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SECTION 8.
POWER AND SAMPLE SIZE

General design issues often need to be considered before an experimental
study is embarked upon.

e In clinical /animal studies, ethical considerations dictate that the “op-
timal” number experimental units are considered, and that resources
are deployed in an “optimal” fashion.

e Economic forces mitigate against using an expansive study when a
smaller one enables the same research hypotheses to be tested.

Data are collected, and hypotheses tested, within a framework of statis-
tical inference and summary; the statistical framework also allows formal
assessment of the utility of a study, and allows a statistically optimal study
(with respect to a specific hypothesis) to be considered

3 Section 8.0
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8.1 STATISTICAL HYPOTHESIS TESTING

Recall the basic components of statistical hypothesis testing: in assessing
which of two hypotheses, Hy and H;

Hy : NULL HYPOTHESIS
H, : ALTERNATIVE HYPOTHESIS

is preferable in explaining the observed data, we need to specity, and com-
pute the following quantities

e TEST STATISTIC, T
e NULL DISTRIBUTION, F,

e SIGNIFICANCE LEVEL, o

e P-VALUE, p

e CRITICAL VALUE(S)/CRITICAL REGION R

4 Section 8.1
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Recall that the null distribution is the probability distribution of test
statistic 7' if the null hypothesis, Hy, is true; if t* is the observed test
statistic, lies in the critical region, we reject Hy in favour of H, and do
not reject H, otherwise.

The critical region R is defined via the significance level o by
P|T € R|Hy is TRUE] < « (1)
(where T' € R means “T takes a value in the set R”).

Note that (1) considers only the distribution of T if Hy is true, and the
conditional probability of rejection Hy in this case.

i.e. it is concerned only with “false positive” results.

5] Section 8.1
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In a classical test of Hy (null hypothesis) versus H; (alternative hypothesis),
there are four possible outcomes, two of which are erroneous:

1. Do not reject Hy when is Hy true.

2. Reject Hy when Hj is not true.

3. Reject Hy when Hj is true (Type I error).

4. Do not reject Hy when Hj is false (Type II error).

Action

Do Not Reject Hy | Reject Hy

H, 0 True

v

Type I Error

Hg not True

Type II Error v

Section 8.1
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TYPE I : FALSE POSITIVE result

TYPE II FALSE NEGATIVE result

To construct a test, the distribution of the test statistic under Hy is used to
find a critical region which will ensure that the probability of committing
a type I error does not exceed some predetermined significance level a.

Ideally, we would like to make the probability of making any type of error
(false positive and false negative) as small as possible. For a finite sample
however, this is not achievable, so a pragmatic approach that bounds the
probability of a Type I error is adopted.

NOTE: For an infinite sample, we desire that the probabilities of Type I
and Type II errors should both be zero.

7 Section 8.1



Using Statistics in Research. Summer 2003

8.2 POWER CALCULATIONS

The power, 1 — 3, of a statistical test is its ability to correctly reject
the null hypothesis, or

1 -8 = P[Reject Hy|Hp is not True] = P [T € R|Hy is not True]
= 1— P |Do not Reject Hy|Hy is not True]

= 1— P|T ¢ R|Hp is not True]
so that
3 = P [Do not Reject Hy|Hy is not True] = P [T ¢ R|Hy is not True]

which is based on the distribution of the test statistic under H;.

8 Section 8.2
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This is the first occasion on which we have had to consider the distribution
of the test statistic under the alternative hypothesis; as we shall see, in
order to consider a sample size or power calculation, we must explicitly
consider the alternative hypothesis.

Suppose that the hypothesis test concerns a parameter 6 that can take
values in the parameter space ©. Suppose that the null and alternative
hypotheses partition © into two parts, &y and O, that is

H() . 9 c @()

H1 . 9 c @1
so that, in the simplest case

H() . O=c

H1 . 0 # C

we have ©¢ = {c}, ©p = R\ {c}

9 Section 8.2
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Under H;, the probability
P [Do not Reject Hy|Hy is not True| = P[T ¢ R|0 € O]

which we previously defined as (3 will vary as the true value of 6 varies in
the set ©, hence we should write 3 as a function of 6.

EXAMPLE: In aone-sample test of a normal mean, we have X1, ..., X,
as a set of random variables relating to the observed data z1,...,x,, and
an assumption that

Xi ~ N(p, 02)

fori =1,...,n. If 02 is known, to perform a two-sided test of equality the
hypotheses would be as follows:

H() . ,LLZQ()
Hy @ p# 6o

10 Section 8.2
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The test statistic is

X —u
J =
o/\/n
and under Hy,
X0

Z ~ N(0,1).

- o/yn

We reject Hy at significance level « if the z statistic is more extreme than
the critical values of the test are

04

Cr=2"(1-3)

o

R =6y + Cr
/n

11 Section 8.2



Using Statistics in Research. Summer 2003

Now, if H; is true, and pu = 0 for some value 0, then , X ~ N(0,0?), and

hence
X — 6, 0 — 0,
7 = ~ N 1].
o/\/n (a/ﬁ’ )

so the probability that z lies in the critical region if y = 6 is

P[T €R|f] = P[Z<—Cgl]+P[Z> Cglf] (2)

- e (e CR) (e (o)

where ® is the standard normal distribution function.

This quantity is the power function, 1 — (), when p is actually equal
to 6.

12 Section 8.2
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Hence the probability of a Type II error when the true is 3 (0) , where

3(0) = 1-P[TeRlO
o(on-Sa) -r (o)
- oo i) - (e len TR)
- w(ea-Grm) e (one S

The plots below illustrate examples of power functions for different choices
of 0 and n, with 6y = 0.

13 Section 8.2
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Thus for fixed «, 0y, 0 and n, we can compute the power function 3 (0) as
0 varies.

NOTE: The parameters in (2) appear in terms of the ratio
0 — 6o

o

that is, a standardized difference between the hypothesized values of u
under the null and alternative hypotheses.

Similar calculations are available for other of the normal distribution-based
tests.

15 Section 8.2
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8.2.1 ONE-SIDED TESTS

To perform a one-sided test of the hypotheses
H() NNVES 9()
Hi : pu< 0o

the power function is

1_@(9):P[Teme]:P[ZSOR(a)W]=<1><CR(O‘)_i/_\/HﬁO)

where
Cr(a) =0 ! (a)

with a similar calculation if Hy : u > 6

1_5(9)213[2203(@)19]:1-@(03(a)—i/_fﬁ”) Cr(a)=d"1(1-a)

16 Section 8.2
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8.2.2 UNKNOWN VARIANCE

If 02 is unknown, to perform a two-sided test of equality the hypotheses
would be as follows:

H() NNVES 9()
Hy @ p# b
The test statistic is
X —
T — M

~ s/yn

where s is the sample standard deviation, and under Hj,

X — 0

L=

~ Student(n — 1).

17 Section 8.2
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We reject Hy at significance level « if the t statistic is more extreme than

the critical values of the test, with

=

where F, " is the inverse cdf of the Student(k) distribution

Cr=F;! (1-5)

R=00=+tCr 5

Now, if H; is true, and p = 6 for some value 6, then

X — 0y
T =
s/v/n
X—-0 0-0 0—0
— 1 0 — Ty + 0

s/v/n s/vn s/v/n

where Ty ~ Student(n — 1).

18
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Then the probability that 1" lies in the critical region is

1-8(0) = P[TeR|f
X — 0 0 — 0O
NN

- (oG

19

X —0
| s/v/n
(X —0
| s/v/n

< -Cgl0| +P

0 — 0
0 P
v | T

(3)

6 — 6,
s/v/n

Sl

3)

+ > 03’9]

Section 8.2
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8.2.3 TWO SAMPLE TESTS

In a two sample problem, if o2 is unknown but common for both samples,
to perform a test of the hypotheses:

Ho : pig —ppy =0
Hy @ opig—pg =90
The test statistic is
X1 - X
1 1

Spy/— + —
n1 12

T =

where sp is the pooled sample standard deviation, and under Hy,

T ~ Student(ny + ngo — 2).

20 Section 8.2
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We reject Hy at significance level « if the t statistic is more extreme than
the critical values of the test are

s _ o
R=+xCr— Cr = Ftn11+n2—2 (1 B 5)

n

Now, if H; is true, for the particular value of 6 specified

<. _%
T 1 — X9
\/1 1
Sp +
n1 o
X{—X5) =6 )
. (@ -Xy s

\/ 1 \/ T 1
Sp + Sp +

ni n2 ni n2
say, where Ty ~ Student(ny + ny — 2).

21 Section 8.2
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Then the probability that 1" lies in the critical region is

1-3(6) = P[TeRlf] (4)

= P[T() + 6 < _CRM] —|—P[T() + 6g > CRM]

P [Ty + 6o < —Cgr — 8|8] + P [Ty > Cr — 60|6]

ni+no—2 tn1—|—n2—2

Fl (—OR—&ﬁ+(1—F“1 (03—5@)

and thus the power function is calculable for any combination of a,nq,no
and 0.

22 Section 8.2
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SUMMARY: The adequacy of a test to distinguish between two hy-
potheses is a function of

e The null and alternative hypotheses;
e The target significance level «;
e The desired power to detect Hy for a specific 0, 3 (0);

e The variability within the population(s) under study as measured by
o

e The sample size n (or n; and ns).

Our objective is to find a relationship between the above factors and the
sample size that enables us to select a sample size consistent with the
desired oo and (3 (0), typically, we will hypothesize a specific value of § and
compute the corresponding £.

23 Section 8.2
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8.2.4 GENERAL POWER CONSIDERATIONS

The principles outlined above can be applied in more complicated situations

e NON-PARAMETRIC TESTS
e NON-NORMAL DATA TESTS

— Approximate Binomial

— Exact Binomial
e ONE-WAY/TWO-WAY ANOVA

— number of groups/cross-categories, K
— number of observations per category, ng

— category levels 64, ...,0k

e REPEATED MEASURES

24
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The details of the power calculation are more complicated as the complex-
ity of the experimental procedure increases, but the principles remain the
same; we compute

the probability of rejecting a specified null hypothesis
when
a specific alternative hypothesis corresponds the actual truth

that is, we are obliged to consider both null and alternative hypotheses,
and their impact on the distribution of the test statistic.

This is fundamentally different from the simple hypothesis testing situation,
where we only consider the null distribution.

25 Section 8.2



Using Statistics in Research. Summer 2003

Therefore, a power calculation necessarily involves consideration of a spe-
cific alternative hypothesis, that is, equivalently, the magnitude of

0 —0o .
o —

in the Normal sample case with known variance o?

o

e § if 02 is unknown
e 0, = m — Ty in a two-sample Binomial problem, and test of
H() . T — T — 0

H1 . 7'('1—7'('2:67T
and so on.

How do we choose these quantities ?

- usually by consideration of a “clinically” or ”experimentally” signifi-
cant difference, or an “anticipated” effect size..

26 Section 8.3
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8.3 EXAMPLES

(see Machin et al, 1997, Sample Size Tables for Clinical Studies)

27

power /sample size for independent groups of binary, ordered, cate-
gorical and continuous data

paired /repeated measures data
for equivalence studies
survival

observer (inter-rater) agreement

Section 8.3
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8.4 SIMULATION-BASED CALCULATION

When analytic expressions for the power/Type II error probability are not
easily available, we can do approximate power calculations by simulation
means

e we formulate the test (null and alternative hypotheses, test statistic)
in the usual way

e we repeatedly simulate data under the alternative hypothesis model
(for fixed sample size, null model)

e we compute the power/Type II error probability empirically by eval-
uating the frequency with which the null hypothesis is correctly re-
jected.

For complicated designs (correlated data, clustered/grouped data), this is
often the simplest solution.

28 Section 8.4
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8.5 SAMPLE SIZE CALCULATIONS

In all of the above, we have concentrated on computing the achieved
power for detecting a particular effect (relative effect) in a fixed study
(perhaps that has already been carried out).

Often it is desirable to reverse the logic and to ask if a certain power 3 to
detect an effect (if it is there) is required for a specified significance level

a, how large would sample size n need to be 7

Such a consideration is of strategic importance in study design, and can
give insight into the practicability of the proposed study.

29 Section 8.5
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Recall the simple concept of standard error in a mean;

Clearly as n increases, the standard error decreases. Thus if we wanted a
standard error that was no larger than some quantity ¢, we would have to
chose n large enough to ensure this, that is,

S S\ 2
—Se@nZ(—)

Vn €

This simple idea extends naturally to confidence intervals, and to hypoth-
esis tests, and hence to power assessments.

30 Section 8.5
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In the simple case of a single normal sample with known variance, the
power equation in (2) can be rearranged to be explicit in one of the other
parameters if 3 is regarded as fixed.

For example, if a, 8,0y and 6; are fixed, we can rearrange to get a sample
size calculation to test for fixed difference 6 = 61 — 6,

o2 (Cr+ @71 (1—3))°

n =
(61 — 0o)”
. . |01 = 09
or standardized difference A =
%
(CR —+ o1 (1 — 6))2
n = A2

31 Section 8.5



Using Statistics in Research. Summer 2003

This idea of rearranging the power calculation to obtain a sample size
extends to the general cases described above.

Other issues do need to be considered

e one-sided vs two-sided tests

e in two sample problems, the deployment of the samples to be used

— equal proportions in the two groups

— fixed unequal allocation ratio between subjects assigned to the
two groups (in observational studies this may be necessary)

e allocation by randomization: exchangeable subjects

32 Section 8.5
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SECTION 9.
OBSERVER AGREEMENT

Assessing the results of diagnostic procedures and the effects of therapies
often involves subjective judgements. Observer agreement studies are con-
ducted to investigate the level of consensus on such assessments.

Typically, several observers make assessments on each of a series of subjects
and these assessments are compared.

An important consideration for study design is the presence of both within-
observer and between-observer variation. The apparent disagreement
between observers may be due to either one of these components or both.
It is important to distinguish between them, as any action taken to reduce
disagreement will depend on which type of variation dominates. To do this,
we require observations repeated by the same observer.

33 Section 9.0
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We might consider any of the following types of observer agreement
studies

e studies with binary assessments and designs;
e where each of two observers assesses all subjects once,
e where each observer assesses all subjects twice

e where each observer assesses a proportion of the subjects once and
the remainder twice.

and so on.

34 Section 9.0
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NOTE: Sample-size calculations are conventionally based upon hypothesis-
testing theory Observer-agreement studies, however, are designed to esti-

mate the level of observer agreement. Moreover, unlike clinical trials, there

are no obvious hypotheses to test. The hypothesis of pertect agreement

between observers is unrealistic and the hypothesis of agreement purely by

chance is also unrealistic in most circumstances.

Rejection of such a hypothesis does not provide useful information since

the investigator needs to know more than the fact that the observed level
of agreement is unlikely to be due to chance.

35 Section 9.0



Using Statistics in Research. Summer 2003

9.1 CONTINUOUS MEASUREMENTS

9.1.1 THE INTRACLASS CORRELATION

The Intraclass Correlation (ICC) assesses rating reliability by comparing
the variability of different ratings of the same subject to the total variation
across all ratings and all subjects. The theoretical formula for the ICC is:

2
0g

p:
0% + 02

where
e 0% is the between subjects variability

e 02 is the within subjects variability

These quantities are directly estimable from ANOVA analyses.

36 Section 9.1
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In a one-way ANOVA with K groups, we have the ANOVA table

Source D.F. Sum of squares Mean square
Between Samples K — 1 FSS FSS/(K —1)
Within Samples n — K RSS RSS/(n — K)
Total n—1 TSS
where
K i K i K
TSS=3 > (wi—79.) RSS= > (j—U) FSS=) m(m—7.)
k=1 j=1 k=1 j=1 k=1
Then
o RSS o FSS/(K—-1)—-RSS/(n—K)
e T WK 75~ K

37 Section 9.1
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9.1.2 DIFFERENT TYPES OF 1CC

In their paper, Shrout and Fleiss (1979) describe three classes of ICC for
reliability, which they term Case 1, Case 2 and Case 3. Each Case applies
to a different rater agreement study design.

e Case 1: Raters for each subject are selected at random

— This case has a pool of raters. For each subject, one randomly
samples from the rater pool k different raters to rate this subject.
Therefore the raters who rate one subject are not necessarily the
same as those who rate another. This design corresponds to a
one-way ANOVA in which Subject is a random effect, and Rater
is viewed as measurement error.

38 Section 9.1
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e Case 2: The same raters rate each case. These are a random sample.

— The same set of k raters rate each subject. This corresponds
to a fully-crossed (rater x subject) two-way ANOVA design in
which both Subject and Rater are separate effects.

— In Case 2, Rater is considered a random effect; this means the
k raters in the study are considered a random sample from a
population of potential raters.

— The Case 2 ICC estimates the reliability of the larger population
of raters.

39 Section 9.1
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e Case 3: The same raters rate each case. These are the only raters.

— This is similar to Case 2; a fully-crossed, two-way ANOVA de-
sign. But here one estimates the ICC that applies only to the k
raters in the study. Since this does not permit generalization to
other raters, the Case 3 ICC is not often used.

Shrout and Fleiss (1981) also show that for each of the three Cases above,
one can use the ICC in two ways:

e To estimate the reliability of a single rating, or

e To estimate the reliability of a mean of several ratings.

For each of the Cases, then, there are two forms, producing a total of 6
different versions of the ICC.

40 Section 9.1
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9.2 DISCRETE MEASUREMENTS
9.2.1 THE KAPPA STATISTIC

Options for discrete data observer agreement analysis are rather more lim-
ited; one simple measure of agreement between two raters is the Kappa

Statistic.

For a K x K table of results for the observer assessments of two observers on
a categorical scale,let n;; is the number of times rater 1 accords a measure
v whilst Rater 2 accords a measure j, for 7,5 =1,..., K.

e “Considerable Agreement”: Diagonal elements “large”

e “Low Agreement”: Off-diagonal elements “large”

41 Section 9.2
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EXAMPLE: Assessment of xeromammograms by two radiologists

42

Radiologist B
Radiologist A Normal Benign Suspected Cancer

Normal 21 12 0 0
Benign 4 17 1 0
Suspected 3 9 15 2
Cancer 0 0 0 1
Total 28 38 16 3

Total
33

22

29

1

85

Section 9.2
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Proportion of Agreements:

na (21 +17+15+1)

A — 0.64
ba=- 35

Y

However, this does not take into account /quantify the probability of “chance’
agreements; this can be measured by the expected number of chance agree-
ments

N _33><28+22><38+29><16+1><3
A= gy 35 35 35

= 26.2
which gives a proportion

pa=—= = 0.31

43 Section 9.2
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Hence the “excess agreement” in the observed data is

_ pA —DPa
1 —pa

which is termed the Kappa Statistic. Guidelines for interpretation of
are

o 1« < 0.20 = Poor Agreement

e 0.20 < k £ 0.40 = Fair Agreement

e 0.40 < kK <0.60 = Moderate Agreement
e 0.60 < kK <0.80 = Good Agreement

e 0.80 < kK <1.00 = Very Good Agreement

Standard errors for x are also available

44 Section 9.2
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9.2.2 WEIGHTED KAPPA

A weighted version of the Kappa Statistic can be used to reflect the ordinal
nature of many observation scales (e.g. Normal— Benign— Suspected— Cancer)

Each off-diagonal element in the agreement table is given a weight reflecting
how “severe” the disagreement is; usually the weights are proportional to
the distance from the diagonal. This gives a weighted kappa, ryy

W W
/{W:p; ) W)
1 —p")

where

oo R
Pa :EZZwijnij Pa Zﬁzzwijni.n.j

1=1 =1 i=1 j=1

where n; ,n_; are the row an column totals for row ¢ and column j respec-
tively.

45 Section 9.2
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SECTION 10.
SURVIVAL ANALYSIS

Survival (or lifetime, or time-to-event) analysis is a special type of re-
gression modelling that explains the observed variability in a response
variable Y via consideration of predictors X = (Xi,..., Xx). The prin-
cipal difference between survival analysis and conventional regression is
that account is taken of potential censoring in the response variable

e we may observe some actual responses (survival, failure) times, but
also some censored responses where we do not observe an actual fail-
ure but rather only that the failure occurs after a censoring time
(the end of study) — this is called right-censoring

46 Section 10.0
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e the response data is thus bivariate (Y, Z) where Y is the time at
which the response is measured, and

7 _ 1 Failure is observed
] 0 Censored

e occasionally, we observe left-censoring or interval-censoring

The potential presence of censoring fundamentally changes how we view
the modelling process; previously we have looked at probability densities
and Expected responses.

We now take an alternative view, and examine survivor and hazard func-
tions.

47 Section 10.0
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10.1 THE SURVIVOR FUNCTION

The probability density function for response variable Y is fy, and the
expectation, likelihood function and so on that are required for regression
modelling are formed from fy. The distribution function Fy is

Fy(y) = PV <y] = / Fr(t) dt

In conventional regression modelling, the likelihood contribution for data
point ¢ with response vy; is fy (y;). For right-censored data with censoring
at y;, however, the likelihood contribution is

PY >yi| =1- Fy (y:)

(i.e. we have “observed” that Y; > y;, the survival was at least y;). This
motivates consideration of the survivor (reliability) function

Sy(y) =1—Fy(y)

48 Section 10.1
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The likelihood function is thus
{ 11 fY(yz')} X{ 11 SY(%)}
that is

LIKELIHOOD FOR UNCENSORED DATA
X

LIKELIHOOD FOR CENSORED DATA

and the role of the predictors can be introduced via the parameters of fy
and F’ Y-

49 Section 10.1
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10.2 THE HAZARD FUNCTION

As a further alternative method of specification, we consider the hazard
function

hy(y) = P [Failure at y|Survival > y]

and the integrated hazard

Y
Hy (y) = / hy (1) di
0
and it can be shown that

Sy (y) = exp{—Hy (y)}

50 Section 10.2
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10.3 THE KAPLAN-MEIER CURVE

The Kaplan-Meier curve is a non-parametric estimate of the survivor
function; it takes into account the censored data and produces a decreas-
ing “step-function” curve, where the downward steps take place at the
times of the failures, giving the estimated survival function at the jth fail-
ure/censoring time as

J
~ Zi
Sj_H<1_n—i+1)

1=1

This curve can be used to report an estimated survival probability at a
given time (1 year, 5 years etc.).

Standard errors for these estimated survival probabilities are also available.

o1 Section 10.3
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10.4 THE COX REGRESSION MODEL

The Cox (or Proportional Hazards) model provides a simple way of
introducing the influence of predictors into the survival model. The basic
components are a baseline hazard function, hy and a linear predictor
and (positive) link function g (similar to the GLM modelling of previous
chapters). Then for an experimental unit with observed predictor values
X1 =z1, X9 = 29,..., Xk = Tk, the hazard function takes the form

hy (y; ) = g(z” B)ho(y)

that is, the hazard is modified in a multiplicative fashion by the linked-
linear predictor.

Typically, g is the exponential function.

52 Section 10.4
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From the previously established relationships,

Sy (i) =exp { = [“hv(t) ath = e {~ [ s Bha(r) ot

If a coefficient 3, is positive, the hazard is increased, and the expected
failure time decreased.

The relevance/significance of a particular predictor is assessed using a
Wald test based on the magnitude of

B
e (3)

53 Section 10.4
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10.5 THE ACCELERATED LIFE MODEL

The Accelerated Life model provides another way of introducing the
influence of predictors into the survival model. The basic components now
are a baseline survivor function, Sy and a linear predictor and (positive)
link function g as above. Then for an experimental unit with observed
predictor values X7 = x1, Xo = x9,..., XKk = 2k, the survivor function
takes the form

Sy (y; @) = So(g(z" B)y)

that is, the time scale is modified in a multiplicative fashion by the linked-
linear predictor.

Again, typically, g is the exponential function. This model allows direct
modelling of the influence of predictors on survival.

o4 Section 10.5
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10.6 THE LOG-RANK TEST

The log-rank test is a standard test for significant differences between
two (or more) survivor functions that differ because of the influence of the
different levels of a discrete predictor.

H() . 51252
Hy : 51 #5

It is a non-parametric test based on ranks of samples for the two or more
subgroups.

Asymptotic or exact versions of the test can be carried out; SPSS and other
packages give further alternatives.

515] Section 10.6
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10.7 PARAMETRIC MODELLING

It is possible to fit and compare parametric survival models to such data.
Parametric densities, survivor functions, hazards etc. can be readily used
in the formation of a likelihood, potentially within the proportional haz-
ards/accelerated life framework.

Typical models used are

e Weibull
e Gamma
e Log-Logistic
e Log-Normal

e Pareto

o6 Section 10.7



