Using Statistics in Research. Autumn 2003

USING STATISTICS IN
RESEARCH

David A. Stephens

Department of Mathematics, Imperial College

d.stephens@imperial.ac.uk
stats.ma.ic.ac.uk/ das01/StatsShortCourse/

3rd December, 2003



Using Statistics in Research. Autumn 2003

WEEK 5

ASSOCIATION AND AGREEMENT
MEASURES,

SURVIVAL ANALYSIS
&

DISCRIMINATION AND
CLASSIFICATION



Using Statistics in Research. Autumn 2003

SECTION 9.
OBSERVER AGREEMENT

Assessing the results of diagnostic procedures and the effects of therapies
often involves subjective judgements. Observer agreement studies are con-
ducted to investigate the level of consensus on such assessments.

Typically, several observers make assessments on each of a series of subjects
and these assessments are compared.

An important consideration for study design is the presence of both within-
observer and between-observer variation. The apparent disagreement
between observers may be due to either one of these components or both.
It is important to distinguish between them, as any action taken to reduce
disagreement will depend on which type of variation dominates. To do this,
we require observations repeated by the same observer.
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We might consider any of the following types of observer agreement
studies

e studies with binary assessments and designs;
e where each of two observers assesses all subjects once,
e where each observer assesses all subjects twice

e where each observer assesses a proportion of the subjects once and
the remainder twice.

and so on.
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NOTE: Sample-size calculations are conventionally based upon hypothesis-
testing theory Observer-agreement studies, however, are designed to esti-
mate the level of observer agreement. Moreover, unlike clinical trials, there
are no obvious hypotheses to test. The hypothesis of perfect agreement
between observers is unrealistic and the hypothesis of agreement purely by
chance is also unrealistic in most circumstances.

Rejection of such a hypothesis does not provide useful information since
the investigator needs to know more than the fact that the observed level
of agreement is unlikely to be due to chance.
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9.1 CONTINUOUS MEASUREMENTS

9.1.1 THE INTRACLASS CORRELATION

The Intraclass Correlation (ICC) assesses rating reliability by comparing
the variability of different ratings of the same subject to the total variation
across all ratings and all subjects. The theoretical formula for the ICC is:

2
Jg

10:
0%+ 07

where

e 0% is the between subjects variability

e 02 is the within subjects variability

These quantities are directly estimable from ANOVA analyses.
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In a one-way ANOVA with K groups, we have the ANOVA table

Source D.F. Sum of squares Mean square
Between Samples K —1 FSS FSS/(K —1)
Within Samples n — K RSS RSS/(n — K)
Total n—1 TSS
where
K % K % K
TSS=3 > (—9) RSS=) 3 (y—)" FSS=) m(m~7)
k=1 j=1 k=1 j=1 k=1
Then
=2 _ RSS 82_FSS/(K—l)—RSS/(n—K)
¢ n-K 5 K
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9.1.2 DIFFERENT TYPES OF ICC

In their paper, Shrout and Fleiss (1979) describe three classes of ICC for
reliability, which they term Case 1, Case 2 and Case 3. Each Case applies
to a different rater agreement study design.

e Case 1: Raters for each subject are selected at random

— This case has a pool of raters. For each subject, one randomly
samples from the rater pool k different raters to rate this subject.
Therefore the raters who rate one subject are not necessarily the
same as those who rate another. This design corresponds to a
one-way ANOVA in which Subject is a random effect, and Rater
is viewed as measurement error.
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e Case 2: The same raters rate each case. These are a random sample.

— The same set of k raters rate each subject. This corresponds
to a fully-crossed (rater x subject) two-way ANOVA design in
which both Subject and Rater are separate effects.

— In Case 2, Rater is considered a random effect; this means the
k raters in the study are considered a random sample from a
population of potential raters.

— The Case 2 ICC estimates the reliability of the larger population
of raters.
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e Case 3: The same raters rate each case. These are the only raters.

— This is similar to Case 2; a fully-crossed, two-way ANOVA de-
sign. But here one estimates the ICC that applies only to the &
raters in the study. Since this does not permit generalization to
other raters, the Case 3 ICC is not often used.

Shrout and Fleiss (1981) also show that for each of the three Cases above,
one can use the ICC in two ways:

e To estimate the reliability of a single rating, or

e To estimate the reliability of a mean of several ratings.

For each of the Cases, then, there are two forms, producing a total of 6
different versions of the ICC.

10
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9.2 DISCRETE MEASUREMENTS
9.2.1 THE KAPPA STATISTIC

Options for discrete data observer agreement analysis are rather more lim-
ited; one simple measure of agreement between two raters is the Kappa

Statistic.

For a K x K table of results for the observer assessments of two observers on
a categorical scale,let n;; is the number of times rater 1 accords a measure
© whilst Rater 2 accords a measure j, for 2,5 =1, ..., K.

e “Considerable Agreement”: Diagonal elements “large”

e “Low Agreement”: Off-diagonal elements “large”

11
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EXAMPLE: Assessment of xeromammograms by two radiologists

Radiologist B
Radiologist A Normal Benign Suspected Cancer Total

Normal 21 12 0 0 33
Benign 4 17 1 0 22
Suspected 3 9 15 2 29
Cancer 0 0 0 1 1
Total 28 38 16 3 85

12
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Proportion of Agreements:

01 + 17+ 15 4+ 1
pa= A +78_g 5+ _ 64

n

Y

However, this does not take into account/quantify the probability of “chance’
agreements; this can be measured by the expected number of chance agree-

ments

~ 33 x 28 22x38 29x16 1x3
= + +

= 26.2
AT TRs 85 5 85 0
which gives a proportion

N na 262
bA n 85 0.3

13
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Hence the “excess agreement” in the observed data is

:pA_]/?\A
1 —pa

which is termed the Kappa Statistic. Guidelines for interpretation of
are

e x < 0.20 = Poor Agreement

e 0.20 < k £0.40 = Fair Agreement

e 0.40 < k <0.60 = Moderate Agreement
e 0.60 < k <0.80 = Good Agreement

e 0.80 < k <1.00 = Very Good Agreement

Standard errors for x are also available

14
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9.2.2 WEIGHTED KAPPA

A weighted version of the Kappa Statistic can be used to reflect the ordinal
nature of many observation scales (e.g. Normal— Benign—Suspected—Cancer)

Each off-diagonal element in the agreement table is given a weight reflecting
how “severe” the disagreement is; usually the weights are proportional to
the distance from the diagonal. This gives a weighted kappa, kyy

1% 1%
Ay
11—y

where

1 K K
(W) Z szgnzg ]/5(AW) — ? Z Zwijni.n.j

i=1 j=1 i=1 j=1

where n; ,n ; are the row an column totals for row ¢ and column j respec-
tively.

15
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SECTION 10.
SURVIVAL ANALYSIS

Survival (or lifetime, or time-to-event) analysis is a special type of re-
gression modelling that explains the observed variability in a response
variable Y via consideration of predictors X = (X1, ..., Xi). The princi-
pal difference between survival analysis and conventional regression is that
account is taken of potential censoring in the response variable

e we may observe some actual responses (survival, failure) times, but
also some censored responses where we do not observe an actual fail-
ure but rather only that the failure occurs after a censoring time
(the end of study) — this is called right-censoring

16
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e the response data is thus bivariate (Y, Z) where Y is the time at
which the response is measured, and

7 _ 1 Failure is observed
| 0 Censored

e occasionally, we observe left-censoring or interval-censoring

The potential presence of censoring fundamentally changes how we view
the modelling process; previously we have looked at probability densities
and Expected responses.

We now take an alternative view, and examine survivor and hazard func-
tions.

17
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10.1 THE SURVIVOR FUNCTION

The probability density function for response variable Y is fy, and the
expectation, likelihood function and so on that are required for regression
modelling are formed from fy. The distribution function Fy is

Fy(y) = P[Y <y = / Fy () dt

In conventional regression modelling, the likelihood contribution for data
point ¢ with response y; is fy (y;). For right-censored data with censoring
at y;, however, the likelihood contribution is

P[Y>yz]:1—Fy(yZ)

(i.e. we have “observed” that Y; > y;, the survival was at least y;). This
motivates consideration of the survivor (reliability) function

Sy(y) =1— Fy(y)

18
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The likelihood function is thus
{ H fY(yi>} X { H SY(yi>}
i:Z;=1 i:Z;=0
that 1s

LIKELIHOOD FOR UNCENSORED DATA
X
LIKELIHOOD FOR CENSORED DATA

and the role of the predictors can be introduced via the parameters of fy
and Fy.

19
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10.2 THE HAZARD FUNCTION

As a further alternative method of specification, we consider the hazard
function

hy(y) = P |Failure at y|Survival > ]

and the integrated hazard

Y
Hy(y) = [ hy(t) d
0
and 1t can be shown that

Sy (y) = exp{—Hy (y)}

20
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10.3 THE KAPLAN-MEIER CURVE

The Kaplan-Meier curve is a non-parametric estimate of the survivor
function; it takes into account the censored data and produces a decreas-
ing “step-function” curve, where the downward steps take place at the
times of the failures, giving the estimated survival function at the jth fail-

ure/censoring time as

J
~ Z;
Sj_H(l_n—i+1>

=1

This curve can be used to report an estimated survival probability at a
given time (1 year, 5 years etc.).

Standard errors for these estimated survival probabilities are also available.

21
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10,4 THE COX REGRESSION MODEL

The Cox (or Proportional Hazards) model provides a simple way of
introducing the influence of predictors into the survival model. The basic
components are a baseline hazard function, hg and a linear predictor
and (positive) link function g (similar to the GLM modelling of previous
chapters). Then for an experimental unit with observed predictor values
X1 =x1, Xog =29,..., Xk = g, the hazard tunction takes the form

hy (y;z) = g(z” B)ho(y)

that is, the hazard is modified in a multiplicative fashion by the linked-
linear predictor.

Typically, g is the exponential function.

22
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From the previously established relationships,

Sy (i) = exp { = [“hy(t) dt} = exp{ = [ a@TBho(r) ot

If a coeflicient (3, is positive, the hazard is increased, and the expected
failure time decreased.

The relevance/significance of a particular predictor is assessed using a
Wald test based on the magnitude of

-
S.€. (5)

23
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10.5 THE ACCELERATED LIFE MODEL

The Accelerated Life model provides another way of introducing the
influence of predictors into the survival model. The basic components now
are a baseline survivor function, Sy and a linear predictor and (positive)
link function g as above. Then for an experimental unit with observed
predictor values X7 = z1, Xo = x9,..., Xg = Xk, the survivor function
takes the form

Sy (y;2) = So(g(z" B)y)

that is, the time scale is modified in a multiplicative fashion by the linked-
linear predictor.

Again, typically, g is the exponential function. This model allows direct
modelling of the influence of predictors on survival.

24
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10.6 THE LOG-RANK TEST

The log-rank test is a standard test for significant differences between
two (or more) survivor functions that differ because of the influence of the
different levels of a discrete predictor.

HO . 51252
Hi : 51#5

It is a non-parametric test based on ranks of samples for the two or more
subgroups.

Asymptotic or exact versions of the test can be carried out; SPSS and other
packages give further alternatives.

25
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10.7 PARAMETRIC MODELLING

It is possible to fit and compare parametric survival models to such data.
Parametric densities, survivor functions, hazards etc. can be readily used
in the formation of a likelihood, potentially within the proportional haz-
ards/accelerated life framework.

Typical models used are
e Weibull
e Gamma
o Log-Logistic
e Log-Normal

e Pareto

26
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SECTION 11.

CLASSIFICATION AND
DISCRIMINATION

Classification is another special type of regression modelling that ex-
plains the observed variability in a response variable Y via consideration
of predictors X = (Xi,..., Xi). The principal difference between clas-
sification and conventional regression is that the response variable is a
nominal categorical variable, that is, for data item 1

;€ {1,1,2,..K}

so that the value of Y is a label rather than a numerical value, where the
label represents the group or class to which that item belongs.

We again wish to use the predictor information in X to allocate Y to
one of the classes

27
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Thus, there are two main goals:

e to partition the observations into two or more labelled classes. The
emphasis is on deriving a rule that can be used to optimally as-
sign a new object to the labeled classes.

— This is the process of CLASSIFICATION

e to describe either graphically or algebraically, the different features
of observations from several known collections. We attempt to find
discriminants whose numerical values are such that the collections
are separated as much as possible.

— This is the process of DISCRIMINATION

Both are special cases of what we have previously termed MULTIVARI-
ATE ANALYSIS

28
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Typically, the exercise of classification will be predictive, that is,

e we have a set of data available where both the response and pre-
dictor information is known

— these data are the training data

e we also have a set of data where only the predictor information is
known, and the response is to be predicted

— these data are the test data

e often we will carry out an exercise of model-building and model-
testing on a given data set by extracting a training set, building a
model using the training data, whilst holding back a proportion (the
test set) for model-testing.

29
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11.1 CLASSIFICATION FOR TWO CLASSES
(K =2)

Let f1(x) and fy(x) be the probability functions associated with a (vector)
random variable X for two populations 1 and 2. An object with measure-
ments x must be assigned to either class 1 or class 2. Let X denote the
sample space. Let /R1 be that set of x values for which we classify objects
into class 1 and Ro = X\ R be the remaining x values, for which we classify
objects into class 2.

The conditional probability, P(2|1), of classifying an object into class 2
when, in fact, it is from classl] is:

P(2[1) = n fi(x) dex.

30
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Similarly, the conditional probability, P(1|2), of classifying an object into
class 1 when, in fact, it is from class 2 is:

P(1]2) = n fo(x) dx

Let p; be the prior probability of being in class 1 and py be the prior
probability of 2, where p; + po = 1. Then,

P (Object correctly classified as class 1) = P(1|1)p;
P (Object misclassified as class 1) = P(1]2)po
P (Object correctly classified as class 2) = P(2|2)ps
P (Object misclassified as class 2) = P(2|1)py

Now suppose that the costs of misclassification of a class 2 object as a class
1 object, and vice versa are, respectively.

c(1]2) and c(2|1).

31
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Then the expected cost of misclassification is therefore
c¢(2]1)P(2[1)p1 + ¢ (1]2) P(1]2)p2.

The idea is to choose the regions R and Ko so that this expected cost is
minimized. This can be achieved by comparing the predictive probability
density functions at each point x

Rlz{az:
Rgz{az:

or, equivalently

fi(z)pr _ c(1]2)
fo (@) ps — c<2\1>}
f1 (33) P1

< 6(1\2>}

fa(z)pe  c(2]1)

or indeed minimizing the total probability of misclassification

P1
R

32

fi(x) dz + po

fo(x) dx
R1
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If p1 = pg, then

\/

_ f1(z)
= { @ @

and if ¢ (1]2) = ¢(2|1), equivalently

Ri={e i 2 0

and finally if p; = ps and ¢(1]2) = ¢ (2|1) then

ST

> 1} — (2 fi(2) > fo (o))

TN

33
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11.2 CLASSIFICATION FOR TWO NOR-
MAL SAMPLES

Suppose that we have two (multivariate) normal classes (in d dimensions),
that is where

e class 1: X ~ Ny (pq,>1)

1\¥? 1 1
ho=(5) mamee{ e m S e m)
1

e class 2: X ~ Ny (py, o)

1\¥? 1 1 Ty
ho=(5) muree{ e e m)
2

34
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We sometimes assume that > = Yo = 3 (homogeneity of variances).
Using the previous formula, we identify the following classification rule;
we allocate an observation with predictor variable xg to class 1 if

T w1 1 T -1 c(1]2) ps
(g = p2)” X7 wo — 5 (g — p2)” X7 (g + pg) > log [6(2\1)191]' (1)

2
More generally, if >; # >, we allocate an observation with predictor
variable xg to class 1 if

—%%T (51 =% ) wo+ (1D —pp ¥y ) w0 — k > log [Z

where

1 > 1 _ _
k= log (M) + 9 (Nipzl o — g g 1#2)

35
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The parameters p, o and 32, 317 and X9 may be estimated from training
data.

e if the covariance matrices are presumed equal then we have a total

of

1
2d + 5d (d+ 1)

parameters to estimate

e if the covariance matrices are presumed unequal then we have a total

of
2d 4+ d(d+1)

parameters to estimate

36
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Thus with limited data in d dimensions, we may be limited in the type of
analysis can be done. In fact, we may have to further restrict the type of
covariance structure that we may assume; for example, we might have to

restrict attention to

e diagonal covariance matrices (2d parameters in total),

e or an assumption of sphericity (2 (d + 1) parameters in total)

Despite their simplicity, such models often work well in practice.

37
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11.3 DISCRIMINATION

Discriminant analysis works in a very similar fashion; from equations
(1) and (2) we note that the boundary between regions R; and Ro takes
one of two forms

e Equal covariances: we have a straight line/plane defined by an
equation of the form

Ala: —|— agn
where Aq is a d X d matrix

e Unequal covariances: we have a quadratic surface defined by an
equation of the form

QZTBQQZ —|— Bla: —|— bo

where B and Bs are d X d matrices.

38
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11.4 ASSESSMENT OF CLASSIFICATION
ACCURACY

The performance of a classification rule can be achieved in a number of
ways: we can examine

e the within-sample classification error: the proportion of elements
in the training sample that are misclassified by the rule

e the leave-one-out classification error: the proportion of elements in
the training sample when the model is built (that is, the parameters
are estimated) on a training sample that omits a single data point,
and then attempts to classify that point on the trained model

39
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e an m-fold cross-validation : the data are split into m subsamples
of equal size, and one is selected at random to act as a pseudo-test
sample. The remaining data are used as training data to build
the model, and the prediction accuracy on the pseudo-test sample is
computed. This procedure is repeated for all possible splits, and the
prediction accuracy computed as a average of the accuracies over all
of the splits.

e accuracy using bootstrap resampling to achieve the cross-validation
based estimates of accuracy from above.

The theory behind the assessment of classification accuracy is complex.

40
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11.5 ROC CURVES

Receiver Operating Characteristic (ROC) curves can also be used to
compare the classification performance classifiers. We consider the results
of a particular classifier for two populations, say one population with a
disease, the other population without the disease. Suppose that a single
characteristic, x, is to be used to classify individuals.

The classification procedures above reduce to a simple rule; we classify an
individual to class 1 if

x < to

for some threshold ¢y, and to class 2 otherwise. @ We then consider the
following quantities:

41
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42

Sensitivity: probability that a test result will be positive when the
disease is present (true positive rate, expressed as a percentage).

Specificity: probability that a test result will be negative when the
disease is not present (true negative rate, expressed as a percentage).

Positive likelihood ratio: ratio between the probability of a posi-
tive test result given the presence of the disease and the probability
of a positive test result given the absence of the disease

True Positive Rate
False Positive Rate

Negative likelihood ratio: ratio between the probability of a neg-
ative test result given the presence of the disease and the probability
of a negative test result given the absence of the disease

False Negative Rate

True Positive Rate
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e Positive predictive value: probability that the disease is present
when the test is positive (expressed as a percentage).

e Negative predictive value: probability that the disease is not
present when the test is negative (expressed as a percentage).

Disease Class

1 2 Total

Predicted 1 a C a-+c

Class 2 b d b4 d
Total | a+b c+d | a+b+c+d

43
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e Sensitivity:/Specificity:

d
Sensitivity : - i ; Speci ficity : T d
e Likelihood Ratios
PIR— Sensitz:m"ty' NIR — 1 — Se@s?tz:m'ty
1 — Spect ficity Spect ficity

e Predictive Values

PPV = —° NPV = 2

a+c b+ d

44
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As the classifier producing the predicted class depends on the threshold ¢,
we can produce a plot of how these quantities change as ty changes.

If we plot
y(tg) : Sensitivity at tg (CORRECTED)

x(tg) : 1— Specificity at tg
then we obtain an ROC curve;

e for a good classifier would rise steeply and then flatten off ; such a
curve would have a large area underneath it on the unit square (the

domain of (x(tg),y(to)))

e for a poor classifier would be have an ROC curve near the line y = .

45
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Diagnosis of ferritin ROC curve
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11.6 GENERAL CLASSIFICATION SCHEMES

The general exercise of classification can be seen as a exercise in regression
modelling for a nominal categorical variable. Previously, we studied
regression, and more briefly generalized linear regression.

e For a binary response, or a two-class problem, we can use logistic
or binary regression

e For a multinomial response, or a multi-class problem we can use
multinomial regression

Because of this regression context, we can use all the previous tools for
analysis in regression models that we have used previously.

47



