
Statistics and Programming in R

David Stephens and Niall Adams

[d.stephens,n.adams]@imperial.ac.uk

Department of Mathematics, Imperial College London

29/30 September 2005

R course - Sept. 05 – p. 1/33

Extended Example

This example will be used to illustrate the use of the
computation and programming techniques, data input/output
methods, graphical output generation we have seen so far.

We will

change to a working directory

use an R script

automate some data input

loop through operations

generate and export graphical output

create a large data-frame with all the data

R course - Sept. 05 – p. 2/33

Confocal Microscopy Data

These data sets are generated by the Centre for Structural
Biology, Prof. Paul Freemont’s laboratory. They contain the 3d
spatial locations of certain objects in the cell nucleus derived
from confocal microscopy images.

Download the data and scripts from

stats.ma.ic.ac.uk/ ∼das01/RCourse/AutomatedExample.zip

Save in C:\Temp\RCourse

Unzip to form C:\Temp\RCourse\AutomatedExample

Inspect the files in this folder and its subfolders.

R course - Sept. 05 – p. 3/33

The directory contains two scripts

01-ReadFull.R

01-ReadImages.R

These two files perform processing of the data files in in
subfolder Second

We can open, edit and run the scripts in R

R course - Sept. 05 – p. 4/33

R operations

Double click the R icon on the desktop

From the Misc pulldown menu, de-select the Buffered
output option that is ticked by default.

From the File pulldown menu, select the Change dir ...
option to bring up a dialog box. Replace the text with
C:\Temp\RCourse\AutomatedExample .

From the File pulldown menu, select the Open Script ...
option to bring up a file selection dialog box.

Select 01-ReadImages.R

Try not to alter this script at first !

R course - Sept. 05 – p. 5/33

R Functions

User-defined functions can be used in R. The main function
definition syntax is

functionname <- function (args) {
computation
return(result)

}

where args is a set of arguments.

A function is called as follows

functionname(args)

R course - Sept. 05 – p. 6/33

Example

Here is a small function to evaluate the function

f(x) = α1 exp{−λ1x} + α2 exp{−(λ1 + λ2)x}

at any value of x > 0, for user-supplied parameters
(α1, α2, λ1, λ2).

The function needs to have the arguments

x, α1, α2, λ1, λ2

supplied (in some form) and return the function value

R course - Sept. 05 – p. 7/33

my.function

my.function<-function(x,al1,al2,lam1,lam2) {

y<-al1 * exp(-lam1 * x)+al2 * exp(-(lam1+lam2) * x)
return(y)

}
x<-seq(from=0,to=10,length=101)
fx<-my.function(x,1.0,2.0,0.1,0.2)
plot(x,fx,type="l",ylim=range(0,4))

R course - Sept. 05 – p. 8/33

Alternative my.function

Supply the parameters as a vector θ = (α1, α2, λ1, λ2).

my.function.alt<-function(x,th) {

y<-th[1] * exp(-th[3] * x)
y<-y+th[2] * exp(-(th[3]+th[4]) * x)
return(y)

}
x<-seq(from=0,to=10,length=101)
theta<-c(1.0,2.0,0.1,0.2)
fx<-my.function.alt(x,theta)
plot(x,fx,type="l",ylim=range(0,4))

R course - Sept. 05 – p. 9/33

Exercise

We will simulate some data using the function above and try
to recover the parameters

set.seed(300905)
theta<-c(3.0,2.0,0.5,0.2)
x<-c(1:40)/2
expected.y<-my.function.alt(x,theta)
y<-expected.y + rnorm(length(x),sd=0.2)
plot(x,y,ylim=range(-1,5))

R course - Sept. 05 – p. 10/33

Example Data

0 5 10 15 20

−
1

0
1

2
3

4
5

x

y

R course - Sept. 05 – p. 11/33

Least-squares Fit

We will slightly change the defined function so that the R
minimization function nlm can be used to find the best fit.

my.function.new<-function(th,xvals,yvals){

fy<-th[1] * exp(-th[3] * xvals)
fy<-fy+th[2] * exp(-(th[3]+th[4]) * xvals)
ssq<-sum((yvals-fy)ˆ2)
return(ssq)

}

th.start<-c(3.0,2.0,0.5,0.2)
nlm(f=my.function.new,p=th.start,xvals=x,yvals=y)

R course - Sept. 05 – p. 12/33

Results

>nlm(f=my.function.new,p=c(3.0,2.0,0.5,0.2),xvals=x ,yvals=y)

$minimum [1] 1.415276

$estimate [1] 2.9522862733 1.9203908648 0.5204927933 0.0 002269101

$gradient [1] 7.890393e-07 -7.270481e-07 -9.703349e-08 7 .016610e-08

$code [1] 2

$iterations [1] 31

This means that the line of best fit is obtained when

λ1 = 2.952 λ2 = 1.920 α1 = 0.520 α2 = 0.0002

R course - Sept. 05 – p. 13/33

Best Fit ?

my.fit<-nlm(f=my.function.new,p=c(3.0,2.0,0.5,0.2), xvals=x,yvals=y)

param.estimates<-my.fit$estimate

xv<-c(0:200)/10
true.y<-my.function.alt(xv,theta)
fitted.y<-my.function.alt(xv,param.estimates)
plot(x,y,ylim=range(-1,5))
lines(xv,true.y)
lines(xv,fitted.y,col="red")
legend(10,5,c("True","Best
Fit"),lty=c(1,1),col=c("black","red"))

R course - Sept. 05 – p. 14/33

Best Fit !

0 5 10 15 20

−
1

0
1

2
3

4
5

x

y

True
Best Fit

R course - Sept. 05 – p. 15/33

Extended Example 2

In this example, we will

simulate a large data set

automate its analysis

process and plot the results

The key components will be the use of the function apply to
a numerical matrix.

R course - Sept. 05 – p. 16/33

Simulated Microarray data

Microarrays are a high-throughput technology for the analysis
of the function of genes.

Typically, thousands of genes are processed simultaneously.

Interest lies in distinguishing genes that are “differentially
expressed" in two tissue types.

In this experiment we will simulate some appropriate data.

R course - Sept. 05 – p. 17/33

Simulation
#Number of genes
ngenes<-7500

#Number of samples
N0<-20
N1<-37

#Select the genes that are differentially expressed
Ndiff<-50
gene.list<-sample(c(1:ngenes),size=Ndiff,rep=F)

#The amount of up-regulation
Up.mean<-2.0
Y0<-matrix(rnorm(N1 * ngenes),ncol=N0,nrow=ngenes)
Y1<-matrix(rnorm(N2 * ngenes),ncol=N0,nrow=ngenes)
Y1[gene.list,]<-Y1[gene.list,]+Up.mean
Y<-cbind(Y0,Y1) R course - Sept. 05 – p. 18/33

Method I

#One method of analysis

date()
test.results<-numeric(ngenes)
for(igene in 1:ngenes){

y0<-Y0[igene,]
y1<-Y1[igene,]
test.igene<-t.test(y1,y0,var.equal=T)
test.results[igene]<-test.igene$statistic

}
date()
hist(test.results)

R course - Sept. 05 – p. 19/33

Method II
Using apply

my.test<-function(x){
n0<-x[1]
n1<-x[2]
y0<-x[3:(2+n0)]
y1<-x[(2+n0+1):(2+n0+n1)]
t.res<-t.test(y1,y0,var.equal=T)
return(t.res$statistic)

}
tmp.Y<-cbind(rep(N0,ngenes),rep(N1,ngenes),Y)
date()
my.test.results<-apply(tmp.Y,1,my.test)
date()

R course - Sept. 05 – p. 20/33

R Programming: Control Structures

To release the power of the programming language, we need
to learn about the language constructs the provide control

structures, that provide the capacity for selection and iteration.

Think back to the ChickWeight example: had we required to
consider all 4 diet groups, we would have had to write
effectively the same piece of code 4 times. An alternative
would be to write a new function that conducts the
computation for selected data.

First we will look at control structures.

R course - Sept. 05 – p. 21/33

R Programming: Selection

It is often the case that we want a program to take different

actions according to the value of a variable. The R
language statement if provides this functionality. The
general format is

if (condition)
true.branch

else
false.branch

We have already seen a variety of logical comparisons that
can serve as condition . If condition evaluates as TRUE,
then true.branch is followed otherwise false.branch is
followed. If condition evaluates as NA, an error occurs.

R course - Sept. 05 – p. 22/33

R Programming: Selection
Example

if (x >3)
{

y <- 1
z <- 2
}

else
{

y <- 2
z <- 1
}

Note the use of curly braces allow us to deliver compound
(that is multi-line) statements. Also note the use of indenting
to try to clarify structure.

R course - Sept. 05 – p. 23/33

R Programming: Selection

The else part of an if statement is optional. As regular
parts of the R language, if statements can occur within the
branches of if statements – that is, they can be nested. For
example

if (x > 2)

if (y < 3)
count <- count + 1

else
...

Note R is quite fussy about placement of symbols in scripts.
For a more elegant alternative to multiply nested if
statements, use the switch function.

R course - Sept. 05 – p. 24/33

R Programming: Selection

It is often useful to have compound conditions with an if
statement. We can combine conditions with the logical
operators && (for AND) and || (for OR). Note these are
different to the single character vector operators. For
example, in an optimisation problem we may have

if (iterations > max.it && abs(error) < tol)
converged <- T

We will sometimes need to use brackets to clarify compound
conditions. Note also order of evaluation for %%and || .

Be careful with conditions. If the condition evaluates to a
vector, the first element is used (and could be coerced to
logical).

R course - Sept. 05 – p. 25/33

R Programming: Selection

For selection operations on vectors, use the ifelse function.
The general form of ifelse is

ifelse(test,true.value,false.value)

Here, all the arguments are vectors. test is a comparison
operation applied to each element of a vector, true.value
is returned in positions where the comparison is TRUE, and
false.value is returned otherwise. For example

ifelse(1:10 < 5,0,1)

This should be efficient even for large vectors, and is to be
preferred over explicit looping wherever possible. ifelse
switch

R course - Sept. 05 – p. 26/33

R Programming: Iteration

We can distinguish two types of iteration construct: count
controlled loops, provided by the for statement, and variable
length loops, provided by the while and repeat statements.

WARNING: bad use of loops is the most common source of
inefficient R code. This is particularly true of nested loops.
Always think hard about how use functions like apply rather
than using a loop. Of course, sometimes it is unavoidable.

R course - Sept. 05 – p. 27/33

R Programming: Iteration

The general format of the for statement is

for (variable in sequence) statement And note

that statement can be compound. variable is the counter
variable, that will take consecutive values in sequence . As a
simple example, of something NOT to do, consider the
following

for(i in 1:length(x))
y[i] <- sin(x[i])

In the exercises, you will see just how inefficient this is,
compared to using a vectorised function. We can nest for
loops, but do this with caution. Be careful not to change the
vale of the the counter variable.

R course - Sept. 05 – p. 28/33

R Programming: Iteration

The general format of the while statement is

while (condition) statement

Note that a while loop may never execute the statement. The
statement is executed repeatedly until condition becomes
false. In contrast, a repeat loop, with general format

repeat statement

will execute at least once, and continue until it is explicitly
interrupted with a break statment. In fact, break will
immediately exit from any loop structure. This can be useful
for diagnostic purposes.

R course - Sept. 05 – p. 29/33

R Demo: Bracketing

The function
x2 − 1

has a single zero in the interval (0, 1).

A simple approach to finding zeros is bracketing, where we find
an interval containing the zero, evaluate the function in the
middle of the interval, and restrict attention to the half interval
containing the zero (as is indicated by the sign of the function
at the three points). This process is repeated until the width of
the interval is smaller than a specified tolerance.

R course - Sept. 05 – p. 30/33

R Demo: Bracketing

Start values

hi <- 1

lo <- 0

f.hi <- hi * hi-1/2

f.lo <- lo * lo-1/2

set tolerance

tol <- 1e-9

found <- abs(hi-lo) < tol

iteration counter

its <- 0

R course - Sept. 05 – p. 31/33

R Demo: Bracketing

search

while (! found) {

mid <- (hi+lo)/2

f.mid <- mid * mid-1/2

if (sign(f.mid) == sign(f.hi))

{

f.mid <- f.hi

hi <- mid

}

else

{

f.mid <- f.lo

lo <- mid

}

its <- its + 1

if ((its %% 3) ==0)

cat("Iteration ",its," hi= ",hi," lo= ",lo," mid=", mid," \ n")

found <- abs(hi-lo) < tol

} R course - Sept. 05 – p. 32/33

R Demo: Bracketing

Of course, this is not the only way of implementing this
procedure. We may have wanted to stop after a certain
number of iterations. We could achieve this by modifying the
convergence criterion

found <- (abs(hi-lo) < tol) && (its <= maxit)

Or, by using a break statement

if (its > 10) break()

Note that we could embody this code in a function, and that
this function could be made to deal with arbitrary equations.

Be aware that while and repeat loops may never stop - the
condition may not be satisfied.

R course - Sept. 05 – p. 33/33

	
	Extended Example
	Confocal Microscopy Data
	Rr operations
	Rr Functions
	Example
		exttt {my.function}
	Alternative 	exttt {my.function}
	Exercise
	Example Data
	Least-squares Fit
	Results
	Best Fit ?
	Best Fit !
	Extended Example 2
	Simulated Microarray data
	Simulation
	Method I
	Method II
	Rr Programming: Control Structures
	Rr Programming: Selection
	Rr Programming: Selection
	Rr Programming: Selection
	Rr Programming: Selection
	Rr Programming: Selection
	Rr Programming: Iteration
	Rr Programming: Iteration
	Rr Programming: Iteration
	Rr Demo: Bracketing
	Rr Demo: Bracketing
	Rr Demo: Bracketing
	Rr Demo: Bracketing

