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SECTION 6.
REGRESSION MODELLING

Aim: To explain the systematic variation of one observed variable with
another in the presence of random variation

e two related samples (predictor-response)

e simplest case - a linear (“straight-line”) relationship
e typically assume normal random errors

e extension to non-linear relationships

e extension to non-normal data

e lead into multivariate modelling
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6.1 LINEAR REGRESSION

Blood Viscosity vs Packed Cell Volume
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6.1.1 TERMINOLOGY AND NOTATION

Y is the response or dependent variable

X 1is the predictor, covariate or independent variable

A simple relationship between Y and X is the linear regression model,

where
ElY|X =z] = a+ fx,

that is, conditional on X = =z, the expected or “predicted” value of Y is
given by a+ Gz, where o and 3 are unknown parameters; in other words, we
model the relationship between Y and X as a straight line with intercept
« and slope £.

For data {(z;,vy;) : @ =1,...,n}, the objective is to estimate the unknown
parameters o and . A simple estimation technique, is least-squares
estimation.
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6.1.2 LEAST-SQUARES ESTIMATION

Suppose that a sample, {(z;,¥y;) : i = 1,...,n}, is believed to follow a linear

regression model, E|Y |X = z] = a + fz. For fixed values of « and g, let

yEP) denote the expected value of Y conditional on X = x;, that is

ygp) = a + fOx;

Now define error terms e;, ¢ = 1, ...,n by

P
67;:%—%-( )Zyi—@—ﬁwi

that is, e; is the vertical discrepancy between the observed and expected
values of Y.
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The objective in least-squares estimation is find a “line of best fit”,
and this is achieved by inspecting the squares of the error terms e;, and
choosing o and 3 such that the sum of the squared errors is minimized.

We aim to find the straight line model for which the total error is smallest.

Let S(a,3) denote the error in fitting a linear regression model with pa-
rameters a and 3. Then

n

S B) = = i~y =D (i —a—Br)
1=1 1=1

1=1

Different values of «, 3 give different .S values; we aim to choose the “best”
pair of parameters
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a=2.5,b=0.05

y=2.5+0.05 x °

5|. 5

S=7.971
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a=-5,b=0.2
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To calculate the least-squares estimates, we have to minimize S(a, 3) as
a function of a and (. This can be achieved in the usual way by taking
partial derivatives with respect to the two parameters, and equating the
partial derivatives to zero simultaneously.

() {8} = ~23 (i~ a— fr) =0
(2)%{5(@,6)} = —QZ:Ui(yi—oz—ﬂa:i):()

10
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Solving (1), we obtain an equation for the least-squares estimates a and @

n

Q= %Zyz - B%Z% = - pz.
i=1 i=1

Solving (2) in the same way, and then solving for /B\ gives

Zmzyz—zﬂfz;yz 1Sy, — SuS,

B . nzzl =1 =1 .
— 2 — 2
n n NSye — {5z}
z; ’ z; ‘
so that
n -n
Z Ty — 0 Z 377,2
~  i=1 =1 o -
Q= =1y — [T

11
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where
n n n
1=1 1=1 1=1 1=1

Therefore it is possible to produce estimates of parameters in a linear re-
gression model using least-squares, without any specific reference to prob-
ability models. In fact, the least-squares approach is very closely related
to maximum likelihood estimation for a specific probability model.

Alternative formulae: let

52 Sy S.S
VCBCB:SCECB_; Vyy:Syy_;y Va:y:Sa:y_ ny
Then v
= a=y— 0z

12
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The line of best fit:

13
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Note: the regression line passes through the mean value point (Z, %)

a=-1.223 ,b=0.122

y=-1.223 + 0.122 x

5|. 5

S=2.721

Blood Viscosity (cP)

40 45 50 55
Packed Cell Volume (PCV) %

The least-squares estimates of a and 3 assuming a Normal error model are
exactly equivalent to the maximum likelihood estimates.

14



Using Statistics in Research. Autumn 2003

6.1.3 ESTIMATES OF ERROR VARIANCE

In addition to the estimates of o and (3, we can also obtain the maximum
likelihood estimate of o2,

n

=13 (g —a—Br)? = 5°

n
1=1

Often, a corrected estimate, s?, of the error variance is used, defined by

_n—QZ _Oé_ﬁwz _n—2

where 7; = a + /ﬁ\azz is the fitted value of Y at X = z;.

15
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6.1.4 RESIDUALS

Having fitted a model with parameters o and /B\, we can calculate the error
in fit at each data point, or residual, denoted ¢;,7 = 1, ..., n, where

e =Y — Ui = Yi — a — Py
The residuals can be used to assess model fit. By the modelling as-

sumptions, if the model is correct, it should be that the residuals are an
independent and identically distributed random normal sample, that is

e; ~ N(0,0%) = ¢; should be an observation from N (0, c?).

This indicates a standardization mechanism

“ o N(0,1)

o

so that instead of inspecting merely residuals we inspect standardized
residual

16
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These standardized residuals should

e be internally uncorrelated
e be uncorrelated with any of the response or predictor values
e have a variance approximately 1

e lie within a band 42 away from zero

Any deviation from this behaviour indicates that the model is deficient in
some way

17
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FOR BLOOD VISCOSITY DATA
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6.1.5 PREDICTION FOR A NEW z VALUE

Suppose that, having fitted a model, and obtained estimates a and /B\ using
maximum likelihood or least-squares, we want to predict the Y value for a
new value x* of covariate X. By considering the nature of the regression
model, we obtain the predicted value y™ as

6.1.6 STANDARD ERRORS

We need to be able to understand how the estimators corresponding to «
and ( behave, and by how much the estimate is likely to vary. This can
be partially achieved by inspection of the standard errors of estimates,
that is, the square-root of the variance in the sampling distribution of the

20
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corresponding estimator. It can be shown thay

52

Via + — =2
~ Sa:a: T n 1 X
S.@. CY — S pr— S — S N _|_ —_

~ n 1
s.e.(f) = 3\/n5m BETRE =5 Vo

where s is the square-root of the corrected estimate of the error variance.
It is good statistical practice to report standard errors whenever estimates
are reported. The standard error of a parameter also allows a test of
the hypothesis “parameter is equal to zero”. The test is carried out by
calculation of the t-statistic, that is, the ratio of a parameter estimate to
its standard error. The t—statistic must be compared with the 0.025 and
0.975 percentiles of a Student-¢ distribution with n — 2 degrees of freedom
as described below.

21
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6.1.7 TESTS AND UNCERTAINTY INTERVALS

We may carry out hypothesis tests for the parameters in a linear regression
model; as usual we need to be able to understand the sampling distribu-
tions of the corresponding estimators. In the linear regression model, the
sampling distributions of the estimators of a and  have Student-{ dis-
tributions with n — 2 degrees of freedom, hence we use the test statistics

[

L a—c Lo —cC
“Tse@ 7T sed

to test the null hypothesis that the parameter is equal to c.

Typically, we use a test at the 5 % significance level, so the appropriate
critical values are the 0.025 and 0.975 quantiles of a St(n — 2) distribution.
It is also useful to report, for each parameter, a confidence interval in which
we think the true parameter value (that we have estimated by « or ) lies
with high probability.

22
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It can be shown that the 95% confidence intervals are given by
a0t by 2(0.975)s..(Q) B: B =+t,_2(0.975)s.e.(5)

where t,,_2(0.975) is the 97.5th percentile of a Student-¢ distribution with
n — 2 degrees of freedom.

The confidence intervals are useful because they provide an alternative
method for carrying out hypothesis tests. For example, if we want to test
the hypothesis that o = ¢, say, we simply note whether the 95% confidence
interval contains c. If it does, the hypothesis can be accepted; if not the
hypothesis should be rejected, as the confidence interval provides evidence
that o # c.

23
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The prediction interval for a new covariate has two forms, depending on
whether the predicted expected response or the predicted observed re-
sponse is required; the two forms for a prediction at new predictor x*

are

e EXPECTED value of y*

~ 1 * _ )
a+ﬂaz*i3\/—+(w 7)
n

Va:a:

e OBSERVED value of y*

*_j,)Q

Va:a:

~ 1
a+ﬁaz*i3\/1+—+(m
n

Note that the latter interval is wider, as it takes into account the random
observation error.

24
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6.2 CORRELATION

The sample correlation coeflicient, r, measures the degree of association
between X and Y variables and is given by

NSy — Szdy Vay

T = —

\/(nSm — S2)(nSyy — 53) Viea Viyy

and therefore is quite closely related to /B\

We may carry out a hypothesis test to carry out whether there is signifi-
cant correlation between two variables. We denote by p the true correlation;
then, wish to test the hypothesis

H()Zp:()
lepyé()

25
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6.2.1 THE Z-TEST FOR CORRELATION
A test of the hypothesis is given by the Fisher z statistic

\/mlog<1+r)

2, =
2 1l —7r

which has a null distribution that is N(0,1). Hence, if
z,| > ®71(0.975) = 1.96

then we can conclude that the true correlation p is significantly different
from zero.

26
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6.2.2 THE T-TEST FOR CORRELATION
An alternative test of the hypothesis is based on the test statistic

br =1 1—17?

which we compare with the null distribution which is Student-¢ with n — 2

degrees of freedom. If
’tT’ > tn_2(0975)

then we can conclude that the true correlation p is significantly different
from zero.

27
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95% critical regions for Fisher Z/T-test

—— Fisherz

28
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EXAMPLE PCV/Blood Viscosity r = 0.879

e FISHER Z TEST = = 7.38065 (p = 7.875952¢ — 014)
o T-TEST ¢ = 10.08784, (p = 1.865336¢ — 011)

. STRONG EVIDENCE TO REJECT p = 0.0

29
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REGRESSION vs MULTIVARIATE MODELLING

Regression
Pattern indicates REGRESSION model
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Bivariate Data

Pattern indicates BIVARIATE model
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Bivariate Contour

Bivariate Model

32
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6.3 MULTIPLE LINEAR REGRESSION

The simple model above can be extended to the case where Y is modelled
as a function of p covariates Xj,..., X,, that is, we have the conditional
expectation of Y given by

EY|[X1 =m1,...Xp, =2 = a+ G171 + ... + B,
,50 that the observation model is given by
E’Xl = X1, ...,Xp = ZTjp ~ N(CV -+ 61337;1 + ... + Bpﬂfip, 0'2).

Again, we can use maximum likelihood estimation to obtain estimates of
the parameters in the model, that is, parameter vector (a, 81, ..., 8,, o),
but the details are slightly more complex, as we have to solve p+1 equations
simultaneously.

33
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6.4 THE NORMAL LINEAR MODEL

We assume that the variables to be modelled are as follows; we will observe
paired data, with response data y; paired to predictor variables stored in
vector form z; = (241, ..., x; D)T, and our aim is to explain the variation in
(y1,--»yn). We achieve this by modelling the conditional distribution of
response variable Y; given the observed value of predictor variable X; = x;.
Specifically, we may write

D
n:60+61w1—|‘...‘|‘ﬁDwiD+5i:60+Zﬁjwij+5i (1)
j=1

where ¢; ~ N (0,02) for + = 1,...n are independent and identically dis-
tributed random error terms. Note that this implies

D
YilXi=zi~ N | Bo+ > Bmij,0° (2)
j=1

34
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so that
D
EfY|X D/’L’Xz — wz] — 6() + Zﬁjﬂfij.
j=1

In vector notation, (1) can be re-written Y; = x! 3 + ¢;, where x; =
(1, 251, Ti2, -y :z:?;D)T, and thus, for vector Y = (Y7, ...,Yn)T we have

Y =X3+¢

where X is a n X (D 4 1) matrix called the design matrix

I z11 -+ x1D

1 221 -+ @2p

X = I x31 -+ x3p
i 1 Lnl LnD _

35
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and to mimic (2)
Y ~ N, (X8,0°1,) (3)

where I,, is the n X n identity matrix, giving a joint pdf for Y given X of
the form

fyv18,02(y; B,0°%) = : exp {—i (y—X3)" (y - Xﬁ)} (4)

(2#02)n/2 20

Finally, we can replace x;;s by some scalar function of them, for example,
we could have

gk(wﬂa ---,CU?;D) — gk(ﬂfﬂ) = A/ Tq1
gk(ﬂfih ---,%'D) — gk(ﬂfihww) = arTi1 + bpx;o

and so on. This reformulation does not effect our probabilistic definition
of the model in (3); we can simply redefine design matrix X in terms of
the transformed variables.

36
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6.5 FACTOR PREDICTORS: CONTRAST
PARAMETERIZATIONS

The linear model formulation can be used for categorical predictors, or
factors; suppose that predictor X takes K distinct levels (i1,lo, ..., k),
and that there is a different mean response for each level

(61 r = C1
ply]=4 2 T
\BK I = CK

The parameters (G4, 85, ..., B ) can be estimated in the usual way.

37
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Other parameterizations that will permit inferences about specific differ-
ences of interest, or contrasts, include

e Deviation: differences from overall mean level

1
o = ?(61"‘624_"-4_6[()
= 1 ! ! k=1.2 K —1
(S S SN S
j

e Simple: differences of levels cq, ...,cx_1 from cg

1
Ho = ?(61"‘624_"-4_6[()

He = Bk_ﬁK k:1,2,,K—1
(with arbitrary labelling of the levels)

38
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e Helmert: differences of each level from mean of subsequent cate-
gories

1
Ho = ?(61"‘624_"-4_6[()

K
1
j=k+1

e Difference: differences of each level from mean of previous cate-
gories

1
Ho = ?(61"‘624_"-4_6[()

| =
-

1

J

39
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e Polynomial: for ordinal categorical variables

CONTRAST 1 : LINEAR EFFECT ACROSS LEVELS
CONTRAST 2 : QUADRATIC EFFECT ACROSS LEVELS

e Repeated: differences for adjacent levels
1
o = ?(51 + By + ... + Bk)

M = Bk_ﬁk—f—l k:1,2,,K—1

40
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Most of these contrast specifications can be written as linear transforma-
tions of the original parameters, that is

p=0Cp

for a K X K matrix C.

Often, orthogonal contrasts are used for ease of interpretation; for or-
thogonal linear contrasts

Cte =1

where [ is the K x K identity matrix (ones on the diagonal, zeros else-
where).

Contrasts can be defined to examine specific effects.

41
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6.6 ANOVA IN REGRESSION

Analysis of variance or ANOVA is used to display the sources of vari-
ability in a collection of data samples. The ANOVA F-test compares vari-
ability between samples with the variability within samples. In the
above analysis, we have that

5@ =5(5)+(5-0) xx)(3-5)

or, as previously

TSS =RSS + FSS.

Now, using the distributional results above, we can construct the following
ANOVA Table to test the hypothesis

against the general alternative that H( is not true.

42
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Source D.F. Sum of sq. Mean square F
ESS Mpss
FITTED K FSS Mpsg =
e K Mpss
RSS

RESIDUAL n—-K —1 RSS Mpss = h—K_1)

TOTAL n—1 TSS

This test allows a comparison of the fits of the two competing models
implied by the null and alternative hypotheses.

e Under the null model, if Hy is true, then the model has Y; ~ N (60, 0(2))
for i = 1,2,...n, for some 3, and o3 to be estimated.

e Under the alternative hypothesis, there are a total of K +1  param-
eters to be estimated.

43
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The degrees of freedom column headed (D.F.) details how many param-
eters are used to describe the amount of variation in the corresponding row
of the table; for example, for the FIT row, D.F. equals K as there are K
parameters used to extend the null model to the alternative model.

Now consider the following design; suppose that there are K possible
medical treatments and you wish to test for any difference between them.

The parameter vector is 8 = |64, B9, ..., 0 K]T say, and the null hypothesis
is that, for some (3,

Hy:0,=0y=...=0g =0

The Normal Linear Model Theory above applies, and the ANOVA test
proceeds as usual.

44
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6.7 MIXED LINEAR MODELS

The equation for response Y in terms of covariates X
Y =X3+¢

so that
Yi=x{0+e

indicates that the variation in Y; is the result of a systematic component
z}' 3 plus some random variation €. The parameters 3 are termed fixed
effects parameters. An extension of this model adds a further, individual
random component

where Z; ~ N(0,0%) is a random individual specific-random variable. If
multiple observations are available,

Yij = xi;0+ Zi +

45
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A model that includes both fixed and random effects terms is called a
mixed effects model.

The {Z;} terms are identically distributed, with one Z; specific to each
individual’s observations.

It is possible to marginalize this model by integrating out over the unob-
srerved Z.

Standard likelihood theory does not extend to this case

46
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6.8 NON LINEAR REGRESSION

The linear model
Y; = B+e¢

is termed linear because the terms in the vector 3 appear in a linear com-
bination. It can be exteneded to the non-linear case, for example

Y, =g (i 8) +ei
for some non-linear function g of the parameters.

Likelihood & Least Squares estimation still available.

EXAMPLE: Pharmacokinetics

Y = g (v B8) + i = Boo exp {=Bo1xi} + Bro exp {—=Br12i} + &

where (3,; < 3;; for identifiablity.

47
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Pharmacokinetic data

48
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6.9 GENERALIZED LINEAR MODELS

The central idea of Generalized Linear Models (GLMs) is to extend
the ideas from the normal linear model to allow the possibility of modelling
non-normal data. In the GLM, we will model

EfY|X D/%’X’L — 337/] — g_l (wfﬁ)
where

K
37?6 = Bp + Zﬁjwij'
j=1

for some monotonic/invertible function g; in the normal linear model, g is
the identity function.

49
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6.9.1 GLM TERMINOLOGY

There are two key terms in the model description:

e Linear predictor: for observed predictor z; = (x1,...,x;x) and
parameters 0 = (3, 01, ---8x ), the linear predictor is

K
n; =z 8 =B+ Zﬁjmij
j=1

e Link function: a link function ¢ is a function that connects the
linear predictor to the expected value of the response

50
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EXAMPLES

e POISSON MODEL

_)\)\y
Fyino:0,0) = Fring(yid 6) = —;
e BINOMIAL MODEL
fyi0.6(y:0,9) = fyie,6(y;0,¢) = (Z) Y (1 — )" ¥

51
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6.9.2 LINK FUNCTIONS

Link functions that are in common usage for the usual statistical models
include:

52

log

logistic

power

Box-Cox

Probit

Complementary log-log

Log-log
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6.9.3 CHECKING THE FIT OF A GLM

Deviance is a way of measuring the goodness of fit of a GLM. It is based
on a Likelihood Ratio statistic

where
e (3, is the mle under a model, M

¢ /3 g 1s the mle baseline model the saturated model, which corresponds
to the best possible fit

e [y and [g are the likelihood functions under the model and satu-
rated model respectively.

53
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We have a complete range of model fits to calibrate the fit of any individual
model:

SATURATED MODEL — MODEL — NULL MODEL
MOST COMPLEX — LEAST COMPLEX

LOWEST DEVIANCE — HIGHEST DEVIANCE

Changes in deviance are assessed for significance against a chi-squared
distribution, or an F' distribution.

54
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SECTION 7.

REPEATED MEASURES AND
MULTIVARIATE RESPONSE

A typical experimental design involves taking repeated measurements of
the same feature on the same experimental unit.

e observations made at time t = 0,11, 1o, ...

e observations made on treatment 1,2,3,...

Y

The resulting observed values are necessarily correlated through “time’
in this design because of the “within individual” factors. However, we may
still be interested in the impact of different predictors/covariates/fixed
effects.

55 Section 7.0
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7.1 MODELLING ASSUMPTIONS

We want to assess the systematic differences in mean response level (be-
tween time points, between treatment groups etc.) whilst accounting for
the correlation in the observed data. Let y;;i be the

o k" observation for the
o ;" experimental unit in the
o it group
fori=1,..,n,7=1,..,n;and £k =1,..., K;;. Then
E [ka] = Hijk

and we attempt to model Liiks but Y;; = (K;jl, ngKzg) have some mul-
tivariate probability distribution due to the within individual correla-
tion.

o6 Section 7.1



Using Statistics in Research. Summer 2003

A common (and typical) assumption is to use a multivariate Normal dis-
tribution,

Y~ NKU (:u’ijazij)

where
T .
° [ = (Mz‘jpﬂz‘jm ...,,uinij) is a K;; X 1 mean vector
o >;; is a K;; X K;; variance-covariance matrix
for the (4, 7)™ unit.
If p;;;, does not depend on time £, then the model simplifies to

Hi; = (Mz‘jaﬂija ---Mij)T

and our interest centres on differences between the collection of p,;s.
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We have encountered this situation previously when studying ANOVA;
the distinction here is the correlation in the data.

e (Classical ANOVA: “BETWEEN SUBJECTS” - data condition-
ally independent given group classification

e Here: “WITHIN SUBJECTS” - data correlated

The within-subjects design introduces nuisance parameters such as the
parameters in >J;;; some simplifications, such as

Yij = 2 common covariance for group ¢

or
Yij = 2 common covariance for all groups

can be made (and tested).
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7.2 WITHIN SUBJECTS ANOVA

The within subjects or repeated measures approach is used for several
reasons:

e Clinical: some research hypotheses require repeated measures. Lon-
gitudinal research, for example, measures each sample member at
each of several ages. In this case, age would be a repeated factor

e Statistical: in cases where there is a great deal of variation between
sample members, error variance estimates from standard ANOVAs
are large. Repeated measures of each sample member provides a way
of accounting for this variance, thus reducing error variance.

e Economic: when sample members are difficult to recruit, repeated
measures design are economical because each member is measured
under all conditions.
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Alternative Design:

Repeated measures ANOVA can also be used when sample members have
been matched according to some important characteristic.

e matched sets of sample members are generated
e cach set having the same number of members

e cach member of a set being exposed to a different random level of a
factor or set of factors.

When sample members are matched, measurements across conditions are
treated like repeated measures in a repeated measures ANOVA.

60 Section 7.2



Using Statistics in Research. Summer 2003

EXAMPLE: Suppose that a group of depressed subjects is selected, and
their levels of depression measured. Suppose then that these subjects are
arranged into pairs having similar depression levels; one subject from each
matching pair is then given a treatment for depression, and afterwards the
level of depression of the entire sample is measured again.

ANOVA comparisons between the two groups for this final measure would
be most efficient using a repeated measures ANOVA. In this case, each
matched pair would be treated as a single sample member.

As with any ANOVA, within subjects, or repeated measures ANOVA
tests the equality of means.

61 Section 7.2



Using Statistics in Research. Summer 2003

NOTE: We should be clear about the difference between a repeated
measures design and a multivariate design .

e In the repeated measures design, each trial represents the measure-
ment of the same characteristic under a different condition.

e In the multivariate design, each trial represents the measurement
of a different characteristic. It is generally inappropriate to test
for simple mean differences between measurements of different char-
acteristics.
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7.3 WORKED EXAMPLE

(taken from http://www.utexas.edu/cc/docs/stat38.html)

A health researcher wants to investigate the impact of dietary habits and
types of exercise on individuals’ pulse rates over time.

e To investigate these issues, a sample of individuals is collected, and
grouped according to their dietary preferences D: (either meat
eater or vegetarians)

e Lach diet category is then split into three groups, with each group
assigned one of three types of exercise F: (aerobic stair climbing,
squash, and weight training).

Thus, this design has two between-subjects grouping factors: dietary
preference and exercise type.
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In addition to these between-subjects factors, a single within-subjects
factor is to be included.

e Lach subject’s pulse rate will be measured at three exercise intervals
(immediately after warm-up exercises, after jogging, and after run-
ning). Thus, intensity of exertion [ is the within-subjects factor in
this design. The order of these three measurements will be randomly
assigned for each subject.

NOTE: all the factors described can be considered fixed effects (and
not random effects). The trials and groups were selected because of the
research hypothesis. The levels of a random effect are chosen at random
from a population of possible levels; random effects can not be appropri-
ately analyzed with the method being described.
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ID DIET EX. WEIGHT PULSE 1 PULSE 2 PULSE 3
1 Meat Eater Stair 75.0 86 115 119
2 Meat Eater Stair 85.6 72 117 129
3 Meat Eater Stair 61.2 78 106 132
4 Meat Eater Stair 72.2 68 108 129
10 Meat Eater Stair 62.8 87 103 125
11 Meat Eater Squash 74.7 90 127 128
12 Meat Eater Squash 79.0 75 123 141
30 Meat Eater Weights 70.1 61 185 204
31 Vegetarian  Stair 80.6 86 121 125

32 Vegetarian  Stair 79.7 68 105 143
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There are four questions to be addressed:
e Within-Subjects Main Effect

— Does exertion intensity influence pulse rate? (Does mean pulse
rate change across the trials for exertion intensity?) This is the
test for a within-subjects main effect of intensity.

e Between-Subjects Main Effects

— Does dietary preference influence pulse rate? (Do vegetarians
have different mean pulse rates than meat eaters?) This is the
test for a between-subjects main effect of dietary preference.

— Does exercise type influence pulse rate? (Are there differences
in mean pulse rates between stair climbers, squash players, and
weight trainers?) This is the test for a between-subjects main
effect of exercise type.
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e Between-Subjects Interaction Effect

— Does the influence of exercise type on pulse rate depend on di-
etary preference? (Does the pattern of differences between mean
pulse rates for exercise-type groups change for each dietary-
preference group?)  This is the test for a between-subjects
interaction of exercise type by dietary preference. Note that
other formulations of this interaction are equivalent. This hy-
pothesis can also be expressed as “Does the influence of dietary
preference depend on exercise type?”.

The interaction hypotheses can be interpreted as follows; we may wish
to test that vegetarian squash players have lower pulse rates than all meat
eaters and other vegetarians; is something unique in the combination of a
vegetarian diet and squash exercise that produces an unusually low mean
pulse rate.
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68

e Within-Subjects by Between-Subjects Interaction Effects

— Does the influence of diet on pulse rate depend upon exer-

tion intensity? (Does the pattern of differences between mean
pulse rates for dietary-preference groups change at each inten-
sity trial?) This is the test for a between-subjects by within-
subjects interaction of dietary preference by exertion intensity.
You might suspect, for example, that the mean pulse rate of
meat eaters will increase more than the mean pulse rate of veg-
etarians as the intensity of exercise changes.

Does the influence of exercise type on pulse rate depend upon ex-
ertion intensity? (Does the pattern of differences between mean
pulse rates for exercise-type groups change at each intensity
trial?) This is the test for a between-subjects by within-subjects
interaction of exercise type by exertion intensity.
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— Does the influence of dietary preference on pulse rate depend
upon exercise type and exertion intensity? (Does the pattern
of differences between mean pulse rates for dietary-preference
groups change for some exercise-type group and for some inten-
sity trial?) This is the test for a between-subjects by within-
subjects interaction of dietary preference by exercise type by
exertion intensity.

Each of these hypotheses relates to a different aspect of the model speci-
fication. Many of the statistical tests that are to be used are extensions
of the ones used previously based on ANOVA considerations (in tests of
equality of mean response), tests for equality of variance (Levene’s Test
etc.). The novelty here relates to testing hypotheses concerned with the
correlation structure.

69 Section 7.3



Using Statistics in Research. Summer 2003

7.4 ASSESSING COVARIANCE

Several methods are used to investigate the covariance structure in a re-
peated measures (or general multivariate) experiment.

7.4.1 BOX’S TEST OF EQUALITY OF COVARIANCE

Box’s M-test tests for the equality of covariance matrices across GG multi-
variate subgroups (defined by the fixed effects cross-categorization), that
1S

Hy : 3,=%
Hy @ ¥, #%, for some pair (g1, g2) of sub-populations

against a general alternative.
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The test statistic is M defined by

G
M = (n—G)log|S| — Z (ng —1)log |S,]|
g=1
where
G Ng
_ _\T
D (ng—1)8, > (voi—¥,) (vei —¥,)
S — g=1 g — =1
— g =

n—=G

and where y, is the (vector) sample mean, S, is the sample covariance
matrix for subgroup g, and S is the pooled sample covariance matrix, and

ng — 1

n="n1+..7+T"Ny

is the total sample size. The null distribution for this test is the F'isher — F
distribution.
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7.4.2 MULTIVARIATE TESTS

Multivariate tests are joint tests of the significance of a main effects
and within subjects effects; the tests reported in SPSS are

e Pillai’s Trace
e Wilks’s Lambda
e Hotelling’s Trace

e Roy’s Largest Root

The details of these tests can be largely ignored; the important thing to
note is that they follow the usual procedure of statistical hypothesis testing;
a test statistic is derived (usually based on some transformation or eigen-
representation of the sample covariance matrices) and the suprisingness of
the observed test statistic is assessed against some null distribution. SPSS
reports the appropriate p—values.
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Which test is preferable ?

e Schatzoff (1966)

— Roy’s largest-latent root was the most sensitive when popula-
tions differ along a single dimension, but was otherwise least
sensitive.

— Under most conditions it was a toss-up between Wilks’ and
Hotelling’s criteria.

e Olson (1976)

— Pillai’s criteria was the most robust to violations of assumptions
concerning homogeneity of the covariance matrix.

— Under diffuse noncentrality the ordering was Pillai, Wilks,
Hotelling and Roy.
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— Under concentrated noncentrality the ordering is Roy, Hotelling,
Wilks and Pillai.

e So which is best 7

— When sample sizes are very large the Wilks, Hotelling and Pillai
become asymptotically equivalent.

(http://www.gseis.ucla.edu/courses/ed231al/notes3/manova.html)
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7.4.3 MAUCHLY’S TEST OF SPHERICITY

The correlations between the different measurement times (not only suc-
cessive but rather any time) are not usually the same, which prevents the
use of the usual (Fisher F) test calculated as for ANOVA. The normal F
test assumes the sphericity of the data, which means that variance of
all mutual differences of all possible pairs of measuring times is the
same.

This test is equivalent to an assumption that the (i,5)*" element of the
common covariance matrix for the random errors is some constant value o

[Z]ij - [Z]ji -0 LF ]

or that the correlation is some constant p.
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Lack of sphericity causes concern about the ANOVA F-test; this is tested
with Mauchly’s test, whose null hypothesis is sphericity.. The rejection
of sphericity does not prevent the analysis of variance, but the degrees of
freedom should be adjusted before the ANOVA F-test result is reported.

A correction should be applied to the within-subject (time) effects and
their corresponding error. Mean-Square values change, but the value of
the F test does not, however the degrees of freedom values used to calculate
the p—value do change, and can make a large difference to the conclusions
made.

If the number of measurement times is /K, then the coeflicient for correction

of the degrees of freedom, €, can take values between 1/(K —1) and 1, where
1 corresponds to the complete sphericity situation.
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THE GREENHOUSE-GEISSER AND HUYNH-FELDT COR-
RECTIONS

e If the assumption of sphericity is strongly rejected, i.e. the coefli-
cient of correction is near the lower limit 1/(K — 1), we can use the
Greenhouse-Geisser correction (rough limit € < 0.75).

e If the assumption of sphericity is broken just a little, i.e. € is near
one (e > 0.75), an adequate option is the Huynh-Feldt correction
which is more liberal than the Greenhouse-Geisser correction (and
hence more sensitive to differences).
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7.5 TESTS OF WITHIN-SUBJECTS EFFECTS

Univariate tests for the fixed effects (and contrasts) can also be carried out;
this respects the true repeated measures aspect of the design, as opposed to
the multivariate tests described above. Repeated measures ANOVA

i1s used.

Repeated measures ANOVA carries the standard set of assumptions asso-
ciated with an ordinary analysis of variance; extended to the matrix case:
multivariate normality, homogeneity of covariance matrices, and indepen-
dence. Repeated measures ANOVA is robust to violations of the first two
assumptions.

e Violations of the independence assumption produce a non-normal
distribution of the residuals, which results in invalid F ratios.

e The most common violations of independence occur when either ran-
dom selection or random assignment is not used.
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In addition to these assumptions, the univariate approach to tests of the
within-subject effects requires the assumption of sphericity; if the sphericity
assumption is not valid, conservative correction methods (such as Greenhouse-

Geisser or Huynh-Feldt) should be utilized.
When sample sizes are small, the univariate approach can be more powerful,
but this is true only when the assumption of a common spherical covariance

matrix has been met.

Finally, a test of homogeneity of variances based on Levene’s procedure
should also be carried out.
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7.6 MULTIVARIATE RESPONSES

A multivariate response experiment has much of the same structure as
the repeated measures experiment that is described in the previous chapter.
The principal extensions are that

e a number different variables can be measured for each experimental
unit, possibly at different time points.

e simplifying assumptions necessary for repeated measures ANOVA
(homogeneity, sphericity) can be relaxed; this may result in a less
powerful analysis, but this is unavoidable if the simplyfing assump-
tions are not valid.
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