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I would like to dedicate this talk to
Giovanni Battista Di Masi (1944-2016),

who passed away on April 4.

PhD at Brown University, Author in signal
processing, stochastic control & filtering,
probability, stochastic analysis, statistics.

Professor of Probability & Mathematical Statistics, later Head of the
Department of Mathematics at the University of Padua and Assessor
at the Padua Local Administration

Gianni was my Laurea dissertation supervisor (1990) and he was
present at my PhD viva in Amsterdam. He taught me stochastic
calculus, nonlinear filtering, and much more beyond mere science.
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The traditional view of SDEs: Ito and Stratonovich SDEs and stochastic integrals

SDEs: Brownian Motion as the randomness driver

dXt︸︷︷︸ = a(Xt )︸ ︷︷ ︸ dt + b(Xt )︸ ︷︷ ︸ dWt︸︷︷︸
Change in X ”MEAN Amplitude of Random

between t and t + dt CHANGE” random shock shock

W is Brownian motion or Wiener process

Independent stationary increments, Wt+∆1t −Wt indep of Wt −Wt−∆2t ,
continous paths, W0 = 0. This implies Gaussian ∆Wt ∼ N (0,∆t).

These properties can coexist but W ’s paths have unbounded variation
- rough paths - nowhere differentiable. So what does dW really mean?

Quadratic variation (nested dyadic grids) 0 = tn
0 < tn

1 < . . . < tn
n = T ,

lim
n

n−1∑
i=0

(Wtn
i+1
−Wtn

i
)2 = T , or “dWtdWt = dt ′′ (“dt dWt = 0, dt dt = 0′′)
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The traditional view of SDEs: Ito and Stratonovich SDEs and stochastic integrals

Classic theory of Stochastic Differential Equations

dXt = a(Xt )dt + b(Xt )dWt , X0. dW not a real differential. So?

Write it as

Xt = X0 +

∫ t

0
a(Xs)ds +

∫ t

0
b(Xs)dWs.

Now the matter is defining the stochastic integral driven by dW
Since W has unbounded variation, we cannot define this as an
ordinary Stiltjes integral on the paths.
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The traditional view of SDEs: Ito and Stratonovich SDEs and stochastic integrals

The stochastic integral as a Stiltjes integral?

In a Stiltjes integral one has∫ T
0 b(Xs)dWs =

= lim
n

n∑
i=1

b(X (t̄i))(Wti+1−Wti )

for ANY choice t̄i ∈ [ti , ti+1).

However, for Brownian mo-
tion this does not work since
W has unbounded variation.

Add an extra specification:
we need to explicitly decide
which point t̄i is considered.

In a standard Stiltjes integral one has that the following limit converges∫ T

0
σ(Xs)dWs = lim

n

n∑
i=1

σ(X (t̄i))(Wti+1 −Wti )

for ANY possible choice of t̄i ∈ [ti , ti+1).

However, for Brownian motion this does not work since W has
unbounded variation and is not differentiable.

It turns out that one can still define the stochastic integral in a Stiltjes
way adding an extra specification: we need to explicitly decide at which
point t̄i in each limit interval [ti , ti+1) the integrand σ(Xt ) is evaluated.
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The traditional view of SDEs: Ito and Stratonovich SDEs and stochastic integrals

Xt = X0 +
∫ t

0 a(Xs)ds +

∫ t

0
b(Xs)dWs ??

Traditionally, 2 main definitions of stochastic integrals with
L2(P)-convergence: Initial point t̄i = ti vs mid point t̄i =

ti +ti+1
2∫ T

0
b(Xs)dWs = lim

n

n∑
i=1

b(X (ti))(Wti+1 −Wti ) (Itô)

∫ T

0
b(Xs)◦dWs = lim

n

n∑
i=1

b
(

X
(

ti + ti+1

2

))
(Wti+1−Wti )(Stratonovich)

(Str more general def. has [b(X (ti)) + b(X (ti+1))]/2 in front of dW )
where it is understood that as n tends to infinity the mesh size of
the partition {[0, t1), [t1, t2), . . . , [tn−1, tn = T ]} of [0,T ] tends to 0.
Stratonovich integral looks into the future, Ito does not.
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The traditional view of SDEs: Ito and Stratonovich SDEs and stochastic integrals

Battle of the integrals: Ito or Stratonovich?

Itô (-Doeblin) integral:
The good: “Does not look into the future” (social sciences)
Itô integral is martingale: split in “local mean” & “volatility” above
Good probabilistically, many important results in probability theory.
The bad: due to dWdW = dt 6= 0 does not satisfy chain rule!

dXt = a(Xt )dt + b(Xt )dWt ,

Itô’s formula: df (Xt ) = ((∇f )(Xt ))T dXt +
1
2

(dXt )
T (Hf (Xt ))(dXt )

What does it mean as a change of coordinates/variables?
The ugly: Given finite variation noises W n →W a.s. uniformly in
t-bounded intervals, solutions in dW n do not converge to Itô SDE
sol. Bad for engineering / physical systems with external noise
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The traditional view of SDEs: Ito and Stratonovich SDEs and stochastic integrals

Battle of the integrals: Ito or Stratonovich?

Fisk ([12])-Stratonovich ([29]) (-McShane [23]) Integral.
The good: satisfies chain rule (same as ordinary differential
eq./vector fields), good for basic geometry

dXt = a(Xt )dt + b(Xt ) ◦ dWt , df (Xt ) = ((∇f )(Xt ))T ◦ dXt

E.g. the above SDE dX stays in a manifold M if a(X ) & b(X ) are
in the tangent space of the manifold. If not project on tangent
space and you have approximated original SDE with SDE on M.
Now if W n →W , the solution uder W n converges to the
Stratonovich SDE solution (Wong Zakai)
The bad: Looks into the future.
The ugly: Cannot interpret SDE dt term as local mean (no
martingale property but... median?). Not good probabilistically.
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The traditional view of SDEs: Ito and Stratonovich Probability and geometry

In a nutshell: Itô ok probabilistically, Stratonovich geometrically.
This talk: Let’s make Ito SDEs good for geometry too.
Natural question. Ito-Stratonovich Transformation: given Ito
SDE, by suitably changing a(Xt ) one obtains a Strat. SDE with the
same solution X . Why not use that back & forth?
Because e.g. optimality of projection on submanifolds for
dimension reduction depends on choice of calculus (later)
History: Itô integral in the 40’s-50’s. Itô dominates among
mathematicians, except for geometry. Stratonovich fared better
with physicists & engineers, due to Wong Zakai & symmetry.
Difficult infancy for symmetric integral. Donald Fisk paper rejected
by Annals in mid 60’s. In 1967 Skorokhod (1930-2011) [28]
reviewed Stratonovich’s 1966 book quite critically (euphemism).
We now introduce Itô calculus on manifolds using jets. Previous
approaches: Schwartz morphism, see Emery [11], & Itô bundle,
see Gliklikh [15].
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Itô SDEs on manifolds: 2-Jets Drawing and simulating SDEs as “fields of curves”

Jets and SDEs

For all x ∈ Rn consider smooth curve γx : R→ Rn, γx (0) = x

Example: γE
x on R2 as follows

(zero 3d-on derivatives):

γE
(x1,x2)(t) = (x1, x2)+ t(−x2, x1)︸ ︷︷ ︸

circular counterclock

+ 3t2(x1, x2)︸ ︷︷ ︸
radially outward

-2 -1 0 1 2 3

-2

-1

0

1

2

3
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Itô SDEs on manifolds: 2-Jets Drawing and simulating SDEs as “fields of curves”

Jets and SDEs

Given such a γ, a starting X0
(X0 = (1,0) in our example), a Wt
& time step δt define discrete time
stochastic process:

X0 := x0, Xt+δt := γE
Xt

(Wt+δt −Wt )

We have connected the points
using the curves in γE

Xt
: follow

s 7→ γXt (s) from s = 0 to
s = N (0, δt), all N indepedent
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Itô SDEs on manifolds: 2-Jets Drawing and simulating SDEs as “fields of curves”

Jets and SDEs

δt = 0.2× 2−5 δt = 0.2× 2−7

δt = 0.2× 2−9 δt = 0.2× 2−11

Figure: Discrete time trajectories for γE for a fixed Wt and X0 with different
values for δt
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Itô SDEs on manifolds: 2-Jets Coordinate-free converging difference scheme as SDE

Jets and SDEs

Xt+δt := γXt (δWt ) reads:

“Follow the curve γ starting from X for a parameter increment of
δWt := Wt+δt −Wt ”. In this description,

Not using the Rn vector space structure. Intrinsic.

These discrete time stochastic processes converge in some sense to a
limit as the time step tends to zero for γ such as γE with sufficiently
good regularity. Write the limit equation as

Coordinate free SDE: Xt γXt (dWt ), X0 = x0. (1)

How can the scheme limit be made precise and how does it relate to
classic stochastic calculus?
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Itô SDEs on manifolds: 2-Jets Coordinate-free converging difference scheme as SDE

Jets and SDEs

In a coordinate system, consider the Taylor expansion of γx .

γx (t) = x + γ′x (0)t +
1
2
γ′′x (0)t2 + Rx t3, Rx =

1
6
γ′′′x (ξ), ξ ∈ [0, t ],

where Rx t3 is the remainder term in Lagrange form. Substituting this
Taylor expansion in our scheme Xt+δt = γXt (Wt+δt −Wt ) we obtain

δXt = γ′Xt
(0)δWt +

1
2
γ′′Xt

(0)(δWt )
2 + RXt (δWt )

3, X0 = x0. (2)

Properties of Brownian motion such as “(dW )2 = dt” and “(dW )3 = 0”
suggest we replace (δWt )

2 with δt and (δWt )
3 with 0. We obtain:

δX̄t = γ′X̄t
(0)︸ ︷︷ ︸

=:b(X̄t )

δWt +
1
2
γ′′X̄t

(0)︸ ︷︷ ︸
=:a(X̄t )

δt , X̄0 = x0.
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Itô SDEs on manifolds: 2-Jets Coordinate free Itô SDE as 2-jet scheme limit

Jets and SDEs

δX̄t = a(X̄t )δt + b(X̄t )δWt . (3)

This is the Euler scheme & under suitable assumptions converges in
L2(P) to the solution to the Itô stochastic differential equation:

dX̃t = a(X̃t ) dt + b(X̃t )dWt , X̃0 = x0. (4)

More precisely, assume in the given coordinate system γx (t) is
smoothly varying in x with first & second t derivatives at 0 satisfying
Lipschitz conditions in x . Assume that the third t-derivative at t = 0 is
uniformly bounded in x . Theorem: (Armstrong & B. 2016). The
following 3 schemes have as same L2(P) limit the classic Ito SDE X̃ .

Coordinate free γx scheme: Xt+δt := γXt (Wt+δt −Wt ), X0

2-jet scheme: δX̂t = γ′
X̂t

(0)δWt + 1
2γ
′′
X̂t

(0)(δWt )
2, X0

The classic Euler scheme: δX̄t = γ′X̄t
(0)δWt + 1

2γ
′′
X̄t

(0)δt , X0

J. Armstrong (KCL) & D. Brigo (ICL) Intrinsic SDEs as jets IRMA Seminar, Strasbourg 16



Itô SDEs on manifolds: 2-Jets Coordinate free Itô SDE as 2-jet scheme limit

Jets and SDEs

Are the 2-jet scheme and its limit coordinate free?

δX̂t = b(X̂t )δWt + a(X̂t )(δWt )
2, x0 → dX̃t = a(X̃t )︸ ︷︷ ︸

1
2γ
′′
X̃t

(0)

dt + b(X̃t )︸ ︷︷ ︸
γ′

X̃t
(0)

dWt , x0

Coefficients a & b of Itô SDE only depend on first two derivatives of γ.

Curves γ1 ∼ γ2 have the same k -jet if their Taylor expansions are
equal up to order tk in one (all) coordinate system. k -jet can be
defined as equivalence class j2(γ1) := γ̃1.

Given our convergence results, showing that the limit of our scheme
depends only on the two-jet, we may rewrite Xt γXt (dWt ), X0 as:

Coordinate-free 2-jet SDE: Xt j2(γXt )(dWt ), X0 = x0. (5)
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Itô SDEs on manifolds: 2-Jets Coordinate-free Itô formula and stochastic analysis

Itô’s formula via 2-jets
Lemma (Itô’s lemma — coordinate free formulation)

If the process Xt satisfies Xt j2(γXt )(dWt )
then f (Xt ) satisfies f (X )t j2(f ◦ γXt )(dWt ).

Itô’s formula: the transformation rule for jets under a change of
coordinates is the composition of functions.

We have illustrated a way of drawing an SDE on a rubber sheet such
that if sheet is stretched, diagram transforms as per Itô’s lemma.

Or: the following diagram commutes
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Itô SDEs on manifolds: 2-Jets Coordinate-free Itô formula and stochastic analysis

Itô’s formula via 2-jets

Since we now understand the geometric content of Itô’s lemma, we
can draw a picture to illustrate it. Consider the transformation

(θ, s) = φ(x1, x2) =

(
arctan(x2/x1), log(

√
x2

1 + x2
2 )

)
(φ(z) = i log(z))

applied to our γE (left) process.

1st apply φ to each point (stretch
the rubber sheet).

d(θ, s) =

(
0,

7
2

)
dt + (1,0) dWt .
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Itô SDEs on manifolds: 2-Jets Coordinate-free Itô formula and stochastic analysis

Itô’s formula via 2-jets

The process j2(φ ◦ γE ) plotted using image manipulation software

The process j2(φ ◦ γE ) plotted by applying Itô’s lemma

Figure: Two plots of the process j2(φ ◦ γE ) in the plane (θ, s).
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Itô SDEs on manifolds: 2-Jets Generalizations and other results

Generalizations and other results

Can generalize to SDE driven by vector-Brownian motion using
jets driven by Rm parameters.
In this case only part of the jet information is used for SDE; weak
and strong equivalence of SDEs.
Jet-based definition of backward and fwd diffusion operators
Fan diagrams and Stratonovich drift a(X ) as median.
Itô - Stratonovich transformation interpreted geometrically as
follows: a 2-jet (Itô) can be equivalently represented by
subsequent application of two vector flows (Stratonovich) and
vice-versa.

We now apply jets to optimal approximation of SDEs on submanifolds.
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Applications: Optimal approximation of SDEs on submanifolds

Optimal approximation of SDEs on submanifolds

Given SDE X on Rr , with
M ⊂ Rr an n-dimensional
manifold of Rr , and X0 ∈ M,
we wish to find a SDE φ(Y )
in M starting at X0 whose
solution approximates X .
Clearly r > n.

Approximate dX = a(X )dt + bα(X )dWα in Rr ,

with φ(Y ) ∈ M, where dY = A(Y )dt + Bα(Y )dWα in Rn

X0 = φ(Y0) ∈ M, n − dimensional manifold of Rr
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Applications: Optimal approximation of SDEs on submanifolds Stratonovich projection

Stratonovich projection via tangent space projection Π
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Applications: Optimal approximation of SDEs on submanifolds Stratonovich projection

Stratonovich projection.
Write the Ito SDE for X in
Stratonovich form

dX = ā dt +bα◦dWα in Rr ,

X0 ∈ M. Apply the tangent
space projection to obtain
M-SDE Z = φ(Y ),Z0 = X0,

dZ = ΠZ [ā] dt+ΠZ [bα]◦dWα

Justification: for b = 0 it coincides with optimal ODE projection
minimizing leading term of Taylor expansion for |φ(Y )− X |2.

No optimality (yet) for SDE as a whole: rough paths & ā,b together.
We are investigating potential a.s. optimality (as opposed to mean
square optimality of the following projections below)
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Applications: Optimal approximation of SDEs on submanifolds Stratonovich projection

Ito-vector projection via tangent space projection Π
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Applications: Optimal approximation of SDEs on submanifolds Ito-vector projection

Itô vector projection. Min-
imize leading (t-term) co-
eff. Ito-Taylor expansion of
E[|Xt − φ(Yt )|2], to get B,
but that coefficient does
not vanish, so the error
stays order t . Fixing that B
in a neighborhood, get A by
minimizing the next leading
term coeff (t2-term). This
results also in A minimizing
(regardless of B), up to or-
der t , |E[Xt − φ(Yt )]|2.

Bα(Yt , t) = (ψ∗)φ(Yt )Πφ(Yt )bα(·, t) (same as Strat proj.)

A(Yt , t) = (ψ∗)φ(Yt )Πφ(Yt )

(
a(·, t)− 1

2
(∇Bα(Yt ,t)φ∗)Bβ(Yt , t)g

αβ
E

)
.
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Applications: Optimal approximation of SDEs on submanifolds Ito-vector projection

Itô vector projection

gα,βE = 1{α=β}, or more generally the symmetric 2-form defining
the Euclidean metric on Rm in the non-orthonormal case.
In Euclidean space notation (with orthonormal coordinates)

(∇Bα fi,∗)Bβgα,βE = Trace[BT (Hfi)B]

Drawback: after minimizing the order 1 coefficient of the error
E[|Xt − φ(Yt )|2] in t to get B, we minimize the order 2 coefficient to
get A but without the order 1 coefficient vanishing. This means we
never really get to order 2.
We also get, as a bonus, A minimizes the weak error
|E[Xt − φ(Yt )]|2 up to order t .
Given these drawbacks, can we find another projection that,
differently from the Itô vector projection, is consistently optimal up
to order t2?
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Applications: Optimal approximation of SDEs on submanifolds Ito-vector projection

Metric projection π vs tangent space projection Π
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Applications: Optimal approximation of SDEs on submanifolds Ito jet projection

π is the metric projection
π : Rr → M, defined on a
tubular neighborhood of M,
of which the earlier
linear projection Π is
the first order component.

Set π̃ = ψ ◦ π.

Itô jet projection. Make t coefficient vanish and minimize leading t2

coeff. of Ito-Taylor expansion for the error

E[dM(π(Xt ), φ(Yt ))2] or E[|π(Xt )− φ(Yt )|2r ] for small t

B as before (same as Strat & Ito vector projections) and A

A(Yt , t) = π̃∗(a(φ(Yt ), t)) +
1
2

(∇bα(φ(Yt ),t)
π̃∗)bβ(φ(Yt ), t)g

αβ
E .
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Applications: Optimal approximation of SDEs on submanifolds Ito jet projection

Why “jet” projection?

We have called this latest projection “jet projection” because one can
check that if the SDE for X ∈ Rr , X0 ∈ M, is written as

Xt j2(γXt (dWt ))

then the Ito-jet projection describes in coordinates the SDE

Zt j2(π ◦ γZt (dWt )), Z0 = X0.

We show the example of the cross diffusion in R2:

dXt = σYt dWt ,

dYt = σXt dWt ,
(6)

We wish to project this process equation onto the 1-dimensional unit
circle M given by X 2 + Y 2 = 1. We assume (X0,Y0) ∈ M.
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Applications: Optimal approximation of SDEs on submanifolds Ito jet projection

SDE Xt j2(γXt (dWt )) has Ito jet projection Zt j2(π ◦ γZt (dWt ))

Best probabilistic (mean square) optimality of 3 projections
J. Armstrong (KCL) & D. Brigo (ICL) Intrinsic SDEs as jets IRMA Seminar, Strasbourg 31



Conclusions and References

Conclusions

SDEs: Ito and Stratonovich. Pros and Cons.
Make Ito SDEs good for geometry: Jet interpretation
Jet formulation of Ito’s formula and other classics
Investigating relation with Schwartz Morphism [11] & Belopolskaja
Dalecky Ito bundle [5, 15] (see paper). Jets more standard?
At the moment Schwartz Morphism more general, works for
semimartingales and the SDE driver itself is in a manifold.
Optimal SDEs on submanifolds: dimensionality reduction
3 types of projections on submanifolds, the best one based on jets
Applications to signal processing [3] (and finance?)
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Conclusions and References

Thanks

With thanks to IRMA - Univ. of Strasbourg/CNRS for the invitation.

Thank you for your attention.

Questions and comments welcome
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Bonus material

Bonus material

The following material did not fit the talk for matters of time, but it is
here in case I need to discuss it during questions.

J. Armstrong (KCL) & D. Brigo (ICL) Intrinsic SDEs as jets IRMA Seminar, Strasbourg 44



Bonus material

2-jets driven by vector Brownian motion

Consider functions γx : Rd → Rn & as before the coordinate free

Xt+δt := γXt

(
δW 1

t , . . . , δW
d
t

)
Again, the limiting behaviour will only depend upon the 2-jet j2(γx ) and

can still be denoted by Xt j2(γXt )(dWt ). The scheme still
L2(P)−−−→ to

the classical Itô SDE (see proof in A & B [4]) in coordinates:

X̃t = X̃0 +

∫ t

0
a(X̃s) ds +

d∑
α=1

∫ t

0
bα(X̃s) dWα

s , t ∈ [0,T ]

a(x) :=
1
2

d∑
α=1

∂2γx

∂uα∂uα

∣∣∣
u=0

, bα(x) :=
∂γx

∂uα

∣∣∣
u=0

.
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SDEs driven by vector Brownians

We can also write the SDE as

dX i
t =

1
2
∂α∂βγ

idWα
t dW β

t +∂αγ
i dWα

t =
1
2
∂α∂βγ

igαβE dt +∂αγ
i dWα

t (7)

with the convention that dWα
t dW β

t = gαβE dt where gE is a Kronecker
delta with orthonormal coordinates, or in generalizations the symmetric
2-form defining the Euclidean metric on Rd .

2-jet based definition of the SDE backward diffusion operator:

Lγx f :=
1
2

∆E (f ◦ γx ) =
1
2
∂α∂β(f ◦ γx )gαβE . (8)

Here ∆E is the Laplacian defined on Rd . Lγx acts on functions defined
on the state space manifold M. We define L∗ to be its formal adjoint
which acts on densities defined on M (Fokker Planck eq).
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Weak and Strong Equivalence of SDEs through jets

Both the Itô SDE (7) & the backward diffusion operator use only part of
the 2-jet: only the diagonal terms of ∂α∂βγ i influence the SDE and
even for these terms it is only their sum that is important.

We say that two 2-jets γ1
x and γ2

x are weakly equivalent if Lγ1
x

= Lγ2
x
.

γ1 and γ2 are strongly equivalent if in addition j1(γ1) = j1(γ2).

Strong equivalence means that given the same realization of the
driving Brownian motions Wα

t the solutions of the SDEs will be almost
surely the same (under assumptions ensuring pathwise uniqueness).

Weak equivalence means that the transition probability distributions
are the same even though the dynamics may be different for any
specific realisation of the Brownian motions.
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Drawing SDEs driven by 2-dimensional Brownians

We saw previously a way to draw a
SDE in R2, j2(γE ), driven by
one-dimensional Brownian motion:

d
[

X1
X2

]
= 3

[
X1
X2

]
dt+

[
−X2
X1

]
dWt .

How can we draw a SDE driven by
2-dimensional Brownian motion?

Given an SDE in local coordinates dXt = a(Xt )dt + bi(Xt )dW i
t (Einstein

summation) with a ∈ R2 and b1 ∈ R2,b2 ∈ R2, we can write down a
specific representative two jet by

γx (t1, t2) = x + agE
ij t i t j + bi t i .
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Drawing SDEs driven by 2-dimensional Brownians

γx (t1, t2) = x + agE
ij t i t j + bi t i .

The image of an ε ball under γx will be an ellipsoid. Moreover, if we
know that γx is of this form, we can recover the coefficients a and bi up
to weak equivalence just from knowledge of the image of the ε ball.

This method of drawing an R2 SDE driven by 2-dim Brownian motion in
local coordinates is to draw the image of an ε ball of (t1, t2) at each
point.
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Drawing SDEs driven by 2-dimensional Brownians

0.0 0.5 1.0 1.5 2.0

Ν

0.0

0.5

1.0

1.5

2.0

S

For example in this figure we show
a plot of the Heston stochastic
volatility model with drift (see [17]).
Note that as well as plotting the
ellipses, the figure indicates the
exact point that each ellipse is
associated with. The extent to
which the centre of the ellipse
differs from the associated point is
a measure of the drift.

dSt = µStdt +
√
νtStdW 1

t

dνt = κ(θ − νt )dt + ξ
√
νt (ρdW 1

t +
√

1− ρ2dW 2
t )

(9)

Parameter values ξ = 1, θ = 0.4, κ = 1, µ = 0.1, ρ = 0.5. We have
plotted the image of the balls for ε = 0.05.
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The one-dimensional case: Fan Diagrams

Standard statistical properties of a distribution depend upon the
coordinate system.

For example E of a process in Rn involves the vector space structure of
Rn. If f is a nonlinear coordinate transition map, one has
E(f (X )) 6= f (E(X )).

However, the definition of the α-percentile depends only upon the
ordering of R and not its vector space structure.

As a result, for continuous monotonic f and X with connected state
space, the median of f (X ) is equal to f applied to the median of X . If f
is strictly increasing, the analogous result holds for the α percentile.
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The one-dimensional case: Fan Diagrams

This has the implication that the trajectory of the α-percentile of an R
valued stochastic process is invariant under smooth monotonic
coordinate changes of R. In other words, percentiles have a
coordinate free interpretation. How can the trajectories of
percentiles be related to the coefficients of the SDE?
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The one-dimensional case: Fan Diagrams

Theorem (Armstrong and B.) [4]. For sufficiently small t , the α-th
percentile of the solutions to

dXt = a(Xt , t) dt + b(Xt , t)dWt , X0 = x0 (10)

is given by: x0 + b0
√

tΦ−1(α) +
[
a0 −

b0b′0
2 (1− Φ−1(α)2)

]
t + O(t3/2)

so long as the coefficients of (10) are smooth, the diffusion coefficient
b never vanishes, and sufficient conditions for the Lamperti
transformed SDE and for L∗p = 0 to have a unique regular solution
hold. In this formula a0 and b0 denote the values of a(x0,0) and
b(x0,0) respectively. In particular, the median process is a straight
line up to O(t

3
2 ) with tangent given by the drift of the Stratonovich

version of the Itô SDE (10).The Φ(1) and Φ(−1) percentiles
correspond up to O(t

3
2 ) to the curves γX0(±

√
t) where γX0 is any

representative of the 2-jet that defines the SDE in Itô form.
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Jets & vector fields: Ito / Str as different coordinates

We have seen that, geometrically, a Str SDE is described by 2 vector
fields, while a Ito SDE is described by one 2-jet. We now relate the two.

An alternative way to specify the k -jet of a curve at every point is to
choose k vector fields A1, . . . , Ak on the manifold. One can then define
Φt

Ai
to be the vector flow associated with the vector field Ai . This allows

one to define curves at each point x as follows:

γx (t) = Φtk

Ak
(Φtk−1

Ak−1
(. . . (Φt

A1
(x)) . . .)) (11)

where tk denotes the k -th power of t . We will call this the vector
representation for a family of k -jets.
Theorem (Armstrong B. (2016)). All k -jets of curves can be
represented this way via vector fields flows.
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Jets & vector fields: Ito / Str as different coordinates

Corollary (Ito Stratonovich transformation as correspondence between
2-jets and two vector fields.)
Suppose that a family of 2-jets of curves is given in the vector
representation as

γx (t) = Φt2

A (Φt
B(x))

for vector fields A and B. Choose a coordinate chart and let Ai , Bi be
the components of the vector fields in this chart. Then the
corresponding standard representation for the family of 2-jets is:

γx (t) = x + a(x)t2 + b(x)t

with

ai = Ai +
1
2
∂Bi

∂x j Bj , bi = Bi .
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Jets & vector fields: Ito / Str as different coordinates

Geometric interpretation of the Ito-Stratonovich transformation:
switching between 2-jets and pairs of vector fields.

Despite Itô’s 1950 paper [18] on SDEs on manifolds based on using
Itô’s lemma to change coordinates, a few authors have even asserted
that stochastic differential geometry requires Stratonovich calculus.

From an extrinsic perspective (i.e. manifolds embedded in Rn instead
of charts) Stratonovich may appear necessary since an SDE remains
on a submanifold a.s. if Str-drift and Str-diffusion vector fields are
tangent to the manifold.

It is easy to write down the Stratonovich SDE induced on a
submanifold from a Str SDE on Rn. However, this is simply a
consequence of the curvature of the 2-jet following the curvature of the
manifold, so the Itô/2-jet interpretation works as well.
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From our point of view we consider these two calculi as different
coordinate systems for the same underlying coordinate-free SDE.

Many notions in probability are not coordinate free however (the
expected value E for example, but see also our earlier discussion on
the assumed density principle).
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Jets & vector fields: Ito / Str as different coordinates

One should choose the most convenient coordinate system for the
problem at hand along the properties we highlighted in the introduction
(Wong Zakai convergence, martingale, anticipative features, etc).

The most important difference between Stratonovich & Itô arises
during the modelling process. It is when choosing what equation to
write down in the first place that the choice is most telling.

The modelling process is not a strictly mathematical process: it relies
upon the modellers intuition.

So fortunately “The ultimate goal of mathematics is to eliminate all
need for intelligent thought” 1 does not seem to apply here.

1(Graham, Knuth and Patashnik [22])
J. Armstrong (KCL) & D. Brigo (ICL) Intrinsic SDEs as jets IRMA Seminar, Strasbourg 58



Bonus material

Filtering problem (e.g. Apollo 11)

Signal and observation equations:

dSt = µ(St , t)dt + σ(St , t)dBt , dRt = h(St , t)dt + εdVt

where B,V are independent Brownian motions (noises).

Given observations R from 0 to t , estimate St . Full solution:
pt (ξ)dξ = P{St ∈ dξ|σ(Rs, s ∈ [0, t ])}. Point estimate: mean pt .
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Filtering problem and SPDE projection to SDE

pt is our previous X but now in an infinite dimensional function space
(typically

√
p or p in L2) that plays the role of our former Rr .

pt follows a SPDE (Kushner-Stratonovich or Zakai) and we can use our
three above projections to estimate an optimal finite dimensional
approximation Y of p = X according to different criteria.

In B., Hanzon & LeGland [7, 8], Armstrong & B. [3] we study
projections on M = Gaussians (here), exponential families, mixtures.
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Filtering numerical example: Cubic sensor

dSt = dBt , dRt = (St + αS3
t )dt + dVt

Hellinger rel. residuals: ‖
√

p(t)−
√

pN (t)‖2

‖
√

p(t)−
√

pN ,Ito−jet (t)‖2
; L2 resid.: ‖p(t)− pN (t)‖2
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Consistency rate dynamics - curve parameterization
In finance, we use short rate interest rate
model rt = ϕ(t ,Xt ), where X follows a
driving SDE in Rr . X is chosen based on
history and derivatives prices (calibration).
Spot rate at t for maturity T is

R(t ,T ) =
1

T − t
ln

(
Et

[
exp

(
−
∫ T

t
rsds

)])

Practitoners wish curve T 7→ R(t ,T )
to have a particular parametric shape,
R(t ,T ) = R(T ; θ(t)), θ ∈ Rn.

Use the projection framework to try and optimally approximate the
correct dynamics of dR coming from dX with one on “manifold” R(θ).
Related work was done in the 90’s by Bjork [6] but looking for exact
results rather than optimal approximations.
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