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Abstract

The aim of this paper is to present two moment matching procedures for basket-
options pricing and to test its distributional approximations via distances on the space
of probability densities, the Kullback-Leibler information (KLI) and the Hellinger dis-
tance (HD). We are interested in measuring the KLI and the HD between the real
simulated basket terminal distribution and the distributions used for the approxima-
tion, both in the lognormal and shifted-lognormal families. We isolate influences of
instantaneous volatilities and instantaneous correlations, in order to assess which con-
figurations of these variables have a major impact on the KLI and HD and therefore
on the quality of the approximation.
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1 Introduction

In this paper we start by introducing the standard moment-matching procedure that one
can apply to simulate the average price of a basket of basic assets. The basic idea is that
of approximating the actual process of the basket value by a sufficiently simple stochastic
process. The expression “sufficiently simple” should be interpreted as “simple enough to
allow for analytic solutions to the pricing problem at hand”.

The approximation happens on the basis of a moment matching principle, which can
be stated as follows: set the parameters of the approximating process so that as many
moments as possible of the actual basket-price process are exactly reproduced. With the
usual lack of fantasy, the market choice of an approximating process seems to have fallen
onto the lognormal one [9]. The distinctive parameters of such a process being only two (the
return’s average and standard deviation over the time horizon set by the option to price)
this moment-matching procedure can only match the first two moments of the original
distribution. The lengthy calculations of the parameters’ values can be performed so as
to keep into account the effect of dividends, either continuous or discrete (but in any case
deterministic, both in payment dates and in amounts). A more compact formulation of
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this method is obtained by resorting to forward prices, which incorporate both interest
rates and dividends.

Another similar procedure consists of matching the first three moments, through an
additional shift in the approximating lognormal basket by a deterministic parameter. This
new parameter allows to fit the first three moments without losing analytical tractability, in
that we can immediately characterize the distributional properties of the resulting process
in a trivial fashion.

Wanting to match further moments, we will show how this issue can be addressed by
resorting to a mixture of lognormal densities. Such a mixture, in fact, is flexible enough
for practical purposes and implies closed form formulas for option prices.

We have performed an empirical analysis of the two- and three-moments-matching ap-
proximations based on the case of a basket of two equities in the Italian stock exchange and
compare results by resorting to a Monte Carlo simulation to obtain the “true” distribution
and statistics of the basket within a Black-Scholes world.

We subsequently analyze specifically the implications of the three-moments-method as
far as a call option pricing is concerned.

The second part of the paper addresses the problem of computing a synthetic but at the
same time rigorous measure of the deviation of the approximated baskets distributions from
the true basket distribution. To characterize rigorously this distributional discrepancy, we
introduce both the Kullback Leibler information and the Hellinger distance in suitable
spaces of densities, and explain how this can help us in our investigation. We compute
the distances of the true basket from the parametric families of densities being used in
the two and three moments approximations through Monte Carlo simulation. The two
families are respectively the lognormal and shifted lognormal families. Finally, we try and
isolate the variables and the situations causing this distance to increase drastically, thus
characterizing the cases where the two and three moments approximations can fail.

2 Assumptions and notation

Let {T1, . . . , TN} be the set of dates at which the values of the basket are contributing
to the contract payoff. We shall denote by {τ1, . . . , τN} the corresponding time lengths,
meaning that τi = Ti − Ti−1, T0 = 0, i = 1, 2, . . . , N .

For example, if we are pricing an Asian-style option on a basket, the T ’s are the times
at which the average is taken.

Denote by Si
t or equivalently Si(t) the price of the i-th asset in the basket at time t.

The basket value is then given by

A(t) =
n∑

i=1

aiS
i(t), A(0) = A0,

where the a’s denote deterministic and constant weights specified by the option contract,
and A0 > 0 is the initial basket value.
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3 Matching the first two moments under different

dividends formulations

3.1 Case with continuous dividends, constant rates and volatili-
ties

The first and simplest case we consider is the case where all interest rates are equal to
r, and where each asset Si in the basket pays a continuous dividend yield qi and has
constant instantaneous volatility σi. In other terms, we denote by W 1, . . . , W n n correlated
Brownian motions and assume that, under the risk-neutral measure,

dSi
t = (r − qi)S

i
t dt + σiS

i
t dW i

t , i = 1, . . . , n

Corr(d ln(Si
t), d ln(Sj

t )) dt = dW i
t dW j

t = ρi,j dt.
(1)

We therefore assume the different asset returns to be instantaneously correlated according
to the matrix ρ.

Our purpose is to approximate the basket value A with a (lognormal) geometric Brow-
nian motion (GBM). We take as proxy of A the process Ā defined by

dĀ(t) = (r − q̄)Ā(t) dt + σ̄Ā(t) dWt, Ā(0) = A0, (2)

where W is a Brownian motion, and q̄ and σ̄ are the basket dividend yield and volatility
to be determined in terms of the single assets’ dividends qi, volatilities σi, and correlations
ρi,j, i, j = 1, . . . , n.

We aim at finding the value of the basket volatility σ̄ and dividend yield q̄ that are
consistent, in some sense, with the true basket dynamics. We may reason as follows. By
Itô’s formula applied to (2) we have

d ln Ā(t) = (r − q̄ − 1
2
σ̄2) dt + σ̄ dWt,

so that, by integrating, we immediately obtain

Ā(t) = A0 exp[(r − q̄ − 1
2
σ̄2)t + σ̄Wt].

It is easy to compute the first and second moments of the approximated basket Ā. We
obtain, by using the Gaussian distribution Wt ∼ N (0, t) and the moment generating
function of Gaussian variables,

E(Ā(t)) = A0 exp[(r − q̄)t],

and
E(Ā(t)2) = A2

0 exp[(2r − 2q̄ + σ̄2)t].

We now compute the first two moments of the true basket A. To do this, we need to know
E(Si

tS
j
t ). This can be computed as follows. Consider the differential

d(Si(t)Sj(t)) = Si(t)dSj(t) + Sj(t)dSi(t) + dSi(t)dSj(t) ,
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and substitute for dSi and dSj from (1). Once done this, take expectation on both sides,
and recall that E(dW ) = 0, thus concluding that

dE(Si(t)Sj(t)) = (2r − qi − qj + ρi,jσiσj)E(Si(t)Sj(t)) dt,

which leads, through integration, to

E(Si(t)Sj(t)) = Si
0S

j
0 exp[(2r − qi − qj + ρi,jσiσj)t].

Going back to the first two moments of A, we obtain easily

E(A(t)) =
n∑

i=1

aiE(Si(t)) =
n∑

i=1

aiS
i
0 exp((r − qi)t)

E(A(t)2) =
n∑

i,j=1

aiajE(Si(t)Sj(t)) =
n∑

i,j=1

aiajS
i
0S

j
0 exp[(2r − qi − qj + ρi,jσiσj)t].

The moment matching procedure consists in imposing, at a chosen time t = T , the equality
between the first two moments of the true basket and of its approximation,

E(A(T )) = E(Ā(T )), E(A(T )2) = E(Ā(T )2)

through the expressions found above. By doing this, we can solve in σ̄ and q̄, thus obtaining,
after straightforward computations,

q̄ = − 1
T

ln

(∑n
i=1 aiS

i
0e
−qiT

∑n
i=1 aiSi

0

)
,

σ̄2 = 1
T

ln

(∑
i,j aiajS

i
0S

j
0 exp[(−qi − qj + ρi,jσiσj)T ]

e−2q̄T (
∑n

i=1 aiSi
0)

2

)

= 1
T

ln

(∑
i,j aiajS

i
0S

j
0 exp[(−qi − qj + ρi,jσiσj)T ]

(
∑n

i=1 aiSi
0e
−qiT )2

)
(3)

Therefore, in this case the problem is solved.

Remark 3.1. (Choice of T ) Here T is a single time instant upon which the equivalence
is based. In case of a European-style option, it can be set to the maturity of the option.
However, for more complex situations it is better to break down the above analysis by
considering all the instants T that contribute to the final payoff.

3.2 Case with continuous dividends, time-varying rates and volatil-
ities

When wishing to take into account the initial term structures of interest rates and volatil-
ities, one has to include time-varying rates and volatilities in the model. This can be
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accomplished by taking time-varying r and σ:

dSi
t = (r(t)− qi)S

i
t dt + σi(t)S

i
t dW i

t , i = 1, . . . , n

Corr(d ln(Si
t), d ln(Sj

t )) dt = dW i
t dW j

t = ρi,j dt,
(4)

where we stick to the hypothesis of continuous dividends.
What is commonly involved in pricing payoffs depending on the basket at times T ’s is

the average of the just introduced time-varying quantities:

R(U, T ) = 1
T−U

∫ T

U

r(s)ds, V i(U, T ) =

√
1

T−U

∫ T

U

σi(u)2du .

Here R(U, T ) is the continuously-compounded (interest) rate at time U for the maturity
T , and V i(U, T ) is the volatility needed to price at time U a plain-vanilla option on Si

with maturity T . These quantities are usually available in the market at time U = 0, and
in-between volatilities can be stripped from the volatility curve at U = 0.

As before, we approximate the basket value A with a GBM. We thus take as proxy of
A the process Ā, now defined by

dĀ(t) = (r(t)− q̄)Ā(t)dt + σ̄(t)Ā(t)dWt, Ā(0) = A0,

where q̄ and σ̄(·) are the basket dividend yield and instantaneous volatility. What we need
this time are the integrals of the instantaneous volatility. These integrals express volatilities
corresponding to options with times and maturities in the set of chosen extremes of the
integrals. To this end, denote by VA(0, T ) the basket volatility at time 0 for maturity T ,
that is

VA(0, T ) :=

√
1
T

∫ T

0

σ̄2(t)dt.

Straightforward generalizations of the above case lead to

VA(0, T )2 = 1
T

ln

(∑
i,j aiajS

i
0S

j
0 exp[(−qi − qj)T + ρi,j

∫ T

0
σi(t)σj(t)dt]

e−2q̄T (
∑n

i=1 aiSi
0)

2

)
, (5)

whereas the formula for q̄ remains the same as in (3).
The only problematic term in Eq. (5) is

∫ T

0

σi(t)σj(t)dt.

We can easily compute this integral if we take each σi to be piecewise constant in intervals

[Tk−1, Tk] and set to the average volatilities V i(Tk−1, Tk) :=
√∫ Tk

Tk−1
σi(t)2dt/τk. Indeed, in

such a case we write

∫ Tk

0

σi(t)σj(t)dt ≈
k∑

h=1

V i(Th−1, Th)V
j(Th−1, Th)τh .
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To obtain the average volatilities

VA(Tk−1, Tk) =

√
1
τk

∫ Tk

Tk−1

σ̄2(t)dt

in-between the time instants T ’s that are relevant for the payoff, compute first, applying
the above formula,

VA(0, Tk)
2 = 1

Tk
ln

(∑
i,j aiajS

i
0S

j
0 exp[(−qi − qj)Tk + ρi,j

∑k
h=1 V i(Th−1, Th)V

j(Th−1, Th)τh]

e−2q̄kTk(
∑n

i=1 aiSi
0)

2

)

= 1
Tk

ln

(∑
i,j aiajS

i
0S

j
0 exp[(−qi − qj)Tk + ρi,j

∑k
h=1 V i(Th−1, Th)V

j(Th−1, Th)τh]

(
∑n

i=1 aiSi
0e
−qiTk)

2

)

(6)
where, since also q̄ depends on T in general, we have set

q̄k := − 1
Tk

ln

(∑n
i=1 aiS

i
0e
−qiTk

∑n
i=1 aiSi

0

)
.

Now, since ∫ Tk

Tk−1

σ̄(t)2dt =

∫ Tk

0

σ̄(t)2dt−
∫ Tk−1

0

σ̄(t)2dt,

we obtain

VA(Tk−1, Tk)
2 =

TkVA(0, Tk)
2 − Tk−1VA(0, Tk−1)

2

Tk − Tk−1

.

The values of q̄ in [Tk−1, Tk] are stripped similarly: we set

q̄k−1,k :=
q̄kTk − q̄k−1Tk−1

Tk − Tk−1

.

A Monte Carlo simulation of the basket price will be based on integration of the GBM
dynamics between times Tk−1 and Tk, leading to

Ā(Tk) = Ā(Tk−1) exp{[F (0; Tk−1, Tk)−q̄k−1,k− 1
2
VA(Tk−1, Tk)

2]τk+VA(Tk−1, Tk)
√

τkN (0, 1)},
(7)

where all realizations of N (0, 1) involved can be taken to be independent, and where
F (0; Tk−1, Tk) is the continuously compounded forward rate at time 0 for the period from
Tk−1 to Tk.

1

1Notice that F (0; Tk−1, Tk) = R(Tk−1, Tk) since rates are deterministic.
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3.3 Case with discrete dividends, time-varying rates and volatil-
ities

In this case dividends are no longer given by continuous dividend yields, so that we can
set qi = q̄ = 0 in the previous cases. Let us denote by t1, . . . , tm the times at which at least
one asset in the basket pays a known discrete dividend, and assume that the i-th asset in
the basket pays a known dividend K i

p at time tp, p = 1, . . . , m. This quantity K is simply
set to 0 for those assets that pay no dividends at tp.

We denote by Di(t) the present value of all future dividend payments for the i-th asset
at time t, i.e. the sum of all dividend payments occurring after time t, each discounted
from its payment date to t. We model each asset price Ci in the basket as

Ci(t) = Si(t) + Di(t). (8)

Notice that Di(t) is a deterministic process with jumps (it jumps each time a dividend
payment occurs for the i-th asset), whereas Si now models the continuous part of our price
process. The whole price of the i-th asset is now Ci, and this is the asset price observed in
the market. We assume the continuous part Si of every such asset price Ci to follow again
a GBM analogous to (4) with all the q’s (and hence q̄) set to zero:

dSi
t = r(t)Si

t dt + σi(t)S
i
t dW i

t , i = 1, . . . , n (9)

Corr(d ln(Si
t), d ln(Sj

t )) dt = dW i
t dW j

t := ρi,j dt.

According to this formulation, the basket value is at time t

B(t) =
∑

i

aiC
i(t) =

∑
i

aiS
i(t) +

∑
i

aiD
i(t). (10)

Set
D(t) :=

∑
i

aiD
i(t), A(t) :=

∑
i

aiS
i
t .

It then follows that the basket value is

B(t) = A(t) + D(t). (11)

We now approximate the continuous part A(t) of the basket value through the same process
Ā as in the previous section with all q’s (and therefore q̄) set to 0,

dĀ(t) = r(t)Ā(t)dt + σ̄(t)Ā(t)dWt, Ā(0) = A0 ,

so that we obtain again a method to simulate the basket. We have however to be careful:
The volatilities we are using are not the volatilities of the assets C, but merely the volatilities
of their continuous parts S. We need therefore to correct for this difference, since our
simulation requires the S volatilities while the market provides us with the C volatilities.
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3.3.1 From the C volatilities to the A volatilities

We reason as follows. Due to the deterministic nature of D’s, the time t-conditional
variance of the “instantaneous increment” dSt is

Vart(dSi
t) = Vart[d(Ci(t)−Di(t))] = Vart(dC i(t)).

By assuming a lognormal-like dynamics for Ci, so that vart(dCi(t)) = σC
i (t)2C i(t)2dt, we

immediately have
σi(t)

2Si(t)2dt = σC
i (t)2Ci(t)2dt,

leading to

σi(t)
2 =

σC
i (t)2 Ci(t)2

(Ci(t)−Di(t))2
.

Integrating σi(t)
2 between Tk−1 and Tk, and defining V i

C(Tk−1, Tk)
2 =

∫ Tk

Tk−1
σC

i (t)2dt/τk, we

obtain, by freezing stochastic processes at time 0:

V i(Tk−1, Tk)
2 ≈ V i

C(Tk−1, Tk)
2Ci(0)2

(C i(0)−Di(0))2
.

A different approximation consists in replacing random variables with their expected values
at time Tk−1:

V i(Tk−1, Tk)
2 ≈ V i

C(Tk−1, Tk)
2 eR(0,Tk−1)Tk−1(Ci(0)−Di(0)) + Di(Tk−1)

e2R(0,Tk−1)Tk−1(Ci(0)−Di(0))2
.

This last formula is used to obtain the V ’s from the market observed VC’s. Indeed, it is the
C asset volatilities VC that are observed in the market, and the above formula provides us
with the volatilities of their continuous parts S.

We can now obtain the integrated volatility of the continuous part Ā of the basket from
the above V ’s via formula (6) with all q’s and q̄ set to 0:

VA(0, Tk)
2 = 1

Tk
ln

(∑
i,j aiajS

i
0S

j
0 exp[ρi,j

∑k
h=1 V i(Th−1, Th)V

j(Th−1, Th)τh]

(
∑n

i=1 aiSi
0)

2

)
. (12)

In-between average volatilities are obtained again as

VA(Tk−1, Tk)
2 =

TkVA(0, Tk)
2 − Tk−1VA(0, Tk−1)

2

Tk − Tk−1

.

Now we can simulate Ā as before:

Ā(Tk) = Ā(Tk−1) exp[(F (0; Tk−1, Tk)− 1
2
VA(Tk−1, Tk)

2)τk + VA(Tk−1, Tk)
√

τkN (0, 1)]. (13)
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4 Matching further moments: formulation via for-

ward prices

The above results can be formulated in a more compact way by resorting to forward
prices. Forward prices incorporate dividends and interest rates, with a considerable ease
of notation.

Given a maturity T , the T -forward price at time t for an asset S is simply the strike K
that makes the forward contract payoff (ST −K) fair at time t. We solve in K the equation

Et[ST −K] = 0,

thus obtaining trivially the forward price for S:

FS(t, T ) := K = Et(ST ).

The process FS(t, T ), being the t-conditional expectation of a fixed random variable, follows
a martingale. It follows that if we model FS(t, T ) via a diffusion, this will be a driftless
one. When the canonical maturity is clear from the context, we will simply write F (t) or
Ft instead of F (t, T ). We denote by F i(t) the forward price for the asset Si,

F i(t) = F i
t = Et(S

i
T ).

Given the martingale property of forward prices, we have

dF i(t) = σi(t)F
i(t) dW i

t , i = 1 . . . , n,

Corr(d ln F i(t), d ln F j(t)) = ρi,j

where it is easy to check that the σ’s are the same we had for the Si’s, both in the continuous
dividend case (where the Si’s are the underlying assets) and in the discrete dividend case
(where the Si’s are the continuous parts of the underlying asset prices).

Now we can express expectations in terms of forward prices F i instead of spot prices
Si. In fact, under any of the formulations for dividends, we can write the basket’s m-th
moment as

E0{(AT )m} =
n∑

i1,...,im=1

ai1 · · · aimF i1
0 · · ·F im

0 exp

{
m−1∑

k=1

m∑

h=k+1

ρik,ih

∫ T

0

σik(u)σik(u)du

}
,

so that in particular the first three moments are, respectively,





E0{AT} =
∑

i aiF
i
0

E0{A2
T} =

∑
ij aiajF

i
0F

j
0 exp[ρi,j

∫ T

0
σi(s)σj(s)ds]

E0{A3
T} =

∑
ijk aiajakF

i
0F

j
t F k

0 exp[ρi,j

∫ T

0
σi(s)σj(s)ds + ρi,k

∫ T

0
σi(s)σk(s)ds

+ρj,k

∫ T

0
σj(s)σk(s)ds]

(14)
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Consider once again a generic GBM, under the risk-neutral measure,

dB̄(t) = µ(t)B̄(t) dt + σB(t)B̄(t) dWt. (15)

We can easily match the first two “terminal” moments of this process with the correspond-
ing basket ones, thus obtaining a case very similar to that of Section 3.2 with forwards F ’s
replacing spots S’s, so that all r’s and q’s are set to 0.

On the other hand, we might decide to match more than the first two moments. Notice
that the m-th moment of our benchmark GBM B̄ is easily computed as

E{(B̄(T ))m} = (B̄(0))m exp

[∫ T

0

(
mµ(s) +

m(m− 1)

2
σB(s)2

)
ds

]
. (16)

Notice, in particular, that

E{B̄(T )} = B̄(0) exp

[∫ T

0

µ(s)ds

]
=: ξ, (17)

E{B̄(T )2} = B̄(0)2 exp

[∫ T

0

(2µ(s) + σB(s)2)ds

]
(18)

= E{B̄(T )}2 exp

[∫ T

0

σB(s)2ds

]
=: E{B̄(T )}2α = ξ2α,

E{B̄(T )3} = B̄(0)3 exp

[
3

∫ T

0

(µ(s) + σB(s)2)ds

]
= (E{B̄(T )})3α3 = ξ3α3. (19)

If we wish to match more than just two moments of the actual distribution, we need
to leave the lognormal terminal distribution for B̄ to obtain something more general. In
doing this, we need be to careful in order to preserve analytical tractability. One of the
easiest ways out is the following “shifting” technique. Set

B(t) = B̄(t) + γ(t), γ(t) := γ exp

(∫ t

0

µ(s) ds

)
, t ≥ 0. (20)

The new parameter γ represents a new degree of freedom that can be exploited to match
the third moment. The corresponding dynamics is immediately

dB(t) = µ(t)B(t) dt + σB(t)(B(t)− γ(t)) dWt, (21)

so that the risk-neutral drift-rate µ is preserved. The distribution of B has a shifted
lognormal density pB, which is related to B̄’s lognormal density pB̄ through

pB(t)(x) = pB̄(t)(x− γ(t)), t ≥ 0, x ≥ γ(t).

We are primarily interested in the shift at terminal time T , so that we set λ := γ(T ).
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Compute




E{B(T )} = E{B̄(T )}+ λ
E{B(T )2} = E{B̄(T )2}+ 2λE{B̄(T )}+ λ2

E{B(T )3} = E{B̄(T )3}+ 3λ2E{B̄(T )}+ 3λE{B̄(T )2}+ λ3

(22)

Now use the shorthand notations mi = E0[A(T )i] to denote the generic i-th moments
of the true basket A(T ). Then the first-three-moments-matching procedure reads, in this
context, taking into account (14) and (22,17,18,19), respectively,





m1 = ξ + λ
m2 = ξα + 2λξ + λ2

m3 = ξ3α3 + 3λ2ξ + 3λξα + λ3.
(23)

Lengthy but straightforward calculations lead to the following equations, which can be
used to determine ξ, α and λ from m1, m2 and m3 through Eq. (23)





λ = m1 − ξ

ξ2 =
m2−m2

1

α−1

((α− 1) + 3)(α− 1)
1
2 (m2 −m2

1)
3
2 + (m1(3m2 − 2m2

1)−m3) = 0

(24)

The last equation has three (generally complex) solutions for α. We seek a real solution
of the kind α > 1, which corresponds to

∫ t

0
σB(s)2ds > 0. The last equation when cast in

the form x3 + 3x + β = 0 has a (unique) real solution given by

x =

(
−4β + 4

√
4 + β2

) 1
3

2
− 2

(
−4β + 4

√
4 + β2

) 1
3

, (25)

which is positive only when β < 0, i.e. when m3 > m1(3m2 − 2m2
1) (since m2 > m2

1), or
still in other terms, when the original distribution is (highly) positively skewed. This case
commonly occurs empirically when dealing with baskets.

In the following, we propose a simple method for matching an arbitrary (but finite)
number of moments of the basket’s density at terminal date T .

4.1 The call option value in the three-moment matching proce-
dure

From the definition of Eq. (20) the value at maturity T of the European call option with
strike K on the basket is approximated by

XT = [B(T )−K]+ = [B̄(T )− (K − λ)]+ = [B̄(T )− κ]+, (26)

with κ = K − λ, whose value at time 0 is

X0 = P (0, T )E{XT}, (27)
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with P (0, T ) denoting the discount factor for maturity T .
From the assumptions made on process B̄(t) we have

{
B̄(T ) = B̄(0) exp

[∫ T

0

(
µ(s)− σB(s)2

2

)
ds +

∫ T

0
σB(s) dWs

]

B̄(0) = A0 − γ
(28)

so that

pB̄(T )(y) =
1

y
√

2π
∫ T

0
σB(s)2ds

exp

{
− 1

2
∫ T

0
σB(s)2

[
ln

(
y

B̄(0)

)
−

∫ T

0

(
µ(s)− σB(s)2

2

)
ds

]2
}

.

Eq. (27) therefore becomes

X0 = P (0, T )

∫ ∞

0

[y − κ]+pB̄(T )(y) dy. (29)

Caution must be taken for the cases (not rare, though) when κ < 0: γ can in fact assume
values comparable (and, often much greater than) the initial value of the basket A0. In
such a case, the option price is trivially computed, and is equal to

P (0, T )

[
B̄(0) exp

(∫ T

0

µ(s)ds

)
− κ

]
= P (0, T )

[
(A0 − γ) exp

(∫ T

0

µ(s)ds

)
−K + λ

]

= P (0, T )

[
A0 exp

(∫ T

0

µ(s)ds

)
−K

]
.

(30)

The contract has thus lost its optionality and has become a forward contract.
For all other cases, the pricing argument is standard, and leads to the Black and

Scholes formula for an option whose underlying is the geometric Brownian motion B̄ and
with shifted strike κ:

X0 = P (0, T ) [F0N(d1)− κN(d2)]

d1,2 =
ln

(
F (0)

κ

)
± ∫ T

0
σB(s)2/2 ds

√∫ T

0
σB(s)2 ds

(31)

where we set F0 = E{B̄(T )} = B̄(0) exp[
∫ T

0
µ(s)ds].

5 Approximating the basket density via a lognormal

mixture

In this section, we show how to approximate the density function of AT by means of a
mixtures of lognormal densities. This method turns out to be useful because even though
the density of AT is not explicitly known, its associated moments are.
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As in Brigo and Mercurio (2000, 2001), let us consider the following mixture of ν
lognormal densities:

f(x) =
ν∑

j=1

λj
1

xvj

√
2π

exp

{
− 1

2v2
j

[ln(x)−mj]
2

}
,

where λj’s, vj’s and mj’s are real constants with λj ≥ 0, vj > 0 and
∑ν

j=1 λj = 1.

Since the moment generating function of a normal random variable Z = N (µ, σ2) is

ψZ(t) = E
(
etZ

)
= etµ+ 1

2
t2σ2

,

the moments of the density f are explicitly given by

Mk =

∫ +∞

0

xkf(x)dx =
ν∑

j=1

λj ekmj+
1
2
k2v2

j ,

for any positive integer k.
Our method is based on matching the moments Mk and Mk := E{(At)

m} for each
k ≤ r (the r-th is the last moment we want to match). To this end, let us define:

A :=




a1,1 a1,2 · · · a1,ν
...

...
...

...
ar+1,1 ar+1,2 · · · ar+1,ν


 Λ :=




λ1
...

λν


 M :=




M0
...

Mr




where
ak,j := e(k−1)mj+

1
2
(k−1)2v2

j .

We then want to find λj’s, mj’s and vj’s solving the following (constrained) system:

AΛ = M

λj ≥ 0 ∀j = 1, . . . , ν

vj > 0 ∀j = 1, . . . , ν.

(32)

Note that the constraint
∑ν

j=1 λj = 1 has been inserted as first equation in the system
(0-th moment matching).

The system (32) does not necessarily have a (unique) solution. Think for instance of
the situation where we want to match a large number of moments just using few lognormal
densities (large r and small ν). However, we should not forget we are free to suitably
choose the number ν of lognormal densities.

A natural question arises now: how many lognormal densities shall we introduce? Of
course, there is no definite answer, given also the degree of approximation one wants to
achieve. One can start with a low value for ν (e.g. 2 or 3) and minimize the squared
Euclidean norm ||AΛ−M ||2 over all λj’s, mj and vj’s. If the resulting optimization error
is not satisfactory enough (hopefully zero), one can then increase ν accordingly.
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Remark 5.1. Let us suppose that all mj’s and vj’s are fixed, so that (32) becomes a linear
system in the variables λj’s. A version of the Farkas lemma states that, for ν > 1 and
r > 0, the following are equivalent:

1. There exists some Λ∗ ∈ IRn, Λ∗ ≥ 0, such that AΛ∗ = M ;

2. There exists some X ∈ IRr+1 such that AT X ≤ 0 and MT X > 0 (upperscript T
denotes transposition).

Therefore, to prove 1., and hence to solve our system (32), it is enough to prove 2. Con-
dition 2. however is not so straightforward to verify, so that other methods, like the above
minimization, are normally required in practice.

A major advantage of a mixture of lognormal densities is that it immediately leads
to closed form formulas for option prices. In fact, the price of a European call (put),
with strike K and maturity T , implied by such a mixture is simply the mixture of the
corresponding Black-Scholes call (put) prices:

P (0, T )
ν∑

j=1

λjω

[
emj+

1
2
v2

j Φ

(
ω

mj − ln(K) + v2
j

vj

)
−KΦ

(
ω

mj − ln(K)

vj

)]
,

where ω = 1 for a call and ω = −1 for a put.

6 An empirical analysis of the two- and three-moment

matching approximations

We have performed a thorough analysis of the approximations for the particular case of a
basket comprised of two stocks in the Italian market (a realistic case): Fiat and Generali.
The analysis consisted of i) plotting the “terminal” probability distribution of the basket
price and ii) pricing a European call option on the basket. Maturity is approximately
equal to five years (from Dec. 29th , 2000 to Dec. 7th , 2005). Today’s date is Dec. 29th ,
2000 in the calculations. The Monte Carlo simulations are all based on 100,000 paths. The
invariant quantities for the pricing are reported in Table 6. The option payoff formula is

XT = N

[∑n
i=1 aiS

i
T∑n

i=1 aiSi
0

− 1

]+

(33)

with N the nominal (conventionally set equal to 100).
We have systematically studied prices and probability distributions for a set of different

values of i) individual stock price volatilities and ii) correlations among stock price returns.
We can devise three correlation regimes: the highly positive, zero and highly negative
correlation. Also for individual volatilities the high-high, high-low and low-low regimes are
of interest.
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Nominal 100
Today 29-Dec-00

Payoff Date 7-Dec-05
Discount Factor At Payoff 0.783895779

Strike 32.661
Stock FIAT GENERALI

Weights 0.5956 0.4044
Spot Prices 26.3 42.03

Maturity Date 7-Dec-05
Forward Price 31.68017702 51.57651408

Table 1: The inputs for the two-stock basket option

The basic conclusions as far as option pricing is concerned are enclosed in Table 2. They
can be generally summed up as follows: for symmetric systems (i.e. when volatilities are
roughly equal) and high correlation, the two approximations give the same price with good
accuracy with respect to the “real” price. Matching three moments instead of two leads
to generally better results especially in the case of highly asymmetric and/or negatively
correlated systems (when the correlation equals one, both approximations converge to the
same result for equal volatilities, due to the fact that the system is really following a
geometric Brownian motion). The effect of matching an additional moment beyond the
first two only is the more sizable, the more negative the correlation.

The quality of the approximations can be justified by examining Figs. 1–3 which show
the probability distributions for the real basket (obtained through a Monte Carlo simula-
tion, solid line), the two-moment matching (analytic distribution, dash-dotted line) and the
three-moment matching one (analytic distribution, dashed line) for a few possible choices
of the individual volatilities and of the correlation between stock price returns. Normally,
negative correlations give rise to a highly peaked basket terminal distribution, which can
only be approximated by the shifted lognormal distribution, the ordinary lognormal one
being too smooth to adapt for the task. However, there are situations where matching up
to three moments can still be insufficient for a reasonable approximation (see Fig. 1).2

Positive correlations instead allow for a good degree of approximation of the basket
terminal distribution, as can be seen from Fig. 3.

The same conclusions roughly apply to the case of baskets of more than just two
securities (see Figs. 4– 5).

2In such a case, resorting to mixtures of lognormal densities for matching also higher moments can be
quite helpful.
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Figure 1: The probability distributions for the actual basket (solid), the two-moment
matching procedure (dash-dotted), the three-moment matching procedure (dashed) when
σ1 = 0.3, σ2 = 0.3, ρ = −0.99.

7 The Kullback Leibler information and the Hellinger

distance

In this section we introduce briefly the Kullback-Leibler information and the Hellinger
distance, and we explain their importance for our problem, see also Brigo and Hanzon
(1998), Brigo (1999). Suppose we are given the space D of all the densities of probability
measures on the real line equipped with its Borel field, which are absolutely continuous
with respect to the Lebesgue measure. Functions in D belong to L1, so that their square
roots belong to L2. Then define

K(p1, p2) := Ep1{log p1 − log p2} ≥ 0, p1, p2 ∈ D, (34)

H(p1, p2) := ‖√p1 −√p2‖2 (35)

in D, where ‖ · ‖2 denotes the L2 norm, and where in general

Ep{φ} =

∫
φ(x)p(x) dx.

The above quantities are respectively the well-known Kullback-Leibler information (KLI)
and the Hellinger distance (HD). The KLI non-negativity follows from the Jensen inequal-
ity. The KLI gives a measure of how much the density p2 is displaced with respect to
the density p1. We remark the important fact that K is not a distance: in order to be
a metric, it should be symmetric and satisfy the triangular inequality, which is not the
case. Instead, the HD is a real metric. However, the KLI features many properties of a
distance in a generalized geometric setting (see for instance Amari (1985)). Notice finally
that if p2 vanishes in a measurable set of positive measure where p1 does not vanish, the
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Figure 2: Same as in Fig. 1 for σ1 = 0.3, σ2 = 0.6, ρ = 0.
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Figure 3: Same as in Fig. 1 for σ1 = 0.1, σ2 = 0.1, ρ = 0.99.

KLI becomes infinite. This means that the KLI assigns infinite distance to densities with
different support, contrary to the HD. For the Hellinger case, instead,

H(p1, p2) =

√
2− 2

∫ √
p1(x)p2(x) dx, (36)

from which we see that the HD takes values in [0,
√

2]. It can be shown that this distance,
when defined directly on measures rather than on densities, is independent of the particular
basic measure with respect to which densities are expressed, as long as both measures whose
distance is considered are absolutely continuous with respect to the basic measure. Since
one can always find a basic measure with respect to which two given measures µ1 and µ2

are absolutely continuous (take for example (µ1 + µ2)/2), the distance is well defined on
the set of all finite and positive measures on a given space (Ω,F), independently of the
basic measure chosen.
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Figure 4: The probability distributions for the actual basket (solid), the two-moment
matching procedure (dash-dotted), the three-moment matching procedure (dashed) for a
three component basket when σ1 = 0.3, σ2 = 0.3, σ3 = 0.2 and the stock-stock correlation
is ρ = −0.14.

Consider now a finite dimensional manifold of exponential probability densities such as

EM(c) = {p(·, θ) : θ ∈ Θ ⊂ IRm}, Θ open in IRm, (37)

p(·, θ) = exp[θ1c1(·) + . . . + θmcm(·)− ψ(θ)],

expressed w.r.t. the expectation parameters η defined by

ηi(θ) = Ep(·,θ){ci} = ∂θi
ψ(θ), i = 1, . . . , m (38)

with ∂z denoting partial derivative with respect to z (see for example Brigo (1999) or
Brigo, Hanzon and Le Gland (1999) for more details). We define p(x; η(θ)) := p(x, θ) (the
semicolon/colon notation identifies the parameterization).

Now suppose we are given a density p ∈ D, and we want to approximate it by a density
of the finite dimensional manifold EM(c).

It seems then reasonable to find a density p(·, θ) in EM(c) which minimizes the Kullback
Leibler information K(p, .). Compute

min
θ

K(p, p(·, θ)) = min
θ
{Ep[log p− log p(·, θ)]}

= Ep log p−max
θ
{θ1Epc1 + ... + θmEpcm − ψ(θ)}

= Ep log p−max
θ

V (θ),

V (θ) := θ1Epc1 + . . . + θmEpcm − ψ(θ).

It follows immediately that a necessary condition for the minimum to be attained at θ∗ is
∂θi

V (θ∗) = 0, i = 1, ..., m which yields

Epci − ∂θi
ψ(θ∗) = Epci − Ep(·,θ∗)ci = 0, i = 1, . . . , m
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Figure 5: Same as in Fig. 4 for σ1 = 0.3, σ2 = 0.3, σ3 = 0.2 and the stock-stock correlation
is ρ = 0.14.

i.e. Epci = ηi(θ
∗), i = 1, . . . ,m. This last result indicates that according to the Kullback

Leibler information, the best approximation of p in the manifold EM(c) is given by the
density of EM(c) which shares the same ci expectations (ci-moments) as the given density
p. This means that in order to approximate p we only need its ci moments, i = 1, 2, ..,m.

The above discussion provides also a way to compute the KLI distance of the density
p from the exponential family EM(c) as the distance between p and its projection p(·, θ∗)
onto EM(c) in the KL sense. We have

K(p, EM(c)) = Ep log p − (θ∗1Epc1 + ... + θ∗mEpcm − ψ(θ∗)) (39)

= Ep log p − (θ∗1η1(θ
∗) + ... + θ∗mηm(θ∗)− ψ(θ∗)).

One can look at the problem from the opposite point of view. Suppose we decide to
approximate the density p by taking in account only its m ci-moments. It can be proved
(see Kagan et al. (1973), Theorem 13.2.1) that the maximum entropy distribution which
shares the c-moments with the given p belongs to the family EM(c).

Summarizing, if we decide to approximate by using c-moments, then entropy analysis
supplies arguments to use the family EM(c); and if we decide to use the approximating
family EM(c), Kullback-Leibler says that the “closest” approximating density in EM(c)
shares the c-moments with the given density. These nice characterizations are not shared
by the HD, whose advantage over KLI is that of being a real metric and of giving finite
distances for densities with different supports.

Finally, it is well-known that the KLI is infinitesimally equivalent to the Fisher in-
formation metric around every point of a finite-dimensional manifold of densities such as
EM(c) defined above. For this reason one refers to the KLI as to a “distance” even if it
is not a metric. Indeed, consider the two densities p(·, θ) and p(·, θ + dθ) of EM(c). By
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expanding in Taylor series, we obtain easily

K(p(·, θ), p(·, θ + dθ)) = −
m∑

i=1

Ep(·,θ)

{
∂ log p(·, θ)

∂θi

}
dθi

−
m∑

i,j=1

Ep(·,θ)

{
∂2 log p(·, θ)

∂θi∂θj

}
dθi dθj + O(|dθ|3)

which is the same expression we obtain by expanding the Hellinger distance

H(p(·, θ), p(·, θ + dθ)).

8 Distance of the true basket distribution from the

lognormal family of distributions and other numer-

ical tests

Consider again the true basket terminal distribution at time T , coming from direct sim-
ulation of the single underlying assets. If we approximate the true basket by a terminal
lognormal density, corresponding for example to the basket dynamics (15) (or to any other
leading to a terminal lognormal distribution), then the question of computing the KLI
distance between the true terminal distribution of A(T ) and the lognormal family becomes
all that is relevant. Indeed, this distance expresses the best we can do by remaining in the
lognormal family.

Just to recall the lognormal distribution in exponential class form, notice that the
approximate basket dynamics (15) leads to

B̄(t) = A0 exp

[∫ t

0

(µ(u)− 1
2
σ2

B(u))du +

∫ t

0

σB(u)dWu

]
,

so that

log B̄(t) ∼ N
(

log A0 +

∫ t

0

(µ(u)− 1
2
σ2

B(u))du,

∫ t

0

σ2
B(u)du

)
. (40)

The probability density pB̄(t) of B̄(t), at any time t, is therefore given by

pB̄(t)(x) = p(x, θ(t)) = exp

{
θ1(t) ln

x

A0

+ θ2(t) ln2 x

A0

− ψ(θ1(t), θ2(t))

}
,

θ1(t) =

∫ t

0
µ(u) du∫ t

0
σ2

B(u)du
− 3

2
, θ2(t) = − 1

2
∫ t

0
σ2

B(u)du
,

ψ(θ1(t), θ2(t)) = −(θ1(t) + 1)2

4θ2(t)
+ 1

2
ln

(−πA2
0

θ2(t)

)
,
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where x > 0, and is clearly in the exponential class, with c1(x) = ln(x/A0), c2(x) = (c1(x))2.
We will denote by L the related exponential family EM(c). As concerns the expectation
parameters for this family, they are readily computed as follows:

η1 = Eθ ln(x/A0) = ∂θ1ψ(θ1, θ2) = −θ1 + 1

2θ2

η2 = Eθ ln2(x/A0) = ∂θ2ψ(θ1, θ2) =

(
θ1 + 1

2θ2

)2

− 1

2θ2

.

As for the Gaussian family, in this particular family the θ parameters can be computed
back from the η parameters by inverting the above formulas:

θ1 =
η1

η2 − η2
1

− 1 , (41)

θ2 = − 1

2(η2 − η2
1)

,

ψ(θ1, θ2) = 1
2

[
η2

1

η2 − η2
1

+ ln(2π(η2 − η2
1)A

2
0)

]
.

We can now compute the distance of a density p from the lognormal family L by applying
formula (39):

K(p,L) = Ep ln p − (θ∗1η1(θ
∗) + θ∗2η2(θ

∗)− ψ(θ∗)),

where, as previously seen, minimizing the distance implies finding the parameters θ∗ such
that

η1(θ
∗) = Ep ln(x/A0), η2(θ

∗) = Ep ln2(x/A0) .

By substituting (41), omitting the argument θ∗ and simplifying, we obtain

K(p,L) = Ep ln p + 1
2

+ η1 + 1
2
ln(2π(η2 − η2

1)A
2
0) . (42)

This distance is readily computed with no need of optimization procedures, once one
has an estimate of the true basket density and of its first two log-moments. Notice, indeed,
an important point.

Remark 8.1 (Moments versus log-moments). The best moment-matching technique
in the KLI sense is obtained by matching the first two log-moments of the true distribution,
instead of the first two usual moments. However, we do not have an analytical formula for
the log-moments of the true basket, as opposed to the usual moments, so that one prefers
to match the usual moments instead of what KLI would suggest.

It is interesting to measure numerically the loss in terms of KLI induced by this “wrong
moments” choice. This is easily feasible, as measuring the distance between two lognormal
densities, which has an easy closed form expression. The only problem is that the basket log
moments have to be computed through simulation. Then, for consistency, we may compute
the usual moments by the same simulations and compare the distance between the two
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related lognormal densities to the distance of the basket from the family of lognormal
densities. In this way, we can understand whether the wrong moments choice worsens
considerably the approximation or not.

Given that the KLI is not a real metric as opposed to the HD, and since, once one leaves
exponential families, its appeal diminishes considerably, we reason as follows. As far as the
shifted lognormal dynamics (21) is concerned, its shifted lognormal distribution is not in
an exponential class if we let the shifting parameter be free. It follows that interpreting the
KLI projection as (suitable) moments matching no longer applies. Moreover, the shifting
technique changes the support of the distribution, and this aspect renders the Hellinger
distance again preferable, as discussed in Section 7.

We then start with a non-shifted lognormal approximating basket dynamics, by simu-
lating the basic assets as correlated geometric Brownian motions, and present several plots
of the KLI distance between the two moments approximation and the family of lognormal
densities, as a function of volatility and correlation of the single assets forming the basket.
We try and isolate what are the possible causes of large distances from the lognormal fam-
ily. We answer questions such as: i) is asymmetry in the single assets volatilities and/or
initial values good or bad for the KLI? ii) are negative correlations better or worse than
positive or mixed ones? iii) are large correlations better or worse than small ones?

We already answered these questions for the specific pricing problem. We are now
trying to justify what already seen by analyzing the distributional properties, instead.

Then we check the impact of the wrong moments choice on our approximation.
We do some of the same measures numerically with the HD and compare results with

the KLI. Given that the two distances are infinitesimally equivalent, we expect them not
to differ too much when densities are close.

Then, we move to the shifted lognormal dynamics. In doing this we leave the KLI and
fully switch to the HD. We measure the distances between the true basket, two moments
and three moments approximations as functions of the underlying assets parameters. We
try and characterize situations where the two moments matching procedure does better
or worse than the three moments one when compared to the true distribution, and also
compute the distance between the two approximations themselves.

We first need to assess a number of facts affecting the accuracy of our calculation of
distances. The question we need to find an answer to is: is the number of Monte Carlo
paths sufficient for the accuracy of the calculation?

A brief description of the procedure follows. We sampled the “real” terminal distribu-
tion at time T of the basket values through a simulation consisting of one million paths for
each configuration of individual volatilities and correlations. By “real” we mean the distri-
bution of the basket under the Black-Scholes assumptions we made at the very beginning,
but where no use of approximations of any sort was ever made. The terminal distribution
at time T of the basket values was then histogrammed in bins, each of unitary width. A
similar procedure was then applied to sample both the two-moment and the three-moment
matching distributions.

Given the three histograms, the two distances of interest (KLD, HD) were calculated
through a numerical integration for each couple (real basket versus two-moments matched,
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real basket versus three-moments matched, two-moments matched versus three-moments
matched). Due to the fact that by construction, the support for the three-moment matching
distribution does not equal [0,∞) as for the two-moment matching one, the convention we
used is the following: the three-moment matching distribution is taken as a reference for
the computation of the distances between the two (in other words, it plays the role of
distribution p1 in Eq. (34)).

The Kullback-Leibler distances from the “real” basket distribution were calculated us-
ing the latter as a reference. To prevent numerical divergences in the calculation of the
Kullback-Leibler distance when the two distributions do not have the same support, a
conventional value of 10−8 replaces zero in the non reference distribution.

Distances obtained for two- versus three-moment matching distributions were compared
with a numerical integration of the analytic distributions, performed using Simpson’s rule
[10]. This allowed us to check the accuracy of calculating distances through Monte Carlo
histograms. Some results, covering a significant range of configurations of correlation and
individual volatilities, are reported in Table 3. The accuracy in the calculation of distances
is generally acceptable, being typically of the order of less than one percent. This is judged
to be sufficient for a qualitative information to be gathered from the data. Normally, low
accuracy results from basket terminal distributions displaying a high degree of kurtosis.

Tables 4–6 show the actual numbers computed for the three values of the correlation
among stock price returns, ρ = −0.99, 0, 0.99, for different values of individual volatilities.
Some more insight can be gained from inspection of Figs. 6–14, in which the two distances
under examination are viewed as functions of the individual stock price volatilities for
extreme degrees of correlation. One thing is immediately clear: the two distances have
qualitatively the same behaviour as functions of the stock volatilities. In fact, the shape of
both surfaces is typically that of a valley running along the diagonal in the (σ1, σ2) plane.
The broadness of the valley increases when passing from the fully anticorrelated (Figs.
6–8) to the fully correlated case (Figs. 12–14). This valley is also monotonically increasing
along the diagonal.

However, some more features can be noticed: in the anticorrelated case the distance
between the two different moment matching distributions (where, as stated above, the
three-moment matching one is the reference) can be seen to be increasing with asymmetry
(i.e., when moving away from the diagonal) up to a limiting value, and then decreasing
again. This is due to the fact that, when the two volatilities become very different, the bas-
ket closely resembles a one-dimensional system affected mostly by the dominant volatility,
and both approximations converge to the same terminal distribution. This feature grad-
ually disappears when correlation increases to 0 and 0.99: the valley becomes broad and
flat (in other words, both approximations are distributionally close to the real one for
not-too-asymmetric systems) and then steeply increases away from the diagonal.

The distances of the two moment matching distributions from the “real” basket terminal
distribution are instead monotonically increasing functions of the asymmetry of the system,
and only in the anticorrelated case suggest a plateau for high asymmetry (see Fig. 7). The
three-moment to real distance is instead always quite structured, with a clear maximum (in
the range spanned by our simulations) for asymmetric volatilities of the order of (30%,60%).
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Whenever the system gets either more symmetric or more asymmetric, distances clearly
decrease.

As a general result, we could state that the two-moment matching procedure performs
quite well for nearly symmetric systems, especially when the correlation is not maximally
negative; switching to a shifted lognormal distribution that matches the first three (instead
of two) moments gives best results for highly asymmetric cases, when either of the two
volatilities is greater than the other. This result is confirmed by a close inspection of the
contour plots (Figs. 15–23).

9 Conclusions

Through a numerical study of a sample case (a basket composed of two stocks), we have
tested the quality of two different approximations under various conditions. The study
has been developed on two levels: the comparison of option prices and the analysis of
probability distributions. The latter analysis has been based on the calculation of two
“distances”, the Kullback-Leibler information and the Hellinger distance, which, although
of different nature, give similar results as far as qualitative information is concerned.

The answers to the questions posed in the preceding section are well represented by
the graphs drawn: the approximation of reproducing a basket by a family of lognormal
distributions, in terms of terminal distributions, breaks down in general when the system
becomes asymmetric. A crucial quantity for this is the correlation among basket com-
ponents: negative correlations worsen considerably the quality of both moment-matching
approximations. To the decrease in quality there corresponds a significant change in the
behaviour of the approximations, though: for negative correlations the performance of the
three-moment matching approximation is better than the other, and generally this applies
also to the case of highly asymmetric volatilities.
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σFIAT σGEN ρ MC price three-mom two-mom three-mom three-mom Index Shift
price price index vol. Fwd.Index

0.1 0.1 -0.99 18.19(2) 23.872 18.504 0.179368697 37.27655382 2.449701908
0.1 0.1 -0.6 18.254(2) 18.249 18.568 0.056535864 32.75296506 6.973290669
0.1 0.1 -0.2 18.572(5) 18.567 18.861 0.065772043 38.68295302 1.043302709
0.1 0.1 0 18.78(7) 19.012 19.059 0.419742958 39.30651277 0.419742958
0.1 0.1 0.2 19.005(8) 19.003 19.275 0.078092443 39.56436475 0.161890976
0.1 0.1 0.6 19.48(10) 19.479 19.735 0.089558901 39.71135159 0.014904135
0.1 0.1 0.99 19.95(1) 20.198 20.198 0.099750353 39.72625301 2.72056E-06
0.1 0.3 -0.99 18.566(3) 21.589 22.235 0.364860528 12.87454865 26.85170708
0.1 0.3 -0.6 20.793(14) 20.717 23.208 0.320613608 17.15123272 22.57502301
0.1 0.3 -0.2 22.321(19) 22.151 24.177 0.291209254 21.41426579 18.31198993
0.1 0.3 0 22.99(2) 22.827 24.650 0.281297023 23.38643352 16.33982221
0.1 0.3 0.2 23.61(2) 23.473 25.118 0.273932173 25.21356364 14.51269209
0.1 0.3 0.6 24.76(2) 24.685 26.035 0.265220441 28.38539664 11.34085909
0.1 0.3 0.99 25.834(18) 25.781 26.909 0.262403165 30.86533776 8.86091797
0.1 0.6 -0.99 27.052(14) 29.699 40.121 0.612769846 19.05988101 20.66637472
0.1 0.6 -0.6 28.69(3) 29.521 40.457 0.607291631 19.79134873 19.934907
0.1 0.6 -0.2 30.30(4) 30.318 40.831 0.601430756 20.61876782 19.1074879
0.1 0.6 0 31.05(4) 31.312 41.030 0.59842992 21.06275597 18.66349976
0.1 0.6 0.2 31.77(4) 31.188 41.236 0.595396983 21.52721347 18.19904226
0.1 0.6 0.6 33.14(3) 32.132 41.671 0.589290058 22.51742826 17.20882747
0.1 0.6 0.99 34.45(2) 33.371 42.127 0.583388957 23.55947295 16.16678278
0.3 0.1 -0.99 18.206(1) 21.474 21.177 0.377708169 10.55236604 29.17388969
0.3 0.1 -0.6 20.092(12) 19.859 22.240 0.319236587 15.35999423 24.3662615
0.3 0.1 -0.2 21.600(17) 21.348 23.294 0.283904276 20.1392719 19.58698383
0.3 0.1 0 22.269(19) 22.051 23.807 0.272945917 22.30634833 17.4199074
0.3 0.1 0.2 22.90(2) 22.720 24.311 0.265279588 24.27803033 15.44822539
0.3 0.1 0.6 24.10(2) 23.969 25.296 0.257197224 27.60629099 12.11996474
0.3 0.1 0.99 25.189(17) 25.092 26.228 0.255639835 30.12248874 9.603766989
0.3 0.3 -0.99 18.732(4) 21.650 22.447 0.372353145 12.86049241 26.86576332
0.3 0.3 -0.6 23.35(2) 22.973 24.591 0.268745727 24.561214 15.16504173
0.3 0.3 -0.2 26.20(3) 26.064 26.743 0.237001481 34.28681779 5.439437939
0.3 0.3 0 27.44(3) 27.375 27.806 0.238226287 36.9960551 2.730200625
0.3 0.3 0.2 28.60(4) 28.584 28.861 0.245733145 38.53433843 1.191917299
0.3 0.3 0.6 30.78(4) 30.811 30.952 0.270522262 39.61697148 0.109284249
0.3 0.3 0.99 32.83(5) 32.968 32.968 0.299251811 39.72625075 4.97996E-06
0.3 0.6 -0.99 27.36(2) 28.101 39.737 0.61767253 18.34476252 21.38149321
0.3 0.6 -0.6 31.17(4) 29.502 40.384 0.606049429 19.80184924 19.92440649
0.3 0.6 -0.2 34.36(5) 31.443 41.257 0.591544263 21.84904686 17.87720887
0.3 0.6 0 35.79(5) 32.931 41.785 0.583592113 23.11631831 16.60993742
0.3 0.6 0.2 37.15(5) 33.974 42.379 0.575528206 24.55104967 15.17520606
0.3 0.6 0.6 39.77(5) 37.079 43.780 0.560962997 27.84712848 11.87912724
0.3 0.6 0.99 42.37(4) 40.487 45.421 0.552874339 31.28074401 8.445511719
0.6 0.1 -0.99 24.467(15) 27.716 38.098 0.615307514 16.93041852 22.79583721
0.6 0.1 -0.6 26.48(3) 27.211 38.508 0.608519153 17.73960256 21.98665317
0.6 0.1 -0.2 28.29(3) 28.085 38.962 0.601319285 18.65499651 21.07125922
0.6 0.1 0 29.11(3) 29.424 39.201 0.597660061 19.14599994 20.58025579
0.6 0.1 0.2 29.88(3) 29.039 39.449 0.593981906 19.65935482 20.06690091
0.6 0.1 0.6 31.35(3) 30.071 39.970 0.586643391 20.7523157 18.97394002
0.6 0.1 0.99 32.67(2) 31.151 40.511 0.579650096 21.8992758 17.82697992
0.6 0.3 -0.99 26.12(2) 26.118 37.869 0.616911806 16.62363281 23.10262291
0.6 0.3 -0.6 30.20(4) 27.656 38.644 0.602715533 18.24538251 21.48087322
0.6 0.3 -0.2 33.43(5) 29.780 39.676 0.585341296 20.52205794 19.20419779
0.6 0.3 0 34.86(5) 31.074 40.294 0.576029241 21.9253794 17.80087632
0.6 0.3 0.2 36.22(5) 32.524 40.985 0.566797952 23.50394931 16.22230642
0.6 0.3 0.6 38.85(5) 35.829 42.591 0.551009385 27.06642078 12.65983495
0.6 0.3 0.99 41.40(4) 39.369 44.440 0.543725695 30.64441364 9.081842089
0.6 0.6 -0.99 36.96(4) 37.217 44.838 0.583032219 27.26094977 12.46530596
0.6 0.6 -0.6 39.80(6) 38.494 45.219 0.575437673 28.58147336 11.14478237
0.6 0.6 -0.2 43.06(7) 40.756 45.960 0.562767476 31.10305642 8.62319931
0.6 0.6 0 44.63(7) 42.162 46.534 0.555250316 32.94721857 6.779037159
0.6 0.6 0.2 46.18(7) 44.460 47.298 0.548988389 35.10230883 4.623946893
0.6 0.6 0.6 49.27(8) 48.914 49.500 0.554653025 38.8624482 0.863807527
0.6 0.6 0.99 52.57(8) 52.585 52.585 0.598508754 39.72623077 2.49572E-05

Table 2: Prices of call options on the two–stock basket outlined in Table 6. The first three
columns give the individual volatilities of the stocks and their instantaneous correlation,
the fourth gives the Monte Carlo price in a Black–Scholes framework for the single assets
(statistical uncertainty on the estimate is given in parentheses). The two subsequent
columns give the price of the option calculated with the three– and the two–moment
matching procedures, respectively.
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rho v1 v2 KLD23 H23 aKLD23 aH23 rel.err. KLD23 rel.err. H23
-0.99 0.1 0.1 0.218838 0.131945 0.241505 0.142837 -0.094 -0.076
-0.99 0.1 0.2 0.222958 0.15232 0.225789 0.154711 -0.013 -0.015
-0.99 0.1 0.3 0.263829 0.194942 0.263915 0.196539 -0.00033 -0.0083

-0.99 0.2 0.1 0.278072 0.185579 0.285108 0.189641 -0.025 -0.021
-0.99 0.2 0.2 0.269175 0.182059 0.274568 0.185373 -0.020 -0.018

-0.99 0.3 0.1 0.313993 0.226037 0.315621 0.22846 -0.0052 -0.011
-0.99 0.3 0.2 0.354847 0.250804 0.357976 0.253975 -0.0087 -0.012
-0.99 0.3 0.3 0.27737 0.205057 0.277309 0.20661 0.00022 -0.0075

0 0.1 0.1 2.03548e-005 9.54271e-006 2.49846e-006 1.3e-006 7.1 6.6
0 0.1 0.2 0.0125227 0.00744924 0.01208 0.00728964 0.037 0.022
0 0.1 0.3 0.0758187 0.0563726 0.0750839 0.0564204 0.0098 -0.00085

0 0.2 0.1 0.00986339 0.0057038 0.00944828 0.00556002 0.044 0.026
0 0.2 0.2 0.000447922 0.000213649 0.000154143 7.92155e-005 1.9 1.7
0 0.2 0.3 0.0208195 0.0138063 0.0200611 0.0134852 0.038 0.024
0 0.2 0.4 0.131393 0.105765 0.130439 0.106207 0.0073 -0.0042

0 0.3 0.1 0.0765328 0.0563849 0.0759533 0.0564474 0.0076 -0.0011
0 0.3 0.2 0.0135796 0.00850388 0.0128723 0.00823717 0.055 0.032
0 0.3 0.3 0.00324979 0.00175223 0.00248637 0.00142438 0.31 0.23
0 0.3 0.4 0.052081 0.03988 0.0508833 0.0395785 0.024 0.0076

0 0.4 0.1 0.214642 0.170028 0.213671 0.170692 0.0045 -0.0039
0 0.4 0.2 0.121511 0.0968438 0.120635 0.0972102 0.0073 -0.0038
0 0.4 0.3 0.0360245 0.0263782 0.03479 0.0259586 0.035 0.016
0 0.4 0.4 0.0200428 0.013843 0.0185312 0.01323 0.082 0.046

0.99 0.1 0.2 0.00247715 0.00131638 0.00204039 0.00112665 0.21 0.17
0.99 0.1 0.3 0.0261437 0.0179323 0.0252194 0.0175598 0.037 0.021
0.99 0.1 0.4 0.105989 0.0852947 0.104825 0.0855886 0.011 -0.0034

0.99 0.2 0.1 0.00248854 0.00133487 0.00211696 0.00116846 0.18 0.14
0.99 0.2 0.3 0.00296912 0.00158455 0.00207561 0.00118835 0.43 0.33
0.99 0.2 0.4 0.0341034 0.025326 0.0326595 0.0248244 0.044 0.020

0.99 0.3 0.1 0.0273298 0.0187098 0.0265303 0.0184368 0.030 0.015
0.99 0.3 0.2 0.00288854 0.00154994 0.00207492 0.00118583 0.39 0.31
0.99 0.3 0.3 3.91215e-006 1.17163e-006 1.7e-10 3.2e-010 23011.6 3700.56
0.99 0.3 0.4 0.00569767 0.00314874 0.00372715 0.00232535 0.53 0.35

0.99 0.4 0.1 0.112083 0.0899206 0.111135 0.0902053 0.0085 -0.0032
0.99 0.4 0.2 0.034608 0.0256035 0.0330881 0.02504 0.046 0.023
0.99 0.4 0.3 0.00546638 0.0030425 0.00366671 0.00227812 0.49 0.34

Table 3: A check of the numerical procedure used to calculate the distances among dis-
tributions through Monte Carlo: for different correlations and individual volatilities, we
report in columns four and five the Monte-Carlo-calculated distances, in columns six and
seven the same quantities calculated through numerical integration, in the last two columns
the percentage errors in the calculation.
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rho v1 v2 KLD23 H23 KLD2b H2b KLD3b H3b
-0.99 0.1 0.1 0.218838 0.131945 0.205638 0.103334 0.0466358 0.0122691
-0.99 0.1 0.2 0.222958 0.15232 0.378935 0.237993 0.0815244 0.0498708
-0.99 0.1 0.3 0.263829 0.194942 0.488671 0.319677 0.150626 0.103711
-0.99 0.1 0.4 0.364353 0.276284 0.651024 0.423278 0.226744 0.161889
-0.99 0.1 0.5 0.52253 0.389967 0.859131 0.543759 0.310822 0.223349
-0.99 0.1 0.6 0.747401 0.534888 1.10166 0.674223 0.39278 0.282593

-0.99 0.2 0.1 0.278072 0.185579 0.413961 0.249738 0.0630203 0.0349268
-0.99 0.2 0.2 0.269175 0.182059 0.345933 0.207495 0.0369139 0.0176367
-0.99 0.2 0.3 0.344408 0.247488 0.475467 0.303794 0.074178 0.0414038
-0.99 0.2 0.4 0.440804 0.324966 0.620168 0.405165 0.135779 0.0832207
-0.99 0.2 0.5 0.5845 0.425442 0.780567 0.510204 0.190715 0.12302
-0.99 0.2 0.6 0.79381 0.555048 0.95729 0.620269 0.224679 0.146796

-0.99 0.3 0.1 0.313993 0.226037 0.543327 0.344283 0.151778 0.0994899
-0.99 0.3 0.2 0.354847 0.250804 0.442019 0.279974 0.0520929 0.0250491
-0.99 0.3 0.3 0.27737 0.205057 0.413571 0.269918 0.0749936 0.0427038
-0.99 0.3 0.4 0.38355 0.288381 0.49624 0.333911 0.072609 0.0402728
-0.99 0.3 0.5 0.558177 0.410284 0.62032 0.424071 0.0671154 0.0325614
-0.99 0.3 0.6 0.779854 0.548832 0.76553 0.524921 0.11671 0.0286924

-0.99 0.4 0.1 0.415552 0.30643 0.707351 0.447946 0.232912 0.161783
-0.99 0.4 0.2 0.479655 0.34425 0.593016 0.386193 0.0839096 0.0466189
-0.99 0.4 0.3 0.367315 0.275285 0.466945 0.313785 0.0604056 0.0323824
-0.99 0.4 0.4 0.298797 0.234079 0.460432 0.31628 0.108052 0.0663061
-0.99 0.4 0.5 0.439902 0.339211 0.522838 0.366877 0.0596868 0.0317828
-0.99 0.4 0.6 0.697456 0.50669 0.625387 0.44507 0.353023 0.0328962

-0.99 0.5 0.1 0.579246 0.421093 0.912306 0.566172 0.314723 0.222994
-0.99 0.5 0.2 0.638226 0.45162 0.757402 0.495773 0.123541 0.0726772
-0.99 0.5 0.3 0.571969 0.416126 0.579043 0.397233 0.0911699 0.0182084
-0.99 0.5 0.4 0.412474 0.320184 0.498426 0.349886 0.0574602 0.0309544
-0.99 0.5 0.5 0.345918 0.279226 0.496176 0.354114 0.113617 0.0713113
-0.99 0.5 0.6 0.541518 0.417485 0.546168 0.396514 0.0932755 0.0157356

-0.99 0.6 0.1 0.811753 0.562102 1.15016 0.69391 0.389074 0.277442
-0.99 0.6 0.2 0.86123 0.588191 0.937644 0.609372 0.155307 0.0880039
-0.99 0.6 0.3 0.829726 0.572337 0.721927 0.498392 0.377364 0.0439781
-0.99 0.6 0.4 0.700628 0.505369 0.58638 0.418798 0.673677 0.0590863
-0.99 0.6 0.5 0.506447 0.394764 0.525409 0.381653 0.0774958 0.0155701
-0.99 0.6 0.6 0.427892 0.345799 0.521773 0.383757 0.0775218 0.04483

Table 4: Distances between distributions for correlation equal to -0.99, for different config-
urations of the individual volatilities: prefixes “KLD” and “H” denote the Kullback-Leibler
and Hellinger distances, respectively; suffixes “23”, “2b” and “3b” denote distances between
two- and three-moment matching distributions, two-moment matching and simulated bas-
ket distribution, three-moment and simulated basket distributions, respectively.
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rho v1 v2 KLD23 H23 KLD2b H2b KLD3b H3b
0 0.1 0.1 2.03548e-005 9.54271e-006 0.000140322 6.86961e-005 0.000146713 7.11875e-005
0 0.1 0.2 0.0125227 0.00744924 0.0071684 0.00358477 0.00385037 0.00133796
0 0.1 0.3 0.0758187 0.0563726 0.0408127 0.0239167 0.0572321 0.0104558
0 0.1 0.4 0.200258 0.160586 0.111815 0.0732579 0.266938 0.0331652
0 0.1 0.5 0.390454 0.307333 0.227022 0.158684 0.686602 0.0706529
0 0.1 0.6 0.647891 0.481056 0.387918 0.277853 1.27488 0.125002

0 0.2 0.1 0.00986339 0.0057038 0.00537269 0.00262088 0.00327326 0.00123624
0 0.2 0.2 0.000447922 0.000213649 0.000397248 0.000178155 0.000452666 0.000201092
0 0.2 0.3 0.0208195 0.0138063 0.00554336 0.00269605 0.0243588 0.0060096
0 0.2 0.4 0.131393 0.105765 0.0330267 0.0184525 0.392242 0.0477799
0 0.2 0.5 0.337531 0.270964 0.0977425 0.0606575 1.24246 0.125243
0 0.2 0.6 0.614648 0.459699 0.205713 0.137447 2.18084 0.213401

0 0.3 0.1 0.0765328 0.0563849 0.0373632 0.0212218 0.0688288 0.0126113
0 0.3 0.2 0.0135796 0.00850388 0.00352887 0.00163265 0.0130374 0.0040226
0 0.3 0.3 0.00324979 0.00175223 0.00139718 0.000598234 0.00263712 0.0010667
0 0.3 0.4 0.052081 0.03988 0.00714095 0.00351836 0.156625 0.0239217
0 0.3 0.5 0.246209 0.20385 0.0338496 0.0188801 1.25359 0.126827
0 0.3 0.6 0.55169 0.423695 0.097609 0.0597938 2.66157 0.261888

0 0.4 0.1 0.214642 0.170028 0.1084 0.0691868 0.370033 0.0421094
0 0.4 0.2 0.121511 0.0968438 0.0257942 0.0139214 0.386015 0.0482085
0 0.4 0.3 0.0360245 0.0263782 0.00475006 0.00224611 0.0906869 0.0164131
0 0.4 0.4 0.0200428 0.013843 0.00337574 0.00154235 0.0396564 0.00870625
0 0.4 0.5 0.133688 0.112584 0.0110779 0.00568262 0.749945 0.0792556
0 0.4 0.6 0.443227 0.354811 0.0409504 0.0231643 2.66987 0.256253

0 0.5 0.1 0.421459 0.325621 0.225561 0.154442 0.885229 0.0878191
0 0.5 0.2 0.347493 0.2761 0.0851904 0.0516173 1.42164 0.140675
0 0.5 0.3 0.22827 0.188721 0.0253467 0.0137065 1.24387 0.124694
0 0.5 0.4 0.103791 0.0864284 0.00811102 0.00403361 0.542399 0.0620074
0 0.5 0.5 0.0779295 0.0647728 0.00729799 0.00356486 0.39218 0.0454111
0 0.5 0.6 0.292278 0.246853 0.0181572 0.00961736 2.02903 0.18953

0 0.6 0.1 0.699886 0.506027 0.390641 0.275477 1.48501 0.149327
0 0.6 0.2 0.651246 0.480124 0.191427 0.125504 2.53976 0.245299
0 0.6 0.3 0.563175 0.427771 0.0819161 0.0491097 2.89708 0.281373
0 0.6 0.4 0.422827 0.338669 0.0311138 0.0171874 2.66881 0.254568
0 0.6 0.5 0.249081 0.212021 0.0142666 0.00737331 1.77329 0.164523
0 0.6 0.6 0.203063 0.176558 0.0138126 0.00708588 1.49339 0.133764

Table 5: Distances between distributions for zero correlation, for different configurations
of the individual volatilities: prefixes “KLD” and “H” denote the Kullback-Leibler and
Hellinger distances, respectively; suffixes “23”, “2b” and “3b” denote distances between
two- and three-moment matching distributions, two-moment matching and simulated bas-
ket distribution, three-moment and simulated basket distributions, respectively.
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rho v1 v2 KLD23 H23 KLD2b H2b KLD3b H3b
0.99 0.1 0.1 0 0 0.000107971 5.11245e-005 0.000107971 5.11245e-005
0.99 0.1 0.2 0.00247715 0.00131638 0.00180259 0.000887342 0.000506053 0.000225129
0.99 0.1 0.3 0.0261437 0.0179323 0.0151956 0.00878737 0.00870935 0.00240444
0.99 0.1 0.4 0.105989 0.0852947 0.0554089 0.0367852 0.1053 0.0165266
0.99 0.1 0.5 0.273531 0.225125 0.136948 0.0993227 0.581213 0.0615275
0.99 0.1 0.6 0.53764 0.416669 0.268315 0.202482 1.67602 0.146105

0.99 0.2 0.1 0.00248854 0.00133487 0.00173617 0.000876315 0.000566874 0.000248296
0.99 0.2 0.2 1.34346e-010 6.71732e-011 0.000401436 0.00018961 0.000401448 0.000189616
0.99 0.2 0.3 0.00296912 0.00158455 0.00160406 0.000755162 0.00164385 0.000646363
0.99 0.2 0.4 0.0341034 0.025326 0.0111926 0.00610658 0.0452897 0.0086098
0.99 0.2 0.5 0.151168 0.128071 0.0433732 0.0269546 0.489087 0.0538192
0.99 0.2 0.6 0.396959 0.323941 0.112782 0.0771913 1.7243 0.162367

0.99 0.3 0.1 0.0273298 0.0187098 0.0156094 0.00898144 0.00856241 0.00258375
0.99 0.3 0.2 0.00288854 0.00154994 0.00161802 0.000753736 0.00159446 0.000661345
0.99 0.3 0.3 3.91215e-006 1.17163e-006 0.00108095 0.000490822 0.00106388 0.000487976
0.99 0.3 0.4 0.00569767 0.00314874 0.00242609 0.00111609 0.00500561 0.00187435
0.99 0.3 0.5 0.0604346 0.0495344 0.0109638 0.00575735 0.22298 0.0272083
0.99 0.3 0.6 0.251215 0.214938 0.040486 0.0241799 1.405 0.130163

0.99 0.4 0.1 0.112083 0.0899206 0.0570993 0.0374854 0.129105 0.0184497
0.99 0.4 0.2 0.034608 0.0256035 0.0111801 0.00604018 0.0471548 0.00881703
0.99 0.4 0.3 0.00546638 0.0030425 0.00230223 0.00104461 0.00468877 0.00178471
0.99 0.4 0.4 3.57694e-009 1.78847e-009 0.00216022 0.000953194 0.00216026 0.000953218
0.99 0.4 0.5 0.0120589 0.00768187 0.00351894 0.00159972 0.0233744 0.00554219
0.99 0.4 0.6 0.119706 0.104229 0.0118259 0.00608048 0.781695 0.0736051

0.99 0.5 0.1 0.291476 0.236958 0.140415 0.100492 0.655374 0.0686964
0.99 0.5 0.2 0.155735 0.131282 0.0430273 0.0265361 0.531289 0.0564551
0.99 0.5 0.3 0.060377 0.0490669 0.010562 0.00555887 0.201945 0.0270741
0.99 0.5 0.4 0.0117624 0.00747111 0.00332857 0.0015208 0.0221119 0.00545388
0.99 0.5 0.5 1.51803e-008 7.58959e-009 0.00364798 0.00158672 0.0036477 0.00158659
0.99 0.5 0.6 0.028717 0.022096 0.00510558 0.00232141 0.159045 0.0183311

0.99 0.6 0.1 0.573514 0.434252 0.274789 0.204741 1.75092 0.158506
0.99 0.6 0.2 0.414716 0.334451 0.112145 0.0759121 1.88212 0.171978
0.99 0.6 0.3 0.256498 0.219246 0.0393561 0.023384 1.42439 0.134745
0.99 0.6 0.4 0.119867 0.104229 0.0114463 0.00584327 0.737733 0.0739362
0.99 0.6 0.5 0.0280795 0.0213199 0.00507705 0.00227889 0.147963 0.0177646
0.99 0.6 0.6 3.98853e-006 1.20982e-006 0.0054301 0.00240345 0.00542962 0.0024032

Table 6: Distances between distributions for correlation equal to 0.99, for different configu-
rations of the individual volatilities: prefixes “KLD” and “H” denote the Kullback-Leibler
and Hellinger distances, respectively; suffixes “23”, “2b” and “3b” denote distances between
two- and three-moment matching distributions, two-moment matching and simulated bas-
ket distribution, three-moment and simulated basket distributions, respectively.
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Figure 6: The Hellinger (left) and Kullback-Leibler (right) distances between the two-
and the three-moment matching distributions, for fully negative correlation (ρ = −0.99),
as functions of the two individual volatilities in the range (0,60%). The corresponding
contour plots can be seen in Fig. 15.
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Figure 7: The Hellinger (left) and Kullback-Leibler (right) distances between the two-
moment matching and the basket distributions, for fully negative correlation (ρ = −0.99),
as functions of the two individual volatilities in the range (0,60%). The corresponding
contour plots can be seen in Fig. 16.
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Figure 8: The Hellinger (left) and Kullback-Leibler (right) distances between the three-
moment matching and the basket distributions, for fully negative correlation (ρ = −0.99),
as functions of the two individual volatilities in the range (0,60%). The corresponding
contour plots can be seen in Fig. 17.
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Figure 9: The Hellinger (left) and Kullback-Leibler (right) distances between the two-
and the three-moment matching distributions, for zero correlation as functions of the two
individual volatilities in the range (0,60%). The corresponding contour plots can be seen
in Fig. 18.
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Figure 10: The Hellinger (left) and Kullback-Leibler (right) distances between the two-
moment matching and the basket distributions, for zero correlation as functions of the two
individual volatilities in the range (0,60%). The corresponding contour plots can be seen
in Fig. 19.
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Figure 11: The Hellinger (left) and Kullback-Leibler (right) distances between the three-
moment matching and the basket distributions, for zero correlation as functions of the two
individual volatilities in the range (0,60%). The corresponding contour plots can be seen
in Fig. 20.
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Figure 12: The Hellinger (left) and Kullback-Leibler (right) distances between the two-
and the three-moment matching distributions, for fully positive correlation (ρ = 0.99), as
functions of the two individual volatilities in the range (0,60%). The corresponding contour
plots can be seen in Fig. 21.
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Figure 13: The Hellinger (left) and Kullback-Leibler (right) distances between the two-
moment matching and the basket distributions, for fully positive correlation (ρ = 0.99),
as functions of the two individual volatilities in the range (0,60%). The corresponding
contour plots can be seen in Fig. 22.
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Figure 14: The Hellinger (left) and Kullback-Leibler (right) distances between the three-
moment matching and the basket distributions, for fully positive correlation (ρ = 0.99),
as functions of the two individual volatilities in the range (0,60%). The corresponding
contour plots can be seen in Fig. 23.
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Figure 15: Contour plots of the Hellinger (left) and Kullback-Leibler (right) distances be-
tween the two- and the three-moment matching distributions, for fully negative correlation
(ρ = −0.99), as functions of the two individual volatilities in the range (0,60%). These
contour plots correspond to the surfaces shown in Figs. 6.
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Figure 16: Contour plot of the Hellinger (left) and Kullback-Leibler (right) distances be-
tween the two-moment matching and the basket distributions, for fully negative correlation
(ρ = −0.99), as functions of the two individual volatilities in the range (0,60%). These
contour plots correspond to the surfaces shown in Figs. 7.
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Figure 17: Contour plots of the Hellinger (left) and Kullback-Leibler (right) distances
between the three-moment matching and the basket distributions, for fully negative cor-
relation (ρ = −0.99), as functions of the two individual volatilities in the range (0,60%).
These contour plots correspond to the surfaces shown in Figs. 8.
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Figure 18: Contour plots of the Hellinger (left) and Kullback-Leibler (right) distances
between the two- and the three-moment matching distributions, for zero correlation as
functions of the two individual volatilities in the range (0,60%). These contour plots
correspond to the surfaces shown in Figs. 9.
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Figure 19: Contour plots of the Hellinger (left) and Kullback-Leibler (right) distances
between the two-moment matching and the basket distributions, for zero correlation as
functions of the two individual volatilities in the range (0,60%). These contour plots
correspond to the surfaces shown in Figs. 10.
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Figure 20: Contour plots of the Hellinger (left) and Kullback-Leibler (right) distances
between the three-moment matching and the basket distributions, for zero correlation
as functions of the two individual volatilities in the range (0,60%). These contour plots
correspond to the surfaces shown in Figs. 11.
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Figure 21: Contour plots of the Hellinger (left) and Kullback-Leibler (right) distances be-
tween the two- and the three-moment matching distributions, for fully positive correlation
(ρ = 0.99), as functions of the two individual volatilities in the range (0,60%). These
contour plots correspond to the surfaces shown in Figs. 12.
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Figure 22: Contour plots of the Hellinger (left) and Kullback-Leibler (right) distances be-
tween the two-moment matching and the basket distributions, for fully positive correlation
(ρ = 0.99), as functions of the two individual volatilities in the range (0,60%). These
contour plots correspond to the surfaces shown in Figs. 13.
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Figure 23: Contour plots of the Hellinger (left) and Kullback-Leibler (right) distances
between the three-moment matching and the basket distributions, for fully positive corre-
lation (ρ = 0.99), as functions of the two individual volatilities in the range (0,60%). These
contour plots correspond to the surfaces shown in Figs. 14.


