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SCHEDULE
Module 1: 4 June

Statistical Summaries & Statistical Testing

Types of Study and their Statistical Analysis

Motivation Elementary numerical and graphical summary methods
Representing Uncertainty: Standard Deviations and Standard Errors
Data Transformations

Basic elements and logic of Probability Theory

Statistical Hypothesis Testing: Introduction; One and Two sample
tests for Normal samples
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Module 2: 11 June
Statistical Hypothesis Testing: Implementation
Implementation and interpretation of basic testing procedures
Non-parametric Methods
ANOVA: One-way, Two-Way, Multiway
Repeated Measures ANOVA
Regression
Goodness of Fit

Implementation in SPSS
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Module 3: 18 June
Regression Modelling
Linear Regression
GLMs and models for categorical data
Model fit and Validation
Classification methods

Multivariate Analysis
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Module 4: 25 June Module 5: 9 July
Study Design Survival Analysis
Power and Sample size calculations Parametric and Non-parametric survival
Optimal design and randomization The Cox model and Multivariate modelling
Different Study Protocols Competing Risks

Implementation in SPSS
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MODULE 1: CONTENTS SECTION 1.

STATISTICAL ANALYSIS

Statistical analysis involves the informal/formal comparison of hypo-

SECTION 1: STATISTICAL ANALYSIS

SECTION 2: PROBABILITY THEORY thetical or predicted behaviour with experimental results. For example,
we wish to be able to compare the predicted outcomes of an experiment,
SECTION 3: RANDOM VARIABLES AND DISTRIBUTIONS and the corresponding probability model, with a data histogram. We will

use both qualitative and quantitative approaches.
SECTION 4: STATISTICAL INFERENCE
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Broadly, the “Scientific Process” involves several different stages:

THEORETICAL MODELLING

!
MATHEMATICAL/PROBABILISTIC MODELLING

!
PREDICTION
!
EXPERIMENTATION/OBSERVATION

!
VALIDATION

Mathematical /Probabilistic modelling facilitates PREDICTION; Statis-
tical Analysis provides the means of validation of predicted behaviour.
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1.1 PRELIMINARIES

Suppose that an experiment or trial is to be repeated n times under iden-
tical conditions. This will result in n data points, possibly representing
multiple observations on the same individual, or one observation on many
individuals. The data may be

e univariate (single variable)
e multivariate (several variables)
Let
e X, denote the result of experiment i before it is known
e 1; denote the observed result for experiment i

Eventually, we will build probability models for the X; in order to
facilitate inference (estimation, hypothesis testing, prediction, verifica-
tion/model validation).
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1.1.1 STATISTICAL OBJECTIVES

Suppose that we have observed experimental outcomes

® I1,...,T, on the n trials

e that is, we have observed X7 = 1, Xo = x9,..., X,, = z,,), termed a
random sample.

This sample can be used to answer qualitative and quantitative ques-
tions about the nature of the experiment being carried out. The objectives
of a statistical analysis can be summarized as follows. We want to, for
example,

e SUMMARY : Describe and summarize the sample {z1,...,x,}
in such a way that allows a specific probability model to be proposed.

11
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e INFERENCE :Deduce and make inference about the parame-
ter(s) of the probability model 6.

e TESTING :Test whether 6 is “significantly”
larger /smaller/different from

some specified value.

¢ GOODNESS OF FIT :Test whether the probability model encap-
sulated in the mass/density function f, and the other model assump-
tions are adequate to explain the experimental results.

The first objective can be viewed as an exploratory data analysis exercise
- it is crucially important to understand whether a proposed probability
distribution is suitable for modelling the observed data, otherwise the sub-
sequent formal inference procedures (estimation, hypothesis testing, model
checking) cannot be used.

12
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1.2 TYPES OF STUDY

The data in an experimental study can be obtained in a number of different
situations that can be classified as follows:

e one sample

two independent samples

two related samples (“within individuals”)

two related samples (predictor and response)

k independent samples

k related samples (multivariable, within individuals)

13
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1.2.1 ONE SAMPLE

repeated, independent observations of some phenomenon

e aim to summarize “location/scale” of sample

test hypothesized target values

test distributional summaries

ONE SAMPLE ANALYSIS

14
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1.2.2 TWO INDEPENDENT SAMPLES

e repeated, independent observations under different conditions (fized

effects)
e control/treatment
e healthy/affected
e aim to compare two samples
e same mean level ?
e same variability 7

e same distribution ?

TWO SAMPLE ANALYSIS

15
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1.2.3 TWO RELATED SAMPLESI: PATIRED ANAL-
YSIS

e two repeated observations on same experimental units

e two observations on different but related (matched) experimental
units

e start/end of trial
e matched/paired analysis

e any change in mean level 7

TWO SAMPLE PATRED ANALYSIS

16
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1.2.4 TWO RELATED SAMPLESII: PREDICTOR/RESPC

e two related observations on different features of same experimental
units

e predictor/response

e objective is to predict response
e normal data/non-normal data
e correlation 7

e any predictive ability 7

e classification ?

REGRESSION ANALYSIS

17

Using Statistics in Research. Summer 2003

1.2.5 k£ INDEPENDENT SAMPLES

18

k > 2 sets of independent observations (fixed effects)

different experimental conditions (control, level 1,....level k — 1)
ordered levels ?

normal /non-normal data ?

any change in mean measure across treatment levels ?

ANOVA ANALYSIS
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1.2.6 k RELATED SAMPLES

e k > 2 sets of observations (on same experimental units)

e time dependent

e same feature, different experimental conditions (fixed effects)
e different (related) features

e normal/non-normal data ?

e regression/correlation ?

e comparison of fixed effects ?

REPEATED MEASURES/MULTIVARIATE ANALYSIS

19
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1.3 KEY CONSIDERATIONS

ANALYTICAL

20

what is the key outcome of interest 7

can some variables be omitted from the analysis 7
are all experimental units acceptable for the study ?
are there biases in the study design 7

are all sources of variability being acknowledged ?
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STATISTICAL

e summary
e inference

e testing

e distributional assumptions
e goodness of fit

e prediction

e study design
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1.4 EXPLORATORY DATA ANALYSIS

We wish first to produce summaries of the data in order to convey general
trends or features that are present in the sample. Secondly, in order to
propose an appropriate probability model, we seek to match features in
the observed data to features of one of the conventional probability dis-
tributions that may be used in more formal analysis. The four principal
features that we need to assess in the data sample are

(1) The location, or “average value” in the sample.

(2) The mode, or “most common” value in the sample.
(3) The scale or spread in the sample.

(4) The skewness or asymmetry in the sample.

These features of the sample are important because we can relate them
directly to features of probability distributions.

21 22
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1.4.1 NUMERICAL SUMMARIES where k is the nearest integer to pn/100. Special cases include
The following quantities are useful numerical summary quantities Median m = z09, the 50th quantile
i = (25) ]
o Sample mean Lower quartl'le Q25 x(75), the 25th quant%le
1 Upper quartile qrs = x'"®) ) the 75th quantile
= — x;
nia Inter-quartile range IQR = q75 — qo5
e Sample variance: either (S? or s may be used) g .. -
ample minimum T, = T (1)
n n Sample maximum ==z
1 _ 1 _ max (n)
5% = n Z(l"z - $)2 s = n—1 Z(l“z - 33)2 Sample range R =z —zq)
i=1 i=1
) ) e Sample skewness
e Sample quantiles: suppose that the sample has been sorted into 1 &
ascending order and re-labelled z(;) < ... < x(,). Then the pth K=—c5 (z; — z)3
quantile, 0 < p < 100,is given by ]
2P — 4 *)

23 24




Using Statistics in Research. Summer 2003

NOTE: Key aspects of the sample can be summarized using the first four
sample moments and their transformations

1 n
o 1st Moment—LOCATION : — Zx,
n =1
e 2nd Moment—SCALE : > a?
n
=1
1 n
¢ 3rd Moment—SKEWNESS : — > a?
=1

1 n
e 4th Moment—KURTOSIS (“heavy-tailedness”) : - fo
i=1

25
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1.4.2 REPORTING UNCERTAINTY

It is common to report a sample mean and variance, T,

1

n
2 _ )2
s —n_llz:;(a:l T)

n
_ 1
.T}:—E xT;
n
=1

and, in addition, a standard error of the mean

B

27

SEM =

B

ut
e what is this quantity ?
e why this formula ?

e what if the data are proportions, or counts out of m ?
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It is common to report
T+ SEM

as a sample summary. However, it might be more appropriate to report a
confidence interval

T+1.96 x SEM
e what is the difference ?
e when is this formula valid ?

e why this formula ?

To understand the distinction, some results from probability theory are
needed (see section 2.7)

28
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1.4.3 GRAPHICAL SUMMARIES

32

¢ HISTOGRAMS: The most common graphical summary technique

is the histogram. Typically, the observation range, X, is divided into
a number of bins, X, ..., Xy say, and the frequency with which a
data value in the sample is observed to lie in subset h = 1,...,. H
is noted. This procedure leads to a set of counts nq,...,ng (where
ny + ... + ng = n) which are then plotted on a graph as bars, where
the hth bar has height n;, and occupies the region of X corresponding
to X,.

The histogram again aims to approximate the “true” probability dis-
tribution generating the data by the observed sample distribution. It
illustrates the concepts of location, mode, spread and skewness
and general shape features that have been recognized as important
features of probability distributions.




Using Statistics in Research.

Summer 2003

33

378 w00

Blood “scasity

Using Statistics in Research. Summer 2003

¢ BOXPLOTS: A boxplot is a simple way of displaying the variation
in a number of data subgroups, or a mean/sem range, or a confidence
interval. Typically, a three point (min, median, max) or five point
(min, lower quartile, median, upper quartile, max) summary is used,
and often outlying observations are included.

34
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PERSONAL NOTE: I dislike the combination of histogram and mean-
level /boxplot plots

typical example “BAR-CHART” (available in Excel, lesser packages...)

don’t really add anything to mean/se plots

difficult to interpret 7

misleading ?

36
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e SCATTERPLOTS: Scatterplots are used to illustrate the relation-
ships between variables, and can be useful in discovering

CORRELATION
DEPENDENCE
ASSOCIATION

between variables

38
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1.4.4 OUTLIERS

Sometimes, for example due to slight variation in experimental conditions,
one or two values in the sample may be much larger or much smaller in
magnitude than the remainder of the sample. Such observations are termed
outliers and must be treated with care, as they can distort the impression
given by some of the summary statistics.

For example, the sample mean and sample variance are extremely sen-
sitive to the presence of outliers in the sample. Other summary statistics,
for example those based on sample percentiles (median, quartiles) are less
sensitive to outliers. Outliers can usually be identified by inspection of the
raw data, or from careful plotting of histograms, or using boxplots.

40
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1.5 TRANSFORMATIONS

It may be necessary or advantageous to consider data transformations;
o y; =logyx;
o y;, =logx; =Inx;
oy =,\/T, ==

® Y =2

T
¢ yi:10g<1_x_>

NOTE: This is not any form of statistical trickery, but may be
necessary to allow formal statistical assessment

41
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SECTION 2.
PROBABILITY THEORY

2.1 MOTIVATION

The random variation associated with “measurement” procedures in a sci-
entific analysis requires a framework in which the uncertainty and vari-
ability that are inherent in the procedure can be handled. The key goal
of Probability and Statistical modelling are to establish a mathematical
framework within which random variation (due to, for example, exper-
imental error or natural variation) can be quantified so that systematic
variation (arising due to potentially important biological differences) can
be studied.

42
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KEY QUESTION:

Is the result we observe the result of a
genuine, systematic phenomenon,
or is it the product of
entirely random variation ?

To explain the variation in observed data, we need to introduce the
concept of a probability distribution. Essentially we need to be able to
model, or specify, or compute the “chance” of observing the data that we
collect or expect to collect. This will then allow us to assess how likely the
data were to occur by chance alone, that is, how “surprising” the observed
data are in light of an assumed theoretical model.

43
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2.2 BASIC PROBABILITY CONCEPTS

EXPERIMENTS AND EVENTS
An experiment is any procedure

(a) with a well-defined set of possible outcomes - the sample space, S.
(b) whose actual outcome is not known in advance.

A sample outcome, s, is precisely one of the possible outcomes of the
experiment.

The sample space, S, is the entire set of possible outcomes.

44
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SIMPLE EXAMPLES:
(a) Coin tossing: S ={H,T'}.
(b) Dice : S=1{1,2,3,4,5,6}.
(c) Proportions: S ={z:0<z <1}
(d) Time measurement: S ={z:z >0} =R"
(

e) Temperature measurement: S ={z:a <z <b} CR
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There are two basic types of experiment, namely

COUNTING
and

MEASUREMENT

- we shall see that these two types lead to two distinct ways of specifying
probability distributions.

The collection of sample outcomes is a set (a collection of items) , so
we write

seS
if s 4s a member of the set S.
45 46
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DEFINITION Events are manipulated using set theory notation; if E, F' are two events,

An event E is a set of the possible outcomes of the experiment, that is F
is a subset of S, E C S, F occurs if the actual outcome is in this set.

NOTE: the sets S and E can be either be written as a list of items, for
example,
E ={s1,82,..,Sn,---}

which may a finite or infinite list, or can only be represented by a continuum
of outcomes, for example

E={r:06<x<23}

47

E,FCS,

Union FUF “FE or F or both occurs”
Intersection FENF “F and F occur”
Complement E “FE does not occur”

We can interpret the events FUF, ENF, and FE' in terms of collections of
sample outcomes, and use Venn Diagrams to represent these concepts.

48
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4 \

\ ot

Venn Diagram
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Another representation for this two event situation is given by the following
table:

I E | £’ | Sum |

F || P(ENF) | P(E'NF) | P(F)
F | P(ENF) | P(EENF) | P(F)
Sum P(E) P(E")

so that, summing in the columns
P(ENF)+P(ENF') =P(E)
P(E'NF)+P(E'NF') =P(F)
and summing in the rows
P(ENF)+P(E'NF) =P(F)

P(ENF)+P(ENF) =P(F)

50
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Special cases of events:

THE IMPOSSIBLE EVENT —

the empty set, the collection of sample outcomes with zero elements
THE CERTAIN EVENT — Q

the collection of all sample outcomes

DEFINITION
Events E and F' are mutually exclusive if

ENF=0

that is, the collections of sample outcomes E and F have no element in
common.

Mutually exclusive events are very important in probability and statistics,
as they allow complicated events to be simplified in such a way as to allow
straightforward probability calculations to be made.

51
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2.3 THE RULES OF PROBABILITY

The probability function P(.) is a set function that assigns weight to col-
lections of sample outcomes. We can consider assigning probability to an
event by adopting

CLASSICAL APPROACH consider equally likely outcomes
FREQUENTIST APPROACH consider long-run relative frequencies

SUBJECTIVE APPROACH consider your personal degree of belief

It is legitimate to use any justification where appropriate or plausible

52
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THE PROBABILITY AXIOMS

It is sufficient to require that the probability function P(.) must satisfy the
following properties:

For any events F and F' in sample space .S,
()0<PE)<1
(2) P(2) =1

(3)If ENF = @, then P(EU F) = P(E) + P(F)

53
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From the axioms, we can immediately prove the following results:
P(EF)=1-P(E),P(®)=0

If Ey, ..., B}, are events such that £; N E; = O for all 4, j, then

k
P(UEl) = P(E1) + P(Ey) + ... + P(Ey).

If ENF # @, then P(EUF) = P(E) + P(F) —P(EN F)

54
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EXAMPLE CALCULATION Examination Pass Rates

The examination performance of students in a year of eight hundred
students is to be studied: a student either chooses an essay paper or a
multiple choice test. The pass figures and rates are given in the table
below:

PASS FAIL PASS RATE

FEMALE 200 200 0.5
MALE 240 160 0.6

The result of this study is clear: the pass rate for MALES is higher than
that for FEMALES.

55
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Further investigation revealed a more complex result: for the essay paper,
the results were as follows;

PASS FAIL PASS RATE

FEMALE 120 180 0.4
MALE 30 70 0.3

so the pass rate for FEMALES is higher than that for MALES.

For the multiple choice test, the results were as follows;

PASS FAIL PASS RATE

FEMALE 80 20 0.8
MALE 210 90 0.7

S0, again, the pass rate for FEMALES is higher than that for MALES.

56
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Hence we conclude that FEMALES have a higher pass rate on the essay
paper, and FEMALES have a higher pass rate on the multiple choice test,
but MALES have a higher pass rate overall.

IS THIS A CONTRADICTORY RESULT ?

In fact, this apparent contradiction can be resolved by careful use of the
probability definitions. First introduce notation; let E be the event that
the student chooses an essay, I’ be the event that the student is female,
and G be the event that the student passes the selected paper.

THIS RESULT IS IMPORTANT FOR MANY TYPES OF STA-
TISTICAL ANALYSIS; WE MUST TAKE CARE TO ENSURE
THAT ANY REPORTED SYSTEMATIC VARIATION IS DUE
TO THE SOURCE TO WHICH IT IS ATTRIBUTED, AND
NOT DUE TO HIDDEN, CONFOUNDING FACTORS.

57
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2.4 CONDITIONAL PROBABILITY

DEFINITION

For two events E and F' with P(F') > 0, the conditional probability
that F occurs, given that F occurs, is written P(F|F), and is defined by
P(ENF)

sothat ~ P(ENF)=P(E|F)P(F)

It is easy to show that this new probability operator P( . | . ) satisfies the
probability axioms.

[In the exam results problem, what we really have specified are conditional
probabilities. From the pooled table, we have

P(GIF) =05 P(G|F')=0.6,

58
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from the essay results table, we have

P(GIENF)=04 P(GIENF)=0.3,
and from the multiple choice table, we have

P(GIE NF)=08 P(GIENF)=07

and so interpretation is more complicated than originally thought.]

The probability of the intersection of events F1, ..., B} is given by the
chain rule

P(EiN..NEy) = P(E))P(Ey|E)P(Es|E\NE;y)..P(Ep|[EyNEyN...NEg_y)

59
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Special Case: Independence

Events F' and F' are independent if
P(E|F) = P(E)sothat P(ENF) = P(E)P(F)

and so if Eq, ..., E} are independent events, then

"
P(EyN...NEy) = [[P(E:) = P(Ey)..P(Ey)

A simple way to think about joint and conditional probability is via a
probability tree:
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P(E n F)=P(E) < P(F| E}

P(E n F) = P(E) x B(F | E)

P(E n F) = B(E) % P(F | E)

P(E n F)=P(E) * P(F | E)

Probability Tree for the Theorem of Total Probability

61
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2.5 PARTITIONS

A partition of S

62
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A partition of F' C .S implied by the partition of .S

63
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2.6 TOTAL PROBABILITY

If events Ejy, ..., By form a partition of event F' C S, and event G C S is
such that P(G) > 0, then

k
P(F) = ZP<F|E1>P(Ei>

k
P(F|G) =) P(FIE:NG)P(E;|G)

The results follows as
k

k
F=|J(EinF)=P(F Z P(E;NF) =Y P(F|E)P(E;)

64
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2.7 BAYES THEOREM

For events E and F such that P(E), P(F) > 0,

P(F|E)P(E)

P(EIF) = =7

If events Fj, ..., Fj, form a partition of S, with P(F;) > 0 for all ¢, then

p(EF) = & f(?;@) _ _PUFIE)R(E)
> P(FIE)P(E))

This result follows immediately from the conditional probability definition:

P(ENF)=P(E|F)P(F) and P(ENF)=P(F|E)P(E)

65
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Note that in the second part of the theorem,

F|E)P(E;) _ P(F|E:)
P(F) ~ P(F)

P(E;|F) = a P(E;)

so the probabilities P(E;) are re-scaled to P(E;|F') by conditioning on F.
Note that

k
> P(E|F) =1
i=1
This theorem is very important because, in general,
P(E|F) # P(F|E)

and it is crucial to condition on the correct event in a conditional probability
calculation.

66
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EXAMPLE Lie-detector test.

In an attempt to achieve a criminal conviction, a lie-detector test is used
to determine the guilt of a suspect. Let G be the event that the suspect is
guilty, and let T" be the event that the suspect fails the test.

The test is regarded as a good way of determining guilt, because labo-
ratory testing indicate that the detection rates are high; for example it is
known that

P[ Suspect Fails Test | Suspect is Guilty | = P(T|G) = 095 = 1-—aq, say

P[ Suspect Passes Test | Suspect is Not Guilty | = P(T"|G') = 0.99 = 3, say

Suppose that the suspect fails the test. What can be concluded ?

67
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The probability of real interest is P(G|T'); we do not have this proba-
bility but can compute it using Bayes Theorem. For example, we have

P(T|G)P(G)

P(GIT) = =575

where P(G) is not yet specified, but P(T) can be computed using the
Theorem of Total probability, that is,

P(T) = P(T|G)P(G) + P(T|G")P(G)
so that

P(T|G)P(G)
(T|G)P(G) + P(T|G")P(G)

P(GIT) = 3

68
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Clearly, the probability P(G), the probability that the suspect is guilty
before the test is carried out, plays a crucial role. Suppose, that P(G) =
p = 0.005, so that only 1 in 200 suspects taking the test are guilty. Then

P(T) = 0.95 x 0.005 4 0.01 x 0.995 = 0.0147

so that 0.95 x 0.005
.95 x 0.
P(G|T) = =0.32
(GIT) 0.95 x 0.005 4+ 0.01 x 0.995 0.323
which is still relatively small. So, as a result of the lie-detector test being
failed, the probability of guilt of the suspect has increased from 0.005 to

0.323.

More extreme examples can be found by altering the values of o, 3 and p.
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EXAMPLE Diagnostic Testing.

A diagnostic test for a disease is to be given to each of the 100000 people
in a city. Let S be the event that an individual actually has the disease,
and let T be the event that the individual tests positive for the disease.

/

S S TOTAL
T 4950 15000 19950

T 50 80000 80050
TOTAL 5000 95000 100000

What can be concluded if an individual, selected at random from the
city population, admits to having tested positive ?

70
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SECTION 3.
RANDOI\E{QI/']%RIABLES
PROBABILITY DISTRIBUTIONS

3.1 RANDOM VARIABLES

A random variable X is a function from experimental sample space S to
some set of real numbers X that maps s € S to a unique x € X

X: §S—XCR

SH—— X

Interpretation A random variable is a way of describing the outcome of
an experiment in terms of real numbers.

71
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RANDOM VARIABLE
EXAMPLE 1 X =“No. days in Feb. with zero precipitation”

EXAMPLE 2 X =“No. goals in a football match”

EXAMPLE 3 X =“the measured operating temperature”

Therefore X is merely the count /number/measured value corresponding to
the outcome of the experiment.
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Depending on the type of experiment being carried out, there are two
possible forms for the set of values that X can take:

A random variable is DISCRETE if the set X is of the form
X ={z1,z9, ..., 2} or X={z1,29,...},

that is, a finite or infinite set of distinct values z1, xo, ..., Ty, .... Discrete
random variables are used to describe the outcomes of experiments that
involve counting or classification.

A random variable is CONTINUOUS if the set X is of the form

X:U{m:aigmgbi}

for real numbers a;, b;, that is, the union of intervals in R. Continuous
random variables are used to describe the outcomes of experiments that
involve measurement.
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3.2 PROBABILITY DISTRIBUTIONS

A probability distribution is a function that assigns probabilities to
the possible values of a random variable. When specifying a probability
distribution for a random variable, two aspects need to be considered. First,
the range of the random variable (that is, the values of the random variable
which have positive probability) must be specified. Secondly, the method
via which the probabilities are assigned to different values in the range must
be specified; typically this is achieved by means of a function or formula.
In summary, we need to find a function or formula via which

P[X=2] o PX<uz]
can be calculated for each x in a suitable range X. The fundamental rules

of probability mean that the functions specifying P[ X =z ] or P[ X < z ]
must exhibit certain properties.
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3.3 DISCRETE DISTRIBUTIONS

3.3.1 PROBABILITY MASS FUNCTION

The probability distribution of a discrete random variable X is described
by the probability mass function (pmf) fx, specified by

fx(x) =P[X = x] for z € X ={z1,29,..., %0, ...}

Because of the probability axioms, the function fyxy must exhibit the fol-
lowing properties:

() fx(z;) >0 for all i (ii)z fx(z) =1.
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3.3.2 DISCRETE CUMULATIVE DISTRIBUTION FUNC-
TION

The cumulative distribution function or cdf, F'x, is defined by
Fx(z) =P[X <z forzeR

The cumulative distribution function defined in this way is a “step func-
tion”.

The functions fx and/or Fx can be used to describe the probability
distribution of random variable X.
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3.3.3 RELATIONSHIP BETWEEN fx AND Fx

The fundamental relationship between fx and Fx is obtained by noting
that if z1 < a9 < ... <z, < .., then

PX <z;] =P[X =1+ ... + P[X = z],

so that

and

Ix(21) = Fx (1) Ix (@) = Fx(2;) — Fx(%i-1)
fx(x;) = Fx(x;) — Fx(z;—1) fori>2

s0 Pley < X < 3] = Fx(c2) — Fx(c1) for any real numbers ¢; < ¢a.
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3.4 SOME SPECIAL DISCRETE PROBA-
BILITY DISTRIBUTIONS

Discrete probability models are used to model the outcomes of counting
experiments. Depending on the experimental situation, it is often possible
to justify the use of one of a class of “Special” discrete probability distri-
butions. These are listed in this chapter, and are all motivated from the
central concept of a binary or 0-1 trial, where the random variable con-
cerned has range consisting of only two values with associated probabilities
0 and 1 — 0 respectively; typically we think of the possible outcomes as
“successes” and “failures”. All of the distributions in this section are de-
rived by making different modelling assumptions about sequences of 0-1
trials.
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Single 0-1 trial - count number of 1s =—> BERNOULLI

n independent 0-1 trials - count number of 1s = BINOMIAL

Sequence of independent 0-1 trials = GEOMETRIC

- count number of trials until first 1

Sequence of independent 0-1 trials - — NEGATIVE BINOMIAL

count number of trials until nth 1

Limiting case of binomial distribution = POISSON
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3.5 CONTINUOUS DISTRIBUTIONS
3.5.1 CONTINUOUS CDF

The probability distribution of a continuous random variable X is defined
by the continuous cumulative distribution function or c.d.f., Fx, spec-
ified by

Fx(z)=P[X <z] forzeX

that is, an identical definition to the discrete case.

The continuous cdf F'xy must exhibit the same properties: as for the discrete
cdf, except
(iii) %in})FX (x +h) = Fx(x) [i.e. Fx is continuous]
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3.5.2 PROBABILITY DENSITY FUNCTION

The probability density function, or pdf, fx, is defined by

Frx(a) = 2= {Fx(2)}

so that, by a fundamental calculus result,

Fxlo) = [ ") di

The pdf fx must exhibit the following properties:

(i) fx(x) > 0for z € X (ii)/XfX(x) dr = 1.

In the continuous case, we calculate Fx from fx by integration, and fx
from Fx by differentiation.
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In both discrete and continuous cases, Fx () id defined for all € R, and
fx(x) also defined for all  but may be zero for some values of z. Also, if
X is continuous, we have

Pla<X <b]|=Fx(b)—Fx(a)—0
as b — a. Hence, for each x, we must have
P X=2]=0

if X is continuous. Therefore must use Fx to specify the probability dis-
tribution initially, although it is often easier to think of the “shape” of the
distribution via the pdf fx. Any function that satisfies the properties for
a pdf can be used to construct a probability distribution. Note that, for a
continuous random variable

fx() # P[X = a].
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EXAMPLE Failure times.

A component is installed at time z = 0 and continues to operate until
failure. Let X =“failure time of the component. then X ={ z : = >0} =
RT. Suppose that

1
Pl X =—
[ X >x] ESE x>0
Then !
F =P[X<z|=1-P[X =1-—
X(x) [ _LL‘] [ >£L‘} (1+.’L’)2
for x > 0. By differentiation, we have the pdf
d 2
— = IF -
frelw) = 2 AFx@) = o
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3.6 SOME SPECIAL CONTINUOUS DIS-
TRIBUTIONS

Here is a list of probability models are used in standard modelling situ-
ations. Unlike the discrete case, there are not really any explicit links
between most of them, although some connections can be made by means
of “transformation” from one variable to another.

UNIFORM DISTRIBUTION
EXPONENTIAL DISTRIBUTION
GAMMA DISTRIBUTION

BETA BINOMIAL DISTRIBUTION
NORMAL DISTRIBUTION
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3.6.1 THE NORMAL DISTRIBUTION X ~ N(u,oc?)

Range : X =R
Parameters : u € R,oc € RT
Density function :

fx(x)=< L )1/2exp{fi2(xu)2} reR.

2mo2

Interpretation : A probability model that reflects observed (empirical)
behaviour of data samples; this distribution is often observed in practice.

The pdf is symmetric about p, and hence p is controls the location of the
distribution and o2 controls the spread or scale of the distribution.
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NOTES
(1) The Normal density function is justified by the Central Limit The-
orem.

(2) Special case: = 0,02 = 1 - the standard or unit normal distribution.

In this case, the density function is denoted ¢(z), and the cdf is denoted
®(x) so that

@(z):/:ogb(t) dt:/_; (%)Uzexp{—%ﬁ} dt.

This integral can only be calculated numerically.

(3) If X ~ N(0,1), and Y = 0X + p, then Y ~ N(p, o?).
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(4) If X ~ N(0,1), and Y = X2, then

Y ~ Gamma(1/2,1/2) = X3

(5) If X ~ N(0,1) and Y ~ x?2 are independent random variables, then
random variable T', defined by

X
VY/«

has a Student-t distribution with o degrees of freedom.

The Student-t distribution plays an important role in certain statistical
testing procedures.
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3.7 EXPECTATION AND VARIANCE

For a discrete random variable X taking values in set X with mass function
fx, the expectation of X is defined by

o0

Ep [X]=) afx(@)= ) afx(x)

reX r=—00

For a continuous random variable X with pdf fx, the expectation of X
is defined by

o0

EfX[X]:/Xfo(m)dx:/ o fx(2)da

—0o0

The variance of X is defined by
Vary, [X] = B [(X =B [X]))%] = By [X7] = {Bp [X]}°
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Interpretation : The expectation and variance of a probability distribu-
tion can be used to aid description, or to characterize the distribution; the
EXPECTATION is a measure of location (that is, the “centre of mass”
of the probability distribution. The VARIANCE is a measure of scale or
spread of the distribution (how widely the probability is distributed) .
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3.7.1  EXPECTATIONS OF SUMS OF RANDOM
VARIABLES:

Suppose that X; and X» are independent random variables, and a1 and as
are constants. Then if Y = a1 X7 4+ a2 Xo, it can be shown that

Ep [Y] = a1Epy, [Xa] 4+ a2Byy, [Xo]
Vary, [Y] = a%\/arfxl [X1] + a%\/arfx2 [Xo]
so that, in particular (when a; = as = 1) we have
Ep Y] =Ejp [Xa] 4+ Epy, [X2]

Va‘rfy [Y] = \/va‘rfx1 [Xl} + Va“rfxz [XQ]
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so we have a simple additive property for expectations and variances. Note n n
also that if a; = 1,a2 = —1, then Ep[Y] = ZEfxi [Xi] = ZN =T

i=1 i=1

Ef, [Y] = Efxl [Xl] - EfX2 [XZ} n n
Vary, [Y] = ZVarfxi (X;] = 202 = no?
Varp, [Y] = Vary, [Xa] + Vary, [Xo] i=1 i=1

Sums of random variables crop up naturally in many statistical calculations. and ao, if
Often we are interested in a random variable Y that is defined as the sum n
of some other independent and identically distributed (i.i.d) random X = 1 Z X; is the sample mean random variable
variables, X1,..., X,,. If n

n
Y=>X; with Ep [X;]=p and Vary [X,] =0
=1

we have
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then, using the properties listed above

— 1 1 1 1 o
Ep[X] = EEfY Y] = = and Vary, [Y] = n—VarfY Y] = n—n02 =
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3.8 EXPECTATION AND VARIANCE RE-

Using Statistics in Research. Summer 2003

CONTINUOUS DISTRIBUTIONS

SULTS FOR STANDARD DISTRIBU- Parameters EXPECTATION VARIANZCE
TIONS Uniform(a,b) a,b a—2|—b %
1 1
DISCRETE DISTRIBUTIONS Exponential(\) A X =z
Parameters EXPECTATION VARIANCE
Bernoulli(6) 0 0 6(1—9) Gamma(a, ) a, % %
B
Binomial(n, 0 n, 0 nod nd(1—0
(n,0) ( ) Normal(p,0?) p, o2 w o?
Poisson(\) A A A
Geometric(6) 0 % (1 ;2 %)
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3.9 TRANSFORMATIONS OF RANDOM VARI-
ABLES

Consider a discrete or continuous random variable X with range X and
probability distribution described by mass/pdf fx, or cdf Fx. Suppose g
is a function. Then Y = g(X) is also a random variable as Y and typically
we wish to derive the probability distribution of random variable Y.

Most transformations are 1-1 transformations (the exceptions being trans-
formations involving powers of X, like g(x) = 22, or g(x) = (1 —z). The
following result gives the distribution for random variable Y = g(X) when
gis 1-1.
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3.9.1 LOCATION/SCALE TRANSFORMATIONS

A particular type of 1-1 transformation is a location/scale transformation;
this transformation take the form

Y =p+2X

where p and A > 0 are two real-parameters. The pdf of the location/scale
transformed variable Y was derived above using first principles

Fy(y)zP[YSy]:P[H+/\X§y]:P{XS%} = I (Q)

and therefore, by differentiation
d Y— b 1 y—2>b
= — F _— = — —_—
fr(y) & { X ( 3 >} /X < 3 )
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3.9.2 TRANSFORMATION CONNECTIONS BETWEEN
DISTRIBUTIONS

Some of the continuous distributions that we have studied are directly
connected by transformations

Using Statistics in Research. Summer 2003

3.10 JOINT PROBABILITY DISTRIBUTIONS

Consider a vector of k random variables, X = (Xy,..., Xx), (represent-
ing the outcomes of k different experiments carried out once each, or of
one experiment carried out k times). The probability distribution of X is

Distribution of X Transformation Distribution of Y described by a joint probability mass or density function.
e.g. Consider the particular case k = 2, X = (X7, X3). Then the following
X ~ Uniform(0,1) Y — 1 log X Y ~ Exponential(\) functions are used to specify the probability distribution of X;
’ A
X ~ Gamma(a,1) Y =X/ Y ~ Gamma(ca, B)
3.10.1 JOINT PROBABILITY MASS/DENSITY FUNC-
X ~ Normal(0,1) Y=p+0X Y ~ Normal(u, o?) TIONS
X ~ Normal(0,1) Y = X? Y ~ Gamma (3,3) = x3 The joint mass/density function is denoted
Ix1,x5 (9017 xz)
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- In the discrete case,
fx1,x, (w1, @2) = P[(X1 = 21) N (X2 N22)]

This implies that we need
(i) fxy,x,(x1,22) > 0 for all possible outcomes z1, 2.

(i)

Y Ixix(ea) =1 or //fxl,x2 (x1,22) dordas =1

where the double summation/integration is over all possible values of (x1, z2).
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Typically, such a specification is represented by a probability table; for
example for discrete random variables X; and X5, we could have

X1
1 2 3 4

1] 0.100 0.200 0.000 0.000
21 0.200 0.250 0.050 0.000
Xo
3 | 0.000 0.0560 0.050 0.025

4 0.000 0.000 0.025 0.050

where the entry in column ¢, row j is

fX17X2(7:7j) = P[Xl = Z) N (XQ :j)] = P[Xl = i7X2 :.7]7
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3.10.2 MARGINAL MASS/DENSITY FUNCTIONS In the discrete case
The joint mass function automatically defines the probability distribution PlXy = 1] Z Pl(Xy = 21) N (Xz = 22)]
of the individual random variables. For example, if £k = 2, then we have
the two marginal mass/density functions are fx, (z1) and fx,(z2) which is a result that is justified by the Theorem of Total Probability.

- in the discrete case,
[x: (1) Z fxix.(@,22)  fx,(22) Z [x1.x, (21, 22)

- in the continuous case,

Ixi(z1) = /fXI,XQ(ﬂﬁh@) dre  fx,(22) = /fxl,xz(mhm) dz.
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In the table above, the marginal mass functions can be computed easily 3.10.3 CONDITIONAL MASS/DENSITY FUNCTIONS
X ! In the discrete two variable case, consider the probability
1 2 3 4 | fx, (22)
X 1 0.100 0.200 0.000 0.000 | 0.300 PlXi=a2 [ Xs=12]
2 0.200  0.250 0.050  0.000 0.500
3 0.000 0050 0.050 0.025 0.125 that is, the conditional probability distribution of X;, given that X5 =
4 0'000 0'000 0'025 0'050 0'075 x2. This conditional distribution is easily computed from the conditional
— Jx. (1) | 0.300 0500 0.125 0.075 probability definition, that is

P[Xi=2,Xo=22] [fx, x,(71,22)

so that the marginal mass functions are formed by the column and row P Xy =12 fxa(22)
sums respectively. In this case, it turns out that that is, proportional to the o row of the table.

fX1 (x):sz (.’,E) x=123,4

P[Xl = le‘Xg = LEQ] =

but this will not always be the case.
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By extending these concepts, we may define the conditional probability dis-
tributions for both variables in the discrete and continuous cases; The two
conditional mass/density functions are fx,|x,(71|72) and fx, x, (z2|21)

_ fX17X2 (mlvl‘?)

e (72) fx,(22) >0

Ixy)x, (@1]22)

fxo1x, (@2|21) = fx(@,22) fx,(x1) >0

Ix, (x1)

In the discrete case, this result becomes

P[(Xi =21) N (X2 = 23)]
P[X2 = 332]

Ixi1x, (w1|r2) = P[Xy = 21| Xo = 23] =

if P[X5 = @3] > 0, which is justified by the definition of conditional prob-
ability.

105

Using Statistics in Research. Summer 2003

For example, consider the table

X1
1 2 3 4 fX2 (IL‘Q)

1 0.100 | 0.200 | 0.000 0.000 0.300
2 0.200 | 0.250 | 0.050 0.000 0.500
Xo
3 0.000 | 0.050 | 0.050 0.025 0.125

4 0.000 | 0.000 | 0.025 0.050 0.075

Fx, (x1) | 0.300 | 0.500 | 0.125 0.075

The highlighted column gives the conditional mass function for Xs given
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that X; = 2; from the definition,

0.200 0.250
Ixax, (12) = 0500 = 0.400 Ixa1x, (12) = 0500 = 0.500
0.050 0.000
2)=——=0.1 42) = —— =0.
Note that

4
> fralx, (212) = 0.400 + 0.500 + 0.100 + 0.000 = 1

r=1

which we must have for a conditional mass function.

Note that, in general, the conditional mass functions will be different for
different values of the conditioning variable.
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3.10.4 INDEPENDENCE
Random variables X; and X5 are independent if

(1) the joint mass/density function of X; and Xy factorizes into the product
of the two marginal pdfs, that is,

Ix1.x, (%1, 72) = fx, (1) fx,(22)

(ii) the range of X; does not conflict/influence/depend on the range of X,
(and wice versa).

The concept of independence for random variables is closely related to the
concept of independence for events.
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3.11 MULTIVARIATE EXPECTATIONS: CO-
VARIANCE

3.11.1 COVARIANCE AND CORRELATION

The covariance of two random variables X; and X is denoted Covyy . [X1, Xo],
and is defined by

Covfxl,XQ [Xla XQ] = EfXI,XQ [(Xl - ,ul)(XQ - #2)] = EfX1,X2 [XlXQ] — H1Hg

where p; = Ey, [X;] is the expectation of X;, for i = 1,2, and where
Efy, x, [X1 X5] is the expectation of function g(z1,z2) = x122 with respect
to the joint distribution fx, x,.

The correlation of X; and X5 is denoted Corerl_X2 [X1, Xo], and is de-
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fined by
Covfxl,x2 [Xla XQ]

\/Var fx, 1X1] Varg, [X,]

COI’I’le’X2 [X]_, Xg} =

If
COfol,XQ [X1, Xo] = COMfXLX2 [X1,X2]=0

then variables X7 and X5 are uncorrelated. Note that if random variables
X7 and X5 are independent then

Covyy, x, [ X1, X2] =0
and so X; and X, are also uncorrelated (the converse does not hold).

Key interpretation
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COVARIANCE AND CORRELATION ARE MEASURES
OF THE
DEGREE OF | ASSOCIATION | BETWEEN VARIABLES

that is, two variables for which the correlation is large in magnitude are
strongly associated, whereas variables that have low correlation are weakly
associated.
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SECTION 4.
STATISTICAL INFERENCE

4.1 ESTIMATION: MAXIMUM LIKELIHOOD

It is often of interest to draw inference from data regarding the parameters
of the proposed probability distribution; recall that many aspects of the
standard distributions studied are controlled by the distribution parame-
ters. It is therefore important to find a simple and yet general technique
for parameter estimation
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MAXIMUM LIKELIHOOD ESTIMATION

Maximum Likelihood Estimation is a systematic technique for estimat-
ing parameters in a probability model from a data. Suppose a sample
Z1, ..., Ty has been obtained from a probability model specified by mass or
density function f(x;6) depending on parameter(s) 6 lying in parameter
space O. The maximum likelihood estimate or m.l.e. is produced as
follows;

STEP 1 Write down the likelihood function, L(#), where

n

L(O) = [ f(x::0)

i=1

that is, the product of the n mass/density function terms (where the ith
term is the mass/density function evaluated at x;) viewed as a function of

6.
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STEP 2 Take the natural log of the likelihood, and collect terms involving
0.

STEP 3 Find the value of 6 € O, 0, for which log L(6) is maximized, for
example by differentiation. If 6 is a single parameter, find 6 by solving

< Qo L(0)) =0

in the parameter space ©. If 0 is vector-valued, say 6 = (61, ...,6,4), then
find 6 = (01, ...,04) by simultaneously solving the d equations given by

0 .

in parameter space ©.

Note that, if parameter space © is a bounded interval, then the maximum
likelihood estimate may lie on the boundary of ©.
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STEP 4 Check that the estimate 6 obtained in STEP 3 truly corresponds
to a maximum in the (log) likelihood function by inspecting the second
derivative of log L(#) with respect to 6. If

2

d
7 {log L(#)} < 0

at 0 = 9, then 6 is confirmed as the m.le. of 6 (other techniques may be
used to verify that the likelihood is maximized at 6).

This procedure is a systematic way of producing parameter estimates from
sample data and a probability model; it can be shown that such an approach
produces estimates that have good properties. After they have been ob-
tained, the estimates can be used to carry out prediction of behaviour for
future samples.
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EXAMPLE A sample z1,...,z, is modelled by a Poisson distribution
with parameter denoted A; hence

x

f(x;@)zf(x;)\):ge_’\ x=0,1,2,..

for some A > 0.

STEP 1 Calculate the likelihood function L(A). For A > 0,

Lo — n - n )\321 e )\Jt1+~--+ﬂ’/‘n o
U—Hﬂm)—ﬂ'@ = ot

STEP 2 Calculate the log-likelihood log L(\).

log L(\) = le log A —nA — Zlog(mi!)
i=1 i=1
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STEP 3 Differentiate log L(\) with respect to A, and equate the derivative
to zero.

d 1< c 1L _
a{logL(A)}—X;xi—n—OﬁA—E;xi—m

Thus the maximum likelihood estimate of A is A = Z
STEP 4 Check that the second derivative of log L(\) with respect to A is
negative at A = A.

d2 1 n ~
e {log L(\)} = - i <0ath=A

i=1
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4.2 SAMPLING DISTRIBUTIONS

Maximum likelihood can be used systematically to produce estimates from
sample data.

EXAMPLE : If a sample of data x1,...,x, are believed to have a Nor-
mal distribution with parameters x4 and o2, then the maximum likelihood
estimates based on the sample are given by

P - o 1¢ —\2

=2 02:S:—Z(xi—x)

n
=1

If five samples of eight observations are collected, however, we might get
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five different sample means

I

I X2 X3 X4 Is5 Te xT7 T
104 11.2 9.8 102 105 &89 11.0 10.3 10.29
9.7 122 104 11.1 103 10.2 104 11.1 10.66
121 79 86 96 11.0 11.1 88 11.7 10.10
100 9.2 111 108 9.1 123 103 9.7 10.31
9.2 9.7 108 103 &89 10.1 9.7 104 9.89

and so the estimate fi of p is different each time.
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We attempt to understand how z varies by calculating the probability
distribution of the corresponding estimator, X.

The estimator X is a random variable, the value of which is unknown
before the experiment is carried out. As a random variable, X has a prob-
ability distribution, known as the sampling distribution. The form of
this distribution can often be calculated, and used to understand how Z
varies. In the case where the sample data have a Normal distribution,
the following theorem gives the sampling distributions of the maximum
likelihood estimators;
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THEOREM If X1,..., X,, are i.i.d. N(u,0?) random variables, then
(1) X ~ N (p,0%/n),

- nS?  (n—1)s?

1 n
2 _ _ 2
(2) ;;(Xi —X)* = o = gz Y Xa-n

(3) X and S? are independent random variables.

This theorem tells us how we expect the sample mean and sample variance
to behave. In particular, it tells us that

n—1

EX]=p E[S?= E[s%] = o?

n
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Interpretation : This theorem tells us how the sample mean and variance
will behave if the original random sample is assumed to come from a Normal
distribution. For example, if we believe that X1, ..., X7¢ are i.i.d random
variables from a Normal distribution with parameters p = 10.0 and 0% =
25, then X has a Normal distribution with parameters ;1 = 10.0 and 02 =
25/10 = 2.5.

The result will be used to facilitate formal tests about model parameters.
For example, given a sample of experimental, we wish to answer specific
questions about parameters in a proposed probability model.

122

Using Statistics in Research. Summer 2003

4.3 HYPOTHESIS TESTING

Given a sample x1, ..., Z,, from a probability model f(z;6) depending on
parameter 6, we can produce an estimate 0 of 0, and in some circumstances
understand how @ varies for repeated samples. Now we might want to test,
say, whether or not there is evidence from the sample that true (but un-
observed) value of 6 is not equal to a specified value. To do this, we use
estimate of 0, and the corresponding estimator and its sampling distribu-
tion, to quantify this evidence.

In particular, we concentrate on data samples that we can presume to have
a normal distribution, and utilize the Theorem from the previous section.
We will look at two situations, namely one sample and two sample
experiments.

123

Using Statistics in Research. Summer 2003

¢ ONE SAMPLE

Random variables X7, ..., X,, ~ N(u,0?)
sample observations x1,...T,

Possible Models Ww=c1 o =cy

e TWO SAMPLE

Random variables X1,y Xp ~ N(px,0%)
sample 1 observations x1,...z,

Random variables Y1,y Yo ~ Ny, 0%)
sample 2 observations yi,...Yn

Possible Models : Lx = My Ox =0y
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4.3.1 HYPOTHESIS TESTS FOR NORMAL DATA I
- THE Z-TEST (¢ KNOWN)

If Xi1,...,X, ~ N(u,0%) are the i.i.d. outcome random variables of n
experimental trials, then

2 2
X~N <u, g—) and 252
n

with X and S? statistically independent. Suppose we want to test the
hypothesis that y = ¢, for some specified constant ¢, (where, for example,
¢ = 20.0) is a plausible model; more specifically, we want to test the hy-
pothesis Hy : p1 = ¢ against the hypothesis H; : u # ¢, that is, we want to
test whether Hy is true, or whether H; is true. Now, we know that, in the
case of a Normal sample, the distribution of the estimator X is Normal,
and _

X —p

=~ N

XNN(M,—>:>Z=
n
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where Z is a random variable. Now, when we have observed the data
sample, we can calculate Z, and therefore we have a way of testing whether
1 = cis a plausible model; we calculate Z from z, ..., z,,, and then calculate

Tr—c
a/\/n
If Hy is true, and u = ¢, then the observed z should be an observation
from an N(0,1) distribution (as Z ~ N(0,1)), that is, it should be near

zero with high probability. In fact, z should lie between -1.96 and 1.96 with
probability 1 — a = 0.95, say, as

z =

P[-1.96 < Z < 1.96] = (1.96) — ®(—1.96) = 0.975 — 0.025 = 0.95

If we observe z to be outside of this range, then there is evidence that H
is not true.
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Alternatively, we could calculate the probability p of observing a z value
that is more extreme than the z we did observe; this probability is given
by

| 2@(2) z<0
p—{ 21-®(2)) 2>0

If p is very small, say p < o = 0.05, then again. there is evidence that
Hj is not true. In summary, we need to assess whether z is a surprising
observation from an N(0, 1) distribution - if it is, then we can reject Hy.
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4.3.2 HYPOTHESIS TESTING TERMINOLOGY

There are five crucial components to a hypothesis test, namely

e TEST STATISTIC
e NULL DISTRIBUTION

SIGNIFICANCE LEVEL, denoted «

P-VALUE, denoted p.

CRITICAL VALUE(S)
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In the Normal example given above, we have that

z is the test statistic
The distribution of random variable Z if Hy is true is the null distribution

a = 0.05 is the significance level of the test (we could use aw = 0.01 if we
require a “stronger” test).

p is the p-value of the test statistic under the null distribution

The solution Cg of ®(Cr) =1— «/2 (Cr = 1.96 above) gives the critical
values of the test +Cg.
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EXAMPLE : A sample of size 10 has sample mean & = 19.7. Suppose
we want to test the hypothesis

Hy: =200
Hy:p#20.0

under the assumption that the data follow a Normal distribution with o =
1.0.

‘We have
L 19.7 — 20.0

1/4/10

which lies between the critical values £1.96, and therefore we have no
reason to reject Hy. Also, the p-value is given by p = 29(—0.95) = 0.342,
which is greater than a = 0.05, which confirms that we have no reason to
reject Hy.

=—-0.95
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4.3.3 HYPOTHESIS TESTS FOR NORMAL DATA
IT - THE T-TEST (¢ UNKNOWN)

In practice, we will often want to test hypotheses about u when o is un-
known. We cannot perform the Z-test, as this requires knowledge of o to
calculate the z statistic. We proceed as follows; recall that we know the
sampling distributions of X and s?, and that the two estimators are statis-
tically independent. Now, from the properties of the Normal distribution,
if we have independent random variables Z ~ N(0,1) and Y ~ 2, then
we know that random variable T defined by
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has a Student-¢ distribution with v degrees of freedom. Using this result,
and recalling the sampling distributions of X and s2, we see that
X—up
ro__9avn _X-pw
= = ~ ln—-1
(n—1)s2/o? s/\/n
(n—1)

and T has a Student-¢ distribution with n — 1 degrees of freedom, denoted
St(n—1). Thus we can repeat the procedure used in the o known case, but
use the sampling distribution of T rather than that of Z to assess whether
the test statistic is “surprising” or not.

Specifically, we calculate

_(@—p)
s/v/n

and find the critical values for a a = 0.05 significance test by finding the

t
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ordinates corresponding to the 0.025 and 0.975 percentiles of a Student-¢
distribution, St(n — 1) (rather than a N(0,1)) distribution.

EXAMPLE : A sample of size 10 has sample mean z = 19.7. and s> =
0.78%. Suppose we want to carry out a test of the hypotheses

Hy:p=20.0
Hy @ #20.0
under the assumption that the data follow a Normal distribution with o
unknown.
We have test statistic ¢ given by
~19.7-20.0
0.78/4/10

The upper critical value C'r is obtained by solving
F;, . (Cr) =0.975

—1.22.
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where Fgy(,—1) is the c.d.f. of a Student-¢ distribution with n — 1 degrees
of freedom; here n = 10, so we can use the statistical tables to find Cr =
2.262, and not that, as Student-t distributions are symmetric the lower
critical value is —Cg. Thus t lies between the critical values, and therefore
we have no reason to reject Hy. The p-value is given by

| 2R, . (b) t<0
p= { 20— F,,_(t) t>0

so here, p = 2F, _,(—1.22) which we can find to give p = 0.253; this
confirms that we have no reason to reject Hy.
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4.3.4 HYPOTHESIS TESTS FOR NORMAL DATA
ITI - TESTING o.

The Z-test and T-test are both tests for the parameter . Suppose that we
wish to test a hypothesis about o, for example

Hy:02=c
H :0%#c¢

We construct a test based on the estimate of variance, sy. In particular,
we saw from the Theorem on p.32 that the random variable ), defined by

(n—1)s?

N )2 N2
Q 0_2 Xn—1

if the data have an N (u, 0?) distribution.
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Hence if we define test statistic ¢ by

(n—1)s?

q:

then we can compare g with the critical values derived from a x2 _; distribu-
tion; we look for the 0.025 and 0.975 quantiles - note that the Chi-squared
distribution is not symmetric, so we need two distinct critical values.

In the above example, to test

Hy:0%2=1.0
Hy:0%#1.0

we compute test statistic

(n—1)s*  90.782

= = 5.43.
" ) 5.43.75

q:
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and compare with

Cr, = Fyz_ (0.025) = Cpg, = 2.700
CRz = in71(0.975) — 032 = 19.022

SO g is not a surprising observation from a x2_; distribution, and hence we
cannot reject Hy.

4.3.5 TWO SAMPLE TESTS

It is straightforward to extend the ideas from the previous sections to two
sample situations where we wish to compare the distributions underlying
two data samples. Typically, we consider sample one, x1,...,Z,, from a
N(py, O'%() distribution, and sample two, y1, ..., Yn, , independently from a
N (py,0%) distribution, and test the equality of the parameters in the two
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First, consider testing the hypothesis
Ho:px = py
Hy:px # py

when ox = oy = o is known. Now, we have from the sampling distribu-
tions theorem we have

2 2 2 2
R O e e e A G

nx ny
and hence . v
Z = — ~ N(0,1)
1 1
o\ — +—
nx ny

giving us a test statistic z defined by

z_a
models. Suppose that the sample mean and sample variance for samples Z= 1 1
— = o2 . : —_— 4+ —
one and two are denoted (Z,s% ) and (7, s3-) respectively. o nx + ny
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which we can compare with the standard normal distribution; if z is a
surprising observation from N(0,1), and lies outside of the critical region,
then we can reject Hy. This procedure is the Two Sample Z-Test.

If ox = oy = o is unknown, we parallel the one sample T-test by
replacing o by an estimate in the two sample Z-test. First, we obtain an
estimate of o by “pooling” the two samples; our estimate is the pooled
estimate, s%, defined by

(nx —1)s% + (ny —1)s%
nx +ny — 2

sp =

which we then use to form the test statistic ¢ defined by

Ty

T 1
spy/—— +—
nx Ny

t=
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It can be shown that, if Hy is true then ¢ should be an observation from a
Student-t distribution with nx +ny — 2 degrees of freedom. Hence we can
derive the critical values from the tables of the Student-¢ distribution.

If o x # oy, but both parameters are known, we can use a similar approach
to the one above to derive test statistic z defined by

r—y

2 2
g g
9% %%
nx ny

which has an N (0, 1) distribution if Hy is true.

z =

Clearly, the choice of test depends on whether ox = oy or otherwise; we

140




Using Statistics in Research. Summer 2003

may test this hypothesis formally; to test

Hy:ox =0y
Hllax#dy

we compute the test statistic

q:

Sofo

which has a null distribution known as the Fisher or F' distribution with
(nx—1,ny —1) degrees of freedom; this distribution can be denoted F'(nx —
1,ny — 1), and its quantiles are tabulated. Hence we can look up the
0.025 and 0.975 quantiles of this distribution (the F' distribution is not
symmetric), and hence define the critical region; informally, if the test
statistic ¢ is very small or very large, then it is a surprising observation from
the I distribution and hence we reject the hypothesis of equal variances.
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4.3.6 ONE-SIDED AND TWO-SIDED TESTS
So far we have considered hypothesis tests of the form

H(] TH=cC
H :upu#c

which is referred to as a two-sided test, that is, the alternative hypothesis
is supported by an extreme test statistic in either tail of the distribution.
We may also consider a one-sided test of the form

Hy:p=c or Hy:p=c

Hi:p>c Hi:p<c’
Such a test proceeds exactly as the two-sided test, except that a significant
result can only occur in the right (or left) tail of the null distribution, and
there is a single critical value, placed, for example, at the 0.95 (or 0.05)
probability point of the null distribution.
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4.3.7 CONFIDENCE INTERVALS

The procedures above allow us to test specific hypothesis about the param-
eters of probability models. We may complement such tests by reporting a
confidence interval, which is an interval in which we believe the “true”
parameter lies with high probability. Essentially, we use the sampling dis-
tribution to derive such intervals. For example, in a one sample Z-test, we
saw that _

X —p
o/vn

that is, that, for critical values +C'r in the test at the 5 % significance level

7= ~ N(0,1)

X —

X —p
— < < = — <
P[-Cr<Z<Cp=P|-Cn< =

<Cgr| =095
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Now, from tables we have Cr = 1.96, so re-arranging this expression we
obtain

_ o — g
PIX—-19%—%<upu<X+196—
96 N n<X+1.96 NG
from which we deduce a 95 % Confidence Interval for i based on the
sample mean T of

=0.95

o
T +1.96 NG
We can derive other confidence intervals (corresponding to different signif-
icance levels in the equivalent tests) by looking up the appropriate values
of the critical values. The general approach for construction of confidence
interval for generic parameter 6 proceeds as follows. >From the modelling
assumptions, we derive a pivotal quantity, that is, a statistic, Tpg, say,
(usually the test statistic random variable) that depends on 6, but whose
sampling distribution is “parameter-free” (that is, does not depend on 6).

144




Using Statistics in Research.

Summer 2003

We then look up the critical values Cr, and Cg,, such that

P[Cr, <Tpq < Cr|=1-«

where « is the significance level of the corresponding test. We then rear-

range this expression to the form

Ple; <0<e]=1—-a

where ¢ and ¢y are functions of Cr, and Cg, respectively. Then a 1 — «

% Confidence Interval for 6 is [c1, ca].
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SUMMARY

For the tests discussed in previous sections, the calculation of the form
of the confidence intervals is straightforward: in each case, Cr, and Ckg,
are the /2 and 1—«/2 quantiles of the distribution of the pivotal quantity.

ONE SAMPLE TESTS

Test Pivotal Quantity Tpg Null Distribution Parameter
X—up
Z-TEST Z = N(0,1
YN (0,1) I
X—p
T-TEST T=——+ St(n—1
Y (n—1) 1
1) 2
QrEsT Q=D X2 o’
o
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TWO SAMPLE TESTS
Test Pivotal Quantity Tpq

Z—TEST(l) A (X — IU’X) — (}7 — MY)

Q-TEST Q= X/

147

Null Distribution

N(0,1)

St(nx +ny — 2)

N(0,1)

F(nx—l,ny—l)

Parameter

Hx — Ky

Hx — Ky

Hx — Ky
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4.3.8 PAIRED TESTS

In a two-sample testing situation, we may have data that are paired, in the
sense that each observation in one sample has a corresponding sample in
the other sample; this could arise if two measurements (pre-treatment /post
treatment) are available on a set of individuals, denoted (z;1,%;2). In a
paired t-test, the assumption of normality is necessary for the differences
in the measurements

R = Ti1 — T42

but not for the individual observations. Hence the paired sample gives
rise to a single sample of differences {z; = 2,1 — ®i2,7 = 1,...,n} that can
be tested using

e one sample Z-tests or one sample T-tests

depending on whether the variance of the differenced sample is to be pre-
sumed known or unknown respectively.
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