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The problem of all-survival Problem statement

Iterating default simulations: Survival of all

τ = [τ1, τ2, . . . , τd ]; τ (i) : iid copies of τ
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The problem of all-survival Problem statement

Problems: (1) all-survival and (2) intermediate defaults

In fact a full specification will lead us to two related problems.

Problem (1): The (easier) problem of all survival in the earlier picture:
when iterated (wrong) equivalent to one shot (correct)?

Problem (2): The general problem with in-between defaults. Can we
transform the one shot (correct) into an iterated process (wrong) when
we care about more general survival/default patterns?

Notation. τ = [τ1, τ2, . . . , τd ] vector of default times for names 1, . . . ,d .

(1): look at joint survival at deterministic S = [S1,S2, . . . ,Sd ]:

P(τ > S) := P(τ1 > S1, τ2 > S2, . . . , τd > Sd ) =: G(S1, . . . ,Sd )

joint survival function. We abbreviate P(τ > S1) with P(τ > S).
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The problem of all-survival Problem statement

Practical interest?

Basel III requirement for risk horizons: BIS suggests “The
Committee has agreed that the differentiation of market liquidity
across the trading book will be based on the concept of liquidity
horizons. It proposes that banks’ trading book exposures be
assigned to a small number of liquidity horizon categories. [10
days, 1 month, 3 months, 6 months, 1 year] [...]”. A bank will need
to simulate the risk factors of the portfolio across a grid including
the standardized holding periods above.
Consistency with “Brownian-driven” asset classes
simulation. Risk measure or valuation adjustment simulation.
Evolve risk factors according to common controlled time steps.
Natural for asset models that are Brownian driven but harder when
trying to include defaults. This is because default times, typically
in intensity models, should be simulated just once, being static
random variables as opposed to random processes.
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The problem of all-survival Lack of Memory

The univariate case: key property is lack of memory

Definition. In the univariate case d = 1 we say that the distribution of τ
has lack of memory (LOM) when for all S,U > 0

P(τ > S + U|τ > S) = P(τ > U) (⇐⇒ G(S + U) = G(S)G(U)).

If 0 < G ≤ 1 we can take logs and get Cauchy’s functional equation.
With continuity in at least one point⇒ G(t) = exp(−λt).

As we know well, lack of memory is a characterization of the
exponential distribution in case d = 1.

This solves problem (1) in the univariate case. Indeed,

One-shot prob = P(τ > S + U) = P(τ > S + U|τ > S)P(τ > S) =

= (LOM) = P(τ (1) > U)P(τ (2) > S) = iterated prob
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The problem of all-survival Lack of Memory

Lack of memory in the multivariate case

Definition. The distribution of τ has multivariate homogeneous lack of
memory (MHLOM) when, given T > 0, for any two integers i , j , i < j

P(τ > jT |τ > iT ) = P(τ > (j−i)T ) (⇐⇒ G((jT )1) = G(iT1)G((j−i)T1)).

The definition is formally the same as for the univariate case when
S = iT ,U = jT , ie under “homogeneity” (of the time step T ).

One might try to adopt a more general definition of lack of memory,
namely for all S = [S1, . . . ,Sd ], U = [U1, . . . ,Ud ] deterministic times

P(τ > S + U|τ > S) = P(τ > U).

This however is too strong and results in the trivial case of
independence of exponential univariates, see [24].
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The problem of all-survival Lack of Memory

Lack of memory in the multivariate case

The most general definition of multivariate lack of memory, without
collapsing into indepedence, assumes uniformity in conditioning time S
but not in increment time U:

Definition MLOM: Every subvect τ I of τ , I ⊂ {1,2, . . . ,d} satisfies

P(τ I > S1+U|τ I > S1) = P(τ I > U) (⇐⇒ GI(S1+U) = GI(S1)GI(U)).

Theorem (Marhall Olkin [24]).

τ satisfies MLOM ⇐⇒ τ ∼ Marshall Olkin multivariate distribution.
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The problem of all-survival Lack of Memory

Multivariate lack of memory: Marshall Olkin

Recall the MO distribution (in the case d = 2 for simplicity).

P(τ1 > S1, τ2 > S2) = G(S) = exp
[
−λ1S1 − λ2S2 − λ1,2 max(S1,S2)

]
where all λ’s are non-negative parameters. Exponential margins:

P(τ1 > S1) = exp
[
−(λ1 + λ1,2)S1

]
, P(τ2 > S2) = exp

[
−(λ2 + λ1,2)S2

]
.

Important: Notice the very specific link between the joint distribution
and the margins.

Moreover, This distribution has an important property: the probability to
have simultaneous defaults is not zero: P(τ1 = τ2) > 0. This is due to
the max function which is not smooth. For typically smooth multivariate
densities the simultaneous default probability would be zero.
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The problem of all-survival Lack of Memory

Multivariate lack of memory: Marshall Olkin

The MO distribution can also be obtained as follows. Given 3
independent exponential margins τ̄1, τ̄2, τ̄1,2, with parameters
λ1, λ2, λ1,2 respectively, then MO is consistent with

τ1 = min(τ̄1, τ̄1,2), τ2 = min(τ̄2, τ̄1,2)

Note: MO COPULA with arbitrary exponential margins has no MLOM.

The link in MO between margins and dependence is broken (ruining
MLOM) if we replace the consistent margins having intensities
λ1 + λ1,2 and λ2 + λ1,2 with different exponentials/intensities.

Arbitrarily decoupling the marginals & the dependence structure may
result in paradoxical results when analyzing wrong way risk, see for
example B. & Chourdakis [7] or Morini [27].
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The problem of all-survival Homogeneous lack of memory and EV copulas

The homogeneous multivariate case: EV Copulas

For the same reasons why LOM solves Problem (1) in the univariate
case, MHLOM solves Problem (1) in multivariate:

One-shot prob = P(τ > T + T ) = P(τ > T + T |τ > T )P(τ > T ) =

= (MHLOM) = P(τ (1) > T )P(τ (2) > T ) = iterated prob

Since MHLOM is weaker than MLOM=Marshall-Olkin, we can hope for
solutions of Problem (1) given by distributions of τ different from the
Marshall Olkin multivariate distribution.

For this, we analyze MHLOM condition G((jT )1) = G(iT 1)G((j − i)T 1).

Assume G is associated with a survival copula function C.

G(iT 1) = P(τ > iT ) = P(Gm(τ) < Gm(iT )) = C(Gm(iT ))

where Gm(t) is the vector of the marginal survival functions of the
components of τ , all computed in t .
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The problem of all-survival Homogeneous lack of memory and EV copulas

The homogeneous multivariate case: EV Copulas

Hence we can rewrite MHLOM as

G(jT 1) = G(iT1) G((j−i)T1) iff C(Gm(jT )) = C(Gm(iT )) C(Gm((j − i)T )).

We require that the marginal distributions satisfy lack of memory, so
this means, due to the univariate characterization, that
Gm(kT ) = Gm(T )k (they are exponential functions), and hence the
MHLOM condition reads

C(Gm(T )j) = C(Gm(T )i) C(Gm(T )j−i)

where the product of the Gm is component-wise.
Write the above equation for i = 1, j = 2 to get

C(Gm(T )2) = C(Gm(T ))2 .
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The problem of all-survival Homogeneous lack of memory and EV copulas

The homogeneous multivariate case: EV Copulas

Then i = 1, j = 3, substituting the one just found, and iterating, gives

1-shot prob C(Gm(T )k ) = C(Gm(T ))k iterated prob, k ∈ N

Given the arbitrariness of the marginal intensities in Gm, we conclude

C(x t ) = C(x)t ⇐⇒ C(x) = (C(x t ))1/t for all t > 0, x ∈ [0,1]d

This is a characterization of extreme value copulas.

Theorem (B. Chourdakis [8]). In the multivariate setting, and under a
common time step, Problem (1) is solved if G has exponential margins
and an extreme value survival copula (self-chaining copula).
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The problem of all-survival Homogeneous lack of memory and EV copulas

The homogeneous multivariate case: EV Copulas

Corollaries: Given exponential margins, the only solution in the
archimedean sub-family is the Gumbel Copula.
Marshall Olkin copula with arbitrary exponential margins (not
necessarily consistent a multivariate MO law) ok too.
In d = 2 Pickands functions and exponential margins are general sol.

Summing up, iterating all-survival simulation is only possible under
special dependence. Gaussian copula cannot be iterated in principle.

I have witnessed use
of iteration both in
CVA valuation and in
default simulation for
Risk measurement.
(Blade Runner 1982)
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The problem of all-survival Danger: Iterating most copulas destroys dependence

Beware iterating Gaussian C: P = P(τ1 > T , τ2 > T )

T = 5y ; ∆t = 0.0050y = 1.825d (N = 1000)

λ1 λ2 ρ P1shot Piterated Perc. Diff

0.0100 0.0100 0.2500 0.9084 0.9049 0.3810
0.0100 0.0100 0.7500 0.9238 0.9103 1.4840
0.0100 0.0300 0.7500 0.8482 0.8278 2.4626
0.0100 0.0500 0.2500 0.7495 0.7410 1.1397
0.0100 0.0500 0.7500 0.7722 0.7514 2.7771
0.0300 0.0300 0.7500 0.7984 0.7572 5.4441
0.0300 0.0500 0.2500 0.6885 0.6708 2.6475
0.0500 0.0300 0.7500 0.7392 0.6902 7.0893
0.0500 0.0500 0.2500 0.6303 0.6071 3.8133
0.0500 0.0500 0.7500 0.6943 0.6312 9.9925

P1shot & Piterated would coincide with EV copulas & exp margins.
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The problem of all-survival Danger: Iterating most copulas destroys dependence

Beware iterating Gaussian C: P = P(τ1 > T , τ2 > T )

T = 30y ; ∆t = 0.1y = 36.5d (N = 300)

λ1 λ2 ρ P1shot Piterated Perc. Diff

0.0100 0.0100 0.2500 0.5765 0.5503 4.7604
0.0100 0.0100 0.7500 0.6483 0.5835 11.1033
0.0100 0.0300 0.2500 0.3322 0.3032 9.5613
0.0100 0.0300 0.7500 0.3919 0.3365 16.4782
0.0100 0.0500 0.2500 0.1880 0.1669 12.6371
0.0100 0.0500 0.7500 0.2205 0.1901 16.0382
0.0300 0.0300 0.7500 0.2949 0.2069 42.4875
0.0500 0.0300 0.2500 0.1205 0.0929 29.7150
0.0500 0.0300 0.7500 0.1891 0.1224 54.4983
0.0500 0.0500 0.7500 0.1382 0.0751 84.0337

P1shot & Piterated would coincide with EV copulas & exp margins.
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The problem of all-survival Danger: Iterating most copulas destroys dependence

Beware Gaussian C: P = P(τ1 > T , τ2 > T , τ3 > T )

Trivariate case. Margins satisfy LOM but 2- and now 3- dimensional
distributions won’t, so we expect larger errors.

T = 5y ; ∆t = 0.005y = 1.825d (N = 1000)

λ1 λ2 λ3 ρ P1shot Piterated Perc. Diff

0.03 0.03 0.03 0.10 0.6507 0.6378 2
0.03 0.03 0.03 0.50 0.7107 0.6451 10
0.03 0.05 0.03 0.50 0.6600 0.5855 13
0.03 0.05 0.05 0.50 0.6167 0.5319 16
0.05 0.03 0.05 0.10 0.5400 0.5222 3
0.05 0.05 0.05 0.10 0.4930 0.4726 4
0.05 0.05 0.05 0.50 0.5792 0.4834 20

P1shot & Piterated would coincide with EV copulas & exp margins.
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The problem of all-survival Danger: Iterating most copulas destroys dependence

Beware Gaussian C: P = P(τ1 > T , τ2 > T , τ3 > T )

T = 30y ; ∆t = 0.1y = 36.5d (N = 300)

λ1 λ2 λ3 ρ P1shot Piterated Perc. Diff

0.03 0.03 0.03 0.10 0.0860 0.0679 27
0.03 0.03 0.05 0.50 0.1156 0.0474 144
0.03 0.05 0.03 0.10 0.0503 0.0374 34
0.03 0.05 0.03 0.50 0.1156 0.0474 144
0.03 0.05 0.05 0.50 0.0818 0.0278 194
0.05 0.03 0.05 0.50 0.0818 0.0278 194
0.05 0.05 0.05 0.10 0.0178 0.0114 56
0.05 0.05 0.05 0.50 0.0604 0.0164 267

P1shot & Piterated would coincide with EV copulas & exp margins.
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The problem of all-survival Iteration error vs Spearman’s rho

100*(Pr1shot - PrIter) /PrIter vs Spearman’s rho

T = 5y , ∆t = 0.005y, λ1 = λ2 = 0.01, 3 degrees for t-dist [13].
See [28] for an analogous analysis with Kendall’s tau
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The problem of all-survival Asymptotic result

What if we increase iterations more and more?

Fixing a terminal time T , we may be tempted to increase the number of
iterations k to get to T with steps T/k . Based on the above examples,
we suspect we would destroy dependence by doing this. Let’s check.

Definition. For an extreme value copula C there exists a copula CF
such that

CF (u1/k
1 , ...,u1/k

d )k → C(u1, ...,ud ) (k →∞)

for all (u1, ...ud ) ∈ [0,1]d . The copula CF is said to be in the
domain of attraction of C. We are interested in cases where C is the
independence copula. The LHS of the arrow is the iterated survival.
Does it converge to independence?
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The problem of all-survival Asymptotic result

What if we increase iterations more and more?

Theorem
In the bivariate case the Clayton copula, the Frank copula and the
Gaussian copula for ρ < 1 are all in the domain of attraction of the
independence copula u1u2 (see for example [14] or [13]).

This means that

CF (u1/k
1 ,u1/k

2 )k → u1u2 (k →∞)

for CF either Gaussian (ρ < 1), Clayton or Frank. Recall iterated prob =

= P
(
τ (1) >

T
k

)
P
(
τ (2) >

T
k

)
· · ·P

(
τ (k) >

T
k

)
= CF (Gm(T )1/k )k

So, in these cases, in the limit when we iterate indefinitely we end
up completely destroying the correlation.
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The more general problem of iterated defaults Removal of default times?

A second and more-ambitious problem

Problem 1: when can we split a “survival of all” sampling in several
equal time steps? Solution: Exponential margins and EV copula.

PROBLEM 2
Don’t look just at the “survival of all” event but consider any possible
mix of states (including removal of defaulted/liquidated components)
and check when a terminal simulation of this can be split into different
time steps for τ and its sub-vectors.
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The more general problem of iterated defaults Markovian survival

A second and more-ambitious problem

We have already seen the theorem where M-O satisfies the most
general multivariate lack of memory, including removal of components.

So we may guess that M-O will play a key role here and will be a
solution. However, we can say more. Define

Zt = [1τ1>t ,1τ2>t , . . . ,1τd>t ]

(notice that earlier we were considering 1τ1>t∩τ2>t ...∩τd>t ).

We would like to work with a Markovian Z (MCZ=Markov Chain Z).
Under which conditions on the distribution of τ do we get Markovian Z?

This would be a great step forward for us since Markov Chains can be
managed efficiently via matrices and are well understood.
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The more general problem of iterated defaults Nested Margining?

Nested Margining?

Nested Margining:

When names I default, we remove τI from the total vector τ , but the
remaining vector has the same type of distribution as the original τ ,
only with dimension decreased by the size of I and with updated
parameters.

What type of distributions can give us a Markov chain for Z and
nested margining for the τ distribution?
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The more general problem of iterated defaults Solution & a new characterization of Marshall Olkin

Lack of memory & new characterization of MO

The Matrix (1999)

New result showing that the full MO law (the MO copula is not enough)
is characterized by nested margining within MCZ. The only model
solving Problem 2 is MO. New characterization of MO via MCZ.
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The more general problem of iterated defaults Solution & a new characterization of Marshall Olkin

Theorem (B. Mai & Scherer [9, 10]) : New Characterization of MO.

The survival indicator processes ZI are time-homogeneous Markovian
for all subsets ∅ 6= I ⊂ {1, . . . ,d}

⇔
(τ1, . . . , τd ) has a Marshall–Olkin distribution

Thus we can use a Markov chain for default simulation.

Alternatively, sample a MO law repeatedly, & whenever name(s) default
remove the component(s) & simulate sub-vector law, that is still MO.

Proof ideas:

⇒ intuitive, using combinatorics Markov property can be shown to
imply MLOM, lack of memory for τ ’s, which characterizes MO (above).

⇐ is less intuitive. Based on alternative MO stochastic construction
from Arnold [1], which shows that a dynamic simulation of survival
indicators is actually Markovian.
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The more general problem of iterated defaults Solution & a new characterization of Marshall Olkin

Lack of memory & new MO characterization: Proof I

Proof:
“⇒” By the time-homogeneous Markov property, there is a transition
function px,y(t) for x,y ∈ {0,1}d and t ≥ 0 such that

P(Z(tn) = xn, . . . ,Z(t1) = x1) = p(1,...,1),x1(t1)
n∏

l=2

pxl−1,xl (tl − tl−1)

for tn > . . . > t1 > 0 and x1, . . . ,xn ∈ {0,1}d . Let t , s1, . . . , sd ≥ 0 be
arbitrary and denote by π a permutation s.t. sπ(1) ≤ sπ(2) ≤ . . . ≤ sπ(d)
is the ordered list of s1, . . . , sd . Define the following subsets of {0,1}d :

A1 := {(1, . . . ,1)}, Ak :=
{

x ∈ {0,1}d : xπ(l) = 1 for all l ≥ k
}
, k = 2..d .

In words, Ak denotes the subset of {0,1}d in which all components
π(k), . . . , π(d) are still alive.
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The more general problem of iterated defaults Solution & a new characterization of Marshall Olkin

Lack of memory & new MO characterization: Proof II

There is a finite number M of distinct paths
(x(i)

2 , . . . ,x(i)
d ) ∈ A2 × . . .× Ad , i = 1, . . . ,M, that avoid inconsistent

patterns in time (such as default resurrections etc), i.e. such that

0 < P{Z(t + sπ(1)) = (1, . . . ,1),Z(t + sπ(2)) = x(i)
2 , . . . ,Z(t + sπ(d)) = x(i)

d }.

This set of paths depends on s1, . . . , sd , but it does not depend on t by
the time-homogeneity property of Z. We have

P(τ1 > t , . . . , τd > t)P(τ1 > s1, . . . , τd > sd )

= P(Z(t) ∈ A1)P
(
Z(sπ(1)) ∈ A1, Z(sπ(2)) ∈ A2, . . . ,Z(sπ(d)) ∈ Ad

)
= P(Z(t) ∈ A1)

M∑
i=1

P(Z(sπ(1)) = (1..1),Z(sπ(2)) = x(i)
2 , . . . ,Z(sπ(d)) = x(i)

d )
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The more general problem of iterated defaults Solution & a new characterization of Marshall Olkin

Lack of memory & new MO characterization: Proof III

= p(1,...,1),(1,...,1)(t)
M∑

i=1

p(1,...,1),(1,...,1)(sπ(1)) p
(1,...,1),x(i)

2
(sπ(2) − sπ(1)) ·

·
N∏

k=3

px(i)
k−1,x

(i)
k

(sπ(k) − sπ(k−1))

=
M∑

i=1

p(1,...,1),(1,...,1)(t + sπ(1)) p
(1,...,1),x(i)

2
(t + sπ(2) − (t + sπ(1)))·

·
N∏

k=3

px(i)
k−1,x

(i)
k

(t + sπ(k) − (t + sπ(k−1)))

= P(Z(t + sπ(1)) ∈ A1,Z(t + sπ(2)) ∈ A2, . . . ,Z(t + sπ(d)) ∈ Ad )

= P(τ1 > t + s1, . . . , τd > t + sd )
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The more general problem of iterated defaults Solution & a new characterization of Marshall Olkin

Lack of memory & new MO characterization: Proof IV

Repeating the above derivation for every subset I ⊂ {1, . . . ,d} we
obtain the equation

P(τi1 > t+si1 , . . . , τik > t+sik ) = P(τi1 > t , . . . , τik > t)P(τi1 > si1 ..τik > sik )

for arbitrary 1 ≤ i1, . . . , ik ≤ d and t , si1 , . . . , sik ≥ 0. This is precisely
the functional equality describing the multi-variate lack-of-memory
property MLOM, which is well-known to characterize the
Marshall–Olkin exponential distribution as we have seen earlier in this
talk (see [24, 25]).
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Lack of memory & new MO characterization: Proof V

“⇐” Assume (τ1, . . . , τd ) has a Marshall–Olkin distribution with
parameters {λI}, ∅ 6= I ⊂ {1, . . . ,d} satisfying

∑
I:k∈I λI > 0 for all

k = 1, . . . ,d . We prove Markovianity of ZI for an arbitrary non-empty
subset I of components.
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Lack of memory & new MO characterization: Proof VI

Without loss of generality, we may assume that (τ1, . . . , τd ) is defined
on the following probability space, as first considered in [1]: we
consider an iid sequence {En}n∈N of exponential random variables
with rate λ :=

∑
∅6=K⊂{1,...,d} λK and an independent iid sequence

{Yn}n∈N of set-valued random variables with distribution given by

P(Y1 = K ) = pK :=
λK

λ
, ∅ 6= K ⊂ {1, . . . ,d}.

The random vector (τ1, . . . , τd ) is then defined as
τk := E1 + . . .+ Emin{n : k∈Yn}, k = 1, . . . ,d . Introduce the notation

Nt :=
∞∑

k=1

1{E1+...+Ek≤t}, t ≥ 0,

which is a Poisson process with intensity λ.
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Lack of memory & new MO characterization: Proof VII

Fix a non-empty set I ⊂ {1, . . . ,d}, say I = {i1, . . . , ik} with
1 ≤ i1 < . . . < ik ≤ d . Denoting the power set of {1, . . . ,d} by Pd , we
define the function fI : {0,1}k × Pd → {0,1}k as follows:

j-th component of fI(~x , J) := 1{xj=1 and ij /∈J}, j = 1, . . . , k ,

for ~x = (x1, . . . , xk ) ∈ {0,1}k and J ∈ Pd . It is now readily observed –
in fact just a rewriting of Arnold’s model – that

ZI(t) = fI
(

ZI(s),

Nt⋃
k=Ns+1

Yk

)
, t ≥ s ≥ 0. (1)
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Lack of memory & new MO characterization: Proof VIII

ZI(t) = fI
(

ZI(s),

Nt⋃
k=Ns+1

Yk

)
, t ≥ s ≥ 0.

This stochastic representation implies the claim, since the second
argument of fI is independent of FI(s) := σ(ZI(u) : u ≤ s) by the
Poisson property of {Nt}. To see this, it suffices to observe that ZI(s)
is a function of Ns and Y1, . . . ,YNs (which can be seen by setting t = s
and s = 0 in (1)), whereas the second argument is a function of
YNs+1, . . . ,YNt . Consequently, the independent random variables Ns
and Nt − Ns only serve as a random pick of two independent (because
disjoint) partial sequences of the iid sequence Y1,Y2, . . ..
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Conclusions

Conclusions

If we simulate“survival of all names” multi-step, we kill correlation
unless default correlation is an extreme value copula.
In particular, iterating the Gaussian copula kills the depedence
(“correlation”) and should be avoided.
If we are concerned about other events than just “all-survival”,
then to avoid correlation killing...
... the vector of default times has to be Marshall–Olkin distributed.
This in turn allows us to work with simple Markov chains via a new
characterization of M-O.
M-O has come out in many different contexts (reliability theory,
frailty analysis, credit derivatives models).
Safer to simulate defaults one shot if possible, in this case there is
no limitation.
If iterating necessary, M-O or at least EV copula should be used.
Failing this, check error involved in multi-step process.
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Conclusions

Thank you for your attention!

Questions?
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