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Extensions to Statistical Hypothesis Testing

e Analysis of Variance
e Non-normal/integer valued data
e Non-parametric Tests

e Simulation-based methods
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HYPOTHESIS TESTING: THE GENERAL PROCEDURE
For a data sample x1, ..., z,, random variables Xy, ..., X,,, we

1.
2.

consider a pair of competing hypotheses, H; and H;

define a suitable test statistic random variable T' = T(Xq, ..., X,,)
(that is, some function of the original random variables; this will
ultimately be computed to give the observed test statistic)

. assume that Hj is true, and compute the sampling distribution of

T, fr or Fp; this is the null distribution

. compute the observed value of T, t = T'(x1, ..., x,); this is the test

statistic

. assess whether ¢ is a surprising observation from the distribution fr.

If it is surprising, we have evidence to reject Hy; if it is not surprising,
we cannot reject H
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KEY POINT:
This is a generic approach that we have seen applied in the normal, one
and two-sample case. Effectively, for the p-value, we have computed

P [Data at least as extreme as the data we did observe | Null model is TRUE]

or,
P[T(X) >t | H)TRUE]

This strategy can be applied to more complicated normal examples, and
also non-normal and non-parametric testing situations. It is a general
strategy for assessing the statistical evidence for or against a hypothesis.

Note that we only have to compute the probability conditional on the “null”
hypothesis being true.
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SECTION 1.
ANALYSIS OF VARIANCE

The first extension we consider still presumes a normality assumption for
the data, but extends the ideas from Z and 7' tests, which compare at most
two samples, to allow for the analysis of any number of samples.

Analysis of variance or ANOVA is used to display the sources of vari-
ability in a collection of data groups.

The ANOVA F-test compares variability between groups with the vari-
ability within groups.



Using Statistics in Research Module 2 Spring 2004

1.1 ONE-WAY ANOVA

The T-test can be extended to allow a test for differences between more
than two data samples. Suppose there are K groups of sizes ni,...,ng
(let n = ny1 + ... + nk) from different populations. Let y; be the jth
observation in the kth group, then

Ykj = Up T+ Ekj
for k=1,..,K, and e; ~ N (O, 02). This model assumes that
ij ~ N (:uka 0-2)

and that the expectations for the different groups are different. We can
view the data as a table comprising K columns, with each column corre-
sponding to a sample.

The groups are commonly referred to as FACTORS.
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EXAMPLE: ANTIBIOTIC/SERUM PROTEIN BINDING

Penicillin Tetra-  Strepto- Erythro- Chloram-

G cyclin mycin mycin phenicol
29.6 27.3 5.8 21.6 29.2
24.3 32.6 6.2 17.4 32.8
28.5 30.8 11.0 18.3 25.0
32.0 34.8 8.3 19.0 24.2
Mean 28.6 31.4 7.8 19.1 27.8

Is there any evidence that the amount of serum-binding differs across an-
tibioitics 7
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To test the hypothesis that each column (or “population”) has the same
mean, that is, the hypotheses

Ho : pg =g = ... = Ug
H1 . nOtH()

an Analysis of Variance (ANOVA) F-test may be carried out.

The alternative hypothesis H; corresponds to the model where at least
one of the i parameters, the mean levels for the factors, is different from

the others.
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To carry out a test of the hypothesis, the following ANOVA table should
be completed;

Source D.F. Sum of Mean ANOVA - F
squares square F,
FSS/(K —1)

Between Samples K -1 FSS  FSS/(K—1) RSS/(n— )
N —

Within Samples n—-K RSS RSS/(n— K)
Total n—1 TSS

The test is completed by evaluating a p-value using the observed ANOV A—
F' statistic, f,, that is, the probability

P|F, > f.|F has a Fisher — F (K —1,n — K) distribution ]
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where

K ng K ng
TSS=3"> (e ~7.)" RSS=>Y (v — )
k=1 j=1 k=1j=1

K
FSS=Y nx (W —7.)°
k=1

10
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where

e T'SS is the total sum-of-squares (i.e. total deviation from the overall
data mean 7 )

e RSS is the residual sum-of-squares (i.e. sum of deviations from
individual group means 7., k =1, ..., K) and

e F'SS is the fitted sum-of-squares (i.e. weighted sum of deviations
of group means from the overall data mean, with weights equal to
number of data points in the individual samples)

11



Using Statistics in Research Module 2 Spring 2004

Note:that
TSS =FSS+ RSS

The definitions of these three sums of squares quantities gives insight into
how ANOVA works by decomposing the total variation in the observed
data

e ['SS is the overall variation

e F'SS is the variation caused by the systematic component (that is,
the differences in group means)

e 1SS is the random variation

If the F’ statistic is calculated in this way, and compared with an F distri-
bution with parameters K —1, n— K, the hypothesis that all the individual
samples have the same mean can be tested. We write F_1 ,_ for this
Fisher-F distribution.

12
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F(2,5) pdf F(2,10) pdf
0 1 2 3 4 5 0 1 2 3 4 5
X X
F(4,10) pdf F(10,4) pdf
0 1 2 3 4 5 0 1 2 3 4 5
X X

13
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EXAMPLE: ANTIBIOTIC/SERUM PROTEIN BINDING

Source D.F. Sum of squares Mean square F
SERUM 4 1480.82 370.21 40.88
Residual 15 135.82 9.05

Total 19 1616.64

which gives a p-value (of 6.74 x 107®) in comparison with a Fisher Fj 15
distribution)

This is a highly statistically significant result, and thus there is strong
evidence to reject the null hypothesis that the mean serum protein binding
is equal for all antibiotics (under the ANOVA assumptions).

15
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EXAMPLE Three genomic segments were used to studied in order to
discover whether the distances (in kB) between successive occurrences of
a particular motif were substantially different. Several measurements were
taken using for each segment;

Method
SEGMENT A SEGMENT B SEGMENT C
42.7 44.9 41.9
45.6 48.3 44.2
43.1 46.2 40.5
41.6 43.7
41.0
Mean 43.25 46.47 42.26
Variance 2.86 2.94 2.06

16
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For these data, the ANOVA table is as follows;

Source D.F. Sum of squares Mean square  F
SEGMENTS 2 34.1005 17.0503 6.11
Residual 9 25.1087 2.7899

Total 11 59.2092

and the I statistic must be compared with an Fj3g distribution. For a
significance test at the 0.05 level, F' must be compared with the 95th per-
centile (in a one-sided test) of the F5 ¢ distribution. This value is 4.26.
Therefore, the F' statistic is surprising, given the hypothesized model, and
therefore there is evidence to reject the hypothesis that the segments are
identical.

17
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1.2 POST-HOC TESTS

The hypothesis of equal means across all groups is not necessarily the only
hypothesis of interest. We may wish to test, for example

HO:IU/T‘ZIU/S

against the general alternative for any possible pair of columns r and s,
even if the null hypothesis of equal means in all columns is not rejected.

Pairwise tests for equality of column means that are carried out after an
F-test has led to the rejection of the ANOVA null hypothesis are referred to
as post-hoc tests. The key consideration for such tests is the appropriate
correction for multiple testing; a number of methods have been proposed.

18
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1.3 TWO-WAY ANOVA

One-way ANOVA can be used to test whether the underlying means of
several groups of observations are equal Now consider the following data
collection situation Suppose there are K treatments, and L groups of ob-
servations that are believed to have different responses, that all treatments
are administered to all groups, and measurement samples of size n are
made for each of the K x L combinations of treatments x groups. The
experiment can be represented as follows: let yi;; be the jth observation
in the kth treatment on the [th group, then

Yklj = Mg + 01 + €ty

for k=1,...,K,l=1,..,L, and again ei;; ~ N (0,0?).

19
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This model assumes that Y;; ~ N (,uk + 01, 02) and that the expectations
for the different samples are different. @ We can view the data as a 3
dimensional-table comprising K columns and L rows, with n observations
for each column X row combination, corresponding to a sample.

It is possible to test the hypothesis that each treatment, and/or that each
group has the same mean, that is, the two null hypotheses

Hy  py=py=..=pug
H() . 61:62:...:6L

against the alternative Hy not H( in each case.

For these tests, a Two-way Analysis of Variance (ANOVA) F-test
may be carried out.

20
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The Two-Way ANOVA table is computed as follows

Source D.F. Sum of squares = Mean square F
FSS1 /(K —1)
TREATMENTS K —1 F F K -1
551 S5 ) RSS/(R+1)
FSSy/(L—1)
GROUPS L—1 F F L—1
552 552/ ) RSS/(R+1)
Residual R+1 RSS RSS/(R+1)
Total N —1 TSS

where N =K XL xn, R=N — L — K. and again

TSS =FSS, +FSSy + RSS.

21
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In the table below, there are K = 6 Treatments, and L = 3 Groups, and
n=1

I I1 11 GROUP totals

1 0.96 0.94 0.98 2.88

2 0.96 0.98 1.01 2.95

3 0.85 0.87 0.86 2.58

4 0.86 0.84 0.90 2.60

5 0.86 0.87 0.89 2.62

6 0.89 0.93 0.92 2.74
TREATMENT totals 5.38 5.43 5.56 16.37

There are two natural hypotheses to test; first, do the TREATMENTS
differ, and second, do the GROUPS differ ?

22
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Two-way analysis of variance can be used to analyze such data. Given
two sources of variation the data can be thought of as a table with the rows
and columns representing these two sources . T'wo-way analysis of variance
studies the variability due to

e the GROUP effect (here, variability between the columns),

e and the variability due to the TREATMENT effect (variability be-
tween the rows)

and calibrates them against the average level of variability in the data
overall. Having performed the appropriate calculations, the results are

displayed in an ANOVA table.

23
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For example, for the data above
Source D.F. Sum of squares Mean square F
TREATMENT 5 0.040828 0.0081656 31.54
GROUP 2 0.002878 0.001439 5.57
Residual 10 0.002589 0.0002589
Total 17 0.046295

24
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The two F' statistics can be interpreted as follows:;

25

e the first (F' = 31.54) is the test statistic for the test of equal means
in the rows, that is, that there is no difference between TREAT-
MENTS. This statistic must be compared with an

Fs.10

distribution (the two degrees of freedom being the entries in the de-
grees of freedom column in the specimens and residual rows of the
ANOVA table). The 95th percentile of the Fj ;¢ distribution is 3.33,
and thus the test statistic is more extreme than this critical value,
and thus the hypothesis that each specimen has the same mean can
be rejected.
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e The second F statistic, (F' = 5.57), is the test statistic for the test
of equal means in the columns, that is, that there is no difference
between GROUPS. This statistic must be compared with an

F3 10

distribution (the two degrees of freedom being the entries in the de-
grees of freedom column in the methods and residual rows of the
ANOVA table). The 95th percentile of the F5 ;¢ distribution is 4.10,
and thus the test statistic is more extreme than this critical value,
and thus the hypothesis that each method has the same mean can be
rejected.

Note: In this example, we do not have replicate data; this limits the
complexity of the model that we can fit. Ideally we would like to be able
to fit an interaction between the two-factors.

26
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Mean parameters in two-way cross classification (full models):

No Interaction model
I I1 11 IV Vv
1 ,LL1—|—61 ,LL1‘|‘62 ,LL1‘|‘63 ,LL1‘|‘64 ,LL1+65
2 ,L02‘|‘61 ,LL2‘|‘62 ,LL2‘|‘63 ,LL2‘|‘64 ,LL2_|_65
3 p3+o61 pz+oés pu3+o3 pus3+os  pg+0s

Interaction model
I 11 mr 1v V

I v11 72 Y13 Y4 Vs
2 Vo1 Yoo Vo3 Vo4 Vos
3 Y31 VY32 Y33 VY34 Vss

No Interaction Model: 8 = 3 + 5 parameters

Interaction Model: 15 = 3 x 5 parameters; can be fit if replicate data are
available.

27
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1.4 ANOVA: KEY ASSUMPTIONS

In ANOVA, there are three key assumptions

(i) all data are independent
(ii) the data are normally distributed

(iii) the data subgroups (defined by the cross classification by factors)
have equal variances.

Of these three points, (i) can be assessed by consideration of the study
design, (ii) can be be tested formally using methods that will be described
in later sections, and (iii) can be tested using statistical hypothesis testing
in the following way using Levene’s Test

28
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LEVENE’S TEST FOR HOMOGENEITY OF VARIANCE
The Levene test is defined for the two hypotheses as follows: suppose
that the data Y of size n is partitioned into K subgroups of sizes nq,...,ng
where n = n1 + ... + ng. It is of interest to test whether the subgroups
have the same variance, that is the hypothesis
Hy : o1=09=..=0x

H, : o0;# 0; for at least one pair (7, 7).

Test Statistic

(n—K)an (71 —7)2

(K — 1) ZZnZ (Z’LJ —77;)2

i=1 j=1

W =

where Z;; can have one of the following three definitions:

29
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1. Zij =Y — Y;|, where Y] is the mean of the ith subgroup.

2. Zi; = |Yi; — YL-(MEDIAN)] where Yi(MEDIAN) is the median of the ¢th
subgroup.

3. Zi = |V, — Y TRIMMED)) Ghere VT RIMMED) 5o the 10% trimmed

mean of the :th subgroup.

The three choices for defining Z;; determine the robustness (to not falsely
detect unequal variances when the underlying data are not normally dis-
tributed) and power (to detect accurately unequal variances) of Levene’s
test. The Levene test rejects the hypothesis that the variances are equal
at significance level «a (typically, a = 0.05) if

W > FK—l,n—K(l — 04)

where Fx_1 n— k(1 — ) is the (1 — a) % quantile of the Fisher F' distribu-
tion with K — 1 and n — K degrees of freedom.

30
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SECTION 2.
NON-NORMAL DATA

2.1 COUNTS AND PROPORTIONS

The one and two sample tests described in earlier sections can also be
applied to non-normal data. A common form of non-normal data arise
when the counts of numbers of “successes” or “failures” that arise in a
fixed number of trials.

In this case, the Binomial distribution model is appropriate; in a one sample
testing, we model the number of successes, X, by assuming

X ~ Binomial(n, )

and test hypotheses about 6.

31
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In the two sample case, we assume that the number of successes in the two
samples are random variables X; and X5, where

X1 ~ Binomial(ny,01)

Xo ~ Binomial(ne, 02),
and perhaps test the null hypothesis
H() . 91 = 92

against some alternative hypothesis (61 #£ 02,601 > 05 or 01 < 05)

32
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2.2 ONE-SAMPLE TESTING

In the one sample case, two alternative approaches can be adopted:

e an exact test, where the distribution of the chosen test statistic under
Hy : 8 = c is computed exactly, giving exact critical values and p-
values

e an approximate test based on a Normal approximation to the bino-
mial distribution.

33
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For the exact test, we note that, if H; is true, and 8 = ¢, then X ~
Binomial(n, c) so the critical values in a two-sided test can be computed
directly by inspection of the Binomial(n,c) c.d.f; that is

Fpin (Cgrsn, 0 =c¢) =0.025 Cr, = Frn (0.975;n,0 = ¢)
where Fprn (—;n,0) is the c.d.f. of the Binomial(n,#) distribution
Fpin (w;n,0) = L:EZJ (n) o' (1—0)""
i \!
where

| x| is largest whole number < .

34
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For the approximate test, we use the fact that
X ~ Binomial(n,0) ~ Normal (nf,nf (1 — 0))

and hence random variable Z
P X —nb
v/nl(1 —0)

is approximately distributed as Normal(0,1). For the approximate test
of Hy : 8 = c, we therefore use the test statistic

N v/ne(l—c)

(x is the actual, observed count) and compare this with the standard normal
c.d.f.. This test is virtually equivalent to the one-sample t-test.

Z

35
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2.3 TWO SAMPLE TESTING

For a two sample test of Hy : 61 = 65, we use a similar normal approx-
imation to the one-sample case. If Hj is true, then there is a common
probability 6 determining the success frequency in both samples, and the
maximum likelihood estimate of 6 is

~  I1+ X9 X

0 = —— = —, say
ni + no9 n

and thus it can be shown that the test statistic.
I i)

ny n2
(n1 + n2) (331+£U2 1_331+£U2
n1No ni + no N1+ N2

has an approximate standard Normal distribution.

z =

36
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2.4 CONTINGENCY TABLES

Contingency tables are constructed when a sample of data of size n
are classified according to D factors, with each factor having kg levels or
categories, for d = 1,..., D. When the classification is complete, the result
can be represented by a D-way table of k1 X ko X ... X kp “cells”, with each
cell containing a fraction of the original data. For example, if D = 2, the
table consists of k1 rows and ko columns, and the number data in cell (7, j)
is denoted n;; for ¢ =1,...,k; and 57 =1, ..., k2, where

ki ko

>y =

i=1 j=1

Such a table when D = 2, k; = 4 and ky = 6 is illustrated below

37
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COLUMN
1 2 3 4 D 6 | Total

n11 NnNi2 Ni13 MNi14 Ni15 MNi6 ni.

n21  MN22 N23 MN24 N25 N6 na.

n31 MN32 N33 N34 N335 MN36 ns.
4 N4l MNa2  N43  Naa  N4s  Nae | N4,

Total | m1 na2 n3 nag4 ns ne | n

W N =

ROW

This is a cross-classification table; it says that n;; out of a total of n
individuals had

e row classification 7

e column classification j

38
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2.5 CHI-SQUARED GOODNESS-OF-FIT TEST

It is often of interest to test whether row classification is independent of
column classification, as this would indicate independence between row
and column factors. An approximate test can be carried out using a Chi-
Squared Goodness-of-Fit statistic; if the independence model is correct,
the expected cell frequencies n;; can be calculated as

Mg 1k, =1, ks

”ﬁ,ij =
n
where n;. is the total of cell counts in row ¢ and n_; is the total of cell counts

in column j, and that, under independence, the y? test statistic

1 2
DIPIE

1=1 5=1

2

has an approximate chi-squared distribution with (k; — 1)(ks — 1) degrees
of freedom.

39
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2.6 LIKELIHOOD RATIO TEST

Another approximate test is based on a Likelihood Ratio (LR) statistic

ki ko

i=1 j=1

nij
This statistic also has an approximate Chi-squared distribution

X%kl —1)(k2—1)

again given that Hj is true.

It compares the “likelihood” under the independence model with the like-
lihood of the “saturated” model that fits a parameter for each cell in the
table;

40
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e the independence model has
1+ (k1 —1)+(ke—1)=Fk1 +ky— 1
parameters, and hence
(k1 X ko) — (k1 + ko —1) = (k1 — 1)(ka — 1)
degrees of freedom

e the saturated model has (k1 X ko) parameters, and hence 0 degrees
of freedom

e the difference in degrees of freedom is hence

(k1 —1)(k2 — 1)

41
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EXAMPLE: 4 x4 TABLE PHENOTYPIC RELATIONSHIP

Hair colour
Black Brunette Red Blonde Total

Brown 68 119 26 7 220

Blue 20 84 17 94 215

Eye color  Hazel 15 54 14 10 93
Green 5 29 14 16 64

Total 108 286 71 127 592

Number of tables: 1,225,914,276,276,768,514

Any evidence of dependence/association between traits ?

42
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EXAMPLE : DESCENDENTS OF QUEEN VICTORIA

Mont
.::; n Month of death

birth Jan Feb March April May June July Aug Sept Oct Nov Dec Total

Jan 1 0 0 0 1 2 0 0 1 0 - 0 6
Feb 1 0 0 1 0 0 0 0 0 1 0 2 5
March 1 0 0 0 2 1 0 0 0 0 0 1 5
April 3 0 2 0 0 0 1 0 1 3 1 1 12
May 2 1 1 1 1 1 1 1 1 1 1 0 12
June 2 0 0 0 1 0 0 0 0 0 0 0 3
July 2 0 2 1 0 0 0 0 1 1 1 2 10
Aug 0 0 0 3 0 0 1 0 0 1 0 2 7
Sept 0 0 0 1 1 0 0 0 0 0 1 0 3
Oct 1 1 0 2 0 0 1 0. 0 1 1 0 /)
Nov 0 1 1 1 2 0 0 2 0 1 1 0 9
Dec 0 1 1 0 0 0 1 0 0 0 0 0 3
Total 13 4 7 10 8 4 5 3 4 9 7 8 82

Any evidence of association between birth /death months 7
Note: A very “sparse” table.

43
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EXAMPLE : CLASSIFICATION OF PURUM MARRIAGES

Husband
Wife Marrim Makan Parpa Thao Kheyang
Marrim - 5 17 - 6
Makan 5 - 0 16 2
Parpa - 2 - 10 11
Thao 10 - - - 9
Kheyang 6 20 8 0 1

Structural zeros (marriages forbidden)

W

and real zeros 0.

Any evidence of symmetry/independence ?

44
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EXAMPLE : SQUIRREL MONKEY DATA

Ploog [1967] observed the following distribution of genital display among the
members of a colony of six squirrel monkeys (labeled as R, S, T, U, V, and W).
For each display there is an active and passive participant, but a monkey never
displays toward himself.

Passive Participant

Active Participant R S T 8] A W  Totals
R 1 5 8 9 0 23
S 29 14 46 4 0 93
T 0 0 — 0 0 0 0
U 2 3 1 38 2 46
\' 0 0 0 0 1 1
w 9 25 4 6 13 57

Totals 40 29 24 60 64 3 220

Wish to fit symmetry model ?

45
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2.7 2x2 TABLES

When k1 = ko9 = 2, the contingency table reduces to a two-way binary
classification

COLUMN
1 2 Total
1 ni1 N2 ni.
ROW 2 no1 929 no.
Total | n1 no n

In this case we can obtain some more explicit tests: one is again an exact
test, the other is based on a normal approximation. The chi-squared test
described above is feasible, but other tests may also be constructed:

46
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47

e FISHER’S EXACT TEST FOR INDEPENDENCE

Suppose we wish to test for independence between the row and col-
umn variables of a contingency table. When the data consist of two
categorical variables, a contingency table can be constructed reflect-
ing the number of occurrences of each factor combination. Fisher’s
exact test assesses whether the classification according to one factor
is independent of the classification according to the other, that is the
test is of the null hypothesis Hy that the factors are independent,
against the general alternative, under the assumption that the
row and column totals are fixed.
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e — The data for such a table comprises the row and column totals
(n1.,m2.,m.1,n.2) and the cell entries

(n11, ni2, nNai, n22)

The test statistic can be defined as the upper left cell entry
ny1; for the null distribution, we compute the probability of
the observing all possible tables with these row and column
totals.. Under Hg this distribution is hypergeometric and
the probability of observing the table (n11, 112, 121, n922) is

(m.)(nz)
ni1 n2i/) ni.n.lng In o

( n ) n!nll!nlg!ngl!ngg!

n.a

p(nn) =

where n! =1 x2x3x..x (n—1) xn.

48



Using Statistics in Research Module 2 Spring 2004

49

— For the p-value, we need to assess the whether or not the ob-
served table is surprising under this null distribution; suppose
we observe ni; = x, then we can compare p (z) with all p (y) for
all feasible y, that is y in the range max{0,n;, — (n —n.1)} <
y < min{n,n.;}. We are thus calculating the null distribution
exactly given the null distribution assumptions and the row and
column totals; if the observed test statistic lies in the tail of the
distribution, we can reject the null hypothesis of independent
factors.

e MANTEL-HAENSZEL TEST FOR INDEPENDENCE

This test allows you to test for independence between two factors in
the presence of a third, and possibly related variable. It extends
the two-way Chi-squared test of independence described above; the
test statistic is a chi-squared type statistic, and the null distribution
under independence is a Chi-squared distribution.
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e McNEMAR’S TEST FOR SYMMETRY IN PAIRED SAM-
PLES

In a 2 x 2 table representing paired data (where observations are, for
example, matched in terms of medical history or genotype, or pheno-
type) the usual chi-squared test is not appropriate, and McNemar’s
test can instead be used. Consider the following table for a total of
n matched pairs of observations, in which each individual in the pair
has been classified (or randomized to class) A or B, with one A one
B in each pair, and then the outcome (disease status, survival status)
recorded.

A
YES NO | Total
YES n11 192 ni.

Total | n 1 no | N

50
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51

that is, ny; pairs were observed for which both A and B classified

individuals had disease/survival status YES, whereas nio pairs were
observed for which the A individual had status NO, but the B indi-

vidual had status YES, and so on.

An appropriate test statistic here for a test of symmetry or “discor-
dancy” in these results (that is, whether the two classifications are
significantly different in terms of outcome) is

Xg _ (n12 — n21)2
Nni2 + Na2i

which effectively measures how different the off-diagonal entries in
the table are. This statistic is an adjusted Chi-squared statistic,
and has a x? distribution under the null hypothesis that there is
no asymmetry. Again a one-tailed test is carried out: “surprising”
values of the test statistic are large.
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SECTION 3.
NON-PARAMETRIC TESTS

The standard test for the equality of expectations of two samples is the
two-sample T-test. This test is predicated on the assumption of normality
of the underlying distributions. In many cases, such an assumption is
inappropriate, possible due to distributional asymmetry or the presence of
outliers, and thus other tests of the hypothesis of equality of population
locations must be developed.

Some of the standard non-parametric tests used in statistical analysis are
described below: we concentrate on two-sample tests for the most part.

All of these tests can be found in good statistics packages.

References: Conover, Practical Nonparametric Statistics
Hollander and Wolfe, Nonparametric Statistical Methods
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Non-parametric tests are usually based on the ranks of the data: typically,

we

53

sort the pooled data into ascending order (forming the order statis-
tics/empirical quantiles)

assign the ranks from 1 up to the total sample size to the data points

examine statistics based on functions of the ranks (for example, the
rank-sum) for data within the identified subgroups.

base group comparison on differences in the rank statistics

the rank statistics are used to construct a test statistic, whose distri-
bution is typically approximated using a normal approximation.

a “distribution-free” procedure.
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3.1 THE MANN-WHITNEY-WILCOXON TEST

Consider two samples z1,...,x,, and yi,...,Yn,. The Mann-Whitney-
Wilcoxon test proceeds as follows; first, sort the pooled sample into as-
cending order. Add up the ranks of the data from sample one to get uq
say. Repeat for sample two to get us. Note that

(n1 +mn2)(n1 +mn2 +1)
2

Ul + U2 =

The Mann-Whitney-Wilcoxon statistic is u1. It can be shown that, under
the hypothesis that the data are from populations with the equal medians,
then u; has an approximate normal distribution with mean and variance

ni(ni +ne + 1) nina(nig +no + 1)
2 12

This is the non-parametric alternative to the two sample t-test.
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3.2 THE KOLMOGOROV-SMIRNOV TEST

The two-sample Kolmogorov-Smirnov test is a non-parametric test for com-
paring two samples via their empirical cumulative distribution func-
tion. For data z1,...,x,, the empirical c.d.f. is the function F

F(z) = clw) c(x) = “Number of data < z”

Thus, for two samples, we have two empirical c.d.f., and the (two-sided)
Kolmogorov-Smirnov test that the two samples come from the same
underlying distribution is based on the statistic

P P

T = max | F] (x) — Fs(x)].

X
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It is easy to show that 0 < 1" < 1, but the null distribution of 7' is not
available in closed form. Fortunately, the p-value probability in the test
for test statistic ¢, p =P|T" > t| can be obtained for various different sample
sizes using statistical tables or packages.

NOTE : There is a one-sample version of the Kolmogorov-Smirnov test
for testing whether a sample are well represented by a specified probability
model with cdf Fj. It is based on the test statistic

P

T = max |F; (x) — Fo(z)|.

X

It can be used as a goodness-of-fit test, to test against a specific distri-
bution.
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3.3 TESTING NORMALITY

57

e THE CHI-SQUARED GOODNESS-OF-FIT TEST

The chi-squared goodness-of-fit test is a non-parametric test for
which the null distribution of the test statistic

k

X2 _ Z (Oz E'Ez)

1=1

can be well approximated by a Chi-squared distribution. In this
formula, £ is the number of “bins” into which the range of the data
is broken down, and

— (O; is the number of observations observed to fall into bin ¢

— FE; is the number of observations expected to fall into bin ¢
under the normal model
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Alternative tests/Assessments:

e The Shapiro-Wilk Test: The Shapiro-Wilk test can be used
to test this hypothesis; the test statistic is commonly denoted W,
and critical and p- values from its null distribution are available from
tables or statistics packages.

e The Kolmogorov-Smirnov one-sample test can be used in a one-
sample problem to test any distributional assumptions, including nor-
mality.

e Probability Plotting or Quantile-Quantile (QQ) plotting involves
plotting empirical quantiles versus theoretical quantiles; a straight
line in the QQ plot indicates that the distributional assumption is
valid.
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3.4 THE KRUSKAL-WALLIS TEST

The Kruskal-Wallis rank test is a nonparametric alternative to a one-
way analysis of variance.

e The null hypothesis is that the true location parameter is the same
in each of the samples.

e The alternative hypothesis is that at least one of the samples has a
different location.

e Unlike one-way ANOVA, this test does not require normality
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3.5 THE FRIEDMAN RANK SUM TEST

The Friedman rank sum test is a nonparametric alternative to a specific
two-way analysis of variance

e It is appropriate for data arising from an experiment in which exactly
one observation was collected from each experimental unit, or group,
under each treatment.

e The elements of the samples are assumed to consist of a treatment ef-
fect, plus a group effect, plus independent and identically distributed
residual errors
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SECTION 4.

EXACT TESTS AND
SIMULATION-BASED METHODS

Chi-squared tests involved the construction of a chi-squared statistic of
the form
k

X2 _ Z (Oz E'Ez)

1=1

The distribution of the test-statistic is approximated by a suitable Chi-
squared distribution. This approximation is

e good when the sample size is large

e poor when the table is “sparse”, with some low (expected) cell entries
(under the null hypothesis)
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We have also seen two examples of Exact Tests: the exact binomial
test in section (2.1) and Fisher’s Exact Test in section (2.7). For these
tests, we proceeded as follows, mimicking the general hypothesis strategy
outlined at the start of the section.

1. Write down a null hypothesis Hy and a suitable alternative hypothesis
H;y

2. Construct a test statistic 1' deemed appropriate for the hypothesis
under study

3. Compute the null distribution of 7', that is the sampling distribution
of T"it Hy is true, fr

4. Compare the observed value of T, ¢t = T'(x) for sample data x =
(1, ..., ) with the null distribution and assess whether the observed
test statistic is a surprising observation from fp; if it is reject Hy
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Step 3 is crucial: for some tests (for example, one and two sample tests
based on the Normal distribution assumption), it is possible to find fr an-
alytically for appropriate choices of 1" in Step 2. For others, such as the
chi-squared goodness of fit and related tests, fr is only available approxi-
mately.

However, the null distribution (and hence the critical regions and p-value)
can, in theory, always be found : it is the probability distribution of the
statistic T" under the model restriction imposed by the null hypothesis.

We may not be able to compute the null distribution analytically (as

for the tests for normal samples), but we can do it numerically, using
simulation.
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For most of the hypothesis tests above, we start with the assumptions and
work forward to derive the sampling distribution of the test statistic under
the null hypothesis.

e For permutation tests, we will reverse the procedure, since the
sampling distribution involves the permutations which give the pro-
cedure its name and are the key theoretical issue in understanding
the test.

e For resampling or bootstrap methods , we will resample the orig-
inal data uniformly and randomly so as to explore the variability of
a test statistic.
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4.1 PERMUTATION TESTS

A permutation is a reordering of the numbers 1,...,n. For example, (1,
2,3,4,5,6), (1, 3, 2, 4,5, 6), (4, 5, 2,6, 1, 3) (3, 2, 1, 6, 4, 5) are
all permutations of the numbers 1 through 6 (note that this includes the
standard order in first line). There are n! =1 x 2 x 3 X ... x n permutations
of n objects.

The central idea of permutation tests refers to rearrangements of the data.
The null hypothesis of the test specifies that the permutations are all
equally likely. The sampling distribution of the test statistic under the
null hypothesis is computed by forming all (or many) of the permutations,

calculating the test statistic for each and considering these values all equally
likely.
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Consider the following two group example, where we want to test for any
significant difference between the groups.

Group 1l : 55,58,60
Group 2 : 12,22,34

Here are the steps we will follow to use a permutation test to analyze the
differences between the two groups. For the original order the sum for
Group 1 is 173. In this example, if the groups were truly equal (and
the null hypothesis was true) then randomly moving the observations
among the groups would make no difference in the sum for Group 1. Some
of the sums would be a little larger than the original sum and some would
be a bit smaller. For the six observations there are 720 permutations of
which there are 20 distinct combinations for which we can compute the
sum of Group 1.
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© 00 J O T i W N =

p—
-

GROUP 1

55,58,60
55,58,12
55,58,22
55,58,34
55.12,60
55.22.60
55,34.60
12,58,60
22.58.60
34,58,60

12,22.34
60,22,34
12,60,34
12,22.34
58,22.34
12,58,34
12,22.58
55,22.34
12,55,34
12,22.55

GROUP 2 SUM

173
125
135
148
127
137
149
130
140
152

11
12
13
14
15
16
17
18
19
20

GROUP 1

12,22.60
12,58,22
55,12,22
12,34,60
12,58,34
55,12,34
22.34.60
22.58,34
55,22 34
12,22.34

55,58,34
55,60,34
12,5558
55,58,34
55.22.60
12,58,60
55,58,34
55.22.60
12,58,60
55,58,60

GROUP 2 SUM

94
92
89
106
104
101
116
114
111
68

Only one of the twenty orderings has a Group 1 sum that greater than that
of the original ordering; thus the probability of a sum at least this large by
chance alone is 1/20 = 0.05; it can be considered statistically significant.
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4.2 MONTE CARLO METHODS

Above, the permutation yielded an exact test because we were able to
enumerate all of the possible combinations. In larger examples it will not
be possible , so we will have to take a large number of random orderings,
sampled uniformly from the permutation distribution.

Monte Carlo methods replace an analytic calculation of the probability
function by a numerical, simulation-based one. The principal is that
large samples from probability distributions can be used accurately to

approximate the probability distribution itself.

A general Monte Carlo strategy for two sample testing is outlined below:
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. For two sample tests for samples of size n1 and ngy, compute the value

of the test statistic for the observed sample t*

. Randomly select one of the (n; + n9)! permutations, re-arrange the

data according to this permutation, allocate the first n; to pseudo-
sample 1 and the remaining ns to pseudo-sample 2, and then compute
the test statistic ¢t

. Repeat 2. N times to obtain a random sample of 1, %o, ...,t Ny of test

statistics from the TRUE null distribution.

. Compute the p-value by reporting

Number of ¢1,t9,...,ty more extreme than t*
N

this value will be a good approximation to the true p—value if the
Monte Carlo sample size N is large enough.
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4.3 THE BOOTSTRAP AND JACKKNIFE

In statistical analysis, we usually interested in obtaining estimates of a
parameter via some statistic, and also an estimate of the variability or
uncertainty attached to this point estimate, and a confidence interval for
the true value of the parameter.

Traditionally, researchers have relied on normal approximations to obtain
standard errors and confidence intervals. These techniques are valid only
if the statistic, or some known transformation of it, is asymptotically nor-
mally distributed. If the normality assumption does not hold, then the
traditional methods should not be used to obtain confidence intervals. A
major motivation for the traditional reliance on normal-theory methods
has been computational tractability, computational methods remove the
reliance on asymptotic theory to estimate the distribution of a statistic.
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Resampling techniques such as the bootstrap and jackknife pro-
vide estimates of the standard error, confidence intervals, and distributions
for any statistic. The fundamental assumption of bootstrapping is that
the observed data are representative of the underlying population. By
resampling observations from the observed data, the process of sampling
observations from the population is mimicked. The key techniques are

e THE BOOTSTRAP: In bootstrap resampling, B new samples,
each of the same size as the observed data, are drawn with replace-
ment from the observed data. The statistic is first calculated using
the observed data and then recalculated using each of the new sam-
ples, yielding a bootstrap distribution. The resulting replicates are
used to calculate the bootstrap estimates of bias, mean, and standard
error for the statistic.
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e THE JACKKNIFE: In jackknife resampling, a statistic is calcu-
lated for the n possible samples of size n—1, each with one observation
left out. The default sample size is n — 1, but more than one ob-
servation may be removed. Jackknife estimates of bias, mean, and
standard error are available and are calculated differently than the
equivalent bootstrap statistics.

Using the bootstrap and jackknife procedures, all informative summaries
(mean, variance, quantiles etc) for the sample-based estimates’ sampling
distribution can be approximated.

This is vitally important if we want to compute measures of uncer-

tainty (standard errors, confidence intervals) for parameters in the model,
or statistics.
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