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SECTION 8.
POWER AND SAMPLE SIZE

General design issues often need to be considered before an experimental
study is embarked upon.

e In clinical /animal studies, ethical considerations dictate that the “op-
timal” number experimental units are considered, and that resources
are deployed in an “optimal” fashion.

e Economic forces mitigate against using an expansive study when a
smaller one enables the same research hypotheses to be tested.

Data are collected, and hypotheses tested, within a framework of statis-
tical inference and summary; the statistical framework also allows formal
assessment of the utility of a study, and allows a statistically optimal study
(with respect to a specific hypothesis) to be considered
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8.1 STATISTICAL HYPOTHESIS TESTING

Recall the basic components of statistical hypothesis testing: in assessing
which of two hypotheses, Hy and H;

Hy : NULL HYPOTHESIS
H, : ALTERNATIVE HYPOTHESIS

is preferable in explaining the observed data, we need to specity, and com-
pute the following quantities

e TEST STATISTIC, T
e NULL DISTRIBUTION, F,

e SIGNIFICANCE LEVEL, o

e P-VALUE, p

e CRITICAL VALUE(S)/CRITICAL REGION R
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Recall that the null distribution is the probability distribution of test
statistic 7' if the null hypothesis, Hy, is true; if t* is the observed test
statistic, lies in the critical region, we reject Hy in favour of H, and do

not reject H, otherwise.

The critical region R is defined via the significance level o by
P|T € R|Hy is TRUE] < « (1)
(where T' € R means “T takes a value in the set R”).

Note that (1) considers only the distribution of T if Hy is true, and the
conditional probability of rejection Hy in this case.

i.e. it is concerned only with “false positive” results.
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In a classical test of Hy (null hypothesis) versus H; (alternative hypothesis),
there are four possible outcomes, two of which are erroneous:

1. Do not reject Hy when is Hy true.

2. Reject Hy when Hj is not true.

3. Reject Hy when Hj is true (Type I error).

4. Do not reject Hy when Hj is false (Type II error).

Action

Do Not Reject Hy | Reject Hy

H, 0 True

v

Type I Error

Hg not True

Type II Error v
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TYPE I : FALSE POSITIVE result

TYPE II FALSE NEGATIVE result

To construct a test, the distribution of the test statistic under Hy is used to
find a critical region which will ensure that the probability of committing
a type I error does not exceed some predetermined significance level a.

Ideally, we would like to make the probability of making any type of error
(false positive and false negative) as small as possible. For a finite sample
however, this is not achievable, so a pragmatic approach that bounds the
probability of a Type I error is adopted.

NOTE: For an infinite sample, we desire that the probabilities of Type I
and Type II errors should both be zero.
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8.2 POWER CALCULATIONS

The power, 1 — 3, of a statistical test is its ability to correctly reject
the null hypothesis, or

1—08 = P[Reject Hy|Hp is not True] = P [T € R|Hy is not True]

= 1 — P[Do not Reject Hy|Hy is not True]

1 — P[T ¢ R|Hy is not True]
so that

B = P |Do not Reject Hy|Hy is not True] = P [T ¢ R|Hj is not True]

which is based on the distribution of the test statistic under H;.
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This is the first occasion on which we have had to consider the distribution
of the test statistic under the alternative hypothesis; as we shall see, in
order to consider a sample size or power calculation, we must explicitly
consider the alternative hypothesis.

Suppose that the hypothesis test concerns a parameter 6 that can take
values in the parameter space ©. Suppose that the null and alternative
hypotheses partition © into two parts, &y and O, that is

H() . 9 c @()

H1 . 9 c @1
so that, in the simplest case

H() . O=c

H1 . 0 # C

we have ©¢ = {c}, ©p = R\ {c}



Using Statistics in Research. Summer 2003

Under H;, the probability
P [Do not Reject Hy|Hy is not True| = P[T ¢ R|0 € ©4]

which we previously defined as ( will vary as the true value of 6 varies in
the set ©1, hence we should write 3 as a function of 6.

EXAMPLE: In aone-sample test of a normal mean, we have X1, ..., X,
as a set of random variables relating to the observed data z1,...,x,, and
an assumption that

Xi ~ N(p, 02)

fori =1,...,n. If 02 is known, to perform a two-sided test of equality the
hypotheses would be as follows:

H() . ,LLZQ()
Hy @ p# 6o

10



Using Statistics in Research. Summer 2003

The test statistic is

X —u
J =
o/\/n
and under Hy,
X0

Z ~ N(0,1).

- o/yn

We reject Hy at significance level « if the z statistic is more extreme than
the critical values of the test are

04

Cr=2"(1-3)

o

R =6y + Cr
/n

11
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Now, if H; is true, and pu = 0 for some value 0, then , X ~ N(0,0?), and

hence
X — 6, 0 — 0,
7 = ~ N 1].
o/\/n (a/ﬁ’ )

so the probability that z lies in the critical region if y = 6 is

P[T €R|f] = P[Z<—Cgl]+P[Z> Cglf] (2)

- e (e CR) (e (o)

where ® is the standard normal distribution function.

This quantity is the power function, 1 — (), when p is actually equal
to 6.

12
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Hence the probability of a Type II error when the true is 3 (0) , where

3(0) = 1-P[TeRlO
o(on-Sa) -r (o)
- oo i) - (e len TR)
- w(ea-Grm) e (one S

The plots below illustrate examples of power functions for different choices
of 0 and n, with 6y = 0.

13
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Thus for fixed «, 0y, 0 and n, we can compute the power function 3 (0) as
0 varies.

NOTE: The parameters in (2) appear in terms of the ratio
0 — 6o

o

that is, a standardized difference between the hypothesized values of u
under the null and alternative hypotheses.

Similar calculations are available for other of the normal distribution-based
tests.

15
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8.2.1 ONE-SIDED TESTS

To perform a one-sided test of the hypotheses
H() NNVES 9()
Hi : pu< 0o

the power function is
1-8@)=P|[TeRI0)=P|[Z<Cgr(a)|d] = (CR(a) —

where
Cr(a) =® 1 (a)

with a similar calculation if Hy : u > 6

1_5(9):P[ZZCR(04)’9]:1_(I)<CR(Q)_90/_\/950)

16
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8.2.2 UNKNOWN VARIANCE

If 02 is unknown, to perform a two-sided test of equality the hypotheses
would be as follows:

H() NNVES 9()
Hy @ p# b
The test statistic is
X —
T — M

~ s/yn

where s is the sample standard deviation, and under Hj,

X — 0

L=

~ Student(n — 1).

17
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We reject Hy at significance level « if the t statistic is more extreme than
the critical values of the test, with

=

where F, " is the inverse cdf of the Student(k) distribution

Cr=F;" (1 - g)

R=00=+tCr 5

Now, if H; is true, and p = 6 for some value 6, then

X — 0
T =
s/\/n
X—-0 0-6 0—40
_ n L 0

s/v/n s/vn s/v/n

where Ty ~ Student(n — 1).

18
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Then the probability that 1" lies in the critical region is

1-8(0) = P[TeR|f
X — 0 0 — 0O
NN

- (oG

19

X —0
| s/v/n
(X —0
| s/v/n

< -Cgl0| +P

0 — 0
0 P
v | T

(3)

6 — 6,
s/v/n

Sl

3)

+ > 03’9]
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8.2.3 TWO SAMPLE TESTS

In a two sample problem, if o2 is unknown but common for both samples,
to perform a test of the hypotheses:

Ho : py—pg =0
Hy @ opig—pg =90
The test statistic is
X1 - X
1 1

Spy/— + —
n1 12

T =

where sp is the pooled sample standard deviation, and under Hy,

T ~ Student(ny + no — 2).

20
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We reject Hy at significance level « if the t statistic is more extreme than
the critical values of the test are

s _ o
R=*xCr— Cr = Ftn11+n2—2 (1 B 5)

n

Now, if H; is true, for the particular value of 6 specified

<. _%
T 1 — X9
\/1 1
Sp +
n1 o
X{—X5) =6 )
. (@ -Xy s

say, where Ty ~ Student(ny + ny — 2).

21
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Then the probability that 1" lies in the critical region is

1-3(6) = P[TeRlf] (4)

= P[T() + 6 < _CRM] —|—P[T() + 6g > CRM]

P [Ty + 6o < —Cgr — 8|8] + P [Ty > Cr — 60|6]

F! (—OR—ag+(1—pP1 (03—5@)

tn1—|—n2—2 tn1—|—n2—2

and thus the power function is calculable for any combination of a,nq,no
and 0.

22
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SUMMARY: The adequacy of a test to distinguish between two hy-
potheses is a function of

e The null and alternative hypotheses;
e The target significance level «;
e The desired power to detect Hy for a specific 0, 3 (0);

e The variability within the population(s) under study as measured by
o

e The sample size n (or n; and ns).

Our objective is to find a relationship between the above factors and the
sample size that enables us to select a sample size consistent with the
desired oo and (3 (0), typically, we will hypothesize a specific value of § and
compute the corresponding £.

23
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8.2.4 GENERAL POWER CONSIDERATIONS

The principles outlined above can be applied in more complicated situations

24

NON-PARAMETRIC TESTS
NON-NORMAL DATA TESTS

— Approximate Binomial

— Exact Binomial
ONE-WAY /TWO-WAY ANOVA

— number of groups/cross-categories, K
— number of observations per category, ng

— category levels 64, ...,0k

REPEATED MEASURES
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The details of the power calculation are more complicated as the complex-
ity of the experimental procedure increases, but the principles remain the
same; we compute

the probability of rejecting a specified null hypothesis
when
a specific alternative hypothesis corresponds the actual truth

that is, we are obliged to consider both null and alternative hypotheses,
and their impact on the distribution of the test statistic.

This is fundamentally different from the simple hypothesis testing situation,
where we only consider the null distribution.

25
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Therefore, a power calculation necessarily involves consideration of a spe-
cific alternative hypothesis, that is, equivalently, the magnitude of

0 —0o .
o —

in the Normal sample case with known variance o?

o

e § if 02 is unknown
e 0, = m — Ty in a two-sample Binomial problem, and test of
H() . T — T — 0

H1 . 7'('1—7'('2:67T
and so on.

How do we choose these quantities ?

- usually by consideration of a “clinically” or ”experimentally” signifi-
cant difference, or an “anticipated” effect size..

26
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8.3 EXAMPLES

(see Machin et al, 1997, Sample Size Tables for Clinical Studies)

e power/sample size for independent groups of binary, ordered, cate-
gorical and continuous data

e paired/repeated measures data
e for equivalence studies
e survival

e observer (inter-rater) agreement

27
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8.4 SIMULATION-BASED CALCULATION

When analytic expressions for the power/Type II error probability are not
easily available, we can do approximate power calculations by simulation
means

e we formulate the test (null and alternative hypotheses, test statistic)
in the usual way

e we repeatedly simulate data under the alternative hypothesis model
(for fixed sample size, null model)

e we compute the power/Type II error probability empirically by eval-
uating the frequency with which the null hypothesis is correctly re-
jected.

For complicated designs (correlated data, clustered/grouped data), this is
often the simplest solution.

28
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8.5 SAMPLE SIZE CALCULATIONS

In all of the above, we have concentrated on computing the achieved
power for detecting a particular effect (relative effect) in a fixed study
(perhaps that has already been carried out).

Often it is desirable to reverse the logic and to ask if a certain power 3 to
detect an effect (if it is there) is required for a specified significance level

a, how large would sample size n need to be 7

Such a consideration is of strategic importance in study design, and can
give insight into the practicability of the proposed study.

29
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Recall the simple concept of standard error in a mean;

Clearly as n increases, the standard error decreases. Thus if we wanted a
standard error that was no larger than some quantity ¢, we would have to
chose n large enough to ensure this, that is,

S S\ 2
—Se@nZ(—)

Vn €

This simple idea extends naturally to confidence intervals, and to hypoth-
esis tests, and hence to power assessments.

30
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In the simple case of a single normal sample with known variance, the
power equation in (2) can be rearranged to be explicit in one of the other
parameters if 3 is regarded as fixed.

For example, if a, 8,0y and 6; are fixed, we can rearrange to get a sample
size calculation to test for fixed difference 6 = 61 — 6,

. o2 (Cr+ @71 (1—3))°
(61 — 0o)”
. . |01 = 09
or standardized difference A =
%
(CR —+ o1 (1 — 6))2
n = A2

31
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This idea of rearranging the power calculation to obtain a sample size
extends to the general cases described above.

Other issues do need to be considered

e one-sided vs two-sided tests

e in two sample problems, the deployment of the samples to be used

— equal proportions in the two groups

— fixed unequal allocation ratio between subjects assigned to the
two groups (in observational studies this may be necessary)

e allocation by randomization: exchangeable subjects

32
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8.6 STUDY DESIGN ISSUES

The method of data collection can sometimes influence how the data are
subsequently analyzed. Typically, we wish to examine the variability in
a incidence of the response event with some exposure factor, possibly
with the presence of confounding factors.

In clinical, medical or epidemiological studies, there are two types of study;

e OBSERVATIONAL : where the exposure arises naturally, and
the experimenter attempts to detect differences in response

e EXPERIMENTAL : where the exposure is determined by the
experimenter

The type of study used influences how the data are analyzed.

33
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8.6.1 OBSERVATIONAL STUDIES

Consider the following representation of an observational study; let

e S denote the inclusion of a subject in the study,
e [/ denote exposure

e [ denote incidence; if F' occurs, then we observe a case.

We will try to examine variation in incidence rate across different levels
of the exposure factor.

Using probability theory

P(ENFNS)= P(E)P(F|E)P(S|ENF).

34
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We will use this factorization to deduce estimable quantities from different
observational studies that comprise the S “margin” of a 2 X 2 X 2 events
table with the recorded number of observations as follows; for the events

and the counts data

35

ENS E'NS
FNS | ENFNS | ENFNS
F'NS|ENF'NS | ENF'NS
ENS E'nS || TOTAL
FNS n11 ni2 ni.
F’ﬂS n21 22 n9.
TOTAL n 1 n 9 n.
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8.6.2 COHORT STUDY

In a cohort study, the defining feature is that £/ and F' are independent
of S so that

E E’
P(ENFNS)=PE)P(F|E)P(S) — F| ENF | ENF
F'I\ ENF' | E'ENF’

as the S and S’ margins are identical.

It follows that all of the following quantities are estimable:

36
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e RATES OF EXPOSURE AND INCIDENCE
¢ =PFE)=P(ENF)+P(ENF

and
¢$=PF)=P(ENF)+P(E'NF)

with estimates
n.1

0=

37
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e INCIDENCE RATES IN THE EXPOSED/UNEXPOSED

GROUPS
P(ENF)
= P(F|F) =
P(E'NF)
P(F|E') =
with estimates
~ ni1 ~ ni2
ml, = — T — —

38
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e THE RELATIVE RISK

1

p:
0

with estimate

H=

39

P(ENF)/P(E)

P(E'NF)/P(E

@ _ n11/n.1

o n12/n.2
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e EXPOSURE RATES IN THE CASE AND CONTROL GROUPS

P(E N F)
= P(E|\F) =
P(E N F’)
— P(E|F) =
with estimates
~ ni1 . na1
Y1 = — Yo = ——

40
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e ODDS ON INCIDENCE IN THE EXPOSED AND UNEX-

POSED GROUPS

T
w1 —
1 — 1
o
wo =
1— 70
with estimates
~ T ni1
Wl = — =
1 — 71 no1

41

P(ENF)
P(ENF)
P(E'NF)
P(E'NEF)
~ o ni2
WO ] — ]

1 — 70 29
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e ODDS ON EXPOSURE IN THE CASE AND CONTROL
GROUPS

Q0 = 1

Q, = 10 _

with estimates

P

lelﬁA :n11 QO: Yo :n21
— 71 M2 1 —7v9 7nao

42
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e ODDS RATIO

( P(F|E)/P(F'|E) P(ENF)/P(ENF)
P(FIEN/P(FI|E") _ P(ENF)/P(ENEF)

v P(E|F)/P(E'|F)  P(ENF)/P(E'NF)
| P(E|F")/P(E'|F") ~ P(ENF)/P(E'NF)

with estimate

niin22

<)
|

ni12M21

43

wi 7T1/(1—7T1)
wo 7T()/ (1—7'('())
/T =m)
Qo v/ (1 =)
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8.6.3 CASE-CONTROL STUDY

In a case-control study, the defining feature is that F is independent of
S given F and given F”, but

P(S|IENF)=P(S|E'NF) P(S|IENF")y=P(S|E'NF)
P(E|SNF)=P(E|S'NF) P(E|SNF')=P(E|SNF)

In practice the design proceeds as follows; we look for incidences or cases
and automatically include them in the study, and then we find a set of
controls who do not have the “case response” and include them also. Our
assumption of conditional independence of E and S given F' means corre-
sponds to an assumption of no probabilistic dependence between exposure
and inclusion in the study.

Now, consider the estimation of

44
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We have that

P(ENFNS) P(E)P(F|E)P(S|EN F)
P(E'NFNS) P(E"P(F|E")P(S|E' N F)

P(FIE)P(E) _ P(E|F)
)

P(F|E")P(E')  P(E'|F)

as, by assumption, P(S|E N F) = P(S|E'NF). A similar factorization is
possible for

PEIF)

P(E'[F") 1=

Qo =

45
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However, if we try to proceed in the same way for the incidence ratio in
cases and controls, then

m _ P(FIE) _ P(EIF) P(E) _ (1 —9)

0

o P(F|E'") P(F'|F)P(E)

and the simplification cannot proceed further; we have no way of estimating
0, the exposure rate in the population. Furthermore, for the odds on
incidence in the exposed group, we might try a similar approach to above
and examine

P(ENFNS)  P(E)P(F|E)P(S|ENF)

P(ENF'NS)  P(E)P(F'|E)P(SIENF)
P(F|E)P(SJENF)  P(S|IENF)
P(FIENP(SIENF)  “*PSIENF)

46
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Again the simplification cannot proceed further as

P(S|ENF)
P(S|ENF)

is indeterminate.

The case-control study design, therefore, is perhaps more efficient, but does
not allow the full range of inferences to be made.

47
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However
PENFNS)/P(ENF'NS)  PENFNS)/PE'NFNS)
PENFNS)/P(E'NF'NS)  PENFNS)/PENFNS)
_ PWBR/PEIE)  n/(=y) O
P(E|F")/P(E'[F") v/ (1—7) o
and also
P(E|F)/P(E'|F)  P(F|E)/P(F|E') 71 /T - m/ (1 —m)

=

P(E|F")/P(E'|F')  P(F'|E)/P(FI|E')  (1—m)/(1—m) o/ (1—mo)

and finally

P(EIF)/P(E|F)  P(FIE)/P(FIE) m/(-m) w

PUETF)/PBIF) ~ PIFIEN/P(FIE) ~ mof (1= m0) w0 *

48



Using Statistics in Research. Summer 2003

It follows that only the following quantities are estimable in the
absence of other knowledge

e EXPOSURE RATES IN THE CASE AND CONTROL GROUPS

P(E N F)
= P(E|\F) =
P(E N F)
— P(E|F =
with estimates
~ ni1 ~ na1
Y1 = Yo = ——

49
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e ODDS ON EXPOSURE IN THE CASE AND CONTROL
GROUPS

Q0 = 1

Q, = 10 _

with estimates

P

lelﬁA :n11 QO: Yo :n21
— 71 M2 1 —7v9 7nao

50
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e ODDS RATIO

( P(F|E)/P(F'|E) P(ENF)/P(ENF)
P(FIEN/P(FI|E") _ P(ENF)/P(ENEF)

v P(E|F)/P(E'|F)  P(ENF)/P(E'NF)
| P(E|F")/P(E'|F") ~ P(ENF)/P(E'NF)

with estimate

niin22

<)
|

ni12M21

51

wi 7T1/(1—7T1)
wo 7T()/ (1—7'('())
/T =m)
Qo v/ (1 =)
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EXAMPLE: LIMITATION OF CASE CONTROL STUDIES

An illustration of why case-control studies are limited in their usefuleness
is presented below; fixing v; = 0.2 and v, = 0.1 and changing the size of
the CONTROLS group. In Table 1

and in Table 2

52

ENS | E'NS || TOTAL
CASES 20 80 100
CONTROLS 100 900 1000
TOTAL 120 980 1100
ENS | E'NS || TOTAL
CASES 20 80 100
CONTROLS | 500 4500 5000
TOTAL 520 4580 5100
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Then clearly if we estimate vy, and v,, we recover the true values 0.2 and
0.1, and in each case

. 20%900 9 . 20x 4500 9
HABLE L v =55 100 = 4 TABLE 2 v =3 500 ~ 1

but if we try to estimate, for example m; and 7 in the same way that we
would for a cohort study, we get different results from the two tables

20 1 0 4
TABLE 1: 7 = — — = o= 2
™M= 120 6 07980 T 49
20 1 30 4
TABLE 2: 7, = 2 — & ~ _ o0 _ 4
"= 520~ 26 0T 4580 — 229

The row totals, corresponding to the total numbers of cases and controls,
n1. and no_, are fixed by the experimenter, and we do not have a random
sample of exposed and unexposed individuals from the population.
In a cohort study, only the total cohort size, n.., is fixed.

53
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8.6.4 STANDARD ERRORS FOR EFFECT SIZES

In a 2x 2 table analysis, our estimates of key parameters are functions of the
counts in the table; these estimates have associated (estimated) standard
errors that allow construction of confidence intervals for the parameters,
and hence permit hypothesis testing.

Recall the counts data for individuals in the study

E E’ TOTAL
F ni1 n12 ni.
F’ N9 UHY) na.
TOTAL n 1 n o n..

Then we have the following estimates and estimated standard errors for
effect sizes; we typically examine such quantities on the (natural) log scale:

54
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e The log relative-risk

log p = log i— log (

o

with estimated standard error

nll/n.1)

n12/n.2

\/( 1 1 )
R +
N1 Mi1 + N2i

e The log odds ratio

log;b = log (

with estimated standard error

( 1
ni2

niina22

n12M21

1

N12 + N29

)

1 1
+ +
ni1 n21

55

1

1

_|_
ni2

122

)
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8.6.5 EXPERIMENTAL STUDIES

Experimental studies are studies where the exposure factor is determined
by the experimenter during the study

e treatment/control
e drug/placebo
e dose level 1,2,3,.... K

An experimental study is a special type of cohort study

56
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The most common type of experimental study is a randomized con-
trolled trial.

This is a study design where treatments, interventions, or enrollment into
different study groups are assigned by random allocation rather than by
conscious decisions of clinicians or patients.

If the sample size is large enough, this study design avoids problems of bias
and confounding variables by assuring that both known and unknown
determinants of outcome are evenly distributed between treatment
and control groups.

“The itmportance of randomaization cannot be over stressed. Ran-
domization is necessary for conclusions drawn from the experi-
ment to be correct, unambiguous and defensible.”

http://www.itl.nist.gov/div898/handbook/pri/section7/pri7.htm

57



Using Statistics in Research. Summer 2003

Strategy for randomization:

e identify possible counfounding factors

e partition (prospectively /retrospectively) experimental units into ho-
mogeneous subgroups according to confounding factors

e within in subgroup, allocate units to treatment/exposure groups at
random.

58



