USING STATISTICS IN RESEARCH

David A. Stephens

Department of Mathematics, Imperial College

d.stephens@imperial.ac.uk stats.ma.ic.ac.uk/~das01/StatsShortCourse/

June 18, 2003

WEEK 3 REGRESSION, CORRELATION & RELATED METHODS

3

SECTION 6.

REGRESSION MODELLING

Aim: To explain the **systematic** variation of one observed variable with another in the presence of **random** variation

- two related samples (predictor-response)
- simplest case a linear ("straight-line") relationship
- typically assume **normal random errors**
- extension to non-linear relationships
- extension to non-normal data
- lead into multivariate modelling

6.1 LINEAR REGRESSION

EXAMPLE

Blood Viscosity vs Packed Cell Volume

6.1.1 TERMINOLOGY AND NOTATION

Y is the **response** or **dependent** variable X is the **predictor**, **covariate** or **independent** variable

A simple relationship between Y and X is the **linear regression model**, where

$$E[Y|X=x] = \alpha + \beta x,$$

that is, conditional on X = x, the expected or "predicted" value of Y is given by $\alpha + \beta x$, where α and β are unknown parameters; in other words, we model the relationship between Y and X as a straight line with **intercept** α and **slope** β . For data $\{(x_i, y_i) : i = 1, ..., n\}$, the objective is to estimate the unknown parameters α and β . A simple estimation technique, is **least-squares estimation**.

6.1.2 LEAST-SQUARES ESTIMATION

Suppose that a sample, $\{(x_i, y_i) : i = 1, ..., n\}$, is believed to follow a linear regression model, $E[Y|X = x] = \alpha + \beta x$. For fixed values of α and β , let $y_i^{(P)}$ denote the expected value of Y conditional on $X = x_i$, that is

$$y_i^{(P)} = \alpha + \beta x_i$$

Now define error terms e_i , i = 1, ..., n by

$$e_i = y_i - y_i^{(P)} = y_i - \alpha - \beta x_i$$

that is, e_i is the vertical discrepancy between the **observed** and **expected** values of Y. The objective in least-squares estimation is find a "line of best fit", and this is achieved by inspecting the squares of the error terms e_i , and choosing α and β such that the sum of the squared errors is **minimized**; we aim to find the straight line model for which the total error is smallest.

Let $S(\alpha, \beta)$ denote the error in fitting a linear regression model with parameters α and β . Then

$$S(\alpha, \beta) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - y_i^{(P)})^2 = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

Different values of α, β give different S values; we aim to choose the "best" pair of parameters

To calculate the least-squares estimates, we have to minimize $S(\alpha, \beta)$ as a function of α and β . This can be achieved in the usual way by taking partial derivatives with respect to the two parameters, and equating the partial derivatives to zero simultaneously.

$$(1)\frac{\partial}{\partial \alpha} \left\{ S(\alpha, \beta) \right\} = -2 \sum_{i=1}^{n} (y_i - \alpha - \beta x_i) = 0$$

$$(2)\frac{\partial}{\partial\beta}\left\{S(\alpha,\beta)\right\} = -2\sum_{i=1}^{n} x_i(y_i - \alpha - \beta x_i) = 0$$

Solving (1), we obtain an equation for the least-squares estimates $\widehat{\alpha}$ and $\widehat{\beta}$

$$\widehat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} y_i - \widehat{\beta} \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{y} - \widehat{\beta} \overline{x}.$$

Solving (2) in the same way, and then solving for $\widehat{\beta}$ gives

$$\widehat{\beta} = n \frac{\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - \left\{\sum_{i=1}^{n} x_i\right\}^2} = \frac{n S_{xy} - S_x S_y}{n S_{xx} - \left\{S_x\right\}^2}$$

so that

$$\widehat{\alpha} = \frac{\sum_{i=1}^{n} x_i y_i - \widehat{\beta} \sum_{i=1}^{n} x_i^2}{\sum_{i=1}^{n} x_i} = \overline{y} - \widehat{\beta} \overline{x}$$

where

$$S_x = \sum_{i=1}^n x_i$$
 $S_y = \sum_{i=1}^n y_i$ $S_{xx} = \sum_{i=1}^n x_i^2$ $S_{xy} = \sum_{i=1}^n x_i y_i$

Therefore it is possible to produce estimates of parameters in a linear regression model using least-squares, without any specific reference to probability models. In fact, the least-squares approach is very closely related to maximum likelihood estimation for a specific probability model.

Alternative formulae: let

$$V_{xx} = S_{xx} - \frac{S_x^2}{n}$$
 $V_{yy} = S_{yy} - \frac{S_y^2}{n}$ $V_{xy} = S_{xy} - \frac{S_x S_y}{n}$

Then

$$\widehat{\beta} = \frac{V_{xy}}{V_{xx}} \qquad \widehat{\alpha} = \overline{y} - \widehat{\beta}\overline{x}$$

Note: the regression line passes through the mean value point (\bar{x}, \bar{y})

6.1.3 LEAST-SQUARES AS MAXIMUM LIKELIHOOD

Suppose that X and Y follow a linear regression model

$$E[Y|X=x] = \alpha + \beta x,$$

and recall that the error terms e_i were defined

$$e_i = y_i - \alpha - \beta x_i.$$

Now, e_i is the vertical discrepancy between observed and expected behaviour, and thus e_i could be interpreted as the observed version of a **random variable**, say ϵ_i , which represents the random uncertainty involved in measuring Y for a given X.

A plausible probability model might therefore be that the random variables ϵ_i , i = 1, ...n, were independent and identically distributed, and

$$\epsilon_i \sim N(0, \sigma^2),$$

for some error variance parameter σ^2 . Implicit in this assumption is that the distribution of the random error in measuring Y does not depend on the value of X at which the measurement is made.

This distributional assumption about the error terms leads to a probability model for the variable Y. As we can write

$$Y = \alpha + \beta X + \epsilon,$$

where $\epsilon \sim N(0, \sigma^2)$, then given on $X = x_i$, we have the conditional distribution Y_i as

$$Y_i|X = x_i \sim N(\alpha + \beta x_i, \sigma^2),$$

where random variables Y_i and Y_j are **independent** (as ϵ_i and ϵ_j are independent).

17

On the basis of this probability model, we can derive a likelihood function, and hence derive maximum likelihood estimates. For example, we have the likelihood $L(\theta) = L(\alpha, \beta, \sigma^2)$ defined as the product of the n conditional density terms derived as the conditional density of the observed y_i given x_i ,

$$L(\theta) = \prod_{i=1}^{n} f(y_i; x_i, \theta)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \alpha - \beta x_i)^2\right\}$$

$$= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2\right\}$$

The maximum likelihood estimates of α and β , and error variance σ^2 , are obtained as the values at which $L(\alpha, \beta, \sigma^2)$ is **maximized**. But, $L(\alpha, \beta, \sigma^2)$ is maximized when the term in the exponent, that is

$$\sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

is minimized. But this is **precisely** the least-squares criterion described above, and thus the m.l.e s of α and β assuming a Normal error model are **exactly equivalent** to the least-squares estimates.

6.1.4 ESTIMATES OF ERROR VARIANCE

In addition to the estimates of α and β , we can also obtain the maximum likelihood estimate of σ^2 ,

$$\hat{\widehat{\sigma}}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \widehat{\alpha} - \widehat{\beta} x_i)^2 = S^2$$

Often, a **corrected** estimate, s^2 , of the error variance is used, defined by

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \widehat{\alpha} - \widehat{\beta}x_{i})^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}$$

where $\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i$ is the **fitted value** of Y at $X = x_i$.

6.1.5 RESIDUALS

Having fitted a model with parameters $\widehat{\alpha}$ and $\widehat{\beta}$, we can calculate the error in fit at each data point, or **residual**, denoted e_i , i = 1, ..., n, where

$$e_i = y_i - \hat{y}_i = y_i - \widehat{\alpha} - \widehat{\beta}x_i$$

The residuals can be used to assess **model fit**. By the modelling assumptions, if the model is correct, it should be that the residuals are an independent and identically distributed random normal sample, that is

 $\epsilon_i \sim N(0, \sigma^2) \Longrightarrow e_i$ should be an observation from $N(0, \sigma^2)$.

This indicates a standardization mechanism

$$\frac{\epsilon_i}{\sigma} \sim N(0,1)$$

so that instead of inspecting merely residuals we inspect **standardized** residual

 $\widehat{e}_i = \frac{e_i}{s}$

These standardized residuals should

- be internally uncorrelated
- be uncorrelated with any of the response or predictor values
- have a variance approximately 1
- lie within a band ± 2 away from zero

Any deviation from this behaviour indicates that the model is deficient in some way

FOR BLOOD VISCOSITY DATA

6.1.6 PREDICTION FOR A NEW COVARIATE VALUE

Suppose that, having fitted a model, and obtained estimates $\widehat{\alpha}$ and $\widehat{\beta}$ using maximum likelihood or least-squares, we want to predict the Y value for a new value x^* of covariate X. By considering the nature of the regression model, we obtain the predicted value y^* as

$$y^* = \widehat{\alpha} + \widehat{\beta}x^*$$

6.1.7 STANDARD ERRORS OF ESTIMATORS AND T-STATISTICS

We need to be able to understand how the estimators corresponding to $\widehat{\alpha}$ and $\widehat{\beta}$ behave, and by how much the estimate is likely to vary. This can be partially achieved by inspection of the **standard errors** of estimates, that is, the square-root of the variance in the sampling distribution of the

corresponding estimator. It can be shown thay

$$s.e.(\widehat{\alpha}) = s\sqrt{\frac{S_{xx}}{nS_{xx} - \{S_x\}^2}} = s\sqrt{\frac{V_{xx} + \frac{S_x^2}{n}}{nV_{xx}}} = s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{V_{xx}}}$$

$$s.e.(\widehat{\beta}) = s\sqrt{\frac{n}{nS_{xx} - \{S_x\}^2}} = s\sqrt{\frac{1}{V_{xx}}}$$

where s is the square-root of the corrected estimate of the error variance. It is good statistical practice to report standard errors whenever estimates are reported. The standard error of a parameter also allows a test of the hypothesis "parameter is equal to zero". The test is carried out by calculation of the **t-statistic**, that is, the ratio of a parameter estimate to its standard error. The t-statistic must be compared with the 0.025 and 0.975 percentiles of a Student-t distribution with n-2 degrees of freedom as described below.

26

6.1.8 HYPOTHESIS TESTS AND CONFIDENCE IN-TERVALS

We may carry out hypothesis tests for the parameters in a linear regression model; as usual we need to be able to understand the sampling distributions of the corresponding estimators. In the linear regression model, the sampling distributions of the estimators of α and β have **Student-**t **distributions** with n-2 degrees of freedom, hence we use the test statistics

$$t_{\alpha} = \frac{\widehat{\alpha} - c}{s.e.(\widehat{\alpha})}$$
 $t_{\beta} = \frac{\widehat{\beta} - c}{s.e.(\widehat{\beta})}$

to test the null hypothesis that the parameter is equal to c.

Typically, we use a test at the 5 % significance level, so the appropriate critical values are the 0.025 and 0.975 quantiles of a St(n-2) distribution. It is also useful to report, for each parameter, a confidence interval in which we think the **true** parameter value (that we have estimated by $\widehat{\alpha}$ or $\widehat{\beta}$) lies

with high probability. It can be shown that the 95% confidence intervals are given by

$$\alpha: \widehat{\alpha} \pm t_{n-2}(0.975)s.e.(\widehat{\alpha})$$
 $\beta: \widehat{\beta} \pm t_{n-2}(0.975)s.e.(\widehat{\beta})$

where $t_{n-2}(0.975)$ is the 97.5th percentile of a Student-t distribution with n-2 degrees of freedom.

The confidence intervals are useful because they provide an alternative method for carrying out hypothesis tests. For example, if we want to test the hypothesis that $\alpha = c$, say, we simply note whether the 95% confidence interval contains c. If it does, the hypothesis can be accepted; if not the hypothesis should be rejected, as the confidence interval provides evidence that $\alpha \neq c$.

The prediction interval for a new covariate has two forms, depending on whether the predicted **expected** response or the predicted **observed** response is required; the two forms for a prediction at new predictor x^* are

EXPECTED
$$\widehat{\alpha} + \widehat{\beta}x^* \pm s\sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{V_{xx}}}$$

OBSERVED
$$\widehat{\alpha} + \widehat{\beta}x^* \pm s\sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{V_{xx}}}$$

29

6.1.9 WORKED EXAMPLE

The following data are believed to follow a linear regression model;

We want to calculate estimates of α and β from these data. First, we calculate the summary statistics;

$$S_x = \sum_{i=1}^n x_i = 118.63$$
 $S_y = \sum_{i=1}^n y_i = 172.92$ $S_{xx} = \sum_{i=1}^n x_i^2 = 1598.6$ $S_{xy} = \sum_{i=1}^n x_i y_i = 1930.9$

with n = 12 which leads to parameter estimates

$$\widehat{\beta} = \frac{nS_{xy} - S_x S_y}{nS_{xx} - \{S_x\}^2} = \frac{12 \times 1930.9 - 118.63 \times 172.92}{12 \times 1598.6 - (118.63)^2} = 0.5201$$

$$\widehat{\alpha} = \overline{y} - \widehat{\beta}\overline{x} = 14.410 - 0.5201 \times 9.8842 = 9.269$$

The **corrected variance estimate**, s^2 , is given by

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \widehat{\alpha} - \widehat{\beta}x_{i})^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = 3.438 \qquad \Longrightarrow \qquad s = 2.332$$

The **standard errors** for the two parameters are given by

$$s.e.(\widehat{\alpha}) = s \sqrt{\frac{S_{xx}}{nS_{xx} - \{S_x\}^2}} = 1.304$$

$$s.e.(\widehat{\beta}) = s \sqrt{\frac{n}{nS_{xx} - \{S_x\}^2}} = 0.113$$

The **t-statistics** for the two parameters are given by

$$t_{\alpha} = \frac{\widehat{\alpha}}{s.e.(\widehat{\alpha})} = \frac{9.269}{1.304} = 7.109$$

$$t_{\beta} = \frac{\widehat{\beta}}{s.e.(\widehat{\beta})} = \frac{0.520}{0.113} = 4.604.$$

The 0.975 percentile of a Student-t distribution with n-2=10 degrees of freedom is found from tables to be 2.228. Both t-statistics are more extreme than this critical value, and hence it can be concluded that both parameters are significantly different from zero.

To calculate the **confidence intervals** for the two parameters. we need to use the 0.975 percentile of a St(10) distribution. >From above, we have that St(10)(0.975) = 2.228, and so the confidence intervals are given by

$$\alpha$$
: $\hat{\alpha} \pm t_{n-2}(0.975)s.e.(\hat{\alpha}) = 9.269 \pm 2.228 \times 1.304 = (6.364:12.174)$

$$\beta$$
: $\widehat{\beta} \pm t_{n-2}(0.975)s.e.(\widehat{\beta}) = 0.5201 \pm 2.228 \times 0.113 = (0.268 : 0.772)$

so that, informally, we are 95% certain that the true value of α lies in the interval (6.724 : 12.174), and that the true value of β lies in the interval (0.268 : 0.772). This amounts to evidence that, for example, $\alpha \neq 0$ (as the confidence interval for α does not contain 0), and evidence that $\beta \neq 1$ (as the confidence interval for β does not contain 1).

This fit leads to the following fitted values and residuals;

\boldsymbol{x}	0.54	2.03	3.15	3.96	6.25	8.17
y	11.37	11.21	11.61	8.26	14.08	16.25
\hat{y}	9.55	10.33	11.95	12.37	12.52	13.52
e	1.82	0.88	-0.34	-4.11	1.56	2.73
\boldsymbol{x}	11.08	12.44	14.04	14.34	18.71	19.90
y	11.00	14.94	16.91	15.78	21.26	20.25
\hat{y}	15.03	15.73	16.57	16.73	19.00	19.62
e	-4.03	-0.80	0.34	-0.95	2.26	0.63

6.2 CORRELATION

The sample **correlation coefficient**, r, measures the degree of association between X and Y variables and is given by

$$r = \frac{nS_{xy} - S_x S_y}{\sqrt{(nS_{xx} - S_x^2)(nS_{yy} - S_y^2)}} = \frac{V_{xy}}{\sqrt{V_{xx}V_{yy}}}$$

and therefore is quite closely related to $\widehat{\beta}$.

We may carry out a hypothesis test to carry out whether there is significant correlation between two variables. We denote by ρ the true correlation; then to test the hypothesis

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$

6.2.1 THE Z-TEST FOR CORRELATION

An alternative test of the hypothesis is given by the **Fisher** z statistic

$$z_r = \frac{\sqrt{n-3}}{2} \log \left(\frac{1+r}{1-r} \right)$$

which has a null distribution that is N(0,1). Hence, if

$$|z_r| > \Phi^{-1}(0.975) = 1.96$$

, then we can conclude that the true correlation ρ is significantly different from zero.

6.2.2 THE T-TEST FOR CORRELATION

An alternative test of the hypothesis is based on the test statistic

$$t_r = r\sqrt{\frac{n-2}{1-r^2}}$$

which we compare with the null distribution which is Student-t with n-2 degrees of freedom. If

$$|t_r| > t_{n-2}(0.975)$$

then we can conclude that the true correlation ρ is significantly different from zero.

95% critical regions for Fisher Z/T-test

EXAMPLE PCV/Blood Viscosity r = 0.879

- FISHER Z TEST z = 7.38065 (p = 7.875952e 014)
- T-TEST t = 10.08784, (p = 1.865336e 011)

 \therefore STRONG EVIDENCE TO REJECT $\rho = 0.0$

Regression

Pattern indicates REGRESSION model

Bivariate Data

Pattern indicates BIVARIATE model

Bivariate Contour

Bivariate Model

6.3 MULTIPLE LINEAR REGRESSION

In everything that is described above, we have used a model in which we predicted a response Y from a single covariate X. This simple model can be extended to the case where Y is modelled as a function of p covariates $X_1, ..., X_p$, that is, we have the conditional expectation of Y given by

$$E[Y|X_1 = x_1, ..., X_p = x_p] = \alpha + \beta_1 x_1 + ... + \beta_p x_p$$

, so that the observation model is given by

$$Y_i|X_1 = x_{i1}, ..., X_p = x_{ip} \sim N(\alpha + \beta_1 x_{i1} + ... + \beta_p x_{ip}, \sigma^2).$$

Again, we can use maximum likelihood estimation to obtain estimates of the parameters in the model, that is, parameter vector $(\alpha, \beta_1, ..., \beta_p, \sigma^2)$, but the details are slightly more complex, as we have to solve p+1 equations simultaneously.

6.4 THE NORMAL LINEAR REGRESSION MODEL

We assume that the variables to be modelled are as follows; we will observe paired data, with response data y_i paired to predictor variables stored in vector form $x_i = (x_{i1}, ..., x_{iD})^T$, and our aim is to explain the variation in $(y_1, ..., y_n)$. We achieve this by modelling the conditional distribution of response variable Y_i given the observed value of predictor variable $X_i = x_i$. Specifically, we may write

$$Y_i = \beta_0 + \beta_1 x_1 + \dots + \beta_D x_{iD} + \varepsilon_i = \beta_0 + \sum_{j=1}^D \beta_j x_{ij} + \varepsilon_i$$
 (1)

where $\varepsilon_i \sim N(0, \sigma^2)$ for i = 1, ...n are independent and identically distributed random error terms. Note that this implies

$$Y_i|X_i = x_i \sim N\left(\beta_0 + \sum_{j=1}^D \beta_j x_{ij}, \sigma^2\right)$$
 (2)

so that

$$E_{f_{Y|X}}[Y_i|X_i = x_i] = \beta_0 + \sum_{j=1}^D \beta_j x_{ij}.$$

In vector notation, (1) can be re-written $Y_i = x_i^T \beta + \varepsilon_i$, where $x_i = (1, x_{i1}, x_{i2}, ..., x_{iD})^T$, and thus, for vector $Y = (Y_1, ..., Y_n)^T$ we have

$$Y = \mathbf{X}\beta + \varepsilon$$

45

where **X** is a $n \times (D+1)$ matrix called the **design** matrix

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1D} \\ 1 & x_{21} & \cdots & x_{2D} \\ 1 & x_{31} & \cdots & x_{3D} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \cdots & x_{nD} \end{bmatrix}$$

and to mimic (2)

$$Y \sim N_n \left(\mathbf{X} \beta, \sigma^2 I_n \right) \tag{3}$$

where I_n is the $n \times n$ identity matrix, giving a joint pdf for Y given **X** of the form

$$f_{Y|\beta,\sigma^2}(y;\beta,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{1}{2\sigma^2} \left(y - \mathbf{X}\beta\right)^T \left(y - \mathbf{X}\beta\right)\right\}$$
(4)

46

6.5 THE EXTENDED LINEAR MODEL

The formulation of the linear model above can be extended to allow for more general dependence on the predictors. Suppose that $g_1, g_2, ..., g_K$ are K (potentially non-linear) functions of the D original predictors, that is

$$g_k(x_i) = g_k(x_{i1}, ..., x_{iD})$$

is some scalar function, for example, we could have

- $g_k(x_{i1},...,x_{iD}) = g_k(x_{i1}) = x_{i1}$ (the identity function)
- $g_k(x_{i1}, ..., x_{iD}) = g_k(x_{i1}) = a_k \sqrt{x_{i1}}$
- $g_k(x_{i1}, ..., x_{iD}) = g_k(x_{i1}) = a_k \log x_{i1}$
- $g_k(x_{i1}, ..., x_{iD}) = g_k(x_{i1}, x_{i2}) = a_k x_{i1} + b_k x_{i2}$

and so on. This reformulation does not effect our probabilistic definition of the model in (3); we can simply redefine design matrix \mathbf{X} as

$$\mathbf{X} = \begin{bmatrix} 1 & g_1(x_1) & \cdots & g_K(x_1) \\ 1 & g_1(x_2) & \cdots & g_K(x_2) \\ 1 & g_1(x_3) & \cdots & g_K(x_3) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & g_1(x_n) & \cdots & g_K(x_n) \end{bmatrix}$$

now an $n \times (K+1)$ matrix. In the discussion below, we will regard the **transformed** variables $(g_1(X), g_2(X), ..., g_K(X))$ as the predictors and drop the dependence on the transformation functions. Hence we have

- Y as a $n \times 1$ column vector
- X as a $n \times (K+1)$ matrix with ith row $(1, g_1(x_i), ..., g_K(x_i))$
- β as a $(K+1) \times 1$ column vector

48

6.6 FACTOR PREDICTORS: CONTRAST PARAMETERIZATIONS

The linear model formulation can be used for **categorical** predictors, or **factors**; suppose that predictor X takes K distinct **levels** $(l_1, l_2, ..., l_K)$, and that there is a different mean response for each level

$$E[Y] = \begin{cases} \beta_1 & x = c_1 \\ \beta_2 & x = c_2 \end{cases}$$
$$\beta_K & x = c_K$$

The parameters $(\beta_1, \beta_2, ..., \beta_K)$ can be estimated in the usual way.

Other parameterizations that will permit inferences about specific differences of interest, or **contrasts**, include

• **Deviation:** differences from overall mean level

$$\mu_{0} = \frac{1}{K} (\beta_{1} + \beta_{2} + \dots + \beta_{K})$$

$$\mu_{k} = \left(1 - \frac{1}{K}\right) \beta_{k} - \frac{1}{K} \sum \beta_{j} \qquad k = 1, 2, \dots, K - 1$$

• Simple: differences of levels $c_1, ..., c_{K-1}$ from c_K

$$\begin{array}{lcl} \mu_0 & = & \frac{1}{K} \left(\beta_1 + \beta_2 + ... + \beta_K \right) \\ \\ \mu_k & = & \beta_k - \beta_K & k = 1, 2, ..., K - 1 \end{array}$$

(with arbitrary labelling of the levels)

• **Helmert:** differences of each level from mean of **subsequent** categories

$$\mu_0 = \frac{1}{K} (\beta_1 + \beta_2 + \dots + \beta_K)$$

$$\mu_k = \beta_k - \frac{1}{K - k} \sum_{j=k+1}^K \beta_K$$
 $k = 1, 2, ..., K - 1$

• **Difference:** differences of each level from mean of **previous** categories

$$\mu_0 = \frac{1}{K} (\beta_1 + \beta_2 + \dots + \beta_K)$$

$$\mu_k = \beta_{k+1} - \frac{1}{k} \sum_{j=1}^k \beta_k$$
 $k = 1, 2, ..., K-1$

• Polynomial: for ordinal categorical variables

CONTRAST 1 : LINEAR EFFECT ACROSS LEVELS

CONTRAST 2 : QUADRATIC EFFECT ACROSS LEVELS

•

• Repeated: differences for adjacent levels

$$\mu_0 = \frac{1}{K} (\beta_1 + \beta_2 + \dots + \beta_K)$$

$$\mu_k = \beta_k - \beta_{k+1}$$
 $k = 1, 2, ..., K - 1$

Most of these contrast specifications can be written as linear transformations of the original parameters, that is

$$\mu = C\beta$$

for a $K \times K$ matrix C.

Often, **orthogonal** contrasts are used for ease of interpretation; for orthogonal linear contrasts

$$C^TC = I$$

where I is the $K \times K$ **identity** matrix (ones on the diagonal, zeros elsewhere).

Contrasts can be defined to examine specific effects.

6.7 ANOVA IN REGRESSION

Analysis of variance or ANOVA is used to display the sources of variability in a collection of data samples. The ANOVA F-test compares variability between samples with the variability within samples. In the above analysis, we have that

$$S(\beta) = S(\hat{\beta}) + (\hat{\beta} - \beta)^{T} (\mathbf{X}^{T} \mathbf{X}) (\hat{\beta} - \beta)$$
 or $TSS = RSS + FSS$.

Now, using the distributional results above, we can construct the following **ANOVA Table** to test the hypothesis

$$H_0: \beta_1 = \dots = \beta_K = 0$$

against the general alternative that H_0 is not true.

Source	D.F.	Sum of sq.	Mean square	\overline{F}
FITTED	K	FSS	$M_{FSS} = \frac{FSS}{K}$	$\frac{M_{FSS}}{M_{RSS}}$
RESIDUAL	n-K-1	RSS	$M_{RSS} = \frac{RSS}{(n - K - 1)}$	
TOTAL	n-1	TSS		

This test allows a comparison of the fits of the two competing models implied by the null and alternative hypotheses. Under the null model, if H_0 is true, then the model has $Y_i \sim N\left(\beta_0, \sigma_0^2\right)$ for i = 1, 2, ...n, for some β_0 and σ_0^2 to be estimated. Under the alternative hypothesis, there are a total of K+1 β parameters to be estimated using equation (??). The **degrees of freedom** column headed (D.F.) details how many parameters are used to describe the amount of variation in the corresponding row of the table; for example, for the FIT row, D.F. equals K as there are K

parameters used to extend the null model to the alternative model.

Now consider the following design; suppose that there are K possible medical treatments and you wish to test for any difference between them. The parameter vector is $\beta = [\beta_1, \beta_2, ..., \beta_K]^T$ say, and the null hypothesis is that, for some β ,

$$H_0: \beta_1 = \beta_2 = \dots = \beta_K = \beta$$

Suppose that there are $n_1, ..., n_K$ observations in the K treatment groups respectively. Then the design matrix in the corresponding (full) linear

model takes the form

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_K \end{bmatrix} \qquad \mathbf{X}_k = \underbrace{\begin{bmatrix} 0 & 0 & \cdots & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 1 & \cdots & 0 \end{bmatrix}}_{K \text{ columns}} \right\} n_k \text{ rows}$$

that is, \mathbf{X}_k is a $n_k \times K$ block matrix with only the kth column non-zero, and equal to the $n_k \times 1$ vector of 1s. Under the assumption that the observed responses are normally distributed **with common variance** σ^2 we are in the linear model framework, and all of the above likelihood and statistical theory applies.

6.8 MIXED LINEAR MODELS

The equation for response Y in terms of covariates X

$$Y = \mathbf{X}\beta + \varepsilon$$

so that

$$Y_i = x_i^T \beta + \varepsilon_i$$

indicates that the variation in Y_i is the result of a systematic component $x_i^T \beta$ plus some random variation ε . The parameters β are termed **fixed** effects parameters. An extension of this model adds a further, individual random component

$$Y_i = x_i^T \beta + Z_i + \varepsilon_i$$

where $Z_i \sim N(0, \sigma_Z^2)$ is a **random** individual specific-random variable. If multiple observations are available,

$$Y_{ij} = x_{ij}^T \beta + Z_i + \varepsilon_{ij}$$

58

A model that includes both fixed and random effects terms is called a **mixed effects model**.

The $\{Z_i\}$ terms are identically distributed, with one Z_i specific to each individual's observations.

It is possible to **marginalize** this model by integrating out over the unobserved Z.

Standard likelihood theory does not extend to this case

6.9 NON LINEAR REGRESSION

The linear model

$$Y_i = x_i^T \beta + \varepsilon_i$$

is termed linear because the terms in the vector β appear in a linear combination. It can be extended to the **non-linear** case, for example

$$Y_i = g\left(x_i^T \beta\right) + \varepsilon_i$$

for some non-linear function g of the parameters.

Likelihood & Least Squares estimation still available.

EXAMPLE: Pharmacokinetics

$$Y_i = g(x_i^T \beta) + \varepsilon_i = \beta_{00} \exp\{-\beta_{01} x_i\} + \beta_{10} \exp\{-\beta_{11} x_i\} + \varepsilon_i$$

where $\beta_{01} < \beta_{11}$ for identifiablity.

Pharmacokinetic data

6.10 GENERALIZED LINEAR MODELS

The central idea of **Generalized Linear Models** (GLMs) is to extend the ideas from the normal linear model to allow the possibility of modelling non-normal data. In the GLM, we will model

$$E_{f_{Y|X}}[Y_i|X_i = x_i] = g^{-1}(x_i^T\beta)$$

where

$$x_i^T \beta = \beta_0 + \sum_{j=1}^K \beta_j x_{ij}.$$

for some monotonic/invertible function g; in the normal linear model, g is the **identity** function.

6.10.1 GLM TERMINOLOGY

There are two key terms in the model description:

• Linear predictor: for observed predictor $x_i = (x_{i1}, ..., x_{iK})$ and parameters $\beta = (\beta_0, \beta_1, ..., \beta_K)$, the linear predictor is

$$\eta_i = x_i^T \beta = \beta_0 + \sum_{j=1}^K \beta_j x_{ij}$$

Link function: a **link function** g is a function that connects the linear predictor to the expected value of the response

$$g\left(E_{f_{Y|X}}\left[Y_i|X_i=x_i\right]\right)=x_i^T\beta.$$

EXAMPLES

• POISSON MODEL

$$f_{Y|\theta,\phi}(y;\theta,\phi) = f_{Y|\lambda,\phi}(y;\lambda,\phi) = \frac{e^{-\lambda_0}\lambda^y}{y!}$$

• BINOMIAL MODEL

$$f_{Y|\theta,\phi}(y;\theta,\phi) = f_{Y|\theta,\phi}(y;\theta,\phi) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$$

6.10.2 LINK FUNCTIONS

For the **Poisson** model;

• The **canonical link** is the **log** link: it is the link function that connects the naive parameter to the linear predictor

$$\lambda = \log \lambda_0 = x^T \beta$$

Here,

$$E_{f_{Y|\lambda}}[Y] = \lambda_0 = \exp\{\lambda\} :: g\left(E_{f_{Y|\lambda}}[Y]\right) = x^T \beta \text{ where } g(t) = \log t$$

• Power link

$$g(t) = t^{\alpha}$$

for some real parameter α

• Box-Cox link

$$g(t) = \frac{t^{\alpha} - 1}{\alpha}$$

for some real parameter α .

For the **Binomial** model;

• The canonical link is the logit link:

$$\theta = \log\left(\frac{\theta_0}{1 - \theta_0}\right) = x^T \beta$$

Here,

$$E_{f_{M|\lambda}}[M] = \theta_0 = \frac{\exp\{\theta\}}{(1 + \exp\{\theta\})} :: g\left(E_{f_{m|\lambda}}[M]\right) = x^T \beta$$

where $g(t) = \log(t/(1-t))$

• Probit link

$$g(t) = \Phi^{-1}\left(\frac{\exp\{t\}}{1 + \exp\{t\}}\right) = x^T\beta$$
 :. $\Phi^{-1}(\theta_0) = x^T\beta$

where Φ is the standard normal cdf.

• Complementary log-log link

$$g(t) = \log \{\log (1 + \exp \{t\})\} = x^T \beta$$
 : $\log \{-\log (1 - \theta_0)\} = x^T \beta$

• Log-log link

$$g(t) = -\log\{-t + \log(1 + \exp\{t\})\} = x^T \beta \qquad \therefore \qquad -\log\{-\log\theta_0\} = x^T \beta$$

6.10.3 CHECKING THE FIT OF A GLM

In the normal linear framework, the fit of a model is assessed by inspection of the magnitude of the residual sum of squares (RSS) and the fitted sum of squares (FSS) in an ANOVA F-test. For example, to test a model with K predictors plus an intercept (K+1 parameters) against the model with just an intercept (1 parameter), we use either a Chi-squared goodness-of-fit statistic or the F-ratio statistic, or by inspecting the error in fit as measured by the **residual**, e,

$$e = y_i - \hat{y}_i = y_i - x_i^T \hat{\beta}.$$

where $\hat{\beta}_0$ and $\hat{\beta}$ are mles computed under the 1 and K+1 parameter models respectively. In the GLM case, we will use similar, Likelihood Ratio (LR) statistics to perform tests.

6.10.4 DEVIANCE

In the following we use the following notation for data Y modelled via linear predictor $\eta = x^T \beta$ through canonical parameter θ and related expected value $\mu = E_{f_{Y|X,\beta}}[Y]$ with link function, g.. After the model is fitted, we have ML estimates in the linear predictor, β , for the following parameters

$$\hat{\eta} = x^T \hat{\beta}$$
 $\hat{\theta} = g^{-1} \left(x^T \hat{\beta} \right)$ $\hat{\mu} = h \left(\hat{\theta} \right)$

We may also write $\hat{y} = \hat{\mu}$.

Deviance is a way of measuring the goodness of fit of a GLM. From a previous definition, the deviance, D, for a model M is the likelihood ratio statistic in an LR test of the model against the **saturated** model, S,

$$D = 2\log \frac{l_S\left(\hat{\beta}_S\right)}{l_M\left(\hat{\beta}_M\right)} = -2\log \frac{l_M\left(\hat{\beta}_M\right)}{l_S\left(\hat{\beta}_S\right)}$$

69

where

- $\hat{\beta}_M$ is the mle under model M
- $\hat{\beta}_S$ is the mle baseline model the saturated model, which corresponds to the **best possible fit**, and which occurs when

$$\hat{\mu}_i = \hat{y}_i = y_i$$

• l_M and l_S are the likelihood functions under the model and saturated model respectively.

We have a complete range of model fits to calibrate the fit of any individual model:

 $SATURATED MODEL \rightarrow MODEL \rightarrow NULL MODEL$

 $MOST COMPLEX \rightarrow LEAST COMPLEX$

LOWEST DEVIANCE \rightarrow HIGHEST DEVIANCE

6.10.5 STATISTICAL PROPERTIES OF DEVIANCE

Likelihood Ratio theory gives a means of calibrating the magnitude of the deviance; we have approximately

$$D^*\left(y;\hat{\theta},\phi\right) = \frac{D\left(y;\hat{\theta}\right)}{\phi} \sim \chi_{n-K-1}^2$$

if η has K+1 parameters. From this result we have two possible estimates of dispersion parameter ϕ ; the **Deviance-based** estimate

$$\hat{\phi}_D = \frac{D\left(y; \hat{\theta}\right)}{n - K - 1}$$

or the **Pearson-type** estimate

$$\hat{\phi}_{P} = \frac{1}{n - K - 1} \sum_{i=1}^{n} \frac{(y_{i} - \hat{\mu}_{i})^{2}}{V(\hat{\mu}_{i}) / w_{i}}$$

For choosing between two models

 M_1 : K_1 predictors, parameter θ_1

 M_2 : K_2 predictors, parameter θ_2

where, without loss of generality $K_2 > K_1$, we have

$$\frac{D_{M_1}\left(y;\hat{\theta}_1\right) - D_{M_1}\left(y;\hat{\theta}_1\right)}{\phi} \sim \chi_{K_2 - K_1}^2$$

and, if ϕ is not known

$$\frac{D_{M_1}\left(y;\hat{\theta}_1\right) - D_{M_1}\left(y;\hat{\theta}_1\right)}{\hat{\phi}\left(K_2 - K_1\right)} \sim Fisher\left(K_2 - K_1, n - K_2 - 1\right)$$

where $\hat{\phi}$ is either of $\hat{\phi}_D$ or $\hat{\phi}_P$.