ; d, are vector �elds on the manifold S1=2.We can now state the main result of this section.Theorem 4.4.3 Assume that, in addition to (A), (B) and (C), the coe�cientsft, at and ht of the system (2.1), and the coe�cients c of the exponentialfamily (4.5) satisfy (D), i.e.Ep(�;�)fj�t;�j2g <1 and Ep(�;�)fjhtj4g <1 ;holds for all � 2 �, and all t � 0, where the expression of �t;� is given in (4.6).



4.4. The exponential projection �lter 35Then, for all � 2 � and all t � 0, the vectors Pt(pp(�; �)) and Qkt (pp(�; �))for k = 0; 1; � � � ; d are tangent vectors of a (m + s){dimensional, with 0 �s � d + 2, time varying submanifold �1=2t;� of L2(�), where �t;� is the curvedexponential family de�ned in (4.7) and (4.8).Let �t;� denote the projection map de�ned in (4.10). The nonlinear operators�t;� � Pt and �t;� � Qk for k = 0; 1; � � � ; d are vector �elds on the originalexponential manifold S1=2.The projection �lter density p(�; �t) is described by equation (4.11), and theprojection �lter parameters satisfy the following stochastic di�erential equation :g(�t) � d�t = Ep(�;�t)fLt cg dt�Ep(�;�t)f 12 jhtj2 [c� �(�t)]g dt+ dXk=1Ep(�;�t)fhkt [c� �(�t)]g � dY kt ; �0 : (4.12)Under the assumptions on the coe�cients, this equation has a unique solutionup to the a.s. positive exit time � := infft � 0 : �t =2 �g.Remark 4.4.4 The question of whether the exit time � is a.s. �nite or in�nitewill be addressed in future research work.Remark 4.4.5 The weaker conditionsEp(�;�)fjLt cjg <1 and Ep(�;�)fjhtj2g <1 ;for all � 2 �, and all t � 0, are su�cient for proving existence and uniquenessof a solution to equation (4.12) up to the exit time � . The question of whetherthe interpretation as a projected equation still holds under these weaker condi-tions will require further investigation.Remark 4.4.6 Notice that although (4.11) at a �rst sight may look like astochastic PDE, it is just a �nite dimensional SDE for the parameter �t ex-pressed in di�erent coordinates. The explicit form of this SDE is given by (4.12).Proof : Consider equation (4.3) derived in Section 4.3. For the special case



36 Chapter 4. The Projection Filterof the exponential family introduced above in (4.5), we obtaind�it = [ mXj=1 gij(�t) Z Lt cj(x) p(x; �t) d�(x)] dt� [ mXj=1 gij(�t) Z 12 jht(x)j2 [cj(x) � �j(�t)] p(x; �t) d�(x)] dt+ dXk=1 [ mXj=1 gij(�t) Z hkt (x) [cj(x)� �j(�t)] p(x; �t) d�(x)] � dY kt :(4.13)We have used the following duality relationZ L�t p(x; �t)p(x; �t) @p(x; �t)@�j d�(x) = Z L�t p(x; �t) [cj(x)� �j(�t)] d�(x)= Z Lt cj(x) p(x; �t) d�(x) :Another way of writing equation (4.13) isd�it = [ mXj=1 gij(�t) Ep(�;�t)fLt cjg] dt�[Pmj=1 gij(�t) Ep(�;�t)f 12 jhtj2 [cj � �j(�t)]g] dt+ dXk=1 [ mXj=1 gij(�t) Ep(�;�t)fhkt [cj � �j(�t)]g] � dY kt : (4.14)
In vector form, the above equation readsd�t = [g(�t)]�1Ep(�;�t)fLt cg dt� [g(�t)]�1Ep(�;�t)f 12 jhtj2 [c� �(�t)]g dt+ [g(�t)]�1 dXk=1 Ep(�;�t)fhkt [c� �(�t)]g � dY kt ;or equivalentlyg(�t) � d�t = Ep(�;�t)fLt cg dt�Ep(�;�t)f 12 jhtj2 [c� �(�t)]g dt+ dXk=1Ep(�;�t)fhkt [c� �(�t)]g � dY kt :Under the assumptions, the mappings � 7! Ep(�;�)fLt cg, and � 7! Ep(�;�)f 12 jhtj2gare locally Lipschitz continuous. Therefore, there exists a unique solution toequation (4.12) up to the a.s. positive exit time � , see [37]. 2



4.5. The residual and a convenient exponential family 37Remark 4.4.7 The initial condition �0 for equation (4.12) is de�ned as fol-lows : If p0 2 S, then p0 = p(�; �0) for some unique �0 2 �, which is usedas the initial condition. Otherwise, we project p0 on S, by minimizing theKullback{Leibler informationK(p0; p(�; �)) := Z log p0(x)p(x; �) p0(x) d�(x) ;w.r.t. � 2 �. After straightforward calculations, and making use of Lemma 3.3.3,this reduces to maximizing[ �T Z c(x) p0(x) d�(x) �  (�) ] :Assuming the maximum is achieved in �0 2 �, necessary conditions yield�i(�0) = Z ci(x) p0(x) d�(x) ; i = 1; � � � ;m :4.5 The residual and a convenient exponentialfamilyIn this section, we are interested in de�ning quantities which will provide alocal measure of the quality of the projection{�lter approximation. Compareequation (2.7) for the (square root of the) true density pt, i.e.dppt = Pt(ppt) dt�Q0t (ppt) dt+ dXk=1Qkt (ppt) � dY kt ; (4.15)and equation (4.11) for the (square root of the) projection{�lter density p�t =p(�; �t), i.e.dpp�t = ��t�Pt(pp�t ) dt���t�Q0t (pp�t ) dt+ dXk=1��t�Qkt (pp�t )�dY kt : (4.16)Two steps are involved in using the projection{�lter density p�t as an approx-imation of the true density pt : We make a �rst approximation by evaluatingthe right{hand side of equation (4.15) at the current projection{�lter densityp�t and not at the true density pt. Even with this approximation, the resultingcoe�cients Pt(pp�t ) and Qkt (pp�t ) for k = 0; 1; � � � ; d would make the solutionleave the manifold S1=2, and we make a second approximation by projectingthese coe�cients on the linear space Lpp�t S1=2 via the projection mapping��t . In order to express the error occurring in the second approximation step



38 Chapter 4. The Projection Filterat time t, we de�ne the prediction residual operator R�t and the correctionresidual operators Rkt for k = 0; 1; � � � ; d as follows :R�t := Pt ���t � PtRkt := Qkt ���t � Qkt :These operators, when applied to the square root of densitypp�t =pp(�; �t) 2S1=2 yield vectors of L2(�). We call such vectors projection residuals : they givea local measure of the quality of the approximation involved in the projection�lter. We can compute the norm of such vectors according to the norm k � k inL2(�), and we de�ne the prediction residual norm r�t and correction residualnorms rkt for k = 0; 1; � � � ; d as follows :r�t := kR�t (pp�t )krkt := kRkt (pp�t )k :However, we are still missing a single measure of the local error resultingfrom the projection. We de�ne below a single residual operator, only in thecase where Rkt = 0 for all t � 0, and all k = 1; � � � ; d. In this case, we de�nethe total residual operator R�t as :R�t := R�t �R0t ;and the corresponding total residual norm r�t as :r�t := kR�t (pp�t )k :Notice that if in addition R0t = 0, then r�t reduces to r�t . In the next section wewill introduce manifolds S1=2� and S1=2� for which such a de�nition is applicable.Now we try to give some intuition for the above de�nition. Suppose we replacein equations (4.15) and (4.16) the observation fYt ; t � 0g with some smoothprocess fut ; t � 0g, e.g. a regularized approximation, i.e. we consider theequations ddtppt = Pt(ppt)�Q0t (ppt) + dXk=1Qkt (ppt) _ukt ; (4.17)andddtpp�t = ��t � Pt(pp�t )���t � Q0t (pp�t ) + dXk=1��t � Qkt (pp�t ) _ukt : (4.18)In this case, we can de�ne a single residual operator expressing the di�erencebetween the rate of change in the smooth Kushner{Stratonovich equation (4.17)



4.5. The residual and a convenient exponential family 39and the rate of change in the smooth projection �lter equation (4.18), i.e.Rut := R�t �R0t + dXk=1Rkt _ukt :Of course, if we return to the original situation, e.g. letting the regularizedapproximation fut ; t � 0g converge to the observation fYt ; t � 0g, there isno limit to the smooth residual operator Rut , unless Rkt = 0 for all t � 0, andall k = 1; � � � ; d. In this case only, we de�ne the total residual operator R�t asabove.Note that R�t is the residual error in the `dt' term of the SDE describing theprojection �lter.From now on, and throughout the chapter, we assume for simplicity thatht(x) = h(x) does not depend explicitly on time. This is necessary in order tode�ne the simplifying time invariant exponential families S� and S� below.4.5.1 The exponential families S� and S�Now we can state the followingTheorem 4.5.1 Assumptions (A), (B) and (C) on the coe�cients ft, at andh of the system (2.1) in force. Let s := rankfh1; � � � ; hd; 12 jhj2g � d+ 1. Thereexist s linearly independent functions fc1; � � � ; csg de�ned on Rn, such that forall x 2 Rn 12 jh(x)j2 = sXi=1 �0i ci(x) ; hk(x) = sXi=1 �ki ci(x) ; (4.19)for k = 1; � � � ; d. Remaining functions fcs+1; � � � ; cmg are chosen such thatS� := fp(�; �) ; � 2 �g ; p(x; �) := exp[�T c(x)�  (�)] ;where � � Rm is open, is an exponential family of probability densities.Assume that, in addition to (A), (B) and (C), the coe�cients ft and at ofthe system (2.1), and the coe�cients c of the exponential family S� are suchthat : Ep(�;�)fj�t;�j2g <1 ;holds for all � 2 �, and all t � 0, where the expression of �t;� is given in (4.6).Then, for the projection �lter associated with the exponential family S�, thecorrection residual norms rkt are identically zero for all t � 0, and all k =0; 1; � � � ; d, and the stochastic di�erential equation for the parameters reducesto : d�t = [g(�t)]�1 Ep(�;�t)fLt cg dt� �0� dt+ dXk=1 �k� dY kt ; �0: (4.20)



40 Chapter 4. The Projection Filterwhere for all k = 0; 1; � � � ; d the m{dimensional vector �k� is de�ned by
�k� = 266666666664

�k1...�ks0...0
377777777775 :

Under the assumptions on the coe�cients, this equation has a unique solu-tion, up to the a.s. positive exit time � := infft > 0 : �t 62 �g.Proof : All the assumptions of Theorem 4.4.3 are satis�ed, and thereforethe solution of the stochastic di�erential equation for the projection �lter withmanifold S1=2� exists and is unique up to the a.s. positive exit time � .Next, we prove that the correction residual norms vanish. Indeed, it followsfrom (4.19) thatQ0t (pp(�; �t)) = 14 [jhj2 �Ep(�;�t)fjhj2g]pp(�; �t)= 12 sXi=1 �0i [ci �Ep(�;�t)fcig]pp(�; �t) ;and similarlyQkt (pp(�; �t)) = 12 [hk �Ep(�;�t)fhkg]pp(�; �t)= 12 sXi=1 �ki [ci �Ep(�;�t)fcig]pp(�; �t) ;for k = 1; � � � ; d. We remark that12 [ci �Ep(�;�t)fcig]pp(�; �t) = 12 [ci � �i(�t)]pp(�; �t) = 12pp(�; �t) @p(�; �t)@�i ;hence Qkt (pp(�; �t)) 2 Lpp(�;�t)S1=2 for k = 0; 1; � � � ; d. Therefore, the projec-tion does not modify these vectors since they already lie in the tangent spaceof S1=2.Finally, the equation for the parameters is obtained via straightforward cal-culations. Indeed, it follows from (4.19) thatEp(�;�t)f 12 jhj2 [cj � �j(�t)]g = sXl=1 �0l Ep(�;�t)fcl [cj � �j(�t)]g = sXl=1 gjl(�t) �0l ;



4.5. The residual and a convenient exponential family 41hencemXj=1 gij(�t) Ep(�;�t)f 12 jhj2 [cj � �j(�t)]g = mXj=1 gij(�t) sXl=1 gjl(�t) �0l = sXl=1 �il �0l ;and similarly mXj=1 gij(�t) Ep(�;�t)fhk [cj � �j(�t)]g = sXl=1 �il �kl ;for all k = 1; � � � ; d. Substituting these expressions into the right{hand side ofequation (4.14) yieldsd�it = [ mXj=1 gij(�t) Ep(�;�t)fLt cjg] dt� [ sXl=1 �il �0l ] dt+ dXk=1 [ sXl=1 �il �kl ] dY kt :In vector form, the above equation readsd�t = [g(�t)]�1 Ep(�;�t)fLt cg dt� �0� dt+ dXk=1 �k� dY kt :This �nishes the proof. 2What the above theorem shows is that the projection residuals are greatlysimpli�ed if we make use of the functions fh1; � � � ; hd; 12 jhj2g in the de�nitionof the exponential manifold, i.e. if we choose the functions fc1; � � � ; cmg in sucha way that the functions fh1; � � � ; hd; 12 jhj2g are in spanfc1; � � � ; cmg. Indeed,Rkt (pp�t ) = 0 for all t � 0, and all k = 0; 1; � � � ; k, whereas1pp�t R�t (pp�t ) = 12 L�t p�tp�t � 12 [c� �(�t)]T [g(�t)]�1 Ep(�;�t)fLt cg : (4.21)The di�usion coe�cient in the stochastic di�erential equation (4.20) for theparameters �t is constant. This implies that (4.20) can be seen as either anItô or a MFS stochastic di�erential equation, so that it satis�es the formalrules of calculus. Moreover, for the numerical solution of such an equation, thesimpler Euler scheme coincides with the Milshtein scheme, which is a stronglyconvergent scheme of order 1, see [38].Notice also that we have still some freedom left, and we may wonder whetherone can use this to selectm and the remaining functions fcs+1; � � � ; cmg in orderto reduce the total residual norm r�t = r�t . However, a great prudence is needed,because the �lter may become complicated and numerical problems may arise.See examples on the cubic sensor in Section 4.6. In general, a trade{o� isnecessary in order to obtain an accurate, but still not too involved, exponentialfamily and the associated projection �lter.Similarly to the Theorem 4.5.1 above, we have the following



42 Chapter 4. The Projection FilterTheorem 4.5.2 Assumptions (A), (B) and (C) on the coe�cients ft, at, andh of the system (2.1) in force. Let s := rankfh1; � � � ; hdg � d. There exists linearly independent functions fc1; � � � ; csg de�ned on Rn, such that for allx 2 Rn hk(x) = sXi=1 �ki ci(x) ;for k = 1; � � � ; d. Remaining functions fcs+1; � � � ; cmg are chosen such thatS� := fp(�; �) ; � 2 �g ; p(x; �) := exp[�T c(x)�  (�)] ;where � � Rm is open, is an exponential family of probability densities.Assume that, in addition to (A), (B) and (C), the coe�cients ft and at ofthe system (2.1), and the coe�cients c of the exponential family S� are suchthat : Ep(�;�)fj�t;�j2g <1 ;holds for all � 2 �, and all t � 0, where the expression of �t;� is given in (4.6).Then, for the projection �lter associated with the exponential family S�, thecorrection residual norms rkt are identically zero for all t � 0, and all k =1; � � � ; d, and the stochastic di�erential equation for the parameters reduces to :d�t = [g(�t)]�1 Ep(�;�t)fLt cg dt� [g(�t)]�1 Ep(�;�t)f 12 jhj2 [c� �(�t)]g dt+ dXk=1 �k� dY kt ; �0 ;(4.22)where for all k = 1; � � � ; d the m{dimensional vector �k� is de�ned by
�k� = 266666666664

�k1...�ks0...0
377777777775 :

Under the assumptions on the coe�cients, this equation has a unique solu-tion, up to the a.s. positive exit time � := infft > 0 : �t 62 �g.The proof is analogous to the proof of Theorem 4.5.1, and is therefore omit-ted.



4.5. The residual and a convenient exponential family 43In this case, Rkt (pp�t ) = 0 for all t � 0, and all k = 1; � � � ; d, whereas1pp�t R�t (pp�t ) = 12 L�t p�tp�t � 12 [c� �(�t)]T [g(�t)]�1 Ep(�;�t)fLt cg ; (4.23)and 1pp�t R0t (pp�t ) = 14 [jhj2 �Ep(�;�t)fjhj2g]� 12 [c� �(�t)]T [g(�t)]�1 Ep(�;�t)f 12 jhj2 [c� �(�t)]g :(4.24)4.5.2 The case of discrete{time observationsWe conclude this section by presenting the e�ect of choosing the exponentialfamily S�, in the case of a nonlinear �ltering problem with discrete{time ob-servations. In this model, the state process is as in equation (2.1), i.e.dXt = ft(Xt) dt+ �t(Xt) dWt ;but only discrete{time observations are availablezn = h(Xtn) + vn ;at times 0 = t0 < t1 < � � � < tn < � � � regularly sampled, where fvn ; n � 0g isa Gaussian white noise sequence independent of fXt ; t � 0g.The nonlinear �ltering problem consists in �nding the conditional densitypn(x) of the state Xtn given the observations up to time tn, i.e. such thatP [Xtn 2 dx j Zn] = pn(x) dx, where Zn := �(z0; � � � ; zn). We de�ne also theprediction conditional density p�n (x) dx = P [Xtn 2 dx j Zn�1]. The sequencefpn ; n � 0g satis�es a recurrent equation, and the transition from pn�1 to pnis decomposed in two steps, as explained in [32], [47] :Prediction step Between time tn�1 and tn, we solve the Fokker{Planckequation @pnt@t = L�t pnt ; pntn�1 = pn�1 :The solution at �nal time tn de�nes the prediction conditional density p�n = pntn .Correction step At time tn, the observation zn is combined with the pre-diction conditional density p�n via the Bayes rulepn(x) = cn 	n(x) p�n (x) ; (4.25)



44 Chapter 4. The Projection Filterwhere cn is a normalizing constant, and 	n(x) denotes the likelihood functionfor the estimation of Xtn based on the observation zn only, i.e.	n(x) := exp� � 12 jzn � h(x)j2 	 : (4.26)If we use the exponential family S� de�ned above, then we obtain the projec-tion �lter density p(�; �n), and the transition from �n�1 to �n is also decomposedin two steps :Prediction step Between time tn�1 and tn, we solve the ODEg(�nt ) _�nt = Ep(�;�nt )fLt cg ; �ntn�1 = �n�1 :The solution at �nal time tn de�nes the prediction parameters ��n = �ntn .Correction step Substituting the approximation p(�; ��n ) into formula (4.25),we observe that the resulting density does not leave the exponential family S�.Indeed, it follows from (4.19) and (4.26) that	n(x) = exp� � 12 jh(x)j2 + dXk=1 hk(x) zkn � 12 jznj2 	= exp� � sXl=1 �0l cl(x) + sXl=1 [ dXk=1�kl zkn] cl(x)� 12 jznj2 	 ;and the parameters are updated according to the formula�n = ��n � �0� + dXk=1 �k� zkn ;which is exact.4.6 Exponential projection �lters for the cubicsensorWe consider as an application of the exponential projection �lter the explicitformula for the cubic sensor, see also [29]. We consider the scalar systemdXt = � dWtdYt = X3t dt+ dVt ;



4.6. Exponential projection �lters for the cubic sensor 45with the usual independence assumptions for the standard Brownian motionsfWt ; t � 0g and fVt ; t � 0g and where � is a real constant. This system is in-teresting for several reasons. First, the simplicity of the state process. Secondly,the in�nite{dimensionality of the optimal �lter for the cubic sensor ensures thatwe are really facing a problem of approximating an in�nite{dimensional �lterby a �nite{dimensional one. The fact that the optimal �lter for the cubic sensoris in�nite dimensional was proved in [30].Let us apply the projection �lter to this system using di�erent exponentialfamilies in order to illustrate how the �lter depends on the manifold.4.6.1 The six dimensional exponential projection �lterWe choose the manifold S according to Theorem 4.5.1, i.e.S = S� = fp(�; �) ; � 2 �g ;p(x; �) = exp[�1 x+ �2 x2 + �3 x3 + �4 x4 + �5 x5 + �6 x6 �  (�)] ;where � is open in R6 and �6 < 0, for all � 2 �.We notice that h(x) = x3 and 12 jh(x)j2 = 12 x6, hence
�0� = 2666666664 0000012

3777777775 ; �� := �1� = 2666666664 001000
3777777775 :

On the other hand, cj(x) = xj , for j = 1; � � � ; 6, henceL cj(x) = 12 �2 @2cj(x)@x2 =8><>: 12 �2 j (j � 1)xj�2 ; for j = 2; � � � ; 60 ; for j = 1and thereforeEp(�;�)fL cjg =8><>: 12 �2 j (j � 1) �j�2(�) ; for j = 2; � � � ; 60 ; for j = 1



46 Chapter 4. The Projection Filterwhich requires the evaluation of �0(�); � � � ; �4(�). We de�ne
�(�) := 12 �2 2666666664 02 �0(�)6 �1(�)12 �2(�)20 �3(�)30 �4(�)
3777777775 = Ep(�;�)fL cg :Finally, the entries of the Fisher information matrix (gij(�)) are obtained ac-cording to (3.6), i.e.gij(�) = �i+j(�) � �i(�) �j(�) ; i; j = 1; � � � ; 6which requires the evaluation of �1(�); � � � ; �12(�). However, �0(�) = 1 and itfollows from Lemma 3.3.3 that only �1(�); � � � ; �5(�) need to be evaluated, since�6(�); � � � ; �12(�) can be obtained according to (3.5).The stochastic di�erential equation (4.20) for the parameters reduces tod�t = [g(�t)]�1 
�(�t) dt� �0� dt+ �� dYt :The equation (4.21) for the prediction residual reduces to1pp�t R�t (pp�t ) = 12 L� p�tp�t � 12 [c� �(�t)]T [g(�t)]�1 
�(�t) ;from which the total residual norm r�t = r�t can be easily computed.Finally, we indicate a quantity which can be used to estimate the state ofthe system at time t. It is well known that, if the conditional density pt isavailable, then the best (minimum{variance) estimator of Xt is the conditionalexpectation bXt := Eptfxg = Z x pt(x) d�(x) :As we can rely only on the approximated density p(�; �t), we shall consider, asan estimate of the state, the expectation w.r.t. this approximated density :�1(�t) = Ep(�;�t)fxg = Z x p(x; �t) d�(x) :4.6.2 The four dimensional exponential projection �lterIn this Section we choose the manifold S according to Theorem 4.5.2, i.e.S = S� = fp(�; �) ; � 2 �g ; p(x; �) = exp[�1 x+�2 x2+�3 x3+�4 x4� (�)] ;where � � R4 is open and �4 < 0, for all � 2 �.



4.6. Exponential projection �lters for the cubic sensor 47We notice that h(x) = x3, hence�� := �1� = 26664 0010 37775 :On the other hand, cj(x) = xj , for j = 1; � � � ; 4, henceL cj(x) = 12 �2 @2cj(x)@x2 =8><>: 12 �2 j (j � 1)xj�2 ; for j = 2; � � � ; 40 ; for j = 1and thereforeEp(�;�)fL cjg =8><>: 12 �2 j (j � 1) �j�2(�) ; for j = 2; � � � ; 40 ; for j = 1which requires the evaluation of �0(�); � � � ; �2(�). We de�ne
�(�) := 12 �2 26664 02 �0(�)6 �1(�)12 �2(�) 37775 = Ep(�;�)fL cg : (4.27)Similarly, we notice that 12 jh(x)j2 = 12 x6, hence12 jh(x)j2 [cj(x)� �j(�)] = 12 [x6+j � x6 �j(�)] ; j = 1; � � � ; 4andEp(�;�)f 12 jhj2 [cj � �j(�)]g = 12 [�6+j(�) � �6(�)�j(�)] ; j = 1; � � � ; 4which requires the evaluation of �1(�); � � � ; �4(�) and �6(�); � � � ; �10(�). We de-�ne 
0�(�) := 12 26664 �7(�)� �6(�) �1(�)�8(�)� �6(�) �2(�)�9(�)� �6(�) �3(�)�10(�)� �6(�) �4(�) 37775 = Ep(�;�)f 12 jhj2 [c� �(�)]g : (4.28)Finally, the entries of the Fisher information matrix (gij(�)) are obtained ac-cording to (3.6), i.e.gij(�) = �i+j(�) � �i(�) �j(�) ; i; j = 1; � � � ; 4



48 Chapter 4. The Projection Filterwhich requires the evaluation of �1(�); � � � ; �8(�). However, �0(�) = 1 and itfollows from Lemma 3.3.3 that only �1(�); � � � ; �3(�) need to be evaluated, since�4(�); � � � ; �10(�) can be obtained according to (3.5).The stochastic di�erential equation (4.22) for the parameters reduces tod�t = [g(�t)]�1 
�(�t) dt� [g(�t)]�1 
0�(�t) dt+ �� dYt : (4.29)The equations (4.23) and (4.24) for the prediction and correction residualsreduce to 1pp�t R�t (pp�t ) = 12 L� p�tp�t � 12 [c� �(�t)]T [g(�t)]�1 
�(�t) ;and 1pp�t R0t (pp�t ) = 14 [x6 � �6(�t)]� 12 [c� �(�t)]T [g(�t)]�1 
0�(�t) ;respectively, from which the total residual norm r�t can be easily computed.Finally, as in Section 4.6.1 our approximation of the minimum variance es-timate of the state at time t is the �rst expectation parameter �1(�t). Weconclude by observing that the �lter given in this section can be implementedvia a numerical scheme involving numerical{integration techniques. Such ascheme has been written as a Fortran program, yielding simulations that wedescribe in the next section.4.7 Numerical simulations for the cubic sensorIn this section we present a numerical scheme which was used to implementthe projection �lter derived in Section 4.6.2, and we present also simulationresults based on this numerical scheme. From the previous discussion, weneed to compute the moments �1; � � � ; �10 up to order ten, but according toLemma 3.3.3, these moments can be computed from the �rst three moments�1; � � � ; �3 only by using the recursion formula (3.5).We applied a Euler scheme to solve the stochastic di�erential equation (4.29)numerically. Since the di�usion coe�cient in this equation is constant, theEuler scheme coincides with the Milshtein scheme, and hence the error is oforder �, where � is the chosen time step. In general, if the di�usion coe�cientwould also depend on the state � then the error would be of order p� only. Fora detailed treatment of numerical methods for stochastic di�erential equations,see [38].We outline the main steps of the algorithm :(i) Let an initial �0 be given. Choose a time step � and set t = 0.



4.7. Numerical simulations for the cubic sensor 49(ii) Assign � := �0.(iii) Compute numerically the integralI(�) := exp[ (�)] = Z +1�1 exp[�1 x+ �2 x2 + �3 x3 + �4 x4] d�(x) :(iv) Compute the three following integrals, so as to obtain the �rst threeexpectation parameters :�i(�) = Ep(�;�)fxig= 1I(�) Z +1�1 xi exp[�1 x+ �2 x2 + �3 x3 + �4 x4] d�(x) ;for i = 1; 2; 3.(v) Compute the higher order moments �4; � � � ; �10 via the algebraic recursionformula given in (3.5).(vi) Substitute the above quantities in equations (4.27) and (4.28), so as toobtain the coe�cients 
�(�) and 
0�(�) respectively.(vii) Compute the Fisher information matrixgij(�) = Ep(�;�)fxixjg � �i�j = �i+j � �i�j ; i; j = 1; � � � ; 4 :(viii) Invert (gij(�)) so as to obtain (gij(�)).(ix) Collect the new observation Yt+� at time t + � (here a discretizationscheme is needed), and let �Y = Yt+� � Yt.(x) Compute the approximate variation �� of the canonical parameters be-tween times t and t+�, according to the simple Euler scheme�� = [g(�)]�1 
�(�)�� [g(�)]�1 
0�(�)� + ���Y :(xi) Assign � := � +�� and t := t+�.(xii) Start again from point (iii).As noticed in step (v), all we need is to compute the integralsZ +1�1 xi exp[�1 x+ �2 x2 + �3 x3 + �4 x4] d�(x) ; i = 0; � � � ; 3 :We used routines from the scienti�c library NAG for this purpose.



50 Chapter 4. The Projection FilterOnce a numerical approximation of the projection �lter parameters �t hasbeen computed, we can compare the corresponding density p�t = p(�; �t) tothe solution pt of the Kushner{Stratonovich equation, i.e. to the optimal �l-ter density. Actually, a numerical approximation of pt was used, based on adiscretization of the state space with approximately 400 grid points, and on nu-merical techniques for the solution of stochastic di�erential equations, see [38]and [24].The comparison between numerical approximations of the densities p�t andpt can be done qualitatively, based on graphical outputs, or we can compute(a numerical approximation of) some distance, such as the Kullback{Leiblerinformation K(pt; p�t ) := Z log pt(x)p�t (x) pt(x) d�(x) ;the Hellinger distanced(pt; p�t ) := Z (pp�t (x)�ppt(x) )2 d�(x) = 2 [ 1� Z pp�t (x)ppt(x) d�(x) ] ;etc. We can also compute an approximation of the total residual normr�t := kR�t (pp�t )�R0t (pp�t )k ;which depends only on the projection �lter density. As remarked in Sec-tion 4.6.2, the remaining correction residual norms rkt vanish for all t � 0and all k = 1; � � � ; d. Moreover, to compute the total residual norm r�t we stillneed to evaluate only the �rst three moments.We begin with some general remarks about our simulation results. Theseresults show that the projection �lter density is usually very close to the optimal�lter density, when the latter is not too sharp (i.e. not too close to a Dirac mass).What would be missing in a Gaussian assumed{density �lter or in an extendedKalman �lter is the possibility to allow bimodality in the �lter density. Asthe fourth degree exponential family allows such bimodality, in principle theoptimal{�lter density could be approximated at least qualitatively by a densityin this family. This was actually observed in our simulations.Moreover, we can have an a posteriori indication of the accuracy of theprojection �lter from the graphical representation of the total residual normas a function of time. Indeed, there are time instants where the optimal{�lter density and the projection{�lter density are quite di�erent, but these areexactly the time instants where the total residual norm exhibits large values.An additional observation that we could make on our simulations is that aftera reasonably{small time the total residual norm returns towards zero, and



4.7. Numerical simulations for the cubic sensor 51correspondingly the projection{�lter density is again very close to the optimal{�lter density. To summarize, there are some di�erences, but they are limitedin time, and do not seem to a�ect the global behaviour of the projection �lter.On time intervals where the true state is far from the singular point x = 0of the observation function h(x) = x3, experience shows that the smaller theobservation noise, the sharper and higher are the peaks of the total residualnorm. Notice �rst that if the observation noise is small, then on such timeintervals the optimal{�lter densities are concentrated around the true{statetrajectory, i.e. are tracking accurately a very irregular trajectory. As a result,the di�erence between the mean value of the optimal{�lter density and themean value of the projection{�lter density has to be really small, i.e. smallerthan the variance of the optimal{�lter density, to guarantee that the Hellingerdistance between the optimal{�lter density and the projection{�lter densityis not too large. This is re
ected in the fast dynamics of both the Kushner{Stratonovich equation, and the equation for the projection{�lter parameters,and makes the numerical implementation of the projection �lter di�cult whenthe observation noise is small.In the following we discuss the simulations in detail, and we present somegraphical outputs which illustrate our general remarks. In the two scalar ex-amples below, the variance R of the observation noise does not satisfy R = 1.However, the formulas given in this chapter could easily be adapted to thismore general situation.Example 1 : We present here a �rst simulation of the fourth degree expo-nential projection �lter based on the following data :(unnormalized) initial density exp[� 12 x2 � 14 x4]variance Q of the state noise 1variance R of the observation noise 0.16time step � 0.02�nal time 10In this �rst example we are mainly concerned in showing that our choiceof the fourth degree exponential family is appropriate. Visualizing the timeevolution of both the optimal{�lter density and the projection{�lter density wasmade possible with the software ZPB developed at INRIA. We observed thatqualitatively the projection �lter was good, as the two densities had roughly thesame shape at every time instant. In this section we display the two densities



52 Chapter 4. The Projection Filterat three time instants. We start by Figures 4.5 and 4.6 which show the truestate and the estimate (mean value) provided by the projection{�lter densityrespectively, as functions of time. This estimate is not accurate because onthis simulation the true state stays most of the time around the singular pointx = 0 of the observation function. Indeed, Figures 4.7 and 4.8 show that themean value of the optimal{�lter density does not provide an accurate estimateof the true state either. We are also interested in comparing the projection�lter with the optimal �lter, and not only with the true state. In this respect,Figures 4.1 and 4.3, show that the two �lter estimates agree surprisingly well.Notice also the behaviour of the total residual norm in Figures 4.2 and 4.4 :the time instants where the two �lter estimates are signi�cantly di�erent arecharacterized by large peaks in the total residual norm. This kind of simulation,where the conditional density is concentrated around the singular point ofthe observation function, is important because it is in such situations thatGaussian assumed{density �lters and extended Kalman �lters would usuallyfail. The shape of the density is quickly varying, becoming often bimodaland asymmetric, so that a Gaussian family is de�nitely not a good choice tobase a �nite{dimensional �ltering on. We make this evident by displaying theoptimal{�lter and the projection{�lter densities at di�erent time instants, inFigures 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14.Example 2 : The second example is based on the following data :(unnormalized) initial density exp[� 12 (x� 34 )2 � 14 (x� 34 )4]variance Q of the state noise 1variance R of the observation noise 9time step � 0.005�nal time 10We begin by comparing the true state with the estimate (mean value) pro-vided by the projection �lter density. This is illustrated in Figures 4.19 and 4.20.It is clear from this graphical output that the state is not estimated accurately,and this is due to the fact that we have a large observation noise. Anyway, thisis the case also for the optimal �lter, as we can see in Figures 4.21 and 4.22.Nonetheless, our main concern is in the comparison between the projection �lterand the optimal �lter. This comparison is provided by Figures 4.15 and 4.17.The projection �lter and the optimal �lter estimates agree surprisingly well,and the time instants where they are signi�cantly di�erent are characterized by



4.7. Numerical simulations for the cubic sensor 53peaks of the total residual norm, which is shown in Figures 4.16 and 4.18. Fi-nally, we remark that the numerical integrations involved in the implementationof the numerical scheme for the projection �lter resulted in a large computa-tional time. Indeed, the software ZPB of IRISA resulted to be quicker from acomputational point of view, even though it employs a much larger number ofparameters.



54 Chapter 4. The Projection FilterFigure 4.1: Mean projection �lter and mean optimal �lter between 0 and 5.
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Figure 4.2: Projection residual between 0 and 5.
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4.7. Numerical simulations for the cubic sensor 55Figure 4.3: Mean projection �lter and mean optimal �lter between 5 and 10.
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Figure 4.4: Projection residual between 5 and 10.
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56 Chapter 4. The Projection FilterFigure 4.5: True state and mean from the projection �lter between 0 and 5.
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Figure 4.6: True state and mean from the projection �lter between 5 and 10.
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4.7. Numerical simulations for the cubic sensor 57Figure 4.7: True state and mean from the optimal �lter between 0 and 5.
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Figure 4.8: True state and mean from the optimal �lter between 0 and 5.
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58 Chapter 4. The Projection FilterFigure 4.9: Optimal �lter density at 3.70.

Figure 4.10: Projection �lter density at 3.70.



4.7. Numerical simulations for the cubic sensor 59Figure 4.11: Optimal �lter density at 4.12.

Figure 4.12: Projection �lter density at 4.12.



60 Chapter 4. The Projection FilterFigure 4.13: Optimal �lter density at 9.54.

Figure 4.14: Projection �lter density at 9.54.



4.7. Numerical simulations for the cubic sensor 61Figure 4.15: Mean projection �lter and mean optimal �lter between 0 and 5.
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Figure 4.16: Projection residual between 0 and 5.
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62 Chapter 4. The Projection FilterFigure 4.17: Mean projection �lter and mean optimal �lter between 5 and 10.
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Figure 4.18: Projection residual between 5 and 10.
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4.7. Numerical simulations for the cubic sensor 63Figure 4.19: True state and mean from the projection �lter between 0 and 5.
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Figure 4.20: True state and mean from the projection �lter between 5 and 10.
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64 Chapter 4. The Projection FilterFigure 4.21: True state and mean from the optimal �lter between 0 and 5.
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Figure 4.22: True state and mean from the optimal �lter between 5 and 10.
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4.8. Conclusion 654.8 ConclusionIn this Chapter we have introduced a new and systematic way of designingapproximate �nite{dimensional �lters.One major issue left is the choice of the exponential family S. A �rst answerhas been given in Section 4.5, but this does not completely solve the problem :with the choice of the family S� there is still some freedom left in the choice ofthe dimension m and in the choice of the remaining functions fcs+1; � � � ; cmg,which could be used to reduce the total residual norm r�t = r�t .This freedom could also be used to design an adaptive scheme for the choiceof the exponential family S.It would also be useful to obtain for all t � 0 an estimate of the distancebetween the optimal{�lter density pt and the projection{�lter density p�t , interms of the total residual norm history fr�s ; 0 � s � tg.Finally, we would like to de�ne projection �lters for discrete{time systems,and relate this problem with the work of Kulhav�y [40], [41]. Another motivationfor this study will be to obtain e�cient numerical schemes for the solution ofthe stochastic di�erential equation satis�ed by the projection{�lter parameters,i.e. equation (4.12) for a general family S, or equation (4.20) for the family S�.Each of these problems requires further investigation, and we hope to addressall of them in a subsequent work.
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Chapter 5Assumed Density Filtersand Projection FiltersIf with a pure mind a person speaks or acts, happiness follows himeven as his never{departing shadowDhammapada, I.2Blessed are the pure in heart, for they will see GodMatthew, V.85.1 IntroductionIn the present chapter we shall see how two completely{di�erent approachesto approximate �ltering lead to the same result when dealing with exponentialfamilies.The story so far: As we saw in Chapter 2, the �ltering problem consists ofestimating the state of a stochastic di�erential system from noisy observations.In the linear Gaussian case the problem is solved by the well{known Kalman�lter, a �nite{dimensional system of equations for the �rst two conditionalmoments of the state given the observations. As previously remarked, in thelinear context this system of equations provides also the complete conditionaldensity of the state given the observations, since this density is Gaussian andhence characterized by the �rst two moments. In the general nonlinear case,the �ltering problem consists of computing the conditional density of the stategiven the observations. This density is the solution of a stochastic partial dif-ferential equation, the Kushner{Stratonovich equation, which was introduced67



68 Chapter 5. Assumed Density Filters and Projection Filtersin Section 2.2. The general nonlinear problem is far more complicated becausethe resulting nonlinear �lter is not �nite dimensional in general.An approximation method in the nonlinear case is the assumed{density �lter(ADF). The ADF is obtained from the selection of a few moment equations,which are closed under the assumption that the density is of a certain form, e.g.Gaussian, etc. We present a detailed de�nition of the assumed{density �ltersin Section 5.2. However, the ADF is an approximation and as such has advan-tages and disadvantages. It is illogical to assume that the conditional density isGaussian while in general it is not Gaussian. This logical inconsistency mani-fests itself when one compares the assumed{density �lter obtained by using Itôcalculus with the assumed{density �lter obtained if McShane-Fisk-Stratonovich(MFS) calculus is used instead. We present an example which shows that theMFS{based ADF and the Itô{based ADF are not directly related by Itô{MFStransformations, i.e. the MFS{based ADF is not just an MFS version of theItô{based ADF.In Chapter 4 we introduced the projection �lter (PF), which is a �nite{dimensional nonlinear �lter based on the di�erential{geometric approach tostatistics. We also considered the projection �lter particularized to exponen-tial families in the framework of SDE's on manifolds. The PF is obtained byorthogonally projecting the right{hand side of the Kushner{Stratonovich equa-tion onto the tangent space of a �nite{dimensional manifold of probability den-sities, according to the Fisher metric and its extension to in�nite{dimensionalspace of square roots of densities, known as the Hellinger distance. In 1991,Hanzon and Hut have proved formally in [29] that if one projects orthogonallyonto the tangent space of the �nite{dimensional manifold of Gaussian densi-ties, the resulting PF coincides with the MFS{based Gaussian assumed{density�lter. The performance of this �lter will be studied in the case of small ob-servation noise in Chapter 6, and is based on the results given in Brigo [6]and [8].In the present chapter we intend to present a full proof of the abovemen-tioned equivalence. In fact a much more general result will be shown, namelythat the PF coincides with an MFS{based ADF for any exponential family.As a consequence the projection �lter for exponential families can be obtainedas an MFS{based ADF, and the �lter formulas can be obtained easily fromthe moment equations. At the same time this equivalence yields a remedy tothe lack of logical consistency involved in the de�nition of the assumed density�lters : the MFS{based ADF that updates the moment parameters of an ex-ponential distribution is a well{de�ned concept, because of its interpretationas a projection �lter.



5.2. Assumed density �lters 69A short description of this chapter is as follows : The assumed{density �lteris introduced in Section 5.2. We conclude by proving the equivalence betweenADF and PF for exponential families in Section 5.3, where we also presentan example to show that this equivalence does not hold for general (non{exponential) families. Part of the material of this chapter has already appearedin [16].5.2 Assumed density �ltersBecause the equations of nonlinear �ltering are generally intractable, manyapproximation methods have been proposed. A well-known approximationmethod is the EKF (extended Kalman �lter), in which the conditional �rstand second{order moments are approximated by using a linearization proce-dure. A potential disadvantage of such a method is that no use is made of thegeneral nonlinear{�ltering equations : after linearization the formulas for linearGaussian �ltering are applied. If one tries to develop approximation schemesstarting from the nonlinear{�ltering equations, one is confronted with the prob-lem that the conditional densities (if they exist) do not belong in general toany �nite{dimensional class of densities. One heuristic way to deal with thisproblem is to consider the moment equations and to assume arbitrarily that theconditional densities belong to some �nite{dimensional class of densities, evenif this is known to be wrong. The resulting moment equations will in general beinconsistent, but by selecting carefully a limited number of moment equationsone can obtain a consistent de�nition of an approximate �lter, which is calledan assumed{density �lter in the literature, see Kushner [42], and Maybeck [47,Section 12.7].As will be shown, it also matters whether the selected moment equations aretaken in Itô or in MFS form. In order to discuss such assumed{density �ltersproperly, and to prove the relation with the projection �lters in Section 5.3below, we give now a more formal de�nition of assumed{density �lters.Consider a function c : Rn ! Rm. The following set of assumptions willbe in force throughout the chapter:The function c is twice di�erentiable and, together with its derivatives up toorder 2, has at most polynomial growth when jxj goes to in�nity. Assume that,in addition to assumptions (A), (B) and (C) of Section 2.2, the coe�cients ftand at of the system (2.1) have at most polynomial growth when jxj goes toin�nity.



70 Chapter 5. Assumed Density Filters and Projection FiltersThen the conditions given in [27] are ful�lled for the c{moments to sat-isfy (2.3), i.e.d �t(c) = �t(Lt c) dt� 12 [�t(jhtj2 c)� �t(jhtj2)�t(c)] dt+ dXk=1[�t(hkt c)� �t(hkt )�t(c)] � dY kt : (5.1)The Itô version of this equation is obtained from (2.2) by setting � = c, andholds under the conditions just described.The following is a generalization of the concept of assumed conditional{probability density �lters as introduced in [42].De�nition 5.2.1 Consider a �nite set fc1; � � � ; cmg of twice{di�erentiable scalarfunctions de�ned on Rn, c : Rn ! Rm, such that each ci ; i = 1; � � � ;mand its derivatives up to order 2 have at most polynomial growth. Consider acorresponding m�dimensional family f�(�; �) ; � = (�1; � � � ; �m) 2 Eg of prob-ability measures, where E � Rm is open, such that each element of the familysatis�es the equations �i = E�fcig ; i = 1; � � � ;mand is uniquely speci�ed by these equations. Here E�f�g denotes the expectationwith respect to the probability measure �(�; �).In accordance with the ADF principle, the Itô{based ADF is de�ned by theItô stochastic di�erential equationsd�it = E�tfLt cig dt+ dXk=1[E�tfhkt cig�E�tfhkt g �it ] [ dY kt �E�tfhkt g dt ] ; (5.2)for i = 1; � � � ;m. Similarly the MFS{based ADF is de�ned by the MFS stochas-tic di�erential equationsd�it = E�tfLt cig dt� 12 [E�tfjhtj2 cig �E�tfjhtj2g �it ] dt+ dXk=1[E�tfhkt cig �E�tfhkt g �it ] � dY kt ; i = 1; � � � ;m:(5.3)Although this may be surprising at �rst, the Itô{based ADF and the MFS{based ADF are di�erent �lters in general. This will be shown by working outthe Itô{based and MFS{based Gaussian assumed{density �lters for the cubicsensor problem. The fact that they are di�erent is due to the inconsistencythat is inherent to the ADF{concept : selecting a di�erent set of equations towhich it is applied leads to di�erent results.



5.2. Assumed density �lters 71Example 5.2.2 (MFS{based Gaussian ADF for the cubic sensor.) Weconsider the scalar system dXt = � dWt ;dYt = X3t dt+ dVt ;with the usual independence assumptions for the standard Brownian motionsfWt ; t � 0g and fVt ; t � 0g, and where � is a real constant. Let us computethe MFS{based ADF for this system using a Gaussian family , i.e. choosingc1(x) = x, and c2(x) = x2. Then one obtains � = �1 = E�fxg, and �2 =E�fx2g, which indeed parametrize the Gaussian family over R. De�ne P :=E�f(x� �)2g = �2 � �21. In the Gaussian case one has the following relationsbetween the centered higher order moments up to order six, and the variance PE�fx� �g = E�f(x� �)3g = E�f(x� �)5g = 0 ;E�f(x� �)2g = P ; E�f(x� �)4g = 3P 2 ; E�f(x� �)6g = 15P 3 :(5.4)Making use of relations (5.4), equation (5.3) results in the following MFS{basedGaussian ADF :d�t = (�3�5t Pt � 30�3t P 2t � 45�t P 3t ) dt+ (3�2t Pt + 3P 2t ) � dYt ;dPt = (�2 � 15�4t P 2t � 90�2t P 3t � 45P 4t ) dt+ 6�t P 2t � dYt : (5.5)This should (and will) be compared with the Itô{based ADF for the sameproblem, with the same family of probability densities and the same choice offunctions c1 and c2.Example 5.2.3 (Itô{based Gaussian ADF for the cubic sensor.) Usingrelations (5.4), equation (5.2) results in the following Itô{based Gaussian ADF :d�t = (�3�5t Pt � 12�3t P 2t � 9�t P 3t ) dt+ (3�2t Pt + 3P 2t ) dYt ;dPt = (�2 � 15�4t P 2t � 36�2t P 3t � 9P 4t ) dt+ 6�t P 2t dYt : (5.6)Putting these Itô equations in MFS form one obtains the MFS version of theItô{based ADF :d�t = (�3�5t Pt � 30�3t P 2t � 36�t P 3t ) dt+ (3�2t Pt + 3P 2t ) � dYt ;dPt = (�2 � 15�4t P 2t � 81�2t P 3t � 18P 4t ) dt+ 6�t P 2t � dYt : (5.7)



72 Chapter 5. Assumed Density Filters and Projection FiltersBy comparing the MFS{based Gaussian ADF given in (5.5) with the MFSversion of the Itô{based Gaussian ADF given in (5.7), we see that these two�lters are di�erent, because their representations as MFS stochastic di�erentialequations di�er.As is clear from the de�nition, the construction of an ADF involves boththe choice of functions fc1; � � � ; cmg and the choice of an m{dimensional fam-ily of probability distributions which are characterized uniquely by the vector� = (�1; � � � ; �m), where �i = E�fcig for i = 1; � � � ;m, and also the choiceof a stochastic calculus, either Itô or MFS. Suppose that one wants to workwith a number of functions fc1; � � � ; cmg and their corresponding expectationparameters f�1; � � � ; �mg. Then one way to obtain a family of densities whichhas the desired property is by using the concept of maximum entropy : givenfc1; � � � ; cmg and their expectation parameters f�1; � � � ; �mg, choose the prob-ability density p with maximal entropy under the conditions Epfcig = �i forall i = 1; � � � ;m. This is possible if � is chosen such that there exists at leastone probability density whose moments have these values. The solution to thisproblem, see Kagan, Linnik and Rao [33], is given by the exponential familyfexp[�T c(x)� (�)] ; � 2 �g, which was presented in Section 3.3. In the follow-ing sections it will be shown that if such an exponential family is chosen, thenthe MFS{based ADF can be interpreted as a projection �lter. The projection�lters are consistently de�ned and therefore do not lead to the inconsistencieswhich were found for the ADF's.5.3 Equivalence between ADF and PFThe main theorem of the chapter can now be stated, for which we shall presenttwo di�erent proofs. The �rst proof is more elegant and concise, but it doesnot give much insight in the geometric nature of the result. The second proofwill rely more on geometric concepts. It will make explicit use of projectionson the tangent spaces, and will rely on a crucial result from the theory ofinformation geometry, i.e. the biorthogonality relations between the tangentvectors corresponding to the canonical parameters, and the tangent vectorscorresponding to the expectation parameters, see [2]. The initial condition isassumed to be the same p0 = p(�; �0) in S for both �lters.Theorem 5.3.1 For any exponential family S , the projection �lter coincideswith the MFS{based assumed density �lter.



5.3. Equivalence between ADF and PF 73First Proof. We start from equation (4.12) for the projection �lter canon-ical parameters, i.e.g(�t) � d�t = Ep(�;�t)fLt cg dt�Ep(�;�t)f 12 jhtj2 [c� �(�t)]g dt+ dXk=1Ep(�;�t)fhkt [c� �(�t)]g � dY kt :According to Remark 3.3.4, the expectation parameters can be expressed interms of the canonical parameters as�i = �i(�) = Ep(�;�)fcig = EpE(�;�)fcig ;with derivatives @@�j �j(�) = gij(�) :The chain rule for MFS integrals immediately givesd�t = g(�t) � d�t = EpE(�;�t)fLt cg dt�EpE(�;�t)f 12 jhtj2 [c� �t]g dt+ dXk=1EpE(�;�t)fhkt [c� �t]g � dY kt ;which is exactly equation (5.3) obtained using the assumed density �lter idea.2 For the second proof of Theorem 5.3.1, we shall need the following result.Theorem 5.3.2 Let S1=2 and �1=2t0;�0 be respectively the manifold associatedwith the exponential family (4.5), and its enveloping manifold as de�ned in (4.7)and (4.8). For simplicity, we use the notations p0(�; �; �) = pt0;�0(�; �; �), and 0(�; �) =  t0;�0(�; �). De�ne the following expectation parameters�i(�) := @@�i (�) = Ep(�;�)fcig ; i = 1; � � � ;m ;and��i(�; �) := @@�i 0(�; �) = Ep0(�;�;�)fcig ; i = 1; � � � ;m ;��l(�; �) := @@�l 0(�; �) = Ep0(�;�;�)fdl � �l j�j2 jdj4g ; l = 1; � � � ; s ;(5.8)respectively. Introduce also the following notations for the tangent vectors as-sociated with the di�erent parametrizations, i.e.@i(�) := @@�ipp(�; �) ; @i(�) := @@�ipp(�; �) ; i = 1; � � � ;m ;



74 Chapter 5. Assumed Density Filters and Projection Filtersand @i(�; �) := @@�ipp0(�; �; �) ; @i(�; �) := @@��ipp0(�; �; �) ;@m+l(�; �) := @@�lpp0(�; �; �) ; @m+l(�; �) := @@ ��lpp0(�; �; �) ;for i = 1; � � � ;m and l = 1; � � � ; s, respectively.Given any tangent vector w to the manifold �1=2t0;�0 at pointpp(�; �) =pp0(�; �; 0), which we decompose on the basis associated with theexpectation parameters, asw = mXi=1 wi @i(�; 0) + sXl=1 wm+l @m+l(�; 0) ;the projection of w onto the tangent space of S1=2 at pp(�; �) satis�es�t0;�0 w = mXi=1 wi @i(�) :Proof : We �rst prove that the expectation parameters �� = (��1; � � � ; ��m)and �� = (��1; � � � ; ��s) provide another parametrization of the enveloping man-ifold, i.e. we prove that the Jacobian matrix �J(�; �) of the transformation(�; �) 7! (��; ��) is invertible.From Proposition 4.4.1 above, the Fisher information matrix �g(�; �) of theenveloping manifold is invertible for any � 2 �, and any � 2 �. It follows byeasy calculations that�J(�; �) = �g(�; �)�Ep0(�;�)fjdj4g " 0 00 R(�) # ;where the s� s matrix R(�) is given byR(�) = j�j2 I + 2 � �T ;for any � 2 �. By the Lebesgue dominated convergence theoremlim�!0 j�j2 Ep0(�;�)fjdj4g= lim�!0Ep(�;�)fj�j2 jdj4 exp[�T d� 14 j�j4 jdj4]g exp[ (�)�  0(�; �)] = 0 :Therefore, the Jacobian matrix �J(�; �) is invertible, provided � is su�cientlysmall, and in addition�g(�; �) [ �J(�; �)]�1 = " I 0� � # ;



5.3. Equivalence between ADF and PF 75where the asterisks indicate entries that need not be speci�ed here.It results from this observation, that the following partial biorthogonalityrelations hold h@j(�; �); @i(�; �)i = 14 �i;j ; i = 1; � � � ;mh@j(�; �); @m+l(�; �)i = 0 ; l = 1; � � � ; s (5.9)for all j = 1; � � � ;m.Finally, it is easily checked that for all � 2 �@j(�) = @j(�; 0) ;for all j = 1; � � � ;m. We notice that by de�nition (w��t;� w) is orthogonal tothe tangent space of S1=2 at pp(�; �), henceh@j(�); w ��t0;�0 wi = 0 ;for all j = 1; � � � ;m. Thereforeh@j(�);�t0 ;�0 wi = h@j(�; 0); wi= mXi=1 wi h@j(�; 0); @i(�; 0)i+ sXl=1 wm+l h@j(�; 0); @m+l(�; 0)i = 14 wj ;because of the biorthogonality relations (5.9), hence the projected vector is ofthe announced form. 2Now we can state the more geometrical proof of Theorem 5.3.1.Second Proof of Theorem 5.3.1. According to Theorem 4.4.3, the expo-nential projection �lter equation is obtained by projecting the tangent vectorsof �1=2t;�t which appear in the right{hand side of the Kushner{Stratonovich equa-tion (2.7) onto the tangent space of S1=2. If we decompose these tangent vectorson the basis associated with the expectation parameters, we obtainPt(ppE(�; �t)) = mXi=1 pi(�t) @i(�t; 0) + sXl=1 pm+l(�t) @m+l(�t; 0)Qkt (ppE(�; �t)) = mXi=1 qki (�t) @i(�t; 0) + sXl=1 qkm+l(�t) @m+l(�t; 0) ;for k = 0; 1; � � � ; d. Notice that, from the biorthogonality relations (5.9) andthe expression for Pt (ppE(�; �t)) presented in Section 4.4 it holdspi(�t) = 4 hPt(ppE(�; �t)); @i(�t)i



76 Chapter 5. Assumed Density Filters and Projection Filters= 4 h 12ppE(�; �t)�t;�t ; 12ppE(�; �t) [ci � �it]i= EpE(�;�t)f�t;�t [ci � �it]g ;and similarly qki (�t) = EpE(�;�t)f�kt;�t [ci � �it]g ;for k = 0; 1; � � � ; d. The projections of these tangent vectors determine theright{hand side of the stochastic di�erential equation for the projection �lter.According to Theorem 5.3.2, such projections read�t;�t � Pt(ppE(�; �t)) = mXi=1 pi(�t) @i(�t)�t;�t � Qkt (ppE(�; �t)) = mXi=1 qki (�t) @i(�t) ;for k = 0; 1; � � � ; d. Expanding dppE(�; �t) with the chain rule and collect-ing tangent vectors on both sides, yields the following stochastic di�erentialequation for the projection �lterd�it = pi(�t) dt� q0i (�t) dt+ dXk=1 qki (�t) � dY kt ; i = 1; 2; � � � ;m ;which concludes the proof. 2The equivalence between the MFS{based ADF and the PF is shown to holdfor exponential families. In general, for other families of distributions suchequivalence does not hold. This can be seen from the following simple examplein which we consider a particular curved (Gaussian) exponential family.Example 5.3.3 (Projection �lter with a curved Gaussian family.) Weconsider the scalar systemdXt = f(Xt) dt+ �(Xt) dWtdYt = Xt dt+ dVt ;where the coe�cients are supposed to satisfy the usual assumptions. Choosethe following curved family of Gaussian densities :fp(x; �) = exp[� x� �2 x2 �  (�)] ; � 2 R n f0gg ;



5.3. Equivalence between ADF and PF 77where p(�; �) is the Gaussian density with mean 1=(2�), and variance 1=(2�2).We shall denote by E�f�g the expectation w.r.t. the density p(�; �). Notice that� = E�fxg = 1=(2�). The densities in the above curved Gaussian family may becharacterized by � as well. We denote by E�f�g the corresponding expectation,so that for exampleE�f fg = Z +1�1 f(x) 1p2�2�2 exp[� 12 (x� �)22�2 ] d�(x):Consider the general equation (4.3) for the projection �lter, and notice that,since � = 1=(2�), we have d�t = �1=(2�2t ) � d�t. This results in the followingprojection �lter :d�t = �15 [E�tffg � 2�t E�tfx fg � 2�t E�tf�g+ 6 �3t ] dt+ 25 �2t � dYt :On the other hand, equation (5.3) yields insteadd�t = [E�tffg � 52 �3t ] dt+ 2 �2t � dYt ;making use of relations (5.4).Anyway, one of the striking features of the Theorem 5.3.1 is that it yields acharacterization of the projection �lters for exponential families in terms of as-sumed density �lters, which are not intrinsically based on di�erential geometry,and can be understood without using geometric concepts.Finally we observe that as the Itô{based and MFS{based ADF are di�erent,the theorems proved above state that for a general exponential family S theequivalence with the projection �lter holds only for the MFS{based ADF. How-ever, it can be shown that the MFS{based and the Itô{based ADF coincide forspecial choices of the exponential family, such as the families S� and S� intro-duced in Section 4.5 which are constructed in such a way that the observationfunctions hk for k = 1; � � � ; d are contained in the linear space spanfc1; � � � ; cmg.Indeed, the following theorem holds:Theorem 5.3.4 For the exponential family S�, the Itô{based assumed density�lter coincides with the MFS{based assumed density �lter.Proof: It follows from (4.19) that12 jhj2 = 12 dXk=1 jhkj2 = 12 dXk=1 sXl;l0=1�kl �kl0 cl cl0 :



78 Chapter 5. Assumed Density Filters and Projection FiltersBy specializing to the exponential family S� the general equation (5.3) for theMFS{based ADF, and using Lemma 3.3.3, we obtaind�it = E�tfLt cig dt� 12 dXk=1 sXl;l0=1�kl �kl0 [E�tfclcl0cig �E�tfclcl0g �it ] dt+ dXk=1 sXl=1 �kl [E�tfclcig �E�tfclg �it ] � dY kt= E�tfLt cig dt� dXk=1 sXl;l0=1 gil(�t)�kl �kl0 �l0t dt� 12 dXk=1 sXl;l0=1 @@�l0 gil(�t)�kl �kl0 dt+ dXk=1 sXl=1 gil(�t)�kl � dY kt ;for i = 1; � � � ;m. It is easily checked that the Itô{MFS transformation yieldsgil(�t) dY kt = gil(�t) � dY kt � 12 sXl0=1 @@�l0 gil(�t)�kl0 dt ;for all k = 1; � � � ; d and all i = 1; � � � ;m. On the other hand, by specializing tothe exponential family S� the general equation (5.2) for the Itô{based ADF,and using Lemma 3.3.3, we obtain directlyd�it = E�tfLt cig dt+ dXk=1 sXl=1 �kl [E�tfclcig �E�tfclg �it ] [ dY kt � sXl0=1�kl0 E�tfcl0g dt ]= E�tfLt cig dt� dXk=1 sXl;l0=1 gil(�t)�kl �kl0 �l0t dt+ dXk=1 sXl=1 gil(�t)�kl dY kt ;for i = 1; � � � ;m. 2



Chapter 6Small Observation NoiseO God, I could be bounded in a nut shell and count myself a kingof in�nite space, were it not that I have bad dreams.Hamlet, Act II, Scene II6.1 IntroductionIn the present chapter we examine the Gaussian projection �lter with smallobservation noise. In order to maintain the chapter as self contained as possible,we shall repeat some facts that have already appeared in the previous chapters.This little redundance will be helpful for readers interested only in the smallnoise setting. In fact the present chapter is almost independent of geometricconcepts, and as a �rst reading can be read independently of the rest of thethesis.The story so far:We explained in Chapter 2 that the �ltering problem consists of estimatingthe state of a stochastic system from noise{perturbed observations. In the lin-ear Gaussian case the problem is solved by the Kalman �lter. In that chapterwe noticed how the more{general nonlinear problem is far more complicated be-cause of in�nite dimensionality. We remarked that often the extended Kalman�lter (EKF) is used in nonlinear problems, even though its use is usually jus-ti�ed on the basis of heuristic considerations, and not much is known aboutthe quality of its performances, except in the case of small observation noise(see [51] and [52]). In Chapter 5 we introduced the assumed{density �lter(ADF). The Gaussian ADF (GADF) represents another choice in the nonlin-ear case, and is obtained by assuming the conditional density to be Gaussian,closing in this way the set of exact equations for the �rst two moments and79



80 Chapter 6. Small Observation Noiseproducing a �nite{dimensional �lter (see [47]). The GADF is not too strongfrom a mathematical point of view, because from a false hypothesis no inter-esting statement can be obtained. In Chapter 4 we introduced the projection�lter (PF). We saw that the PF is a �nite{dimensional nonlinear �lter basedon the di�erential{geometric approach to statistics. This �lter is based onprojection of the nonlinear �ltering equation onto a �nite{dimensional man-ifold of densities in Fisher metric. As we saw more in general in Chapter 5for exponential manifolds, if one projects onto the tangent space of the �nite{dimensional manifold of Gaussian densities, the resulting Gaussian projection�lter (GPF) coincides with an assumed{density �lter which is obtained as fol-lows: one computes the �rst two conditional moments equations in McShane{Fisk{Stratonovich (MFS) form, and then assumes the conditional density tobe Gaussian, closing in this way the equations for the �rst two moments. Wecall this �lter MFS-G-ADF. This result is important because it yields a simplecharacterization of the GPF which is independent of geometric concepts; onthe other hand it shows that, despite the logical inconsistency of its de�nition,the MFS-G-ADF has a rigorous mathematical characterization. In Chapter 5it was also proven that what we described above is not the same as assuming aGaussian density in the Itô equations for the �rst two moments. If we do so andafterwards we transform the obtained �lter in MFS form, we obtain a di�erent�lter: the MFS-G-ADF is not just an MFS version of the Itô-GADF. In otherwords, the Itô-MFS transformations and the Gaussian{density assumption donot commute.Now that we have described the �lter to be studied in this chapter, we brie
ydescribe the contents of the chapter.We shall deal with signals modelled by one{dimensional di�usions, in orderto keep the chapter more readable and in the spirit of [51]. We shall assumeLipschitz drift and uniformly{bounded di�usion coe�cient for the signal anda bijective output function in the observations (plus some more technical as-sumptions). This set of assumptions on the system is rather common in smallnoise analysis, as one can see in [51], [52], and [53].We start by considering a comparison between the signal (true state) andthe GPF estimate. We will prove that, under assumptions di�erent from theone needed for the EKF, the GPF provides an estimate for which the mean{square di�erence from the true state of the system is bounded by the magnitudeof the observation noise. This result has been proved for the exact �lter in[51], so that here we prove that our �lter features a mean{square error themagnitude of which is bounded in the same way as in the case of the optimal�lter. The chapter continues by removing the choice of dimension two for



6.2. The MFS-G-ADF 81the Gaussian manifold. In the initial sections we use a two{dimensional GPFobtained by projecting the optimal �lter onto a two{dimensional manifold ofGaussian probability densities. Using dimension two for an approximate �lterdealing with a one{dimensional di�usion is rather common: both the ExtendedKalman Filter and the (classical Itô-based) ADF feature dimension two inthis situation (see [47]). For this reason we begin this chapter with a two{dimensional GPF. We introduce later a one{dimensional GPF and show thatits mean{square di�erence from the true state is bounded in the same way asin the case of the two{dimensional GPF. So, under our assumptions on thesystem, it turns out that the optimal �lter can be tracked e�ciently even by�xing the variance on the Gaussian manifold: One has just to allow the meanto 'move`. Moreover, the chapter extends some of the results on the comparisontrue state { GPF estimate to di�erent models. More precisely, if the drift ofthe system is bounded (and not necessarily Lipschitz) we de�ne a �lter whichhas a nice behaviour and does not depend on the drift of the system.The chapter is concluded by a comparison between the optimal �lter and theGPF. The mean{square distance has in this case a bound proportional to thesquare of the observation noise. Part of the material presented in this chapteris based on the articles [6] and [8].6.2 The MFS-G-ADFOn the complete probability space (
;F ;P) let us consider a stochastic processfXt; t � 0g of di�usion type, adapted to a �ltration fFt; t � 0g, and a relatedmeasurement process fYt; t � 0g. Let the dynamic and observation equationsbe of the following form (cf. [47, 19])dXt = f(Xt)dt+ �(Xt)dWtdYt = h(Xt)dt+pR(t)dVt: (6.1)The above are Itô stochastic di�erential equations. If fvt; t � 0g is a Brownianmotion, we will write [:::]dvt if we are working with an Itô di�erential equation,whereas we use the symbol [:::] � dvt to specify a McShane-Fisk-Stratonovich(MFS) stochastic di�erential equation. In (6.1) the symbols have the follow-ing meaning: Xt 2 R is the state vector at time t; f and � are real valuedfunctions, and fWt; t � 0g with Wt 2 R a standard Brownian motion process,independent of the initial condition X0; Yt 2 R is the stochastic measurementprocess, h is a real valued function and fVt; t � 0g with Vt 2 R a standardBrownian motion independent both of fWt; t � 0g and of the initial condition



82 Chapter 6. Small Observation NoiseX0. We assume R(�) to be uniformly{positive: R(t) > � � 0 for all t, accord-ing to [45]. R(t) represents the variance parameter of the observation noise.At the moment assume assumptions on f ,� and h given in Chapter 2 to be inforce.Specialize equation (2.3) to our situation (and consider the obvious modi�-cations due to the fact that we keep R(t) not necessarily equal to one):d�t(�) = [ �t(L�) + 12R(t)�1�t(�)�t(h2)] dt (6.2)+ R(t)�1[�t(�h)� �t(�)�t(h)] � dYt:We use either �t((�)) or c(�) to denote the conditional expectation given the �{algebra Yt generated by observations up to time t. Then, by choosing �(x) =x and �(x) = x2 respectively, one derives from (6.2) the (exact) �rst twoconditional moment equations in MFS form. These equations are given byd bxt = [�t(f)� 12R(t)�1�t((X � cXt)h2)]dt (6.3)+ R(t)�1�t((X � cXt)h) � dYt;dPt = [2�t(f(X)(X � cXt)) + �t(�2) (6.4)� 12R(t)�1�t(h2[(X � cXt)2 � Pt])]dt+ R(t)�1�t([(X � cXt)2 � Pt]h) � dYtwhere cXt = �t(X) and Pt = �t((X�cXt)2). Note that (6.3, 6.4) is not a closedset of stochastic di�erential equations (SDE): the expectation �t(�) in generalinvolves all the moments of the conditional density pt := pXtjYt , not only the�rst two. According to the assumed density principle seen in Chapter 5, suchset of SDE can be closed by assuming pt to be Gaussian. This amounts toperforming the following substitutions in (6.3, 6.4):cXt ! fXtPt ! ePtpt ! pN ( eXt;ePt): (6.5)This leads to the following closed set of SDE:dfXt = [ eEffg � 12R(t)�1 eEf(X � fXt)h2g]dt (6.6)



6.3. The GPF for a simpli�ed system. 83+ R(t)�1 eEf(X � fXt)hg � dYtand d ePt = [2 eEff(X)(X � fXt)g+ eEf�2g (6.7)� 12R(t)�1 eEfh2[(X � fXt)2 � ePt]g] dt+ R(t)�1 eEf[(X � fXt)2 � ePt]hg � dYt;where we denote the expectation w.r.t. the approximated Gaussian densitypN ( eXt;ePt) either by the symbol f(�) or by eEf(�)g. Note that eEf(�)g depends onYt via fXt and ePt. Equations (6.6, 6.7) describe the MFS-G-ADF.6.3 The GPF for a simpli�ed system.In order to be able to compare the Gaussian projection �lter estimate fXt tothe true state Xt of the system we need to simplify our system.The set of assumptions we require is given by:(A) We assume f Lipschitz continuous with Lipschitz constant k.(B1) We assume �2 uniformly bounded:0 < b��(x)2�B 8x 2 R:(C1) We assume h bijective and C2, and jhxj uniformly bounded: there existtwo positive constants H1 and H2 such that0 < H1 � jhx(x)j � H2 8x 2 R:Finally we assume hxx Lipschitz continuous.Under these assumptions one can assume h to be the identity function with-out loss of generality. Indeed, we can de�ne a new process �t := h(Xt) which isstill a di�usion, the equation of which can be obtained via Itô's lemma. Thisnew system reads (hx and hxx denote the �rst two derivatives of h)d�t = [hx(h�1(�t))f(h�1(�t)) + 12�(h�1(�t))2hxx(h�1(�t))]dt



84 Chapter 6. Small Observation Noise+ hx(h�1(�t))�(h�1(�t))dWtdYt = �tdt+ dVtso that the new function in the observations is the identity. Assumptions (A)and (B1) still hold for this new system if we require (C1) for h. Notice thatuniform boundedness of jhxj is equivalent to Lipschitz continuity of h and h�1,via the mean{value theorem.From now on we take h to be identity. Moreover, we shall put R(t) := �2.The quantity � 2 R+ represents the magnitude of the observation noise Vt. Weare interested in studying the �lter behaviour for small �.This simpli�ed system is:dXt = f(Xt)dt+ �(Xt)dWtdYt = Xtdt+ �dVt (6.8)By specializing equations (6.6, 6.7) to the system (6.8), and rememberingthe Gaussian moments formulae, we obtain the MFS-G-ADF for the simpli�edsystem: dfXt = [ eEffg � 1�2 ePtfXt]dt+ 1�2 ePt � dYt; fX0 = EfX0g; (6.9)and d ePt = [2 eEff(X)(X � fXt)g+ eEf�2g � 1�2 ePt2]dt; fP0 = P0: (6.10)Note that we should put a superscript on the quantities de�ned above, as theydepend on �. A more complete notation in the above equations would be Y�t ,fXt�, ePt�, cXt� and P �t . We shall henceforth omit such superscript, except inCorollaries 6.5.2, 6.6.2 and Theorem 6.7.1. Notice also that the stochasticdi�erential equation for ePt contains no noise term.6.4 Bounds for fPt of the GPFIn this section we state a lemma which gives some bounds for ePt, provingthat this quantity is bounded by a constant proportional to the observationnoise �. Note that ePt is not the true error variance, but just its approximation



6.4. Bounds for ePt of the GPF 85based on the arbitrary `Gaussian{density' assumption. In the following treat-ment, throughout the chapter, we shall frequently use the Bellman{Gronwallinequality without explicitly referring to it. Moreover, the technique used hererecalls the work of Wonham [60] on Riccati di�erential equations.Lemma 6.4.1 Assume (A), (B1) and (C1) are satis�ed. Let �0 be a positivereal number satisfying �0 < min(pb=k; 1): Then there exist two positive realconstants C1(b; k); C2(B; k) such thatC1(b; k)� � ePt � C2(B; k)� 8t > �0; 8� < �0where k is the Lipschitz constant for f. The two constants are given byC1(b; k) := minfpb� k�0;max[ eP0�0 ; (pb� k�0)[1� exp(�2q�20k2 + b)]=2] gC2(B; k) := maxf2k�0 +B; 2pk2�20 +B1� exp(�2pk2�20 +B)gPROOF: We begin by proving� < �0; t > �0 ) C1(b;K)� � ePt:Compute eEff(X)(X � fXt)g = Z (x� fXt)f(x)pN ( eXt ;ePt)(x)dx� Z (x � fXt)(f(fXt)� kjx� fXtj)pN ( eXt;ePt)(x)dx= �k Z (x� fXt)2pN ( eXt;ePt)(x)dx = �k ePtwhere we have used the Lipschitz condition for f . Also,eEf�2g = Z �(x)2pN ( eXt;ePt)(x)dx � bwhere we have used assumption (B1) on �2. From these two inequalities wededuce, by (6.10), the following one:ddt ePt � �2k ePt + b� 1�2 ePt2: (6.11)Now de�ne wt to be the solution of the following ordinary di�erential equation:_w = �2kw + b� 1�2w2; w0 = fP0: (6.12)



86 Chapter 6. Small Observation NoiseFrom (6.11) and (6.12) it follows by standard di�erential inequality techniquesePt � wt for all t � 0. Equation (6.12) is a scalar Riccati di�erential equation.Let us �rst solve the associated algebraic equation:�2kw + b� 1�2w2 = 0:The solutions are given byw1;2 = �2(�k �rk2 + b�2 ):Notice that w1 is negative, whereas w2 is positive. Notice also that �w1 >w2 > 0. The solution of (6.12) isw = w2 + w1N exp (�2tqk2 + b�2 )1 +N exp (�2tqk2 + b�2 ) (6.13)where N := w2 � w0w0 � w1 < 1; jN j < 1:Now we distinguish between two possible cases:(a) w0 � w2. The solution w(t) is a decreasing function, which asymptoti-cally approaches the value w2 as t! 1 (in the particular case w0 = w2we have wt = w2 8t > 0). Hence, assuming � < �0ePt � wt � w2 > �(pb� k�0)provided that the last term is positive (�0 � pb=k).(b) w0 < w2. The solution w(t) is an increasing function which asymp-totically approaches w2 as t ! 1. We need to examine two di�erentpossibilities:(b') w0 > 0. Then w(t) � w0 > �w0=�0 = � eP0=�0 provided that � < �0,and we are done.(b") w0 = 0. In this case we obtain N = �w2=w1 > 0 and from (6.13)we deduceePt � w(t) = w2 1� exp(�2tpk2 + b=�2)1 +N exp(�2tpk2 + b=�2)> w2 [1� exp(�2tpk2 + b=�2)]2



6.4. Bounds for ePt of the GPF 87> w2[1� exp(�2�0pk2 + b=�2)]=2> w2[1� exp(�2qk2�20 + b)]=2> �(pb� k�0)[1� exp(�2qk2�20 + b)]=2where we have used the previous bound found for w2, the fact thatthe function is increasing, and we have assumed t > �0 > �.This completes the �rst part of the proof.Let us show the second inequality:� < �0; t � �0 ) ePt � C2(B; k)�:Exactly as in the �rst part of the proof one showseEff(X)(X � fXt)g � k ePt; eEf�2g � B:From these two inequalities we deduce, by (6.10):ddt ePt � 2k ePt +B � 1�2 ePt2: (6.14)Now let zt be the solution of the di�erential equation:_z = 2kz +B � 1�2 z2; z0 = fP0: (6.15)From (6.14) and (6.15) it follows ePt � zt 8t � 0: Equation (6.15) is again ascalar Riccati equation. Let us solve the associated algebraic equation:2kz +B � 1�2 z2 = 0:The solutions are given byz1;2 = �2(k �rk2 + B�2 ):Notice that z1 is negative, whereas z2 is positive. Moreover, this time z2 > �z1.The solution of (6.15) isz = z2 � z1M exp (�2tqk2 + B�2 )1�M exp (�2tqk2 + B�2 )where M = z0 � z2z0 � z1 :Let us distinguish again between two cases.



88 Chapter 6. Small Observation Noise(c) z0 > z2. Then it is easily seen that 0 < M < 1 and the solution z(t) is adecreasing function which approaches z2 as t!1. As a consequence, ifwe take t > �0, z(t) is maximized in t = �0, so thatt > �0 ) ePt � z(t) � z(�0)= z2 � z1M exp(�2pk2�20 +B�20=�2)1�M exp(�2pk2�20 +B�20=�2)< z2 � z11� exp(�2pk2�20 +B) < � 2pk2�20 +B1� exp(�2pk2�20 +B)where we assumed also � < �0.(d) z0 � z2. In this �nal situation, z(t) is an increasing function whichapproaches z2 as t!1, unless z0 = z2 (in this last case z(t) = z2 8t >0). HenceePt � z(t) � z2 = �(p�2k2 +B + �k) � �(p�2k2 +pB + �k)= �(2k�+pB) � �(2k�0 +pB)where we assumed � < �0.The proof is �nished. 26.5 Nice behaviour with small observation noise.We are now ready to state our main result. Consider the GPF equations (6.9)(6.10). Substitute the observation equation (6.8) in the �lter equation:dfXt = [ eEffg � 1�2 ePt(Xt � fXt)]dt+ 1� ePt � dVt: (6.16)Notice that the GPF itself in our case is in Itô as well as MFS form, as one canverify immediately by de�ning the metastate [fXt; ePt]T and checking with theItô - MFS transformation (e.g. [32] page 119). So, in order to proceed, as theItô integral has the good property that its expectation is zero, let us considerthe system (6.16)-(6.10) as in Itô form. Our aim is to study the distanceEfjXt�fXtj2g between our original system state Xt and the �lter system statefXt.Theorem 6.5.1 Assume (A), (B1) and (C1) are satis�ed. There exist threepositive real constants L1(b; B; k) , ��(b; B; k) and �t(b; B; k) depending on the



6.5. Nice behaviour with small observation noise. 89Lipschitz constant k of f and on the bounds b; B of �2 such that the followingbound holdsEfjXt � fXtj2g � �L1(b; B; k); 8� � ��(b; B; k); 8t � �t(b; B; k):PROOF: Let us begin by subtracting the �lter equation (6.16) from the systemequation (6.8):d(Xt � fXt) = [f(Xt)� eEffg � 1�2 ePt(Xt � fXt)]dt+ �(Xt)dWt � 1� ePtdVt: (6.17)Think of the two noise terms as a two{dimensional noise term (still standard)and apply Itô's lemma to the system (6.17) to computed[(Xt � fXt)2] = f2(Xt � fXt)[f(Xt)� eEffg� 1�2 ePt(Xt � fXt)] + �(Xt)2 + 1�2 ePt2gdt+ 2(Xt � fXt)�(Xt)dWt � 2� (Xt � fXt) ePtdVt: (6.18)Now we can take unconditional expectation on both sides of (6.18), so that theterms representing Itô integrals vanish:dE[(Xt � fXt)2] = 2Ef(Xt � fXt)[f(Xt)� eEffg]gdt+Ef�(Xt)2gdt+ 1�2Ef ePt2gdt� 2�2Ef(Xt � fXt)2 ePtgdt: (6.19)From the Lipschitz assumption for f we obtain:(Xt � fXt)(f(Xt)� eEffg)� jXt � fXtjj Z (f(Xt)� f(s))pN ( eXt;ePt)(s)dsj� jXt � fXtj Z jf(Xt)� f(s)jpN ( eXt;ePt)(s)ds� jXt � fXtj Z kjXt � sjpN ( eXt;ePt)(s)ds� jXt � fXtj Z k(jXt � fXtj+ jfXt � sj)pN ( eXt ;ePt)(s)ds



90 Chapter 6. Small Observation Noise= kjXt � fXtj2 + kjXt � fXtj Z js� fXtjpN ( eXt;ePt)(s)ds == kjXt � fXtj2 + kjXt � fXtjs2 ePt� :Let us substitute this inequality in (6.19) to obtain:dE[(Xt � fXt)2] � 2Efk(Xt � fXt)2 + kjXt � fXtjs2 ePt� gdt+ Ef�(Xt)2gdt+ 1�2Ef ePt2gdt� 2�2Ef(Xt � fXt)2 ePtgdt:Now, let us use the result of Lemma (6.4.1):s2 ePt� �r2C2(B; k)�� ;which combined withE[jXt � fXtj] � (Ef(Xt � fXt)2g)1=2yields EfjXt � fXtjs2 ePt� g ��r2C2(B; k)�� (Ef(Xt � fXt)2g)1=2 ��r2C2(B; k)�� (1 +Ef(Xt � fXt)2g)where we have used the inequality pa < 1 + a;8a � 0.By including the �2 bounds given in assumption (B1) and using again Lemma(6.4.1) there resultsdE[(Xt � fXt)2] � [2k(1 +r2C2(B; k)�� )� 2�C1(b; k)]E[(Xt � fXt)2]dt+ (2kr2C2(B; k)�� +B + C2(B; k)2)dt:As in the end we are interested in small �, we can assume � < 1, from which itfollowsdE[(Xt � fXt)2] � [2k(1 +r2C2(B; k)� )� 2� C1(b; k)]E[(Xt � fXt)2]dt++ (2kr2C2(B; k)� +B + C2(B; k)2)dt: (6.20)



6.5. Nice behaviour with small observation noise. 91By setting C3(b; B; k) := 2k(1 +r2C2(B; k)� )C4(B; k) := (2kr2C2(B; k)� +B + C2(B; k)2)the above inequality (6.20) readsdE[(Xt � fXt)2] � [(C3 � 2C1 1� )Ef(Xt � fXt)2g+ C4]dt:Let u(t) be the solution of the di�erential equation_u = (C3 � 2C1 1� )u+ C4 (6.21)with initial condition u(0) = P0. ClearlyEf(Xt � fXt)2g � u(t): (6.22)Let us assume � small enough so that the u coe�cient on the right hand sideof the above equation is negative: � � 2C1C3 :The solution of (6.21) isu(t) = [P0 � �C4(2C1 � �C3) ] exp f(C3 � 2C1 1� )tg++ �C4(2C1 � �C3) : (6.23)Elementary calculations show that the exponential function appearing in (6.23)is smaller than � if we take t > t(�), wheret(�) := log 1�2C1� � C3 > 0:By di�erentiating t(�) w.r.t. � one sees that t(�) is an increasing function if� < exp[(�2C1 + C3�)=(2C1)], which is implied by � � exp(�1). Then let ustake � � exp(�1), so that t(�) has maximum value t(exp(�1)). Hencet > t(exp(�1))) t > t(�)) exp[(C3 � 2C1=�)] < �) u(t) < [P0 � �C4(2C1 � �C3) ]�+ �C4(2C1 � �C3)) u(t) < �[P0 + C4(2C1 � �C3) ]:



92 Chapter 6. Small Observation NoiseNow choose any positive real number �� and the positive real number �t accordingto �� < minfexp(�1); 2C1=C3; �0g ;�t = maxft(exp(�1)); �0g:Then t > �t; � < �� ) u(t) < �L1 ;L1 = [P0 + C4(2C1 � ��C3) ]and (6.22) completes the proof. 2From the theorem above the following corollary follows easily.Corollary 6.5.2 Assume (A), (B1) and (C1) are satis�ed. For every sequence�n, n 2 IN such that 0 < �n < ~�(b; B; k) for all n 2 IN and P1n=1 �n < +1 wehave 1T � �t Z T�t jXt � eX �nt j2dt! 0 a:s:as n!1 and for every T > �t.PROOF: From the theorem above, Chebychev inequality and the mean valuetheorem for integrals we obtainPf 1T � �t Z T�t jXt � eX �nt j2dt > �g � L1�n�for every � > 0 and we can conclude by Borel{Cantelli's lemma. In factP [ lim supn f 1T � �t Z T�t jXt � eX �nt j2dt > �g ] = 0which concludes the proof. 2The above results ensure that the state Xt of the system is well estimatedby eX�t for small observation noise �.6.6 One{dimensional e�cient GPFPicard showed in [51] that, under suitable assumptions, there exists a one{dimensional �lter whose mean{square di�erence from the true state is bounded



6.6. One{dimensional e�cient GPF 93by a constant which is proportional to the magnitude of the observation noise.In this section we show that there exists a one{dimensional GPF which is ase�cient as the two{dimensional one (6.9-6.10), in the sense that they yield thesame mean{square error bound when compared to the true state.In this section we shall use the geometric derivation of the projection �lter.This is the only part of the chapter where we invoke geometry. We repeat thederivation because we prefer to keep the chapter as self contained as possible,and also to notice what happens when projecting the Duncan{Mortensen{Zakaiequation for nonlinear �ltering instead of the Kushner{Stratonovich equationgiven in Chapter 2.Consider the Duncan{Mortensen{Zakai stochastic partial di�erential equa-tion (DMZ) for an unnormalized version qt(�) of the optimal{�lter density pt(�)(where pt(x)dx := PfXt 2 dxjYtg). For the system (6.8) such partial SDE inMFS form readsdtqt(x) = (L�qt)(x)dt� 12x2qt(x)dt + xqt(x) � dYt (6.24)(this can be obtained for example by formula (40) page 72 of [19] with anintegration by parts). Projection of this equation results in the same �lter asin the case of projection of the Kushner{Stratonovich equation. This is due tothe fact that since we are projecting on a manifold of normalized densities, theprojection automatically takes care of the normalization step.In order to use the L2 inner product, consider the DMZ equation for thesquare root of qt(�):dtpqt(x) = (L�qt)(x)2pqt(x) dt� 12x2pqt(x)2 dt+ xpqt(x)2 � dYt: (6.25)Next, select a �nite{dimensional manifold of square roots of densities to ap-proximate the optimal �lter ppt(�). Let the family be parametrized by � 2� � Rm, where � is open. Call such manifold S1=2,S1=2 = fpp(�; �); � 2 �g:Consider a generic curve t 7! pp(�; �t) on this manifold. Its tangent vector in�t is given according to the chain rule:dtpp(�; �t) = mXi=1 @pp(�; �t)@�i � d�it ; (6.26)from which we see that tangent vectors in �t to all curves lie in the linear(tangent) space spanf@pp(�; �t)@�1 ; : : : ; @pp(�; �t)@�m g:



94 Chapter 6. Small Observation NoiseConsider the Fisher informationg(�)ij := 4h@pp(�; �)@�i ; @pp(�; �)@�j i; i; j = 1; : : : ;m;where h�; �i is the inner product of L2 (see Chapter 3 for the details). Nowconsider for all � 2 � the orthogonal projection�� : L2 �! spanf@pp(�; �t)@�1 ; : : : ; @pp(�; �t)@�m g��[v] := mXi=1 [ mXj=1 4gij(�) hv; @pp(�; �)@�j i] @pp(�; �)@�i :At this point we project the DMZ equation (6.25) via this projection, obtainingthe following (m{dimensional) SDE on the manifold S1=2 :dpp(�; �t) = ��t [ L�p(�; �t)2pp(�; �t) ]dt� 12��t [x2pp(�; �t)2 ]dt+��t [xpp(�; �t)2 ] � dYt:Writing the projection map explicitly and comparing with (6.26) yields thefollowing SDE for the parameters:d�t = g�1(�t) [Z L�t p(x; �t)p(x; �t) @p(x; �t)@� dx] dt�g�1(�t)[Z 12 x2 @p(x; �t)@� dx] dt++g�1(�t) [Z x @p(x; �t)@� dx] � dYt; (6.27)where integrals of vector functions are meant to be applied to their components.As we saw in Chapter 4, the equation above can be simpli�ed by selectingsuitable exponential manifolds involving the observation function h (identityin our case) and its square. Such manifolds are called S1=2� (involving both hand h2) and S1=2� (involving only h). In our case the manifold S1=2� turns out tobe the Gaussian manifold (exponential with second degree polynomials in theexponent, i.e. combinations of h = x and h2 = x2) and hence the projection�lter is a GPF. This is actually the two{dimensional �lter which coincides withthe MFS{G{ADF (as seen in Chapter 5) and on which we worked so far in thischapter. Lemma (6.4.1), Theorem (6.5.1) and Corollary (6.5.2) all concern this�lter.Now we decide to use instead the manifold S1=2� , i.e. we involve only h = xin the exponent of the exponential manifold. We can then �x the coe�cient of



6.6. One{dimensional e�cient GPF 95the second degree term in the manifold (which amounts to �x the variance) byde�ning S1=2� := fpp(�; �) : � 2 Rg;p(x; �) := exp(�x� 12�x2 �  (�)) = pN (��;�)(x):Notice that the smaller the noise �, the smaller the variance. The normalizingconstant  (�) is given by  (�) = 12 log(2��) + 12��2:This is clearly a one{dimensional Gaussian manifold. This case is slightlydi�erent from the case treated in Chapter 4, since here the coe�cient of x2in the exponent is not a parameter. But all the relevant facts for exponentialmanifolds seen in Chapter 3 still hold. Consider now the expectation parameteras de�ned in Chapter 3 :�X(�) := d (�)d� = ��, and notice that of course p(�; �) = pN ( �X;�)(�). The Fisherinformation can be computed as in Lemma 3.3.3: g(�) := d �X(�)d� = �. Denoteby both E� and E �X expectation w.r.t. the Gaussian density p(�; �). Observethat by the well{known formulas for moments of Gaussian random variableswe have E�f 12X2(X � �X)g = �X . Notice that LX = f . Now we can write theprojection �lter equation relative to the manifold S�. Then equation (6.27)particularizes to d�t = 1�E�tffg dt� 1� �t dt+ 1�2 � dYtor, w.r.t. the expectation parameterd �Xt = E �Xtffgdt� 1� �Xt dt+ 1� � dYt:The above SDE is valid both in the Itô and in the MFS sense. Compute byItô's lemma d[(Xt � �Xt)2] and take expectation on both sides (expectations ofItô integrals vanish):dEf(Xt � �Xt)2g = 2Ef(Xt � �Xt)(f(Xt)�E �Xtffg)gdt� 2�Ef(Xt � �Xt)2gdt+Ef1 + �(Xt)2gdt:By the same arguments used in the proof of Theorem (6.5.1) and straightfor-ward calculations we obtain the following di�erential inequality:ddtEf(Xt � �Xt)2g � (2k + kr2�� � 2� )Ef(Xt � �Xt)2g



96 Chapter 6. Small Observation Noise+ kr2�� + 1+B:Starting from this last inequality, computations similar to those given in theprevious section yield the following theorem.Theorem 6.6.1 Assume (A), (B1) and (C1) are satis�ed. Choose the threeconstants �(k), T (k) and C(k) according to�(k) < min(1; �[1 + 1kr 2� �s1 + 2kr 2� ]);T (k) = 1=[2� k �(k)(2 +r2 �(k)� )]C(k) = (1 +B + kr2 �(k)� ) T (k):The following bound holds:Ef(Xt � �Xt)2g � [Ef(X0 � �X0)2g+ C(k)]�;8� < �(k); 8t > T (k):Finally, Corollary (6.5.2) can be easily translated for this one{dimensional �lter:Corollary 6.6.2 For every sequence �n, n 2 IN such that 0 < �n < �(k) forall n and P1n=1 �n < +1 we have1T � T (k) Z TT (k) jXt � �X �nt j2dt! 0 a:s: (6.28)as n!1 and for every T > T (k).6.7 Extension of the results to di�erent mod-els.So far we have worked under assumptions (A), (B1) and (C1) given in the be-ginning of the chapter. As far as the comparison true state{GPF is concerned,the results obtained so far can be extended to systems like (6.1) satisfying dif-ferent assumptions. In this section we still assume (B1) to hold (�2 uniformlybounded). Moreover, we replace assumptions (A) and (C1) by (D) and (E):(D) We assume f bounded.



6.7. Extension of the results to di�erent models. 97(E) We assume h bijective, h 2 C2, and jhxj uniformly bounded. Moreover,we assume h2xx bounded.In the present section we shall extend Corollary (6.6.2) to this situation. Theextension of Corollary (6.5.2) is analogous. The main change regards the driftf . As long as the drift is bounded, we do not need it to be Lipschitz continuous.Theorem 6.7.1 Assume (B1), (D) and (E) are satis�ed. For every sequence�n, n 2 IN such that 0 < �n < 1 for all n and P1n=1 �n < +1, let f���nt ; t � 0g,n 2 IN be the sequence of stochastic processes de�ned by the SDEsd���nt = � 1�n ���nt dt+ 1�n � dY �nt ; ���n0 = Efh(X0)gThen we have 1T� 12 Z T12 jXt � h�1(���nt )j2dt! 0 a:s:as n!1 and for every T > 12 .Proof: We use Girsanov's theorem to modify the state equation by changingprobability measure (see for example [25]). Fix an arbitrary T > 12 and set� := �hxx �22 hx ;zt := �(Xt)� f(Xt)�(Xt) ; 12 � t � T:De�ne the new probability measure P1 according to�t := expfZ t12 zsdWs � 12 Z t12 z2sdsg;P1(A) := ZA �T (!)P (d!); A 2 F :It is easy to check that under assumptions (B), (D) and (E) there resultsEfexp[ 12 Z T12 jzsj2ds]g <1;so that we can apply the measure transformation above and use Girsanov'stheorem. Under P1, the system equation (6.1) becomesdXt = �(Xt) dt+ �(Xt)dW 1t ;where dW 1t := dWt� [�(Xt)�f(Xt)]=�(Xt)dt is a standard Brownian motion.Now, the function � has been purposefully de�ned in such a way that, byapplying Itô's lemma, one obtainsdh(Xt) = hx(Xt)�(Xt)dW 1t :



98 Chapter 6. Small Observation NoiseSet �t := h(Xt); t � 0. Rewrite (6.1) for h(Xt) under P1:d�t = hx(h�1(�t))�(h�1(�t))dW 1t ; (6.29)dYt = �tdt+ �dVt:Consider now the system (6.29). Notice that the di�usion coe�cient of thestate equation is uniformly bounded according to assumptions (C1) and (E) :0 < H1pb � j�hxj � H2pB. Moreover, the observation function is the identityfunction. The state equation is particularly simple, since its drift is zero. As aconsequence, the drift is trivially uniformly Lipschitz with arbitrary constantk. Write the one{dimensional GPF for the system (6.29):d���t = � 1� ���t dt+ 1� � dY �t ; ��0 = Efh(X0)g:Apply then Corollary 6.6.2 with k ! 0. We obtain1T� 12 Z T12 j�t � ���nt j2dt! 0; P1 � a:s:as n!1. Since P1 � P , the last result holds also P{ a.s. Uniform bounded-ness of jhxj implies that h�1 is Lipschitz with constant 1=H1. HencejXt � h�1(���nt )j2 � j�t � ���nt j2=H21 ;for all t in [ 12 ; T ]. The theorem is proved. 2Notice that the �lter given in this last theorem does not depend on the driftterm f of the state equation.6.8 GPF versus optimal �lterIn this section we go back to the two{dimensional GPF given in equations (6.9,6.10) and we assume (A), (B1), and (C1) to be in force. We present a theoremdealing with the quality of the approximation obtained with the GPF withrespect to the optimal �lter instead of the signal (true state). We consider themean{square di�erence Efj bXt � eXtj2g between the optimal �lter estimate bXtand the GPF estimate eXt, and we average it over a time interval [�t T ], Tarbitrarily large. The corresponding time average1T � �t Z T�t Efj bXt � eXtj2gdtwill be proved to be bounded by a quantity proportional to �2. More precisely,the following theorem holds:



6.8. GPF versus optimal �lter 99Theorem 6.8.1 Assume (A), (B1) and (C1) are satis�ed. Let �� and �t be givenaccording to Theorem 6:5:1. There exists a positive real number ~� < �� such that� � ~�; T > �t) 9t1 2 [�t; T ]; 9M(�t; t1) 2 R+ :1T � �t Z T�t Efj bXt � eXtj2gdt < M(�t; t1)�2: (6.30)PROOF: Let us �x an arbitrary T > �t. From now on, unless di�erently spec-i�ed, all time instants are meant to belong to the time interval T := [�t; T ].We begin by de�ning the stochastic process ct := Xt� eXt. From (6.8, 6.9) onesees that such a process satis�es the following SDE:dct = [f(ct + eXt)� eEffg]dt+� 1�2 ePtctdt� 1� ePtdVt + �(Xt)dWt: (6.31)From such SDE it is clear that ct depends on the state of the system only viathe last term. Then let us consider an approximation of the process ct whichdoes not depend on the state Xt. De�ne the process 
t for t � �t as the solutionof the following SDE:d
t = [f(
t + eXt)� eEffg]dt� 1�2 ePt
tdt� 1� ePtdVt +QtdWt;
�t � N (0; eP�t) (6.32)where we replaced �(Xt) with the quantity Qt := qeEf�2g � �, which we canassume well de�ned (see assumption (B1)), provided that � is small enough.Now we consider the di�erence between ct and its approximation 
t. De�nest := (ct � 
t) 1T (t); t � 0;where 1T is the indicator function of the set T . Now we de�ne an approx-imation of the process fXt; t 2 T g. Since Xt = eXt + ct, we de�ne itsapproximation �t based on the approximation of ct via 
t:�t := eXt + 
t:Notice that ��tjY�t � N ( eX�t; eP�t). From the SDE of eXt, 
t and from the de�nitionof st it follows easily thatd�t = [ 1�2 ePtst + f(�t)] dt+Qt dWt: (6.33)



100 Chapter 6. Small Observation NoiseThe observation process y can be written asdYt = (st + �t) dt+ � dVt: (6.34)At this point, we consider the system with state equation (6.33) and observa-tions (6.34). We plan to use Girsanov's theorem to de�ne a new probabilitymeasure under which the SDE for � becomes linear and the st term in equation(6.34) vanishes. Consider the following SDE, expressing (6.33,6.34) in vectorform: d" �tYt # = " 1�2 ePtst + f(�t)�t + st # dt+ " Qt 00 � # d" WtVt # :De�ne t := " Qt 00 � #�1  " at�t + bt�t #� " 1�2 ePtst + f(�t)�t + st #!where at and bt are two predictable processes (in particular they need to beadapted: at and bt are Yt{measurable for all t � 0) which will be introducedlater. Let us denote by �t the �rst component of  t, i.e.�t := 1Qt [at�t + bt � f(�t)� ePt�2 st]so that  t = " �t�st=� # :De�ne the new probability measure P0 on (
;F) according to the followingformula: �t := expfZ t�t  Ts d" WsVs #� 12 Z t�t j sj2dsg;P0(A) := ZA �T (!) P (d!); A 2 F : (6.35)The new probability measure P0 is well de�ned ifEfexp[ 12 Z T�t j sj2ds]g < +1: (6.36)We shall prove later that this condition is satis�ed. Girsanov's theorem statesthat under P0 the stochastic process" W 0tV 0t # := " WtVt #� Z t�t  sds ; t 2 T



6.8. GPF versus optimal �lter 101is a standard Brownian motion. Moreover, in (
;F ; P0) the process [�t Yt]Tsatis�es the following SDE:d" �tYt # = " at�t + bt�t # dt + " Qt 00 � # d" W 0tV 0t # : (6.37)Now, consider this last system as a state process �t with observations Yt.The system is linear and at time �t it has a Gaussian initial condition. As aconsequence, the optimal �lter is described by a Gaussian density. Now, if weproject such �lter onto the tangent space of a manifold of Gaussian densities(cf. Chapter 4), the �lter does not change. This implies that for this systemthe GPF is equal to the optimal �lter. Then the GPF yields exactly the twoquantities b�0t := E0f�tjYtg; P 0t := E0f(�t � b�0t )2jYtg, where E0 denotesexpectation w.r.t. the probability measure P0. On the other hand, let usderive the equations of the GPF for the system (6.37) above. This can be donevia the assumed{density principle (see Chapter 5 and Section 6.2). We obtaindb�0t = [atb�0t + bt � 1�2P 0t b�0t ] dt+ 1�2P 0t � dYtdP 0t = [2E0f(at�t + bt)(�t � b�0t )jYtg+Q2t � 1�2 (P 0t )2] dt:Now we choose at and bt in such a way that by substituting b�0t = eXt andP 0 = ePt in these last equations they become equations (6.9, 6.10). This canbe done by choosing at := 2 eEff(x) (x � eXt)g+ �2 ePt ;bt := eEffg � at eXt:Then, from uniqueness of the solution,b�0t = eXt; P 0t = ePt: (6.38)Now compute by Itô's formulad�t = �t �t dWt � �t st� dVt: (6.39)Let us consider the �ltering problem with state equation (6.39) and observationprocess Yt satisfying equation (6.8) (remember that both � and s depend onX). We compute the optimal �lter for this system via formula (8.10) page 299of [45]. There results the following �lter:db�t = 1� [��t(�t st) + �t(Xt�t) � bXtb�t] d�t;



102 Chapter 6. Small Observation Noised�t = 1� [dYt � bXtdt];��t = Y�t � Z �t0 bXsds: (6.40)Kallianpur-Striebel formula and (6.38) yield�t(Xt�t) = E0fst + �tjYtg b�t = (bs0t + b�0t ) b�t= (�t(st�t)b�t + eXt)b�t = �t(st �t) + b�t eXt:Substitution of this last result in (6.40) yields the following SDEdb�t = 1� b�t( eXt � bXt)d�t;whose solution at time T isb�T = expf 1� Z T�t ( eXs � bXs)d�s � 12�2 Z T�t j eXs � bXsj2dsg: (6.41)Jensen's inequality gives � log b�T � �Eflog �T jYT g, from which, taking ex-pectations,�Eflog b�T g � �EfEflog �T jYT gg which reads (remembering (6.35), (6.41)and the fact that expectations of Itô integrals vanish)12�2 Z T�t Efj eXu � bXuj2gdu � 12 Z T�t Ef�2ugdu+ 12�2 Z T�t Efs2ugduwhich impliesZ T�t Efj eXu � bXuj2gdu � �2(Z T�t Ef�2ugdu+ 1�2 Z T�t Efs2ugdu): (6.42)Now we continue the proof with the two following facts a) and b):a) The second integral in the above inequality satis�es the following estimate:Z T�t Efs2ugdu � L2(�t; T )�2; (6.43)where L2(�t; T ) is a positive real constant.We begin the proof of this estimate by showing thatEfs2�tg � C3�;



6.8. GPF versus optimal �lter 103where C3 := C2(B; k) + L1(b; B; k). This is immediate fromEfs2�tg = Ef(c�t � 
�t)2g � 2Efc2�tg+ 2Ef
2�t g � 2(C2(B; k) + L1(b; B; k))�;where the last two inequalities follow from the fact that 
�t � N (0; eP�t), fromLemma 6.4.1 and from Theorem 6.5.1. Consider then the following SDE forfst; t 2 T g,d st = d ct � d 
t == [f(st + �t)� f(�t)] dt� 1�2 ePt st dt+ [�(Xt)�Qt] dWt:By Itô's formulad s2t = 2st [f(st + �t)� f(�t)� 1�2 ePt st] dt+ [�(Xt)�Qt]2 dt+ 2st [�(Xt)�Qt] dWt: (6.44)Lipschitz assumptions on f yield jf(st+�t)� f(�t)j � kjstj, and by de�nitionof Qt we see that [�(Xt) � Qt]2 � (j�(Xt)j + jQtj)2 � (pB + B)2, where weused the uniform boundedness of �2. By substituting these last inequalitiesin (6.44), using Lemma (6.4.1) for ePt and taking expectations we obtain thefollowing di�erential inequality, which holds also for t < �t:ddt Efs2tg � 2 (k � 1�2C2) Efs2tg+ (pB +B)2: (6.45)By using usual estimates for di�erential inequalities (see for example the �nalpart of the proof of Theorem (6.5.1)), we can easily conclude that there existsa positive real number ~� < �� small enough and a positive constant C4 such thatEfs2tg < C4�2 (6.46)for all � < ~� and t 2 T . If necessary, one can increase �t to ensure (6.46), andthe proof still holds. Integration of this last inequality yields (6.43).b) The �rst integral in the r.h.s. of inequality (6.42) behaves nicely withrespect to �, in the sense that it can be bounded by a constant independent of�. In order to prove this, notice that�t � 1Qt (j eEffg � f(�t)j+ 1�2 ePtjstj (6.47)+ j2 eEff(Xt)(Xt � eXt)g+ �j2 ePt j�t � eXtj ):



104 Chapter 6. Small Observation NoiseNow observe that the following relations hold:eEff(X)(X � eXt)g � k ePt(see proof of Lemma (6.4.1));j eEffg � f(�t)j � k (j eXt � �tj+q2 ePt=�) = k (j
tj+q2 ePt=�)(analogous to proof of Theorem (6.5.1));j�t � eXtj � j�t � Xtj+ jXt � eXtj = jstj+ jXt � eXtj;and, �nally, 1=Qt � 1=pb� �(by de�nition of Qt and bounds for �2).By substituting such relations in (6.47) and using Lemma (6.4.1) again, weobtain �t � 1pb��fk (j
tj+p2 C2�=�)+ 1�C2jstj+ 1 + 2kC22C1 (jstj+ jXt � eXtj)g:By regrouping terms, assuming � � ~� and observing that in general(a+ b+ c+ d)2 � 4(a2 + b2 + c2 + d2) for all a; b; c; d 2 R, we obtain�2t � 8(b� ~�)fk2
2t + 2C2� k2~�+ (C2� + 1 + 2kC22C1 )2s2t+(1 + 2kC22C1 )2(Xt � eXt)2g: (6.48)Now we can take expectations on both sides of the above inequality. Considerthen the four terms in the right hand side. The second one does not depend on�, so that we do not need to consider it. The third one has a coe�cient whichis partly divided by �2; however, since this coe�cient is multiplied by Efs2tg,the relation (6.46) ensures that such central term behaves nicely w.r.t. small�. For the �rst term, the � depending part is Ef
2t g. Observe that for t 2 Tand � < ~� we haveEf
2t g = Ef(ct � st)2g � 2 Efc2tg+ 2 Efs2tg � 2�L1 + 2C4�2;where we used again (6.46) and Theorem (6.5.1). This last inequality showsthat the �rst term in the right hand side of (6.48) behaves nicely for small �.Finally, the last term behaves nicely as a consequence of Theorem (6.5.1).



6.8. GPF versus optimal �lter 105Then we completed the proof of b).By using facts a) and b) we obtain the result (6.30) stated in the theoremvia (6.42).There remains only to prove that condition (6.36) is satis�ed under assump-tions (A), (B1) and (C1).We begin by noticing thatEfexp[ 12 Z T�t j tj2dt]g � 1T � �t Z T�t Efexp[T � �t2 j tj2]gdt(this can be proved by using Jensen inequality when we look at functions of timeas if they were random variables on the probability space (T ;BT ; �T =(T � �t)),where BT is the Borel �eld of T and �T is the Lebesgue measure on T ; inthis picture the integral w.r.t time is just the expectation). Hence we shall tryto �nd bounds for the integral in the r.h.s. of this last inequality. From thede�nition of  , from the mean value theorem for integrals and from Schwartzinequality we deduce1T � �t Z T�t Efexp[T � �t2 j tj2]gdt � Efexp[(T � �t)�2� ]g Efexp[(T � �t)s2��2 ]g;where � is a suitable time instant in T . We shall prove thatEfexp[(T � �t)�2t ]g <1; Efexp[(T � �t)s2t�2 ]g <1 (6.49)for all t 2 T . Now we use (6.48), which actually holds independently of (6.36),so that no circularity is present in the proof. Set for simplicityC5 := 2C2� k2~�; C6 := 1 + 2kC22C1 ;C�7 := (C2� + C6)2; C8 := 8(b� ~�) (T � �t):The superscript in C�7 is used to indicate explicitly that this constant dependson �. The �rst condition in (6.49) readsEfexp[C8(k2
2t + C5 + C�7s2t + C26 (Xt � eXt)2)]g <1for all t of T . Iterated applications of Schwartz's inequality yield the followingset of su�cient conditions for the above inequality to hold:Efexp[4C8k2
2t ]g <1; Efexp[4C8C�7s2t ]g <1; Efexp[2C8C26c2t ]g <1:



106 Chapter 6. Small Observation NoiseBy a last application of Schwartz's inequality and noticing that s2t � 2(c2t +
2t )we obtain the following set of su�cient conditions for (6.49):Efexp[��c2t ]g <1; Efexp[��
2t ]g <1; (6.50)�� := max(4C8k2; 2C8C26 ; 16C8C�7);for all t 2 T .Now we prove that conditions (6.50) are satis�ed. In order to do so, we canreason as in Theorem (4.7) page 137 of [45]. Both the equations (6.31) for ctand (6.32) for 
t satisfy conditions (4.139) of page 138 of [45]: Boundedness ofthe di�usion coe�cients is immediate, whereas the drift parts satisfy(f(ct)� eEffg)2 � 2k(r2C2�� + c2t );and a similar inequality holds for 
t (these are proven analogously to the proofof Theorem 6.5.1). The proof of the theorem is �nally concluded. 2



Chapter 7Stochastic Di�erentialEquations withFinite{DimensionalDensityHatred is never stilled through hatred in this world; by non-hatredalone is hatred stilled. This is the Eternal LawDhammapada I.57.1 IntroductionIn the present chapter we consider the following problem: Is it possible tomaintain the dimension of the density{evolution of a di�usion process stilled?This chapter can be interesting also to readers who are not too interestedin nonlinear �ltering. It treats problems related to stochastic di�erential equa-tions (SDE's) with densities evolving in �nite{dimensional exponential fami-lies. We consider also the possibility of projecting the density of the solutionof a SDE onto a �nite{dimensional exponential manifold of densities. Readersinterested in �ltering will �nd a way to construct nonlinear{�nite{dimensional{exponential optimal �lters in the last section of the chapter.We begin the chapter by solving a �rst problem: Given a di�usion coe�cientand an exponential family, we characterize the SDE's with the given di�usioncoe�cient whose densities evolve regularly in the given exponential family. This107



108Chapter 7. Stochastic Di�erential Equations with Finite{Dimensional Densityfact leads to the following result: Given an arbitrary di�usion coe�cient andan arbitrary exponential family, one can always de�ne a drift such that thedensity of the resulting di�usion process evolves in the prescribed exponentialmanifold. In particular, given arbitrary nonlinear di�usion coe�cients, onecan de�ne drifts in such a way that the resulting densities evolve in a Gaussianmanifold. This gives rise to a wide class of nonlinear di�usion processes withGaussian density.We then turn to the problem of projecting the Fokker{Planck equation ontoan exponential family. Here we shall allow once again a little redundancy so asto keep the chapter as self contained as possible. In particular, notice that ashort and informal account on the projection in Fisher metric of the density ofa di�usion process onto a �nite{dimensional manifold of densities was alreadygiven in Chapter 4, Section 4.2. Here we expand that introduction specializingit to exponential families. We saw in Chapter 2 that the solution of the �lteringproblem is a Stochastic PDE which can be seen as a generalization of theFokker{Planck equation (FPE) expressing the density of a di�usion process.This equation is called the Kushner{Stratonovich equation (KSE). In Chapter4, Section 4.4, the Fisher metric was used to project the Kushner{Stratonovichequation onto an exponential manifold of probability densities. This methodcan be used also for the simpler FPE. In the present chapter we consider theprojection in Fisher metric of the density evolution of a di�usion process ontoan exponential manifold. Such projection is obtained via the projected FPE.We examine the projected evolution and interpret it as the density evolutionof a di�erent di�usion process via the previous result.We continue by presenting some examples which show how this theory canbe used to construct nonlinear SDE's with prescribed (possibly stationary)exponential densities.An application of the results to mathematical �nance is brie
y discussed.Moreover we show that for some particular models convergence of the orig-inal density towards an invariant distribution implies existence of a �nite{dimensional exponential family for which the projected density converges tothe same distribution.We conclude the chapter with an application to nonlinear �ltering. We usethe results derived for di�usion processes to derive existence results for �lteringproblems. Problems concerning �nite dimensionality of �lters for nonlinearsystems have been studied in the past by several authors. In some of these worksit was stressed the importance of exponential families. This holds especiallyfor discrete{time systems: See for example Sawitzki (1981) [56]. Runggaldierand Spizzichino (1997) studied �nite dimensionality of �lters from a Bayesian



7.2. Stochastic di�erential equations and exponential families 109point of view in [55]. The e�ects of a non-Gaussian initial condition have beenstudied by Makowski (1986) [46], and by Sowers and Makowski (1992) [58].The reader interested in �nite dimensionality of �lters for nonlinear systems indiscrete time can also check [20]. The reference [5] is also of possible interest.Some examples of �nite dimensional �lters for nonlinear systems are given byFrost (1971) in [26].Problems on �nite dimensionality of nonlinear �lters in continuous timehave been studied in the past with Lie{algebraic criterions, see for exampleHazewinkel, Marcus and Sussmann (1983) [30], Chaleyat{Maurel and Michel(1984) [18], Ocone and Pardoux (1989) [50], L�evine (1991) [44]. In the presentsection we treat nonlinear �ltering problems with discrete time observations, asin Chapter 4 Section 4.5.2. As usual, in order to keep the chapter as self con-tained as possible, we shall present some facts already given in Chapter 4. Ourresult shows that given a prescribed (possibly nonlinear) di�usion coe�cientfor the state equation, a prescribed (possibly nonlinear) observation functionand a partially prescribed exponential family, one can de�ne a drift for thestate equation such that the resulting nonlinear �ltering problem has a solu-tion which is �nite dimensional and which stays on the prescribed exponentialfamily.The material presented in this chapter has partly appeared in Brigo [9]. Arelated treatment with a deeper geometrical approach can be found in Brigoand Pistone [17]. The application to �ltering with continuous time observationsis under development.7.2 Stochastic di�erential equations and expo-nential familiesIn this section we consider the following problem: Given a scalar di�usion co-e�cient and an exponential manifold of densities, �nd drifts such that theresulting scalar stochastic di�erential equations (SDE's) have densities evolv-ing in the prescribed exponential family. This problem has a straightforwardsolution.Let us �rst establish the appropriate framework. On the complete probabilityspace (
;F ; P ) let us consider a stochastic process fXt; t � 0g of di�usion type.Let the dynamic equation describing X be of the following formdXt = ft(Xt)dt+ �t(Xt)dWt; X0;where fWt; t � 0g is a standard Brownian motion independent of the initialcondition X0. The equation above is an Itô stochastic di�erential equation. In



110Chapter 7. Stochastic Di�erential Equations with Finite{Dimensional Densitythe following derivation we treat the scalar case. Consider the following set ofassumptions.(O) The initial state X0 has a density p0 w.r.t. the Lebesgue measure on R,and has �nite moments of any order. Moreover, p0(x) > 0 for all x 2 R.(A) We make the following assumptions on the coe�cients ft, at := �2t :f 2 C1;0, a 2 C2;0 which means that f is once continuously di�erentiablewrt x and continuous wrt t and a is twice continuously di�erentiable wrtx and continuous wrt t. We assume also local Lipschitz continuity in xuniformly in t : for all R > 0, there exists KR > 0 such thatjft(x)� ft(x0)j � KR jx� x0j;kat(x)� at(x0)k � KR jx� x0j ;for all t � 0, and for all x; x0 2 BR, the ball of radius R.(B) Non{explosion : there exists K > 0 such that2xft(x) + at(x) � K (1 + jxj2);for all t � 0, and for all x 2 R.Under assumptions (O), (A) and (B), there exists a unique solution fXt ; t � 0gto the state equation, see Stroock and Varadhan (1979) [59], Theorem 10.2.1with �(x; t) = x2.Under additional assumptions on the coe�cients the density of Xt is ab-solutely continuous with respect to the Lebesgue measure, and its densitypt(x)dx := P [Xt 2 dx] satis�es the Fokker{Planck equation:@pt@t = L�t pt;Lt = ft @@x + 12at @2@x2 ;L�t p = � @@x(ftp) + 12 @2@x2 (atp):Assumptions under which this happens are related to boundedness of the co-e�cients f , a and of their partial derivatives plus uniform ellipticity of at, see[59] Theorem 9.1.9 or [25] Theorem 6.4.7. In order to operate in a functional{space framework, we rewrite the Fokker{Planck equation as an equation in L2.In order to do so, we need to require pt(x) > 0 for all x; t. This can be ob-tained by the maximum principle applied to the Fokker-Planck equation in the



7.2. Stochastic di�erential equations and exponential families 111case of elliptic coe�cient a and bounded coe�cients described above. RewriteFokker{Planck equation for the square root of pt:@ppt@t = L�t pt2ppt : (7.1)Next, select a �nite{dimensional manifold of square roots of exponential den-sities to approximate ppt. The de�nition of exponential family is given inChapter 3, Section 3.3. See also Remark 3.3.2. Remember that in our case n,i.e. the dimension of the state space, amounts to one. In this chapter we shalldenote by EM(c) the exponential family whose exponent functions are givenby the function c : R ! Rm. We shall assume the following throughout thechapter:(C) the exponent functions c1; :::; cm have at most polynomial growth and aretwice continuously di�erentiable.Under this assumption we can always add terms in the exponent to make thefamily integrable when it is not integrable, obtaining the exponential familyEM(c), as in Remark 3.3.2. Consider the setEM(c)1=2 = fpp(�; �); � 2 �g � L2of square roots of densities of EM(c). The map pp(�; �) 7! � can be seen asa coordinate system that gives a manifold structure to EM(c)1=2 (see Section3.1 of Chapter 3 for the details). Now consider a generic curve t 7! pp(�; �t)on L2. We consider the following problem.Problem 7.2.1 Let be given a di�usion coe�cient at(�) := �2t (�); t � 0, satis-fying assumptions (A) and (B) when f = 0. Let be given an exponential familyEM(c) satisfying (C). Characterize the SDE's whose initial condition X0 sat-is�es (O), and whose densities evolve regularly in the given family EM(c).Remark 7.2.2 Problem 7.2.1 is an extension of a problem of probability andof stochastic processes:(i) Which nonlinear functions of Gaussian random variables have a Gaussiandistribution?(ii) Which nonlinear functions of Gaussian processes are Gaussian processes?These problems are motivated by the �ltering problem.The solution of this problem is given by the following



112Chapter 7. Stochastic Di�erential Equations with Finite{Dimensional DensityTheorem 7.2.3 (Solution of Problem 7.2.1) Assumptions of Problem 7.2.1in force. Consider the stochastic di�erential equationsdYt = ut(Yt)dt+ �t(Yt)dWt; Y0 = X0; (7.2)ut(x) := 12 @at@x (x) + 12at(x)�Tt @c@x (x) +� _�Tt Z x�1(c(y)�E�tc) exp[�Tt (c(y)� c(x))]dy;with t 7! �t describing C1{curves in the parameter space �.Then the SDE's (7.2) (considered for all possible regular curves t 7! �t)solve Problem 7.2.1. Hence the density of Yt evolves in the prescribed family ofexponential densities EM(c).Proof : Consider an arbitrary (regular) L2{curve t 7! pp(�; �t) evolving inEM(c)1=2. De�ne a di�usiondYt = ut(Yt)dt+ �t(Yt)dWt; Y0 = X0; (7.3)with the given di�usion coe�cient a. We shall de�ne drifts u such that thedensity of Yt coincides with the given p(�; �t). Let Tt be the backward di�erentialoperator of Yt: Tt = ut @@x + 12at @2@x2 :Clearly, the density of Yt coincides with p(�; �t) ifT �p(�; �t) = @p(�; �t)@t ;for all t � 0, which we can rewrite (by the chain rule) asT �p(�; �t) = _�Tt [c(�)�E�tc] p(�; �t);for all t � 0. By simple calculations one can rewrite the above equation as thefollowing di�erential equation for u, where we do not expand the second partialderivative of atp(�; �):@ut@x + �Tt @c@xut = 12 p(�; �t) @2@x2 (atp(�; �t))� _�Tt [c(�)�E�tc] = Bt;�t(�):The solution is unique by standard theory of linear di�erential equations andis given by ut(x) := exp[��Tt c(x)] Z x�1 Bt;�t(y) exp[�Tt c(y)]dy;



7.2. Stochastic di�erential equations and exponential families 113as one can verify immediately by substitution. Straightforward calculationsyield ut(x) = 12 @at@x (x) + 12at(x)�Tt @c@x (x) + (7.4)� _�tT Z x�1(c(y)�E�tc) exp[�Tt (c(y)� c(x))]dy: 2Example 7.2.4 An arbitrage{theory interpretation of the solution of Prob-lem 7.2.1In this example we apply the result stated in Theorem 7.2.3 to mathemati-cal �nance. More precisely, we consider an application to arbitrage theory incontinuous time. Suppose we are given a price process fBt; t 2 [0 T ]g for arisk{free asset and a price process fSt; t 2 [0 T ]g for a stock, such asdBt = rtBtdt; B0;dSt = St ft(St)dt+ St �t(St)dWt; S0;and a simple contingent claim Z = �(ST ). It is known that the pricing equation,i.e. the PDE which determines the price �t(Z) = F (t; St) at any time t of thederivative related to Z, is given by@tF + rt s @sF + 12s2�2t @2ssF � rt F = 0; F (T; �) = � ;and does not depend on ft (short term rate of return) but only on �t (volatility)(see for example Du�e (1988) [21] for the case of constant coe�cients whosegeneralization is straightforward, or Karatzas (1989) [35]). ). This means thatthe pricing of Z will be based only on the di�usion coe�cient (volatility) �t sothat we can replace ft as we wish and the pricing of the derivative remains thesame. According to Theorem 7.2.3, we can choose ft = ut such that the stockprice process S has a density evolving in an exponential family EM(c) selecteda priori (for example Gaussian). This implies that, as for the pricing aspect,it is not restrictive to assume that a stock-price has an exponential densityassigned a priori. The possible implications of this result will be examined infuture research work.Problem 7.2.1 admits a somehow dual problem that one might �nd interest-ing.Problem 7.2.5 Let be given a �nite dimensional class of SDE's. Character-ize those families of exponential densities which satisfy the following property:



114Chapter 7. Stochastic Di�erential Equations with Finite{Dimensional DensityThere exists a SDE in the given class whose density evolves in the selectedexponential family.If the class of SDE's has the property that all SDE's share the same di�usioncoe�cient, then the exponential families EM(c) are part of the solution ofProblem 7.2.5, but there might be other families solving the problem. Thismatter will be investigated in future research work.7.3 Projected density{evolution of a di�usionprocessAt this point we introduce the geometric structure which permits to projectthe Fokker{Planck equation onto a �nite{dimensional manifold of densities.As in the previous section, we rewrite the Fokker{Planck equation as anequation in L2. In order to do so, we require again pt(x) > 0 for all x; t.This can be obtained by the maximum principle applied to the Fokker-Planckequation in the case of elliptic coe�cient a and bounded coe�cients described inthe preceding section. The exponential family EM(c) is also chosen accordingto the framework of the previous section.Now consider a generic curve t 7! pp(�; �t) on L2. Its tangent vector in �tis given according to the chain rule:ddtpp(�; �t) = mXi=1 @pp(�; �t)@�i _�ti ; (7.5)from which we see that tangent vectors in �t to all curves lie in the linear(tangent) space spanf@pp(�; �t)@�1 ; : : : ; @pp(�; �t)@�m g:Recall the following quantityg(�)ij := 4h@pp(�; �)@�i ; @pp(�; �)@�j i; i; j = 1; : : : ;m;where h�; �i is the inner product of L2. By straightforward computations,gij(�) = E�f@ log p(�; �)@�i @ log p(�; �)@�j g ; i; j = 1 : : :m;where E�f�g := R �(x)p(x; �)dx, so that g(�) is the Fisher information intro-duced in Chapter 3.1.



7.3. Projected density{evolution of a di�usion process 115Now recall the orthogonal projection de�ned for all � 2 � by�� : L2 �! spanf@pp(�; �t)@�1 ; : : : ; @pp(�; �t)@�m g (7.6)��[v] := mXi=1 [ mXj=1 4gij(�) hv; @pp(�; �)@�j i] @pp(�; �)@�i :Now we have all the ingredients needed to state the followingTheorem 7.3.1 (Projected density{evolution of an Itô di�usion.) Con-sider the assumption(D) E�f�2t;�g <1 8� 2 �; 8t � 0;�t;� := L�t p(�; �)p(�; �) = �ft @@x (�T c)� @ft@x ++ 12 [ at @2@x2 (�T c) + at ( @@x (�T c))2 ++ 2 @at@x @@x (�T c) + @2at@x2 ] :Assume assumptions (O), (A), (B), (C) and (D) on the inital value X0and coe�cients f; a of the Itô di�usion X and on the exponent functions c ofthe exponential family EM(c) are satis�ed. Assume p0(�) = p(�; �0) 2 EM(c).Then the projection of the Fokker{Planck equation describing the local evolutionof pt = pXt onto EM(c)1=2 reads, in L2 local coordinates:@@tpp(�; �t) = E�tfLt cgT g�1(�t) [c(�)�E�tc] pp(�; �t)2 ; pp(�; �0) =pp0(�)and the di�erential equation describing the local evolution of the parameters forthe projected density{evolution is_�t = g�1(�t) E�tfLt cg; �0:Proof : We project the FPE equation (7.1) for ppt via the projections (7.6),and we obtain the following (m{dimensional) di�erential equation on the man-ifold EM(c) : @@tpp(�; �t) = ��t [ L�t p(�; �t)2pp(�; �t) ]: (7.7)Writing the projection map explicitly and comparing with (7.5) yields the fol-lowing di�erential equation for the parameters:_�t = g�1(�t) Z L�t p(x; �t)p(x; �t) @p(x; �t)@� dx; (7.8)



116Chapter 7. Stochastic Di�erential Equations with Finite{Dimensional Densitywhere integrals of vector functions are meant to be applied to their components.Notice that in deriving this last equation we did not take in account thespeci�c structure of densities in EM(c). The reasoning given so far holds (butonly formally) for any �nite{dimensional family of densities, provided densitiesare regular enough. If we ask for this last equation to hold not only in a formalsense, we need to ensure L�t p(�; �t)2pp(�; �t) 2 L2; (7.9)so that the projection de�ned in L2 can act and transform FPE (7.1) on L2into equation (7.7) on the manifold EM(c)1=2. In the following we considercondition (7.9) when dealing with an exponential family EM(c).In order to proceed, we keep in mind the results about exponential familiesgiven in Lemma 3.3.3. Let us specialize equations (7.7) and (7.8) to EM(c) viaLemma 3.3.3 and let us make sure that they hold not only formally. By usingalso duality Lt �L�t we obtain@@tpp(�; �t) = Pt;�tpp(�; �t)2 ; (7.10)Pt;�t := E�tfLt cgT g�1(�t) [c(�)�E�tc];and _�t = g�1(�t) E�tfLt cg: (7.11)Equation (7.10) (and consequently equation (7.11)) is well de�ned as projectionof an L2 equation and admits locally a unique solution if condition (7.9) issatis�ed. Condition (7.9) can be rewritten asE�f�2t;�g <1; 8� 2 �; 8t � 0: 2We conclude this section with the following remarks.Remark 7.3.2 An example of su�cient conditions under which (D) holds isthe following. Assume(D1) The functions ft; @xft; at; @xat; @2xxat; @xc; @2xxc have at most polyno-mial growth.Under this assumption one can add some new functions c in the exponent andobtain a family satisfying (D), in the spirit of Remark 3.3.2Remark 7.3.3 Existence of a local solution of the projected equation (7.10)does not require existence of the solution of the original FPE.



7.4. Interpretation of the projected equation 117This remark points out that the projected equation may have a solution evenwhen the original FPE has no solution. Actually, consider assumptions (O),(A), (B), (C) and (D1). They ensure existence of the solution of the projectedequation, but they do not ensure existence of a solution for the original FPE.For example, ft can be unbounded, or at can be not uniformly elliptic, etc. Thismeans that in some cases our projected density p(�; �t) represents an absolutelycontinuous { �nite{dimensional approximation of the marginal law of Xt whichis not absolutely continuous.7.4 Interpretation of the projected equationConsider the projected density evolution p(�; �t), expressing the projection inFisher metric of the density evolution of the one{dimensional di�usion X ontothe exponential manifold EM(c). Consider the following problem.Problem 7.4.1 Let be given a di�usion coe�cient at(�) := �2t (�); t � 0 anda drift ft(�); t � 0 satisfying assumptions (A) and (B). Consider the SDEdXt = ft(Xt)dt+ �t(Xt)dWt; X0;where X0 satis�es (O). Let be given an exponential family EM(c) satisfying(C). Characterize the SDE's whose initial condition is X0, whose di�usioncoe�cient is a, and whose density evolutions coincide with the projected densityevolution of X onto EM(c) given by Theorem 7.3.1.This is just a particular case of Problem 7.2.1, where the curve t 7! �t isnot arbitrarily chosen but comes from a projection. We can then translateTheorem 7.2.3 for this problem and write the followingTheorem 7.4.2 (Interpretation of the projected density evolution.)Assume assumptions (O), (A), (B), (C) and (D) on the initial value X0 andthe coe�cients f; a of the Itô di�usion X and on the exponent functions c of theexponential family EM(c) are satis�ed. Assume p0(�) = p(�; �0) 2 EM(c). Letp(�; �t) be the projected density evolution, according to Theorem 7.3.1. De�nedYt = u�t (Yt)dt+ �t(Yt)dWt; Y0 = X0;u�t (x) := 12 @at@x (x) + 12at(x)�Tt @c@x (x) (7.12)�E�tfLtcgT g�1(�t) Z x�1(c(y)�E�tc) exp[�Tt (c(y)� c(x))]dy:



118Chapter 7. Stochastic Di�erential Equations with Finite{Dimensional DensityThen Y is the Itô di�usion whose density evolves according to the projectedevolution p(�; �t) of Xt onto EM(c).Proof: Combine Theorem 7.2.3 and Theorem 7.3.1. 2Note that the di�erential equation for u and its solution can be written interms of the projection as@ut@x + �Tt @c@xut = 1pp(�; �t)f 12pp(�; �t) @2@x2 (atp(�; �t))���t [ 12pp(�; �t) @2@x2 (atp(�; �t))]+��t [ 1pp(�; �t) @(ftp(�; �t))@x ]g;and u�t (x) = 1p(�; �t) Z x�1f 12pp(y; �t) @2@x2 (at(y)p(y; �t))���t [ 12pp(�; �t) @2@x2 (at(�)p(�; �t))](y)+��t [ 1pp(�; �t) @(ft(�)p(�; �t))@x ](y) gpp(y; �t) dyNote that the integral appearing in equation (7.12) is well de�ned under as-sumption (D) and under the assumption that densities of EM(c) are integrable.7.5 A simple convergence resultWe shall show that in the particular case where we select a constant di�usioncoe�cient, convergence of the density of the original process X implies exis-tence of at least an exponential family such that the projected density p(�; �)converges towards the same stationary distribution, no matter how we choose�0. Assume then �t(x) = 1 for all x; t. We have the followingTheorem 7.5.1 (Global stability of the projected evolution) Assumethat the di�usion processdXt = f(Xt)dt+ dWt; X0;satis�es assumption (O), (A), (B) with f having at most polynomial growth andnonzero in a set with positive Lebesgue measure. Let F be a primitive of f and



7.5. A simple convergence result 119assume that the conditions under which �p / exp[2F ] is the unique stationarydensity of X are satis�ed. AssumeZ f(x)4 exp(2F (x))dx <1; Z (@xf)2(x) exp(2F (x))dx <1:Then :(i) There exists an exponential family EM(c) such that �p 2 EM(c), and(ii) the projected density p(�; �t) for EM(c) given by Theorem 7.3.1 convergestowards �p for all possible initial �0 2 �.Proof : Set �c(x) := 2 Z x0 f(z)dz =: 2F (x);and consider the exponential family EM(�c). It is easy to verify that underour assumptions �c satis�es assumptions (C) and (D). It is a classical result onstationary distributions for di�usion processes that �p / exp[1�c] (see for exampleKontorovich and Lyandres (1995) [39]).It is also known that under our assumptions this stationary density is unique.The fact that exp[�c] is a stationary distribution can be veri�ed immediately:Straightforward computations yield L� exp[�c] = 0. Consider now the projecteddensity evolution p(�; �t) onto EM(�c). Notice that �p = p(�; ��); �� = 1. TheODE describing the evolution of �t is, by Theorem 7.3.1,_�t = g�1(�t) E�t [Lt �c]: (7.13)Notice thatE��[Lt �c] = Z (Lt�c)(x)p(x; ��)dx / Z �c(x)L�t exp(�c(x))dx = 0;so that �� is an equilibrium point for the equation of �t. Now we prove that thisequilibrium is unique and stable. From Lt�c = 2f2t +@xft, by a quick integrationby parts we obtainE�[Lt �c] = 2[�� � �] Z ft(z)2p(z; �)dz;so that, by examining the right{hand side of (7.13) one sees that (since f isnonzero in a set with positive Lebesgue measure) �t strictly increases for �t < ��and strictly decreases for �t > ��. Moreover, the equilibrium point �� is clearlyunique since the right{hand side of (7.13) is nonzero for any � di�erent from��. Then �� is the unique globally stable equilibrium point and the proof iscomplete. 2



120Chapter 7. Stochastic Di�erential Equations with Finite{Dimensional Density7.6 ExamplesIn this section we consider some simple applications of the above theory whichlead to nonlinear SDE's whose solutions have Gaussian densities. We shall alsoconsider cases where this Gaussian density is stationary.7.6.1 The case of a one dimensional zero-mean GaussianmanifoldConsider the one-dimensional exponential manifold EM(x2). Its densities aregiven by p(�; �) =r��� exp[�x2]; � < 0:These are Gaussian densities whose mean is zero and whose variance is �1=(2�).Take ft identically zero, and notice that Ltc = at. Moreover, the inverse of theFisher metric is, in this case, g�1(�) = 2�2. The projected density is describedby the solution of the ODE _�t = 2�2tE�tfatg:By applying the previously found formula (7.12) to this problem we obtainu?t (x) = 12 @at@x (x) + [at(x) �E�tat]x�t:Consider now the particular case of a monomial as di�usion coe�cient: �t(x) :=xk, k positive integer. This coe�cient does not satisfy assumptions on lineargrowth ensuring non{explosion. Yet, we proceed anyway and we shall see thatthe projected parameter reaches the forbidden value � = 0 in a �nite time.This is the same as saying that the varinace in the projected Gaussian density{evolution explodes in a �nite time.After simple computations, one �nds the following result: Consider the SDEdYt = ut(Yt)dt+ Y kt dWt;ut(y) = ky2k�1 + [y2k � (2k)!!(�2�t)k ] y �t;�t = (�1)k[�k�10 + (�1)k(2k)!!(k � 1)2�k+1t] 1k�1 ;t < 2k�1j�k�10 j(k � 1)(2k)!! ;Y0 � N (0;� 12�0 ); �0 < 0;



7.6. Examples 121where (2k)!! is the product of all integer odd numbers preceding 2k. Thisdi�usion has Gaussian densityYt � N (0;� 12�t ):7.6.2 The case of a one dimensional unit-variance Gaus-sian ManifoldConsider the one-dimensional exponential manifoldEM(x) given by the following densities:p(�; �) =r 12� exp[�x� 12x2 � 12�2]; � 2 R:These are Gaussian densities whose mean is � and whose variance is 1. Noticethat the term � 12x2 in the exponent de�nes a reference measure di�erent fromthe Lebesgue measure. No modi�cation is necessary for the projected Fokker{Planck equation. Notice that Ltx = ft. Moreover, the inverse of the Fishermetric is g�1(�) = 1 and does not depend on �. The projected density isdescribed by the solution of the ODE_�t = E�tfftg:By applying the previously found formula (7.12) with slight modi�cations dueto the �xed term � 12x2 in the exponent of the exponential family we obtain,after straightforward computations:u�t (x) := 12 @at@x (x) + 12at(x)[�t � x] +E�tfftg:Now, according to the choice of ft, one can obtain di�erent results.The case ft = 0. Then the projected equation becomes _�t = 0 and hence�t = �0 for all t � 0. The corresponding drift isu�t (x) := 12 @at@x (x) + 12at(x)[�0 � x]:The SDE dYt = u�t (Yt)dt+ �t(Yt)dWt Y0 � N (�0; 1);has stationary density Yt � N (�0; 1) for all possible choices of �t. Here themean in the Gaussian manifold remains constant.



122Chapter 7. Stochastic Di�erential Equations with Finite{Dimensional DensityThe case ft = k for all t � 0. Then the projected equation becomes _�t = kand hence �t = �0 + kt for all t � 0. The corresponding drift isu�t (x) := 12 @at@x (x) + 12at(x)[�0 + kt� x] + k:The SDE dYt = u�t (Yt)dt+ �t(Yt)dWt Y0 � N (�0; 1);has density Yt � N (�0+kt; 1) for all possible �t. Here the mean in the Gaussianmanifold evolves linearly in time.The case ft(x) = x for all t � 0 and x 2 R. Then the projected equationbecomes _�t = �t and hence �t = �0 exp(t) for all t � 0. The corresponding driftis u�t (x) := 12 @at@x (x) + 12at(x)[�0 exp(t)� x] + �0 exp(t):Then the SDEdYt = u�t (Yt)dt+ �t(Yt)dWt Y0 � N (�0; 1);has density Yt � N (�0 exp(t); 1) for all possible �t. Here the mean in theGaussian manifold evolves exponentially in time.7.6.3 SDEs with densities evolving in EM(x4)Consider the exponential family EM(x4). For this family, we havep(x; �) = � �1=4 exp(��x4); � > 0; � := 2�(1=4) :In this case  (�) = �(log �)=4� log �, E�[x4] = �1=(4�), and g(�) = 1=(4�2).Let us consider an arbitrary di�usion coe�cient a, and take a drift f de�nedad hoc according to ft(x) := �3at(x)2x � x55 ;such that E�fLtx4g = 4�2, which causes equation (7.11) to become _�t = 1. Asa consequence, �t = �0 + t and, according to Theorem 7.4.2, if we setu�t (x) := 12 @at(x)@x � 2a(x) (�0 + t) x3� exp[(�0 + t)x4] Z x�1(�y4 + 14(�0 + t) ) exp[�(�0 + t)y4]dy ;we obtain that the SDEdYt = u�t (Yt)dt+ �t(Yt)dWt; Y0 � � �1=40 exp(��0x4);has density Yt � � (�0 + t)1=4 exp[�(�0 + t)x4] for all possible �t.



7.7. Application to �ltering 1237.6.4 SDE's with prescribed di�usion coe�cient and withprescribed stationary exponential densityIn this section we focus on the following problem. Assume we are given a onedimensional family of exponential densities EM(c), where c is a suitable scalarfunction. Consider again the di�usion process X with drift ft and di�usioncoe�cient �t. Suppose we select a drift ft such thatLtc = ft @c@x + 12at @2c@x2 = 0 8t � 0:This happens if we take ft := �at @2c@x22 @c@x ;provided the denominator is non-zero almost everywhere. If this happens, ofcourse _�t = g�1(�t) E�tfLt cg = 0; 8t � 0;so that the projected density isp(�; �t) = p(�; �0) 8t � 0:The formula for u�t specializes tou�t (x) := 12 @at@x (x) + 12at(x)�0 @c@x (x):So we conclude the following: under suitable regularity and growth assumptionson the functions c and �t, the SDEdYt = 12 @at@x (Yt)dt+ 12at(Yt)�0 @c@x (Yt)dt+ �t(Yt)dWt;pY0(x) = exp[�0c(x)�  (�0)];has stationary densitypYt(x) = exp[�0c(x) �  (�0)]; 8t � 0for all possible �t.7.7 Application to �lteringIn this section we present an application to nonlinear �ltering. We shall considerthe �ltering problem with continuous time state and discrete time observations(see Chapter 4, Section 4.5.2). We shall consider an unobserved process X



124Chapter 7. Stochastic Di�erential Equations with Finite{Dimensional Densityand a related discrete time measurement process Z. The state and observationequations will be modeled according todXt = ft(Xt)dt+ �t(Xt) dWt;Zn = h(Xtn) + Vn:We shall assume X0, f and at = �2t to satisfy assumptions (O), (A) and (B).We shall also assume the following on the observation function h:(E) h and h2 are linearly independent. They satisfy assumption (C) andassumption (D) when chosen as c functions (after the possible additionof a new term in the spirit of remark 3.3.2 of Chapter 3).In this model only discrete{time observations are available, at time instants0 = t0 < t1 < � � � < tn < � � �, and fVn ; n � 0g is a standard Gaussian whitenoise sequence independent of fXt ; t � 0g.The nonlinear �ltering problem consists in �nding the conditional densitypn(x) of the state Xtn given the observations up to time tn, i.e. such thatP [Xtn 2 dx j Zn] = pn(x) dx, where Zn := �(Z0; � � � ; Zn). We de�ne also theprediction conditional density p�n (x) dx = P [Xtn 2 dx j Zn�1]. The sequencefpn ; n � 0g satis�es a recurrent equation, and the transition from pn�1 to pnis decomposed in two steps, as explained in [32], [47] :Prediction step Between time tn�1 and tn, we solve the Fokker{Planckequation @pnt@t = L�t pnt ; pntn�1 = pn�1 :The solution at �nal time tn de�nes the prediction conditional density p�n = pntn .Correction step At time tn, the observation Zn is combined with the pre-diction conditional density p�n via the Bayes rulepn(x) / 	n(x) p�n (x) ; (7.14)modulo a normalizing constant, and 	n(x) denotes the likelihood function forthe estimation of Xtn based on the observation Zn only, i.e.	n(x) := exp� � 12 jZn � h(x)j2 	 : (7.15)Select an exponential family EM(c�) where c� satis�es:



7.7. Application to �ltering 125(F) c�1(x) = h(x);c�2(x) = h2(x);and the remaining components of c� are chosen arbitrarily in such away that c� satis�es assumptions (C) and (D) (c�1 and c�2 satisfy theassumptions because of assumption (E)).If we use the exponential family EM(c�) de�ned above, then we obtain theprojection �lter (see Chapter 4) density p(�; �n), and the transition from �n�1to �n is also decomposed in two steps :Prediction step Between time tn�1 and tn, we solve the ODE coming fromthe projection of the Fokker{Planck equation:_�nt = g(�nt )�1 E�nt fLt c�g ; �ntn�1 = �n�1 :The solution at �nal time tn de�nes the prediction parameters ��n = �ntn .Correction step Substituting the approximation p(�; ��n ) into formula (7.14),we observe that the resulting density does not leave the exponential familyEM(c�). Indeed, it follows from (7.15) that	n(x) = exp� � 12 h(x)2 + h(x)Zn � 12 Z2n 	= exp� � 12c�2(x) + Zn c�1(x) � 12 Z2n 	 ;and the parameters are updated according to the formula�n = ��n � 26666664 �Zn120...0
37777775 ;which is exact.So far we described the projection �lter for a given system. Now we planto construct a �ltering problem with the same di�usion coe�cient � in thestate, with the same observation function h, the same noises W;V , the same



126Chapter 7. Stochastic Di�erential Equations with Finite{Dimensional Densityinitial condition X0, and such that its solution stays in the exponential familyEM(c�), which is partly de�ned by h and partly preassigned.The method is very simple. We keep on denoting by p(�; �) the generic den-sity in EM(c�) and g(�) the related Fisher information matrix. We describethe construction of our �ltering problem step by step.We start with the initial condition X0, and we assume its density to be inEM(c�): pX0 = p(�; �0) 2 EM(c�). De�ne a drift u1(�) such that the di�usiondYt = u1t (Yt)dt+ �t(Yt)dWt; 0 � t < t1; Y0 = X0;has density in EM(c�). This can be done according to Theorem 7.4.2 byde�ningu1t (x) := 12 @at@x (x) + 12at(x)(�1t )T @c�@x (x) +�E�1t fLtc�gT g�1(�1t ) Z x�1(c�(y)�E�1t c�) exp[(�1t )T (c�(y)� c�(x))]dy;_�1t = g(�1t )�1E�1t fLtc�g; 0 � t < t1; �10 = �0:Consider ��1 := �1t1 . At time t1 the �rst observation Z1 = h(Yt1) + V1 isavailable, and we need to correct our prediction density p(�; ��1 ) via Bayes'formula. This corresponds to the following update of our parameter in thefamily EM(c�): �1 = ��1 � 26666664 �Z1120...0
37777775 :The optimal �lter at time t1 for our problem is, by construction,pYt1 jZ1(�) = p(�; �1) 2 EM(c�):Now we continue by de�ning a drift u2 such that the di�usiondYt = u2t (Yt)dt+ �t(Yt)dWt; t1 � t < t2; Yt1 � p(�; �1);has density in EM(c�). This can be done again by de�ningu2t (x) := 12 @at@x (x) + 12at(x)(�2t )T @c�@x (x) +



7.7. Application to �ltering 127�E�2t fLtc�gT g�1(�2t ) Z x�1(c�(y)�E�2t c�) exp[(�2t )T (c�(y)� c�(x))]dy;_�2t = g(�2t )�1E�2t fLtc�g; t1 � t < t2; �2t1 = �1:Consider ��2 := �2t2 . At time t2 the second observation Z2 = h(Yt2) + V2 isavailable, and we need to correct our prediction density p(�; ��2 ) via Bayes'formula. This corresponds to the following update of our parameter in thefamily EM(c�): �2 = ��2 � 26666664 �Z2120...0
37777775 :The optimal �lter at time t2 for our problem is, by construction,pYt2 jZ2(�) = p(�; �2) 2 EM(c�):By continuing in the same way, we have proven the followingTheorem 7.7.1 (Nonlinear{�nite{dimensional{exponential optimal �l-ters). Let be given functions f and � satisfying assumptions (A) and (B). LetLt be de�ned by Lt = ft @@x + 12at @2@x2 ; at = �2t :Let be given a Brownian motion fWt; t � 0g, an observation function h satis-fying (E) and let be given a white noise process fVn; n = 0; 1; : : :g independentof W . Let be given an exponential familyEM(c�) = fp(�; �) = exp[�T c�(�)�  (�)]; � 2 �gsatisfying (F), and let g be its Fisher information matrix.De�ne the stochastic process f�t; t � 0g according to�t := �nt ; tn�1 � t < tn; �tn := �n;for all n 2 IN , where �n is the solution of the di�erential equation_�nt = g(�nt )�1E�nt fLtc�g; tn�1 � t < tn; �ntn�1 = �n�1;



128Chapter 7. Stochastic Di�erential Equations with Finite{Dimensional Densityand �n is the random variable�n = �ntn � 26666664 �Zn120...0
37777775for all n 2 IN . De�neut(x; �) := 12 @at@x (x) + 12at(x)�T @c�@x (x) +�E�fLtc�gT g�1(�) Z x�1(c�(y)�E�c�) exp[�T (c�(y)� c�(x))]dy:Then the �ltering problem with state fYt; t � 0g and observations fZn; n =1; 2; : : :g given bydYt = ut(Yt; �t)dt+ �t(Yt)dWt; Y0 � p(�; �0);Zn = h(Ytn) + Vn;Y0 independent of V and W , has the preassigned �nite{dimensional exponentialsolution p(�; �t) 2 EM(c�) for all possible (nonlinear) � and h satisfying theassumptions above.Consider the following conjecture: This result could be properly extended tothe case of continuous time observations. It seems then, at a �rst sight, that itcontradicts classical results on nonexistence of �nite{dimensional �lters, suchas Chaleyat{Maurel and Michel (1984) [18], Ocone and Pardoux (1989) [50],L�evine (1991) [44]. This contradiction appears a natural consequence of thearbitrariness of � and h. Nonetheless, there is no real contradiction. Indeed,since f�t; t � 0g depends on the observation process Z, the drift itself dependson the past observations. The �ltering problem considered above does notsatisfy the assumptions of the quoted papers. Indeed, we cannot construct anonlinear �ltering problem with prescribed (nonlinear) � and h, with drift uwhich does not depend on the observation process Z and whose solution remains�nite dimensional. We have to allow for observations-dependent drifts in orderto prove our result. However, �ltering problems with a drift or di�usion termthat depends on the observations naturally arise in stochastic control theory,see [61] and [23]. In such problems the input process, which is measurable onthe �-algebra generated by the observations, enters in the drift and di�usionterms.



Chapter 8Conclusions and furtherresearchAnd the Enlightened One uttered this stanza:`Through many births I sought in vainThe Builder of this House of Pain.Now, Builder, You are plain to see,And from this House at last I'm free;I burst the rafters, roof and wall,And dwell in the Peace beyond them all.'Paul Carus, from the Gospel of Buddha.When he had led them out to the vicinity of Bethany, he lifted uphis hands and blessed them. While he was blessing them, he leftthem and was taken up into heaven.Luke XXIV.50{518.1 Short description of the resultsIn this section we list shortly the results of the present thesis. The followingsection will deal with concluding remarks and possible future developments.The results of this thesis concern the �nite{dimensional approximation ofdistributions obtained via di�erential{geometric methods and exponential fam-ilies, and its application to nonlinear �ltering.129



130 Chapter 8. Conclusions and further researchThe �ltering problem is di�cult and complicated because the optimal �lter isnot �nite dimensional in general. The in�nite{dimensional stochastic partial{di�erential equation (SPDE) describing the optimal �lter cannot be character-ized by a �nite set of stochastic di�erential equations (SDE's). As an alterna-tive to the past remedies (assumed{density �lter and extended Kalman �lter)based on heuristic considerations, we present a well de�ned and Geometry{based �lter. Our new method to obtain a �nite set of SDEs which approximatethe in�nite{dimensional SPDE for the optimal �lter consists of the projection�lter (PF). The projection �lter is obtained by projecting the SPDE for the op-timal �lter onto a �nite{dimensional manifold of probability densities in Fishermetric.We use this geometric framework to de�ne and study in detail the projec-tion �lter for exponential families of probability densities. The advantages ofchoosing exponential families are:� Exponential families allow simple �lter equations;� Exponential families give the possibility of de�ning the total projectionresidual, an L2 vector whose norm measures the local approximationinvolved in the projection at each time instant;� Equivalence between the projection �lter for exponential families and the(previously heuristics{based) exponential assumed{density �lters;� A large class of exponential families permits a perfect update step in the�ltering algorithm in the case of discrete{time observations.� Good simulation results for the exponential projection �lter applied tothe cubic sensor problem;� Results on the nice asymptotic behaviour of the Gaussian projection �lterwith small observation noise (the Gaussian densities are a particular caseof exponential densities);� Existence of �nite{dimensional exponential �lters for a class of nonlinearsystems. Some coe�cients of such nonlinear system can be prescribedarbitrarily (provided they are regular enough), and the remaining coe�-cients can be selected in such a way that the optimal �lter evolves in a�nite{dimensional exponential family.The last result comes from results related to existence of stochastic di�er-ential equations with prescribed di�usion coe�cients whose densities evolvein prescribed exponential families. This result on SDEs leads to a new in-terpretation of the projection in Fisher metric of the density{evolution of a



8.2. Further research and future developments 131di�usion process and to the existence result of �nite{dimensional optimal �l-ters described above.8.2 Further research and future developmentsThe choice of the exponential familyIn Chapter 4 we have introduced a new and systematic way of designing ap-proximate �nite{dimensional �lters.One major issue left is the choice of the exponential family S. In Section 4.5we presented a �rst partial answer to this problem, although with the choice ofthe family S� there is still some freedom left in the choice of the dimension mand in the choice of the remaining functions fcs+1; � � � ; cmg. This freedom couldbe used to reduce the total residual norm r�t = r�t de�ned in Section 4.5, or itcould be used to design an adaptive scheme for the choice of the exponentialfamily S.Estimating the distance between the optimal �lter and theprojection �lterIt would also be useful to obtain for all t � 0 an estimate of the distance(Hellinger metric or Kullback{Leibler information) between the optimal{�lterdensity pt and the projection{�lter density p�t , in terms of the total residualnorm history fr�s ; 0 � s � tg.Projection �lters in discrete timeFinally, we would like to de�ne projection �lters for discrete{time systems. Wedid so by investigating the possible use of projection �lters for estimating thevolatility of bilateral exchange rates, in the context of applications to mathe-matical �nance. The �rst results in this direction can be found in [12]. We stillhave to relate this discrete{time setup with the work of Kulhav�y [40], [41]. An-other motivation for this study will be to obtain e�cient numerical schemes forthe solution of the stochastic di�erential equation satis�ed by the projection{�lter parameters, i.e. equation (4.12) for a general exponential family S, orequation (4.20) for the family S�.Further simulationsWe hope to be able to perform simulations for systems related to more concreteapplications. Although the cubic sensor problem was helpful in studying the



132 Chapter 8. Conclusions and further researchprojection residual and is considered a good academic example, some simula-tions for more complicated systems are desirable. It would also be interestingto compute a numerical approximation of the time{evolution of the distanceoptimal �lter{projection �lter in some examples.Small observation noiseIt would be interesting to check the e�ect of enlarging the manifold of densi-ties on the error bound for the mean{square distance between optimal{�lterestimate and projection{�lter estimate.Stochastic di�erential equations with �nite dimensionaldensitiesIt would be interesting to try and investigate the unsolved characterizationproblem 7.2.5.Finite{dimensional optimal �ltersThe result on existence of �nite{dimensional optimal �lters for partly{arbitrarynonlinear systems can be extended to the case of continuous time observations.Moreover, further investigation of the possible applications of these results tostochastic control, mathematical �nance and stochastic realization theory areplanned.



Chapter 9Summary (English, Dutch,French, Italian)Let one's thoughts of boundless loving{kindness pervade the wholeworld, above, below, across, without obscuration, without hatred,without enmity. Suttanipata 150So in everything, do to others what you would have them do to you,for this sums up the Law and the Prophets.Matthew VII.12Summary (English)FILTERING BY PROJECTION ON THE MANIFOLDOF EXPONENTIAL DENSITIESThe present thesis treats the �nite{dimensional approximation of distributionsobtained via di�erential{geometric methods and exponential families. The keyingredients in the theory developed here are: Stochastic di�erential equations(SDE's), the �ltering problem, the di�erential geometric approach to statistics,and the theory of exponential families.SDE's are roughly an extension of ordinary di�erential equations (ODE's)to the case where the evolution of the system is a�icted by randomness. This133



134 Chapter 9. Summary (English, Dutch, French, Italian)evolution then needs to be described by a mathematical object called SDE,since ODE's do not incorporate randomness.The �ltering problem consists of estimating the state of a stochastic systemfrom noise perturbed observations. One has a system whose state evolvesaccording to a SDE, and one observes a related process which is generally afunction of the state process plus some new randomenss. This function is notbijective in general, so that it cannot be inverted to recover the state (evenin the case where no new randomness is present in the observations). This isusually referred to as the case of partial observations. The �ltering problemconsists of estimating the signal at any time instant from the history of theobservation process up to the same instant.If the evolution of the state and the observations are described by linearequations, the solution of the problem is the well known Kalman Filter (KF).This �lter consists of a �nite set of recursive equations which permit to updatethe estimates including at each time instant the new observations. In this casethe �lter is said to be �nite dimensional.The more general nonlinear �ltering problem is far more complicated be-cause the resulting nonlinear �lter is not �nite dimensional in general. Finitedimensionality of a �lter is loosely de�ned as a �lter consisting of a �nite set ofrecursive equations which update the optimal estimate of the state based on thepast observations. In general there is no such set of equations for the nonlinear�ltering problem. The solution of the �ltering problem in continuous time is theprobability distribution of the state given the past and current observations.This solution is described by a mathematical object called a stochastic partial{di�erential equation. This is in general an in�nite{dimensional equation, inthe sense that its solution cannot be characterized by the solution of a �niteset of (stochastic) di�erential equations. The past remedies to this in�nite di-mensionality (assumed{density �lter and extended KF) were based on heuristicconsiderations and not much is known on the quality of their performances.In this thesis we present a new method to obtain a �nite set of SDEs whichapproximate the in�nite{dimensional equation for the optimal �lter. We intro-duce the projection �lter (PF), which is a �nite{dimensional nonlinear �lterbased on the di�erential{geometric approach to statistics. The projection �lteris obtained by projecting the in�nite{dimensional equation for the optimal �l-ter onto a �nite{dimensional manifold. By using geometry, we construct a pro-cedure to project this in�nite{dimensional equation onto a �nite{dimensionalspace. This projection is mathematically well de�ned. Moreover, there is amplechoice about what �nite{dimensional space one can project upon.In this thesis we use this geometric framework to de�ne and study in de-



.Samenvatting (Dutch) 135tail the projection �lter for exponential families of probability densities. In thisthesis we present results describing the advantages of choosing exponential fam-ilies: Simple �lter equation, possibility of de�ning the total projection residualmeasuring the local approximation involved in the projection around each timeinstant, equivalence with the (previously heuristics{based) assumed{density �l-ters, perfect update step in the case of discrete{time observations. Moreoverwe present simulation results for the exponential projection �lter applied to aparticular system called cubic sensor. Finally, some results on the nice asymp-totic behaviour of the Gaussian projection �lter with small observation noiseare given. This treats roughly the case where the randomness a�icting theobservations becomes small. The Gaussian densities are a particular case ofexponential densities.The framework of an exponential family of densities with parameters de-scribed by SDE's and with the di�erential{geometric structure developed forthe �ltering problem is useful also for other applications. In the thesis we havesolved several problems related to existence of stochastic di�erential equations.These results are related to areas such as stochastic realization theory, mathe-matical �nance, and existence of �nite{dimensional optimal �lters, as we showin the �nal chapter.Samenvatting (Dutch)FILTERING DOOR MIDDEL VAN PROJECTIE OP DEVARIETEIT VAN EXPONENTIELE DICHTHEDENHet onderhavige proefschrift behandelt de eindig{dimensionale benadering vanverdelingen verkregen via di�erentiaal-meetkundige methoden en exponenti�elefamilies. De belangrijkste ingredi�enten in de hier ontwikkelde theorie zijn:Stochastische di�erentiaal vergelijkingen (SDV's), het �lterprobleem, de diffe-rentiaal- meetkundige benadering van de exponenti�ele families.SDV's zijn ruwweg gesproken een uitbreiding van de gewone di�erentiaal-vergelijkingen (GDV's) naar het geval waarin de evolutie van het systeem on-derhavig is aan stochastische invloeden. Deze evolutie dient dan beschreven teworden door een mathematisch object dat SDV genoemd wordt.Het �lter probleem behelst het schatten van de toestand van een stochastischsysteem uit door ruis aangetaste waarnemingen. Men gaat uit van een systeemwaarvan de toestand zich ontwikkelt volgens een SDV, en men observeert eengerelateerd proces dat in het algemeen de som is van een functie van het toe-standsproces en een nieuwe kansvariabele. Deze functie is niet bijectief in het



136 Chapter 9. Summary (English, Dutch, French, Italian)algemeen, zodat deze niet ge��nverteerd kan worden om de toestand terug tevinden (zelfs in het geval dat er geen sprake is van een nieuwe kansvariabele).Men spreekt hierbij gewoonlijk van het geval van parti�ele observaties. Het�lterprobleem bestaat uit schatting van het signaal op ieder moment, uit degeschiedenis van het waarnemingsproces tot op datzelfde moment.Als de evolutie van de toestand en de waarnemingen beschreven worden doorlineaire vergelijkingen, dan is de oplossing van het probleem gegeven door hetbekende Kalman Filter (KF). Het �lter bestaat uit een eindig stelsel recursievevergelijkingen waarmee de schattingen bijgesteld kunnen worden op ieder mo-ment aan de hand van de nieuwe waarnemingen. In dit geval noemt men het�lter eindig dimensionaal.Het algemenere niet-lineaire �lter probleem is veel gecompliceerder omdathet resulterende niet-lineaire �lter in het algemeen niet eindig dimensionaal is.Eindig-dimensionaliteit van een �lter is vrijelijk gede�nieerd als de eigenschapdat een �lter beschreven kan worden met behulp van een eindig stelsel verge-lijkingen voor die de optimale schatting van de toestand bijwerken gebaseerdop de eerder gedane waarnemingen. In het algemeen is er niet zo'n stelselvergelijkingen voor het niet-lineaire �lterprobleem. De oplossing van het �l-terprobleem in continue tijd is de kansverdeling van de toestand gegeven deeerdere en actuele waarnemingen. Deze oplossing wordt beschreven door eenmathematisch object dat een stochastische parti�ele{di�erentiaal vergelijking ge-noemd wordt. Dit is in het algemeen een oneindig{dimensionale vergelijking,in die zin dat zijn oplossing niet gekarakteriseerd kan worden als de oploss-ing van een eindige stelsel van (stochastische) di�erentiaal{vergelijkingen. Deeerdere remedies voor deze oneindige dimensionaliteit (aangenomen{dichtheids�lter en uitgebreide KF) waren gebaseerd op heuristische overwegingen en eris niet veel bekend over de kwaliteit van hun prestaties.In dit proefschrift presenteren we een nieuwe methode om een eindig stelselvan SDV-en te verkrijgen die de oneindig-dimensionale vergelijking van hetoptimale �lter benaderen. We introduceren het projectie �lter (PF), dat eeneindig-dimensionaal niet-lineair �lter is gebaseerd op de di�erentiaal{meetkun-dige invalshoek tot de statistiek. Het projectie �lter wordt verkregen doorprojectie van de oneindig{dimensionale vergelijking voor het optimale �lter opeen eindig-dimensionale varieteit. Door meetkunde te gebruiken, construerenwe een procedure om deze oneindig-dimensionale vergelijking op een eindig{dimensionale ruimte te projecteren. Deze projectie is wiskundig goed gede�ni-eerd. Bovendien is er volop keuze voor de eindig-dimensionale ruimte waaropmen kan projecteren. In dit proefschrift gebruiken we dit meetkundige raamw-erk om het projectie �lter in detail te de�ni�eren en te bestuderen voor expo-



.R�esum�e (French) 137nenti�ele families van kansdichtheden. In het proefschrift presenteren we resul-taten die de voordelen van de keuze van exponenti�ele families beschrijven: Eeneenvoudige �lter vergelijking, de mogelijkheid om een totaal projectie residute de�ni�eren die de locale approximatie meet waarmee de projectie op iedermoment gepaard gaat, equivalentie met de (voorheen op heuristiek gebaseerde)aangenomen dichtheid �lters, een prefecte bijwerkings-stap (update-step) inhet geval van discrete{tijd observaties. Bovendien presenteren we simulatieresultaten voor het exponenti�ele projectie �lter toegepast op het speciale sys-teem geheten de kubische waarnemer (cubic sensor). Tenslotte worden er enigeresultaten gegeven over het prettige asymptotische gedrag van het Gaussischeprojektie �lter met zachte waarnemingsruis (small observation noise). Dit be-handelt ruwweg het geval waarbij de de stochastische meetfout klein wordt. DeGaussische dichtheden zijn een speciaal geval van exponenti�ele dichtheden.Het raamwerk van een exponenti�ele familie van dichtheden met parametersbeschreven door SDV-en en met de di�erentiaal{meetkundige structuur ont-wikkeld voor het �lter probleem is ook bruikbaar voor andere toepassingen. Inhet proefschrift hebben we verscheidene problemen opgelost gerelateerd aan deexistentie van stochastische di�erentiaal vergelijkingen. Deze resultaten zijngerelateerd aan gebieden zoals stochastische realisatietheorie, mathematische�nanciering, en existentie van eindig{dimensionale optimale �lters, zoals weaantonen in het laatste hoofstuk.R�esum�e (French)FILTRAGE PAR PROJECTION SUR LA VARI�ET�E DESDENSIT�ES EXPONENTIELLESDans cette th�ese on traite par des m�ethodes de g�eom�etrie di��erentielle et defamilles exponentielles, l'approximation �ni dimensionnelle de distributions.Les ingr�edients clef de cette th�eorie sont : les �equations di��erentielles stochas-tiques (EDS's), le probl�eme du �ltrage, l'approche g�eom�etrique de la statis-tique, et la th�eorie des familles exponentielles.Les EDS's sont grosso modo une extension des �equations di��erentielles ordi-naires (EDO's) dans le cas o�u l'�evolution du syst�eme est perturb�ee de mani�ereal�eatoire. Une telle �evolution doit être d�ecrite par un objet math�ematiqueappell�e EDS, car les EDO n'incluent pas l'al�eatoire.Le probl�eme du �ltrage traite l'estimation de l'�etat d'un syst�eme stochastique�a partir d'observations bruit�ees. On a un syst�eme dont l'�etat �evolue selon uneEDS, et on observe un processus qui est une fonction de l'�etat plus un nouveau



138 Chapter 9. Summary (English, Dutch, French, Italian)bruit al�eatoire. En g�en�eral, cette fonction n'est pas bijective, et ne peut doncpas être invers�ee pour obtenir l'�etat (meme dans le cas o�u l'observation n'estpas bruit�ee). C'est ce que l'on appelle le �ltrage avec observations partielles.Le probleme du �ltrage consiste �a estimer le signal �a chaque instant, �a partirde l'histoire des observations jusqu'�a l'instant courrantDans le cas ou l'�evolution de l'�etat et des observations est d�ecrite par des�equationes lin�eaires, la solution du probl�eme est donn�ee par le �ltre de Kalman(FK). Ce �ltre est donn�ee par un ensemble �ni d'�equations qui permet demettre �a jour l' estim�ee courrante en incorporant les nouvelles observations �achaque instant. Dans ce cas, on dit que le �ltre est de dimension �nie.Le probl�eme plus g�en�eral du �ltrage non lin�eaire est bien plus compliqu�eparce que le �ltre non lin�eaire r�esultant n'est pas de dimension �nie en g�en�eral.Grosso modo, un �ltre est de dimension �nie s'il existe un ensemble �ni d'�e-quations r�ecursives qui permettent de mettre �a jour l'estim�ee courrante, enfonction des observations pass�ees. En g�en�eral il n'existe pas un tel ensembled'�equations pour le probl�eme du �ltrage non lin�eaire. La solution du probl�emede �ltrage en temps continu est la loi de probabilit�e de l'�etat conditionnellementaux observations pass�ees et pr�esentes. Cette solution est d�ecrite par un objetmath�ematique appell�e �equation aux d�eriv�ees partielles stochastique. C'est eng�en�eral une �equation de dimension in�nie, ce qui signi�e que sa solution ne peutpas être caract�eris�ee par la solution d'un ensemble �ni d'�equations di��erentielles(stochastiques). Les solutions utilis�ees dans le pass�e (assumed{density �lter(ADF) et le �ltre de Kalman �etendu) etaient bas�ees sur des consid�erationsheuristiques, et on sait peu de chose sur la qualit�e des estimations.Dans cette th�ese on donne une nouvelle m�ethode pour obtenir un ensemble�ni d'EDS's qui approche l'�equation de dimension in�nie du �ltre optimal. Onintroduit le �ltre par projection (FP), qui est un �ltre non lin�eaire de dimension�nie bas�e sur l'approche g�eometrique de la statistique. Le �ltre par projectionest obtenu en projetant l'�equation de dimension in�nie du �ltre optimal surune vari�et�e de dimension �nie. En utilisant la g�eometrie, on construit uneproc�edure pour projeter cette �equation de dimension in�nie sur un espace dedimension �nie. La projection est bien d�e�nie d'un point de vue math�ematique.En outre, il y a beaucoup de libert�e sur le choix de l'espace de dimension �niesur lequel on projette.Dans cette th�ese on utilise la g�eom�etrie di��erentielle pour d�e�nir et �etudieren d�etail le FP pour des familles exponentielles de densit�es de probabilit�e. Enoutre, on donne des r�esultats qui justi�ent l'emploi de familles exponentielles :�equation simple pour le �ltre, possibilit�e de d�e�nir le total projection residualqui mesure l'approximation locale caus�ee par la projection �a chaque instant,



.Sunto (Italian) 139l'�equivalence avec les ADF (qui etaient bas�es sur des consid�erations heuristiqueavant l'introduction du FP), et la mise �a jour exacte dans le cas des observationsen temps discret. On presente de plus des simulations pour le FP exponentielappliqu�e au syst�eme appell�e sensor cubique. En�n, on donne des resultats surle bon comportement asymptotique du FP Gaussien avec petit bruit d' obser-vation. On s'int�eresse grosso modo au cas ou le bruit d'observation est petit.Les densit�es gaussiennes sont un cas particulier des densit�es exponentielles.La structure d'une famille exponentielle de densit�e avec param�etre d�ecritpar des EDS et trait�ee par des m�ethodes de g�eometrie di��erentielle pour leprobl�eme de �ltrage peut être utilis�ee aussi pour d' autres applications. Danscette th�ese nous avons resolu beaucoup de probl�emes li�es �a l'existence des EDS.Ces r�esultats sont reli�es �a des sujets comme r�ealisation stochastique (stochasticrealization theory), les math�ematiques �nanci�eres et l'existence de �ltres opti-maux de dimension �nie, comme nous l'avons montr�e dans le dernier chap̂�tre.Sunto (Italian)FILTRAGGIO TRAMITE PROIEZIONE SULLA VARIE-T�A DELLE DENSIT�A ESPONENZIALIQuesta tesi tratta l'approssimazione di dimensione �nita di distribuzioni, ot-tenuta attraverso metodi geometrico{di�erenziali e famiglie esponenziali. Gliingredienti chiave della teoria sviluppata sono: equazioni di�erenziali stocas-tiche (EDS), il problema del �ltraggio, l'approccio geometrico{di�erenziale allastatistica, e la teoria delle famiglie esponenziali.Le EDS sono grosso modo un'estensione delle equazioni di�erenziali ordi-narie (EDO) al caso in cui l'evoluzione del sistema �e perturbata da rumore.Quest'evoluzione deve essere allora descritta da un oggetto matematico chiam-ato EDS, dato che le EDO non incorporano l'aleatoriet�a.Il problema del �ltraggio riguarda la stima dello stato di un sistema stocas-tico, basata su osservazioni perturbate da rumore. Si ha un sistema il cui statoevolve secondo un'EDS, e si osserva un secondo processo che �e generalmenteuna funzione del processo di stato pi�u una nuova aleatoriet�a. La funzione non�e biettiva in generale, sicch�e non pu�o essere invertita allo scopo di recuperarelo stato (nemmeno nel caso in cui la nuova aleatoriet�a non �e presente nelleosservazioni). Questo tipo di problema �e generalmente detto problema con os-servazioni parziali. Il problema del �ltraggio consiste nello stimare il segnalea ciascun istante sulla base della storia del processo delle osservazioni �no aquell'istante.



140 Chapter 9. Summary (English, Dutch, French, Italian)Se l'evoluzione dello stato e le osservazioni sono descritte da equazioni lineari,la soluzione del problema �e data dal ben noto �ltro di Kalman (FK). Tale �ltro �eformato da un sistema �nito di equazioni ricorsive che permettono di aggiornarele stime includendo ad ogni istante le nuove osservazioni. In questo caso il �ltro�e detto di dimensione �nita.Il problema pi�u generale del �ltraggio non lineare �e molto pi�u complicatoperch�e il �ltro risultante non �e di dimensione �nita in genere. Un �ltro �e dettodi dimensione �nita quando, in parole povere, pu�o essere descritto da un sistema�nito di equazioni ricorsive che aggiornano la stima ottimale dello stato basatasulle osservazioni passate. In generale un tale sistema di equazioni non esisteper problemi di �ltraggio non lineari. La soluzione del problema del �ltraggioa tempo continuo �e un oggetto matematico chiamato equazione di�erenzialestocastica alle derivate parziali. Si tratta generalmente di un'equazione di di-mensione in�nita, nel senso che la sua soluzione non pu�o essere caratterizzatadalla soluzione di un insieme �nito di equazioni di�erenziali (stocastiche). Irimedi proposti in passato (Assumed Density Filters (ADF) e �ltro di Kalmanesteso) sono basati su considerazioni euristiche e poco �e noto sulla qualit�adelle loro prestazioni. In questa tesi presentiamo un nuovo metodo per ot-tenere un sistema �nito di EDS che approssimano l'equazione di dimensionein�nita descrivente il �ltro ottimale. Introduciamo il �ltro proiezione (FP). IlFP �e un �ltro non lineare di dimensione �nita basato sull'approccio geometrico{di�erenziale alla statistica. Il �ltro proiezione si ottiene proiettando l'equazionedi dimensione in�nita del �ltro ottimale su una variet�a di dimensione �nita. Us-ando la geometria, costruiamo una procedura per proiettare questa equazionedi dimensione in�nita su uno spazio di dimensione �nita. Tale proiezione �ematematicamente ben de�nita. Inoltre, si ha ampia scelta sullo spazio di di-mensione �nita sul quale proiettare. Nella tesi usiamo questa impostazionegeometrica per de�nire e studiare in dettaglio il FP per famiglie esponenziali didensit�a. Presentiamo risultati che descrivono i vantaggi della scelta di famiglieesponenziali: equazioni semplici per il �ltro, la possibilit�a di de�nire il total pro-jection residual per misurare l'approssmazione locale che si ha ad ogni istante,l'equivalenza con l' ADF (che era precedentemente basato su considerazionieuristiche), aggiornamento esatto nel caso di osservazioni in tempo discreto.Inoltre presentiamo simulazioni per il FP esponenziale applicato al particolaresistema noto come sensore cubico. In�ne, presentiamo alcuni risultati sul com-portamento asintotico del FP Gaussiano con piccolo rumore nelle osservazioni.Questo riguarda, a grandi linee, il caso in cui l'aleatoriet�a che disturba le os-servazioni diviene piccola. Le densit�a Gaussiane sono un caso particolare delledensit�a esponenziali.



.Sunto (Italian) 141L'impostazione data da una famiglia esponenziale di densit�a con parametridescritti da EDS e con una struttura geometrico{di�erenziale, utilizzata peril problema del �ltraggio, si dimostra utile anche in altri campi. In questatesi risolviamo alcuni problemi collegati all' esistenza di equazioni di�erenzialistocastiche. Questi risultati sono connessi ad aree quali realizzazione stocas-tica (stochastic realization theory), �nanza matematica, ed esistenza di �ltriottimali di dimensione �nita, come mostriamo nel capitolo �nale.
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