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SECTION 6.
REGRESSION MODELLING

Aim: To explain the systematic variation of one observed variable with
another in the presence of random variation

e two related samples (predictor-response)

e simplest case - a linear (“straight-line”) relationship
e typically assume normal random errors

e extension to non-linear relationships

e extension to non-normal data

e lead into multivariate modelling

3 Section 6.0
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6.1 LINEAR REGRESSION

Blood Viscosity vs Packed Cell Volume
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6.1.1 TERMINOLOGY AND NOTATION

Y is the response or dependent variable
X 1is the predictor, covariate or independent variable

A simple relationship between Y and X is the linear regression model,

where
EY|X = x| = a + (x,

that is, conditional on X = x, the expected or “predicted” value of Y
is given by o + Bz, where a and (3 are unknown parameters; in other
words, we model the relationship between Y and X as a straight line with
intercept o and slope 8. For data {(z;,y;):i=1,...,n}, the objective
is to estimate the unknown parameters o and 3. A simple estimation
technique, is least-squares estimation.

5] Section 6.1
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6.1.2 LEAST-SQUARES ESTIMATION

Suppose that a sample, {(z;,¥y;) : i = 1,...,n}, is believed to follow a linear
regression model, E|Y |X = z] = a + fz. For fixed values of « and g, let

yEP) denote the expected value of Y conditional on X = x;, that is

ygp) = a + fOx;

Now define error terms e;, ¢ = 1, ...,n by

P
67;:%—%-( )Zyi—@—ﬁwi

that is, e; is the vertical discrepancy between the observed and expected
values of Y. The objective in least-squares estimation is find a “line of best
fit”, and this is achieved by inspecting the squares of the error terms e;, and
choosing o and § such that the sum of the squared errors is minimized;
we aim to find the straight line model for which the total error is smallest.

6 Section 6.1
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Let S(a, 3) denote the error in fitting a linear regression model with pa-
rameters o and 3. Then

n

S f) = = (wi—u")? =) (1 —a-pfn)
1=1 1=1

1=1

Different values of «, 3 give different S values; we aim to choose the “best”
pair of parameters

7 Section 6.1
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a=2.5,b=0.05

y=2.5+0.05 x °
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To calculate the least-squares estimates, we have to minimize S(a, 3) as
a function of a and (. This can be achieved in the usual way by taking
partial derivatives with respect to the two parameters, and equating the
partial derivatives to zero simultaneously.

() {8} = ~23 (i~ a— fr) =0
(2)%{5(@,6)} = —QZ:Ui(yi—oz—ﬂa:i):()

10 Section 6.1
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Solving (1), we obtain an equation for the least-squares estimates a and @

n

Q= %Zyz - B%Z% = - pz.
i=1 i=1

Solving (2) in the same way, and then solving for /B\ gives

Zmzyz—zﬂfz;yz 1Sy, — SuS,

B . nzzl =1 =1 .
— 2 = 2
n n NSye — {5z}
z; ’ z; ‘
so that
n -n
Z Ty — 0 Z 377,2
~  i=1 =1 o -
Q= — =1y — [T
D T
i—1

11 Section 6.1
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where
n n n
1=1 1=1 1=1 1=1

Therefore it is possible to produce estimates of parameters in a linear re-
gression model using least-squares, without any specific reference to prob-
ability models. In fact, the least-squares approach is very closely related
to maximum likelihood estimation for a specific probability model.

12 Section 6.1
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Alternative formulae: let

52 S? S.S
Vm:Sm—; Vyy:syy—;y Viy = Say — ny
Then v
b= a=y—pr

Note: the regression line passes through the mean value point (Z, %)

14 Section 6.1
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6.1.3 LEAST-SQUARES AS MAXIMUM LIKELIHOOD

Suppose that X and Y follow a linear regression model
ElY|X =z] = a+ (x,
and recall that the error terms e; were defined
e; =y — o — PBu;.

Now, e; is the vertical discrepancy between observed and expected be-
haviour, and thus e; could be interpreted as the observed version of a ran-
dom variable, say ¢;, which represents the random uncertainty involved
in measuring Y for a given X.

16 Section 6.1
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A plausible probability model might therefore be that the random vari-
ables ¢;, 1 = 1, ...n, were independent and identically distributed, and

e; ~ N(0, 02),

for some error variance parameter o2. Implicit in this assumption is that
the distribution of the random error in measuring Y does not depend on
the value of X at which the measurement is made.

This distributional assumption about the error terms leads to a proba-
bility model for the variable Y. As we can write

Y =a+ 08X +e¢,

where € ~ N(0,0%), then given on X = z;, we have the conditional distri-

bution Y; as
Y;|X =x; ~ N(a+ Bz, 0%),

where random variables Y; and Y, are independent (as €; and ¢; are
independent).

17 Section 6.1
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On the basis of this probability model, we can derive a likelihood func-
tion, and hence derive maximum likelihood estimates. For example, we
have the likelihood L(6) = L(«, 3, 02) defined as the product of the n con-
ditional density terms derived as the conditional density of the observed y;
given x;,

n

Hf(yza L, 9)

L(9)
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The maximum likelihood estimates of o and ([, and error variance
0%, are obtained as the values at which L(a, 3,0?) is maximized. But,
L(a, 8,0%) is maximized when the term in the exponent, that is

n

Z(yi —a — fz;)°

1=1

is minimized. But this is precisely the least-squares criterion described
above, and thus the m.l.e s of @ and (3 assuming a Normal error model are
exactly equivalent to the least-squares estimates.

19 Section 6.1
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6.1.4 ESTIMATES OF ERROR VARIANCE

In addition to the estimates of o and (3, we can also obtain the maximum
likelihood estimate of o2,

n

5= L5 (g —a—Br)? = 5°

n
1=1

Often, a corrected estimate, s?, of the error variance is used, defined by

:n—QZ _Oé_ﬁwz _n—2

where 7; = a + /ﬁ\azz is the fitted value of Y at X = z;.

20 Section 6.1
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6.1.5 RESIDUALS

Having fitted a model with parameters o and /B\, we can calculate the error
in fit at each data point, or residual, denoted ¢;,7 = 1, ..., n, where

e =Y — Ui = Yi — a — Py
The residuals can be used to assess model fit. By the modelling as-

sumptions, if the model is correct, it should be that the residuals are an
independent and identically distributed random normal sample, that is

e; ~ N(0,0%) = ¢; should be an observation from N (0, c?).

This indicates a standardization mechanism

“ o N(0,1)

o

so that instead of inspecting merely residuals we inspect standardized
residual

21 Section 6.1
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These standardized residuals should

e be internally uncorrelated
e be uncorrelated with any of the response or predictor values
e have a variance approximately 1

e lie within a band 42 away from zero

Any deviation from this behaviour indicates that the model is deficient in
some way

22 Section 6.1
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FOR BLOOD VISCOSITY DATA
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6.1.6 PREDICTION FOR A NEW COVARIATE VALUE

Suppose that, having fitted a model, and obtained estimates a and /B\ using
maximum likelihood or least-squares, we want to predict the Y value for a
new value x* of covariate X. By considering the nature of the regression
model, we obtain the predicted value y™ as

6.1.7 STANDARD ERRORS OF ESTIMATORS AND
T-STATISTICS

We need to be able to understand how the estimators corresponding to «
and ( behave, and by how much the estimate is likely to vary. This can
be partially achieved by inspection of the standard errors of estimates,
that is, the square-root of the variance in the sampling distribution of the

25 Section 6.1
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corresponding estimator. It can be shown thay

52

Via + — =2
~ Sa:a: T n 1 I
S.@. CY — S pr— S — S N _|_ —_

~ n 1
s.e.(f) = 3\/n5m BETRE =5 Vo

where s is the square-root of the corrected estimate of the error variance.
It is good statistical practice to report standard errors whenever estimates
are reported. The standard error of a parameter also allows a test of
the hypothesis “parameter is equal to zero”. The test is carried out by
calculation of the t-statistic, that is, the ratio of a parameter estimate to
its standard error. The t—statistic must be compared with the 0.025 and
0.975 percentiles of a Student-¢ distribution with n — 2 degrees of freedom
as described below.

26 Section 6.1
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6.1.8 HYPOTHESIS TESTS AND CONFIDENCE IN-
TERVALS

We may carry out hypothesis tests for the parameters in a linear regression
model; as usual we need to be able to understand the sampling distribu-
tions of the corresponding estimators. In the linear regression model, the
sampling distributions of the estimators of a and  have Student-t dis-
tributions with n — 2 degrees of freedom, hence we use the test statistics

Q)

|
o
Q)

— C
“Tie@ T e

to test the null hypothesis that the parameter is equal to c.

Typically, we use a test at the 5 % significance level, so the appropriate
critical values are the 0.025 and 0.975 quantiles of a St(n — 2) distribution.
It is also useful to report, for each parameter, a confidence interval in which
we think the true parameter value (that we have estimated by a or ) lies

27 Section 6.1
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with high probability. It can be shown that the 95% confidence intervals
are given by

a:att, 2(0.975)s.e.(a) B /ﬁ\ + tn—2(0-975)8°€°(6)

where t,,_2(0.975) is the 97.5th percentile of a Student-¢ distribution with
n — 2 degrees of freedom.

The confidence intervals are useful because they provide an alternative
method for carrying out hypothesis tests. For example, if we want to test
the hypothesis that a = ¢, say, we simply note whether the 95% confidence
interval contains c. If it does, the hypothesis can be accepted; if not the
hypothesis should be rejected, as the confidence interval provides evidence
that o # c.

28 Section 6.1
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The prediction interval for a new covariate has two forms, depending
on whether the predicted expected response or the predicted observed
response is required; the two forms for a prediction at new predictor z*

are

- 1 * _ 7)°
EXPECTED @ + Bz* + 5\/— G - 7)
n T

. 1 * _ 2)2
OBSERVED a+6m*i3\/1+—+ (mv ?)
n rr

29 Section 6.1
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6.1.9 WORKED EXAMPLE

The following data are believed to follow a linear regression model;

0.564 2.03 3.15 396 6.25 &.17
11.37 11.21 11.61 8.26 14.08 16.25

11.08 1244 14.04 14.34 18.71 19.90
11.00 14.94 1691 15.78 21.26 20.25

TR S

We want to calculate estimates of o and (3 from these data. First, we
calculate the summary statistics;

=1

1=1

Ser = Y a7 =1598.6  Suy =) xiy; =1930.9
1=1

1=1

30 Section 6.1
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with n = 12 which leads to parameter estimates

~ NSy — SzSy 12 x 1930.9 — 118.63 x 172.92
3 = ~ = 5 = 0.5201
nSye — {9} 12 x 1598.6 — (118.63)

a = §—B7=14.410—0.5201 x 9.8842 = 9.269

The corrected variance estimate, s2, is given by
1 < ~ 1 <
2 ~ 2 ~ N2
= i——Px;)" = i—y;)" =34 = 2.332

s n_2;(y a—pFx;) n_2;(y ;)< = 3.438 — S 33

The standard errors for the two parameters are given by

se.(a) = s S 5 = 1.304
nSyz — {Sz}

n

s.e.(f) = s \/nSm BETRE =0.113

31 Section 6.1
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The t-statistics for the two parameters are given by

Q 9.269

ta = — = = 7.109
s.e.(a) 1.304
3 0.520

tﬁ p— /8 p— = 4.604.

s.e.(B) 0.113

The 0.975 percentile of a Student-¢ distribution with n — 2 = 10 degrees
of freedom is found from tables to be 2.228. Both t-statistics are more
extreme than this critical value, and hence it can be concluded that both
parameters are significantly different from zero.

32 Section 6.1
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To calculate the confidence intervals for the two parameters. we need
to use the 0.975 percentile of a St(10) distribution. >From above, we have
that St(10)(0.975) = 2.228, and so the confidence intervals are given by

a : AEt,_2(0.975)s.e.(@) = 9.269 + 2.228 x 1.304 = (6.364 : 12.174)

B : BEt,_2(0.975)s.e.(3) = 0.5201 & 2.228 x 0.113 = (0.268 : 0.772)

so that, informally, we are 95% certain that the true value of « lies in the
interval (6.724 : 12.174), and that the true value of 3 lies in the interval
(0.268 : 0.772). This amounts to evidence that, for example, o # 0 (as the
confidence interval for a does not contain 0), and evidence that § # 1 (as
the confidence interval for 3 does not contain 1).

33 Section 6.1
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This fit leads to the following fitted values and residuals;

x 054  2.03 3.15 3.96 6.25  8.17
y 11.37 11.21 11.61 8.26 14.08 16.25
gy 955 1033 1195 1237 1252 13.52
e 182 08 —-0.34 —4.11 1.56  2.73
r 11.08 1244 14.04 14.34 18.71 19.90
y 11.00 1494 16.91 15.78 21.26 20.25
gy 15.03 15.73 16.57 16.73 19.00 19.62
e —4.03 -0.80 034 -0.95 226 0.63

34 Section 6.2
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6.2 CORRELATION

The sample correlation coeflicient, r, measures the degree of association
between X and Y variables and is given by

nSey — SuS, Vay

T = —

\/(nSm — S2)(nSyy — 53) Via Vyy

and therefore is quite closely related to /B\

We may carry out a hypothesis test to carry out whether there is signifi-
cant correlation between two variables. We denote by p the true correlation;
then to test the hypothesis

H()Zp:()
lepyé()

35 Section 6.2
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6.2.1 THE Z-TEST FOR CORRELATION
An alternative test of the hypothesis is given by the Fisher z statistic

\/mlog<1+r)

2y =

2 1 —r
which has a null distribution that is N(0,1). Hence, if
z,| > ®71(0.975) = 1.96

, then we can conclude that the true correlation p is significantly different
from zero.

36 Section 6.2
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6.2.2 THE T-TEST FOR CORRELATION
An alternative test of the hypothesis is based on the test statistic

br =1 1—17?

which we compare with the null distribution which is Student-¢ with n — 2

degrees of freedom. If
’tT’ > tn_2(0975)

then we can conclude that the true correlation p is significantly different
from zero.

37 Section 6.2
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95% critical regions for Fisher Z/T-test

—— Fisherz

38 Section 6.2
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EXAMPLE PCV/Blood Viscosity r = 0.879

e FISHER Z TEST = = 7.38065 (p = 7.875952¢ — 014)
o T-TEST ¢ = 10.08784, (p = 1.865336¢ — 011)

. STRONG EVIDENCE TO REJECT p = 0.0

39 Section 6.2
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Regression

Pattern indicates REGRESSION model
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Bivariate Data

Pattern indicates BIVARIATE model
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Bivariate Contour

Bivariate Model

42 Section 6.2



Using Statistics in Research. Summer 2003

6.3 MULTIPLE LINEAR REGRESSION

In everything that is described above, we have used a model in which we
predicted a response Y from a single covariate X. This simple model can
be extended to the case where Y is modelled as a function of p covariates
X1, ..., X, that is, we have the conditional expectation of Y given by

EY|[X1=m,...Xp, =2 = a+ G171 + ... + 8,7
,50 that the observation model is given by
E’Xl = X1, ...,Xp = ZTjp ~ N(CV -+ 61337;1 + ... + Bpﬂfip, 0'2).

Again, we can use maximum likelihood estimation to obtain estimates of
the parameters in the model, that is, parameter vector (a, 81, ..., 8,, o),
but the details are slightly more complex, as we have to solve p+1 equations
simultaneously.

43 Section 6.4
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6.4 THE NORMAL LINEAR REGRESSION
MODEL

We assume that the variables to be modelled are as follows; we will observe
paired data, with response data y; paired to predictor variables stored in
vector form xz; = (241, ..., x; D)T, and our aim is to explain the variation in
(y1,--»yn). We achieve this by modelling the conditional distribution of
response variable Y; given the observed value of predictor variable X; = x;.
Specifically, we may write

D
n:60+61w1—|‘...‘|‘ﬁDwiD+5i:60+Zﬁjwij+5i (1)
j=1

44 Section 6.4
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where ¢; ~ N (0,02) for + = 1,...n are independent and identically dis-
tributed random error terms. Note that this implies

D
VilXi =i~ N { B0+ 3 By 2)
j=1
so that
D
EfY|X D/’L’Xz — wz] — 6() + Zﬁjﬂfij.
j=1
In vector notation, (1) can be re-written Y; = x! 8 + &;, where z; =

(1, 251, Ti2, -y :z:?;D)T, and thus, for vector Y = (Y7, ...,Yn)T we have

Y =X3+¢

45 Section 6.4
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where X is a n X (D + 1) matrix called the design matrix

I z11 -+ x1p
I ®o1 -+ x2p
X = I x31 -+ x3p
i 1 xp1 -+ xpp i
and to mimic (2)
Y ~ N, (X8,0°1,) (3)

where I,, is the n X n identity matrix, giving a joint pdf for Y given X of
the form

Py s (43 B, 0%) = —— 73 XD {—2%2 (y—X8)" (y - Xﬁ)} (4)

(2m0?)

46 Section 6.5
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6.5 THE EXTENDED LINEAR MODEL

The formulation of the linear model above can be extended to allow for
more general dependence on the predictors. Suppose that g1, go, ..., gk are
K (potentially non-linear) functions of the D original predictors, that is

gk(ﬂfz) = Gk (%‘1, oo %;D)

is some scalar function, for example, we could have

47 Section 6.5



Using Statistics in Research. Summer 2003

and so on. This reformulation does not effect our probabilistic definition
of the model in (3); we can simply redefine design matrix X as

1 g (z1) - gx (1)

1 g1(x2) - gx (z2)

X=|1 aa(zs) -+ 9k (x3)
i 1 g1 (wn) K (mn) i

now an n X (K 4 1) matrix. In the discussion below, we will regard
the transformed variables (g1(X), g2(X), ..., gx (X)) as the predictors and
drop the dependence on the transformation functions. Hence we have

e Y as an x 1 column vector
e X as an x (K + 1) matrix with ith row (1, g1 (x;), ..., g (;))

e Jasa (K +1)x 1 column vector

48 Section 6.5
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6.6 FACTOR PREDICTORS: CONTRAST
PARAMETERIZATIONS

The linear model formulation can be used for categorical predictors, or
factors; suppose that predictor X takes K distinct levels (i1,lo, ..., k),
and that there is a different mean response for each level

(61 r = C1
ply]=4 2 T
\BK I = CK

The parameters (G4, 85, ..., B ) can be estimated in the usual way.

49 Section 6.6
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Other parameterizations that will permit inferences about specific differ-
ences of interest, or contrasts, include

e Deviation: differences from overall mean level

1
o = ?(61"‘624_"-4_6[()
= 1 ! ! k=1.2 K —1
(S S SN S
j

e Simple: differences of levels cq, ...,cx_1 from cg

1
Ho = ?(61"‘624_"-4_6[()

He = Bk_ﬁK k:1,2,,K—1
(with arbitrary labelling of the levels)

50 Section 6.6
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e Helmert: differences of each level from mean of subsequent cate-
gories

1
Ho = ?(61"‘624_"-4_6[()

K
1
e = Bk_K—_k'Z O k=1,2,... K -1
Jj=k+1

e Difference: differences of each level from mean of previous cate-
gories

1
Ho = ?(61"‘624_"-4_6[()

| =
-

M = Bk—f-l_ Bk k:1,2,,K—1

1

J

51 Section 6.6
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e Polynomial: for ordinal categorical variables

CONTRAST 1 : LINEAR EFFECT ACROSS LEVELS
CONTRAST 2 : QUADRATIC EFFECT ACROSS LEVELS

e Repeated: differences for adjacent levels
1
o = ?(51 + By + ... + Bk)

M = Bk_ﬁk—f—l k:1,2,,K—1
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Most of these contrast specifications can be written as linear transforma-
tions of the original parameters, that is

p=0Cp

for a K X K matrix C.

Often, orthogonal contrasts are used for ease of interpretation; for or-
thogonal linear contrasts

Cte =1

where [ is the K x K identity matrix (ones on the diagonal, zeros else-
where).

Contrasts can be defined to examine specific effects.
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6.7 ANOVA IN REGRESSION

Analysis of variance or ANOVA is used to display the sources of vari-
ability in a collection of data samples. The ANOVA F-test compares vari-
ability between samples with the variability within samples. In the
above analysis, we have that

S(3) =S (5) n (B _ 5)T (XTX) (B _ 5) or  TSS=RSS+FSS.

Now, using the distributional results above, we can construct the following
ANOVA Table to test the hypothesis

H()Zﬁlz...zﬁK:O
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against the general alternative that H( is not true.

Source D.F. Sum of sq. Mean square F
E'SS Mprss
FITTED K FSS Mpgg = ——
" K Mpss
RSS

ESIDUAL — K -1 M =
RESIDU n RSS RSS (h—K—1)

TOTAL n—1 TSS

This test allows a comparison of the fits of the two competing models
implied by the null and alternative hypotheses. Under the null model, if
Hy is true, then the model has Y; ~ N (60,0(2)) for ¢+ = 1,2, ...n, for some
By and o3 to be estimated. Under the alternative hypothesis, there are a
total of K + 1 § parameters to be estimated using equation (?7). The
degrees of freedom column headed (D.F.) details how many parameters
are used to describe the amount of variation in the corresponding row of
the table; for example, for the FIT row, D.F. equals K as there are K
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parameters used to extend the null model to the alternative model.

Now consider the following design; suppose that there are K possible
medical treatments and you wish to test for any difference between them.
The parameter vector is G = |64, B9, ..., 0 K]T say, and the null hypothesis
is that, for some [,

Hy:0,=0y=...=0g =0

Suppose that there are nq,...,nx observations in the K treatment groups
respectively. Then the design matrix in the corresponding (full) linear
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model takes the form

_ _ 0 O 1

X1 0 O 1

x=| * Xp=1: : 1
X 00 --- 1

- - _O O --- 1

o O O o O

> 1. TOWS

7

-~

K columns

/

that is, X is a ng X K block matrix with only the £th column non-zero,
and equal to the ni X 1 vector of 1s. Under the assumption that the

observed responses are normally distributed with common variance o

2

we are in the linear model framework, and all of the above likelihood and

statistical theory applies.
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6.8 MIXED LINEAR MODELS

The equation for response Y in terms of covariates X
Y =X3+¢
so that
Yi=x{0+e

indicates that the variation in Y; is the result of a systematic component
z}' 3 plus some random variation €. The parameters 3 are termed fixed
effects parameters. An extension of this model adds a further, individual
random component

where Z; ~ N(0,0%) is a random individual specific-random variable. If
multiple observations are available,

Yij = xi;0+ Zi +

58 Section 6.8



Using Statistics in Research. Summer 2003

A model that includes both fixed and random effects terms is called a
mixed effects model.

The {Z;} terms are identically distributed, with one Z; specific to each
individual’s observations.

It is possible to marginalize this model by integrating out over the unob-
srerved Z.

Standard likelihood theory does not extend to this case
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6.9 NON LINEAR REGRESSION

The linear model
Y, = I;FB + &;

is termed linear because the terms in the vector 3 appear in a linear com-
bination. It can be exteneded to the non-linear case, for example

Y, =g (i 8) +ei
for some non-linear function g of the parameters.

Likelihood & Least Squares estimation still available.

EXAMPLE: Pharmacokinetics

Yi=g (CU;,FB) +&i = Boo exp{—LBo1Zi} + B1pexp{—0B11%if + &

where (3,; < 3;; for identifiablity.
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Pharmacokinetic data
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6.10 GENERALIZED LINEAR MODELS

The central idea of Generalized Linear Models (GLMs) is to extend
the ideas from the normal linear model to allow the possibility of modelling
non-normal data. In the GLM, we will model

EfY|X D/%’X’L — 337/] — g_l (wfﬁ)
where

K
37?6 = Bp + Zﬁjwij'
j=1

for some monotonic/invertible function g; in the normal linear model, g is
the identity function.
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6.10.1 GLM TERMINOLOGY

There are two key terms in the model description:

e Linear predictor: for observed predictor z; = (x1,...,x;x) and
parameters 0 = (3, 01, ---8x ), the linear predictor is

K
n; =z 8 =B+ Zﬁjmij
j=1

Link function: a link function g is a function that connects the linear
predictor to the expected value of the response
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EXAMPLES

e POISSON MODEL

e—Ao)\y
fY|0,¢(y; 97 gb) — fY|)\,¢(y7 )\7 gb) — y|
e BINOMIAL MODEL
n e
fY|0,¢(y; 97 gb) — fY|0,¢(y7 97 gb) — (y) 0° (1 R 9) i
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6.10.2 LINK FUNCTIONS

For the Poisson model;

e The canonical link is the log link: it is the link function that
connects the naive parameter to the linear predictor

A=log )y =2z!13
Here,
Ep Y] =Xo=exp{A} . g (Ep , [Y]) = r! 3 where g(t) = logt
e Power link

g(t) =t°

for some real parameter «
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e Box-Cox link

for some real parameter a.

For the Binomial model;

e The canonical link is the logit link:

1 — 0
Here,
EfM|/\ [M] = 0o = (1 _T_Xé)xig{}e}) S g (E A [M]) = :UTB
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67

e Probit link

g(t)ch—1< ep 1) ):azTﬁ @) =27

where ® is the standard normal cdf.

e Complementary log-log link

g(t) =log{log (1 +exp{t}h)} =2'6 ..  log{—log(l—6o)} =2'p

e Log-log link

g(t) = —log{~t+log(1+exp{t})} =2'6 ..  —log{-logby} =
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6.10.3 CHECKING THE FIT OF A GLM

In the normal linear framework, the fit of a model is assessed by inspection
of the magnitude of the residual sum of squares (RSS) and the fitted sum
of squares (FSS) in an ANOVA F-test. For example, to test a model with
K predictors plus an intercept (K + 1 parameters) against the model with
just an intercept (1 parameter), we use either a Chi-squared goodness-of-fit
statistic or the F-ratio statistic, or by inspecting the error in fit as measured
by the residual, e,

A

62%—3?7;:%—%?5-

where Bo and B are mles computed under the 1 and K +1 parameter models
respectively. In the GLM case, we will use similar, Likelihood Ratio (LR)
statistics to perform tests.
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6.10.4 DEVIANCE

In the following we use the following notation for data Y modelled via linear
predictor n = z! 3 through canonical parameter 6 and related expected
value u = Fy, . . [Y] with link function, g.. After the model is fitted, we
have ML estimates in the linear predictor, 3, for the following parameters

n=azT3 0=g" (:UTB) ii=h (9)
We may also write ¢y = ji.
Deviance is a way of measuring the goodness of fit of a GLM. From a
previous definition, the deviance, D, for a model M is the likelihood ratio
statistic in an LR test of the model against the saturated model, S,

= —2log s (BM)

Iar (B ) Is (Bs)
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where

e (3, is the mle under model M

° B ¢ 18 the mle baseline model the saturated model, which corresponds
to the best possible fit, and which occurs when

My = Yi = Yi

e [ and [g are the likelihood functions under the model and saturated
model respectively.
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We have a complete range of model fits to calibrate the fit of any individual
model:

SATURATED MODEL — MODEL — NULL MODEL

MOST COMPLEX — LEAST COMPLEX

LOWEST DEVIANCE — HIGHEST DEVIANCE
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6.10.5 STATISTICAL PROPERTIES OF DEVIANCE

Likelihood Ratio theory gives a means of calibrating the magnitude of the
deviance; we have approximately

(i) = 2

2

if 1 has K +1 parameters. From this result we have two possible estimates
of dispersion parameter ¢; the Deviance-based estimate

D y;@
o = n(K )1

or the Pearson-type estimate

o
or=iTR —1Zv<uz ) Jw;
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For choosing between two models

My, : K; predictors, parameter 64

M : K5 predictors, parameter 605

where, without loss of generality Ko > K7, we have

Dy, (y; 91) — Dy, (%91) ,
& ~ XKy—K;

and, if ¢ is not known

A

Dy, (y; 91) — Dy, (y; 91)
- ~ Fisher (Ko — Ki,n— Ky — 1)
¢ (K2 — K1)

where ¢ is either of ¢ p Or ¢ p-
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