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Timetable

Part 1 Introduction

Part 2 Demos, Essentials

Part 3 Basic analysis techniques

Part 4 Programming Constructs

Part 5 Writing Functions

Part 6 Automation and Efficiency Issues

All parts include demos and tutorials.

We will be using R for Windows, v2.0.1.

Some familiarity with probability and statistics is assumed.
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R

From the R documentation:
R is a GNU project that provides a wide variety of statistical
(linear and nonlinear modelling, classical statistical tests,
time-series analysis, classification, clustering, ...) and
graphical techniques, and is highly extensible.

One of R ’s strengths is the ease with which well-designed
publication-quality plots can be produced, including
mathematical symbols and formulae where needed. Great
care has been taken over the defaults for the minor design
choices in graphics, but the user retains full control.
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R

From the R documentation
R is available as Free Software under the terms of the Free
Software Foundation’s GNU General Public License in source
code form. It compiles and runs on a wide variety of UNIX
platforms and similar systems (including FreeBSD and Linux),
Windows and MacOS.

Much statistical functionality is provided by the user
community.

New methods are often implemented and distributed in R .
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History

R is readily traced back to the S language – “a language for
programming with data” – developed primarily by John
Chambers at Bell labs.

The S language was developed into a commercial product
called Splus by a company now called Insightful
(http://www.insightful.com/ ). This development has
been mainly in the user interface and graphics and
interoperability functionality. Splus uses version 4 of the S
language.

R started out as an Open Source system “not unlike” version
3 of the S language, developed by Ross Ihaka and Robert
Gentleman, Based on a different implementation. R is now
developed and maintained by a core group.
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Getting R

Can always download the most recent release (currently
2.1.1) either as source or pre-compiled of R from a
Comprehensive R Archive Network (CRAN) site
(http://cran.uk.r-project.org/ for UK).

R consists of a base system, providing the language and
interface and contributed packages providing the enhanced
statistical and graphical functionality.

In general, it is better to upgrade the whole system on an
occasional basis than to update individual packages on the
release of new versions. Different releases are deliberately
installed in separate locations, so it is possible to have
concurrent versions.
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Install R

To obtain and install a pre-compiled windows binary:

1. rwXXXX.exe from CRAN (currently rw2011.exe ).

2. Execute, and follow instructions. Defaults are sensible.

3. Start R .

4. Select packages|install

5. Select a CRAN mirror

6. Select the required packages

Note that (i) installing packages can be slow, (ii)
pre-requisites are automatically satisfied, and (iii) can
experience problems with version numbers.
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Demo: Starting and Packages
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What is R ?

R should be regarded as an implementation of the S
programming language - not a statistical package with limited
programming tagged on (like SAS, SPSS, Minitab). As such,
it provides

Programming language constructs

Data structures

Functions for mathematics, statistics and graphics.

In particular, note that everything in R is an object...it will
become clear what this means later!
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Demo: Simple Data Analysis

To illustrate ideas, let us conduct some simple data analysis,
involving a regression model. Data are distance, climb and
record times for 35 Scottish hill races. Note the following
features:

Interaction via a command line interface (scripts later)

The value of a function may be assigned a name.

Graphics occurs as side effects to function calls.

Functions can operate on arguments of different types.

Prompt to save workspace with q()
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Data

Consider

hills <- read.table("hills.txt")

We have called the function read.table , with a single,
unnamed argument, and assigned, via the assignment
operator <- , the value of the call to the object hills .

All entities in R are objects and all objects have a class. The
class dictates what the object can contain, and what many
functions can do with it. Thus, read.table is an object of
class function , and hills is an object of a type determined
by the function, in this case, a data.frame . Everything we
do will involve creating and manipulating objects.
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Data

Objects are accessed by name. Objects that we create
should have names that are meaningful to us, and should
follow the R syntax rules: letters and numbers (except first
position) and periods (avoid underscore).

A common problem is naming objects that are already in use
by R , reserved words like if or break or system objects like
mean, TRUE, and pi .

Another common irritation for new users is that R is cases
sensitive, so T (a system representation of logical true) is
different to t (function for matrix transpose).

Essentials – p. 12/120



Functions

Functions are called by name, followed by a bracketed list of
arguments

plot(x,y)
plot(lm(time ∼dist))

Functions return a value. Graphics functions in addition have
side effects, that create and modify plots. The argument list
can take various formats, and not all arguments always need
be specified.

As with the example above, functions behave differently
according to the class of their arguments.
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Demo: Vectors

Consider the quadratic equation

x2 + x + 1 = 0

In usual notation, we have coefficients a = b = c = 1. This
equation has real roots if the discriminant

b2 − 4ac > 0

Store coefficients as an object

Compute discriminant

Construct a plot
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Vectors
Consider
coeffs <- c(1,1,1)
class(coeffs)
length(coeffs)
names(coeffs)

Here coeffs is a vector of type numeric . Vectors are a
fundamental class in R – there are no scalars. All objects also
have a length , which is only informative for certain classes.

The c (for combine) function is a basic tool for creating
vectors.

Vectors can have names, queried and modified by the names
function. Note the function call occurring on the right hand
side of the assignment operator.
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Vectors

The classes available for vectors are

numeric - real numbers.

character - character strings, arbitrary length.

logical - vector of logical TRUEand FALSEvalues.

(signed) integer - integer values.

complex - for complex numbers a + bi, i =
√
−1.

list - a ‘clothesline’ object, each numbered element can
contain any R object.
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Vectors

Vectors can be created other ways

seq(-3,3,length=200) # regular spaced points

-2:2 # sequence of integers

x <- vector("numeric",length=20) # create

c(x,x) # combine two vectors

Care must be taken in combining vectors of different types. R
will deploy a set of internal rules to resolve the class of the
combined vector.

Note that # is the comment operator.
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Vectors

The classes available for vectors are

numeric - real numbers.

character - character strings, arbitrary length.

logical - vector of logical TRUEand FALSEvalues.

(signed) integer - integer values.

complex - for complex numbers a + bi, i =
√
−1.

list - a ‘clothesline’ object, each numbered element can
contain any R object.
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Vectors

Access the elements of a vector by number, or name
coeffs[2]
coeffs["2"]
We may wish to remove the names from a vector

names(coeffs) <- NULL

The object NULL represents nothing, the empty set. NULLhas
length zero, and Rwill deploy special rules when NULLoccurs.
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Arithmetic
Simple arithmetic on constants follows the usual precedence
rules

ax <- 1 ; bx <- 2 ; cx <- 3
x <- ax+bx * cx # x =7
x <- bx/bx * cx/ax+bx # x=5
x <- (bx/bx) * (cx/ax)+bx # better
axˆbx # 2 raised to 3
10 %% 9 # 10 mod 9

Use parentheses to simply expressions. Note that these must
balance. If they do not R responds with either a syntax error,
or a continuation request (a + prompt).
Recall that vectors are a fundamental class of object in R .
The examples above therefore involve arithmetic on vectors,
like ax .
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Arithmetic

Things get more complicated. Consider

x <- seq(-3,3,length=200)
y <- coeffs[1] * xˆ2+coeffs[2] * x+coeffs[3]

Here we are multiplying a vector of length 1 by a vector of
length 200. This problem is dealt with by recycling the shorter
vector until it matches the length of the longer vector.
Fractional recycling will result in a warning message.

A vector can have zero length. This is represented as

numeric(0) As a function call, this creates a zero length

vector. This can be useful if we need to construct a vector of
unknown length.
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Special Values
With computer arithmetic we require extra symbols to
represent missing values and mathematical pathologies.

Missing values are represented as NA. The IEEE special
values for floating point arithmetic are also used: Inf ,
-Inf and NaN. NaN is used for indefinite results like
Inf /Inf .

There are functions for elementwise testing of vectors for
the presence of special values, of the form is.XX , where
XX can be na , nan , finite , infinite .

Special values can cause problems in programming, and
if we are being careful, we should check for their
presence.
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Simple Functions

There are a large collection of functions that operate on
numeric vectors.

round(x,2) ; trunc(x); ceiling(x);
abs(x); log(x); log10(x) ; sqrt(x) ; exp(x);
sin(x) ; acos(x); tanh(x) ; # radians

In each case, the result of the function is a vector of the same
length as the argument. Note that log can take a second
argument, the base of the logarithm. The default base is e.
Note that the following are equivalent

log(x); log(x,exp(1))
log(x=x,exp(1)) ; log(x=x,base=exp(1))
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Simple Functions

Standard functions for reducing numeric vectors

min(x); max(x)
sum(x); prod(x)

and the cumulative equivalents
cumsum(x); cumprod(x)

Can already see how to usefully combine functions

sum(x)/length(x) # mean
prod(1:5) # factorial
sum(x-mean(x))ˆ2/(length(x)-1) # sample
variance.
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R Demo: Logic

A full set of logical operators and functions are available.
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Logic

Logical conditions can be applied to numeric vectors

x <- seq(-3,3,length=200) > 0

Now x is a logical vector of length 200. The condition > has
been applied elementwise.

The other comparison operators are >=, < , <=, ==,and != .
The final two are exact equality and inequality, respectively.
As such, they should only be applied to entities that are
represented exactly, like integers.

Logical vectors are subject to the usual recycling rules.
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Logic
Logical values can be combined and modified with ! , the
negation operator, & the intersection operator (logical AND )
and | , the union operator (logical OR).
Truth tables

A B A AND B A OR B

T T T T

T F F T

F F F F

F T F T

c(T,T,F,F) & c(T,F,F,T)
Be careful with negation, the symbol ! is overloaded,and may
be interpreted as a shell escape. Again, brackets are used to
resolve such problems.
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Logic
A handy feature of logical vectors is that they can be used in
ordinary arithmetic.

A <- c(T,F,T)
A + 1

The resulting vector is c(2,1,2) . R has noted the
combination of logical and numeric vectors, and coerced the
logical vector to numeric, by mapping TRUEto 1 and FALSE to
zero. There are a range of coercion functions, pre-fixed with
"as", like as.logical .

The use of logical vectors in ordinary arithmetic means we
can easily count numbers of TRUEor FALSE in a comparison
sum(x > 0.5)
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Functions for Logical Vectors

The function any returns value 1 if at least one element of its
logical argument is TRUE. The function all returns value 1 if
all elements are TRUE. Note we can implement similar
functionality directly

sum(x)> 1 #x logical
sum(x) == length(x)

Sometimes useful are the functions for set operations :
union - A ∪ B,intersect - A ∩ B and setdiff - A ∪ B̄.
I have found setdiff very useful in classification
experiments.
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Factors

factors are vector like objects (class?) used to store sets of
categorical data. For example

drinks<-factor(c("beer","beer","wine","water"))

Here, we have constructed a vector of class character, and
converted it to a factor. The factor is displayed without quotes.

It is informative to examine how the factor is stored, using

unclass(drinks)

Refer to individual elements in the same way as a vector.
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Data Frames

The typical class used for data analysis in R is the data frame.
These are suitable for storing the usual observations in rows,
variables in columns data format. The advantage of this class
is that the columns can be of different classes: numeric,
logical, character and so on.

We have already seen an example of a data frame, the object
hills .

Data frames can have row names, common to all columns.

row.names(hills)

For a data frame, the column names are accessed with the
function names. Strictly, a data frame is a list, where all
elements are required to have the same length.
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Data Frames

Usually, a data frame will be created by a suitable call to a
data import function. It is also possible to combine vectors
into a data frame. For example

data.frame(X1=1:10,X2=I(letters[1:10]),X3=factor(le tters[1:10]))

data.frame(1:10,I(letters[1:10]),factor(letters[1:1 0]))

By default, R will attempt to pick row names from the
constituent vectors, and otherwise will use numeric row
names, and guess at column names if they are not given.
Row names can be provided as an extra argument.

Note the use of I() to override the default behaviour of
converting character vectors to factors.
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Data Frames

Earlier, we used the attach command to make the columns of
the hills data frame available by name. This is sometimes
useful, although there is a risk of masking other objects. To
undo, use detach(hills) .

If a data frame has names, we can refer to the columns using
the $ operator as follows

hills$time

This is now simply a vector,and can be manipulated as such.
The real power of factors arises when they are constituents of
data frames. In a statistical model, the factor will be treated in
an appropriate manner.
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Matrices

While a data frame can collect together vectors of different
class, and be displayed in a matrix-like manner, to explicitly
operate on mathematical matrices we use the matrix class,
which requires that all elements have the same type.

Create a matrix with something like

matrix(1:12,nrow=3,ncol=4)
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Matrices

Note the use of named arguments in the function call. A
warning occurs if the vector being made into a matrix cannot
recycle to nrow × ncol . A matrix has dimensions, accessed
with the dim function, that returns the number of rows and
columns.

Names can be associated with rows and columns using the
function dimnames .

Here, the names are a list, with a component for each
dimension.

Essentials – p. 35/120



Combining Data

We have seen that vectors can be combined with the c
function.

Matrices and data frames be combined using he function
rbind and cbind , for row and columnwise combination
respectively. For example

xx <- cbind(x,x)
xxx <- rbind(x,x)
rbind(xx,xxx) # Error

Note that the dimensions of the objects being combined must
be compatible.
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Indexing

We have seen that we can refer to individual components of
vectors. More general facilities are available for selecting
components from vectors, matrices and data frames.

To refer to the ith row, jth column element of a matrix or data
frame, use x[i,j] .

There are more general ways of indexing objects, such that i
and j can be: a vector of positive or negative integers, a
logical vector, a vector of character strings, or empty.
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Indexing

Examples

x <- 1:10
names(x) <- letters[x]
x[1:3], # elements 1,2,3
x[c(1,10)] # elements 1 and 10
x[c(-1,-2)] # remove 1 and 2
x[ x > 5] # elements > 5
x[c("a","d")] # elements 1 and 4
x[] # all elements
jj1 <- matrix(1:100,ncol=10)
jj1[1:5,] # first 5 rows, all cols
jj1[1:4,x[x <3]]
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Manipulating data frames

Applying transformations to a single column in a data frame is
straightforward

hills$time <- round(hills$time * 60)

Groups of columns can be handled similarly, by an
appropriate indexing operation.

x.df[,1:3] <- x.df[,1:3]/2

Note that the division operator here is applied element wise to
each element.
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Operations on data frames
As we saw above, data frames can participate in arithmetic
like operations. The usual rules apply, vectors will be recycled
- sometimes giving strange results.

Some functions will operate elementwise on data frames, like
log .

Other times we need to be operate on columns only, and the
functions lapply and sapply provide functionality for such a
procedure. The difference between the two function is that
the former returns a list, while the latter attempts to simply the
result into a vector or matrix.

x <- data.frame(matrix(1:10,ncol=2))
lapply(x,max)
sapply(x,max)
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Lists
We have mentioned lists a few times. Lists are the most
general class in R . A list is simply a numbered collection of
objects, of any class.

x.lis <-
list(a=1:10,b=letters[1:3],d=matrix(1:10,ncol=2))
x.lis$a
x.lis[[2]]

We have already seen the use of the $ operator. Elements of
a list can also be accessed by their index number, using the
double square brackets operator. The usual indexing
operations can also be applied to a list.

The c function can also be used with lists.
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Operating on Matrices

We distinguish computation with data frames from
computation with matrices. We have elementwise
computations

x.mat <- matrix(1:10,ncol=2)
x.mat+1
x.mat + x.mat

As usual we need to be careful about how recycling rules
(which are complex for such situations) will apply. We also
have matrix multiplication from linear algebra

x.mat % * % t(x.mat)

where t is the matrix transpose function. If the matrix and
vector dimensions do not conform, an error message results.
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Operating on Matrices

To compute
XTy

where X is a vector and y is matrix, could consider

t(X) % * % y
crossprod(X,y)

Note that the latter is more efficient. The function crossprod
with a single matrix argument X computes XTX.

Typical linear algebra functions are available: eigen , svd ,
qr , solve , and so on.
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Operating on Matrices

We use the apply function to do an identical computations
on rows or columns of a matrix. The function prototype is

apply(X, MARGIN, FUN, ...)

where X is a matrix, MARGINrefers to rows (=1) or
columns(= 2), FUNis the name of the function to be applied to
each row or column, and ... is a special symbol meaning
extra optional arguments, in this case, for the function FUN.

apply(x,1,sum) # rows
apply(x,2,sum) # columns

Where possible we prefer using apply (and the related
function sweep ) to explicit looping, for efficiency reasons.

Essentials – p. 44/120



Object Attributes

An attribute is an R object attached to another R object by
name. Objects can have any number of attributes, which are
represented as a list.

For example, the dimensions (and dimnames) of a matrix are
attributes.

attributes(x.mat)

Attributes are often used for storing ancillary information,
derivative information in optimisation problems, for example.
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Function Arguments

To examine the arguments for a function use args .

args(c)
args(pmax)
args(lm)

In the first case NULL is returned, meaning unspecified
arguments, where an arbitrary number of arguments can be
given.

In the second and thirds cases, the arguments include ... ,
referring to unspecified arguments.

Argument lists include named values with specified defaults,
in the format name=value .
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Calling Functions

We have seen function calls with both specified and
unspecified arguments. In calling functions arguments can
either be specified by

Order. Provide arguments in the order given by the
function prototype.

Name. Provide arguments explicity by name, as
name=value . Only sufficient letters of the name to
uniquely identify it are required.

These two approaches can be mixed. For example

plot(x,y,type="l")
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Transformations

In R , transformations are straightforward using the algebraic
operators outlined above:

# Square
y<-xˆ2

# Exponential
y<-exp(-x)
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Transformations

#log (to various bases)
#Base e (natural log)
y<-log(x)

# Base 10
y<-log10(x)

# Base 2
y<-log2(x)

# Base 7.2
y<-log(x,base=7.2)

# Square root
y<-sqrt(x)
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R Object Storage

R objects that we create occupy a workspace that we can
examine with

ls(all=T)
objects()

Note that names that start with a period are hidden from the
ls command, and are useful system objects, like
.Random.seed .

There are a collection of databases that R uses to store
objects. This collection is maintained as a list called the
search path, accessed with the search function.
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R Object Storage

The default behavior of attach puts a list in the second
position of the path, such that its elements can be accessed
by name. The database in position 1 is the working database.

All objects in the workspace are stored in memory. When we
exit R , we are prompted to save a workspace image. Doing
this means that the workspace is stored in its current state, in
a file (called .RData by default), and can be recovered for
further work at a future date.

It is possible to have multiple .RData files, and switch
between them. This provides a convenient mechanism for
collecting together different projects.
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R Object Storage

Storing everything in memory has some implications for how
we work, especially if we are doing memory intensive
computations. In such cases keep the number of duplicate
and intermediate results should be kept to a minimum. A
handy trick is to use names like jj1 , jj2 for such results,
then routine delete them with

rm(list=objects(pattern="jj * "))

The function object.size provides an estimate, in bytes of
the memory allocation for an object.
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Scripts

The R console provides a convenient interface for simple
commands. For more complicated work, such as
programming, R provides scripts, where a sequence of R
command can be entered, and processed later. To start a
new script, from the Pull-Down Menu File choose New

Script

Commands are entered here, and selected for execution by
highlighting followed by <CTRL> R.

Scripting is a very useful feature, and for most tasks will be
the default work mode.
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R Simple Data IO

If data is represented in a file in a simple delimited tabular
format, it is easiest to use read.table . Use write.table
to write a data frame to a file.

The scan function is sometimes useful for numeric vectors.
This can be used both interactively, for entering numbers, or
for reading a stream of numbers from a file.

To manually enter data, create a dummy data frame, and
invoke the data editor, as follows

a.df <- data.frame()
fix(a.df)
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Importing from other systems
The R Data Import/Export document says “. . . reading a
binary data file written by another statistical system. This is
often best avoided. . . ”. This is an area where R is not as
evolved as Splus. R has limited functionality for reading binary
objects from EpiInfo, Minitab, S-PLUS, SAS, SPSS.

Import is possible from spreadsheet style regular grids in text
formats. Direct access to a .xls file can be managed, but is
not recommended. Better to output the desired parts of the
sheet in simple delimited tabular format.

Some limited access to RDBMS systems is possible, using
appropriate packages.
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R Getting Help

R has various interactive help facilities. The most useful, to
access the manual pages for a specific command, is simply to
use the ? function. For example

?mean

Like UNIX manual pages, the R manual pages include a "See
Also" and "Examples" section, which can be very useful. To
conduct a more general search, akin to unix apropos , use
help.search . For example

help.search("regression")

The function help.start will fire up the HTML help system.
Lots of good stuff here!
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Demo: Simple Statistics
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Numeric Summaries

Finally, we can start to look at some statistical functions. A full
range of summary statistics are available, including

mean(x) ; mean(x,trim=0.95)
median(x)
sqrt(var(x)); var(x,y); var(x.mat)
range(x)
cor(x); cor(x,y); cor(x.mat); cor(x.mat,y.mat)

Note different behaviour for cor and cov depending on the
argument list. Some functions have functionality for dealing
with missing values (Na). The mean function, for example, has
argument prototype na.rm=FALSE .
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Summary Function

The summary function is particularly useful with many of the
statistical functions. When applied to a numeric vector

summary(1:20)

the function produces a 6 point summary, comprising the
minimum, maximum, lower and upper quartiles, and the
median and mean. Applied to a matrix, the summary function
generates this data for each column.

If the arguments include missing values, summary
additionally counts the number.
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Probability Distributions

R includes functions for computing quantities associated with
a variety of distributions. The generic prototype for these
function is

* dist(args) where * is one of

p (probability),

d (density),

q (quantile),

r (random number)

and dist is the nickname of a distribution.
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For example, to generate 20 (pseudo) random variates for a
specific Normal distribution

rnorm(20,mean=2,sd=3)

whereas for a Chi-squared distribution

rchisq(20,df=5)

Extra distributions are available in the package SuppDists .
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Random number generation

R provides a collection of sophisticated random number
generators. The default is the "Mersenne Twister". This
requires a start value, called the seed. The random number
sequence is completely specified by this. It is sometimes
useful to fix the seed so as to achieve a repeatable sequence.
Do this with

set.seed(1)

To sample from a finite population, use the function sample .
For example, to sample from a biased coin experiment

sample(c("Head","Tail"), 10,prob=c(0.3,0.7),replace= T)

By default, all elements of the population are sampled with
equal probability.
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Graphical Summaries

R has impressive graphics functionality - except for dynamic
graphics. A potential downside for new users is that there is
no GUI for graph construction.

A common data analysis task is comparing a sample with a
distribution. This is often done with a QQ plot. Typically we
plot theoretical quantiles on the horizontal axis, and empirical
quantiles on the vertical axis. For example to compare a
sample with an Exp(1) distribution

plot(qexp(ppoints(x),1),sort(x))

The function ppoints generates a sequence of probability
points at which to evaluate the theoretical distribution.
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Graphical Summaries

If our data is consistent with the theoretical distribution, the
points should fall on a straight line through the origin

abline(0,1)
title("QQ plot") # add a title

Such plots are most frequently used in residual analysis.
Note that R provides function qqnorm for comparing against a
standard normal distribution, and qqplot for comparing two
samples.
Another simple way of comparing two samples is as follows

plot(c(x,y),rep(0:1,c(length(x),length(y))),xlab="" ,ylab="")

Note the use of the extra arguments to override the default
axis labelling.

Statistics – p. 64/120



Graphical Summaries
Other useful graphical tools include the histogram, and the
box and whisker plot.

hist(x,prob=T)
boxplot(x)

Histograms are generated using a default binning strategy. To
specify the number of bins, modify the argument nbreaks .
Specify the breakpoints by providing a vector for the
argument breaks .

A box and whisker plot displays the median, upper and lower
quartiles, and whiskers extending to the normal distribution
based 5% and 95% points. All observations beyond these
points are flagged as stars.
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Graphical Summaries
Box and whisker plots, and to a lesser extent histograms, are
useful for comparing multiple samples. Box plots can take a
model specification (of which more later), or a list. For
example, suppose vector x contains observations of three
groups, and vector ind is a code, with a value 1,2, or 3
representing the group, then

boxplot(split(x,ind))

will produce a display with one box plot for each class. The
function split divides an object according to values in an
indicator vector.

Displaying overlaid histograms is more problematic, since we
must match the breakpoints for each display. An alternative is
generate three histograms in the same figure.
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Graphical Summaries

The R function for general control of graphical parameters is
par . This has many (!) arguments. The argument mfrow
determines how many plots will be placed on the figure. For
example, to display two separate histograms, one above the
other

par(mfrow=c(2,1))
hist(x)
hist(y)

The vector valued argument mfrow is the number of rows
and columns of plots to be placed in the figure. By default, the
plots are displayed in row major order.
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Graphical summaries: plot example

Consider the Pima Indians data: a collection of variables
observed on a particular group of native American Indians
who are healthy or have diabetes.

These data includes measurements of tricep, skinfold and
blood glucose level. After attaching the data frame

plot(triceps,glucose,type="n",xlab="Tricep",ylab="g lucose")

points(triceps[diabetes=="neg"],glucose[diabetes==" neg"])

points(triceps[diabetes=="pos"],glucose[diabetes==" pos"],col=2,pch=2)

We use the type="n" argument to set up a plot to
accommodate all the data, without displaying anything, then
put down the pieces separately.
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R Graphical Summaries

The col argument specifies a colour, and the pch argument
specifies the plotting symbol. It may be useful to add a
legend, with the legend function. This function has
(simplified) prototype

function (x, y = NULL, legend, ...)

So we need to specify coordinates for the legend. For this
example, a reasonable choice is

legend(40,50,c("Diabetes","Healthy"),pch=1:2)
If we had been plotting data connecting with lines we would
use the argument lty which refers to line style.

Add text to a plot with the text function.
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Portability

There are a variety of formats R graphics can be exported to.
One option is to create the figure, then use File -> Copy
to the Clipboard , and select appropriately for the target
application.
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Portability

Another option is to save the file in a specific format. Again,
this can be done via the File menu.

This can also be achieved with commands, by embedding the
graphics commands between a call to a driver and a driver
termination call. For example

jpeg("file.jpg")
...graphics commands
dev.off()

creates a JPG file containing the result of the graphics
commands.
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Simple Statistical Examples

# First, simulate some data:
# Set the random number generator seed:

set.seed(290905)

# Simulate some Normal data:
# Three groups, means 20, 40 and 50, variance 25.
# Sample sizes 250, 150, 200.

x1 <- rnorm(250,mean=20,sd=sqrt(25))
x2 <- rnorm(150,mean=40,sd=sqrt(25))
x3 <- rnorm(200,mean=50,sd=sqrt(25))
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Examples
# Summary statistics:
mean(x1)
var(x1)
sd(x1)
median(x1)
max(x1)
min(x1)
range(x1)
quantile(x1)
quantile(x1,prob=c(0.025,0.975))
summary(x1)
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Graphical summaries

# Histogram
hist(x1)
hist(x1,nclass=20)
hist(x1,breaks=c(0:50))
hist(x1,breaks=c(0:50),main="My Histogram")

# Boxplot
group<-rep(c(1:3),c(250,150,200))
boxplot(split(c(x1,x2,x3),group))
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Hypothesis Testing

# Hypothesis Testing

# Do a t.test for x1 against x2

t.test(x1,x2)
t.test(x1,x2,var.equal=T)
test1<-t.test(x1,x2,var.equal=T)
names(test1)
test1$statistic
test1$p.value
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Hypothesis Testing

# Hypothesis Testing

# Do an ANOVA between the three groups
xvec<-c(x1,x2,x3)
aov(xvec ∼factor(group))
summary(aov(xvec ∼factor(group)))
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Co-variability

# Co-variability

# Scatterplot
a<-2
b<-1.5
x<-c(1:20)
y<-a+b * x+rnorm(length(x))
plot(x,y)
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Regression

# Regression
lm(y ∼x)

y.xreg<-lm(y ∼x)
summary(y.xreg)

plot(x,y)
abline(y.xreg$coeff)

summary(y.xreg)$coeff
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Plots

# Plots
# Univariate Functions
x<-c(1:100)/10
y<-(xˆ3) * exp(-2 * x)
plot(x,y)
plot(x,y,type="l")
plot(x,y,type="l",col="red")

plot(x,y,type="n")
lines(x,y,col="red")

plot(x,y,type="n")
lines(x,y,col="red",lty=2)
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Plots of Functions

# Probability distributions

# Plot the Chi-squared density function
# for 1,2,3,4,5 degrees of freedom

y1<-dchisq(x,df=1)
plot(x,y1,type="l")
y2<-dchisq(x,df=2)
lines(x,y2,col="red")
y3<-dchisq(x,df=3)
lines(x,y3,col="blue")
y4<-dchisq(x,df=4)
lines(x,y4,col="green")
y5<-dchisq(x,df=5)
lines(x,y5,col="orange")
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2D Plots

# image, contour, persp

# Plot out a function on a 50 × 50 grid
x<-c(0:50)
y<-c(0:50)
z<-matrix(0,nrow=50,ncol=50)
for(i in 1:50){

for(j in 1:50){
z[i,j]<-(x[i]-25) * (y[j]-25)

}
}
image(x,y,z)

contour(x[1:50],y[1:50],z)
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2D Plots

image(x,y,z,col=heat.colors(20))
contour(x[1:50],y[1:50],z,add=T)

image(x,y,z,col=terrain.colors(20))

persp(x[1:50],y[1:50],z)
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2D Plots

# Another plot
x<-c(0:50)/10-2.5
y<-c(0:50)/10-2.5

z<-outer(x[1:50]ˆ2,y[1:50]ˆ2,"+")
z<-exp(-z/2)

image(x,y,z)
contour(x[1:50],y[1:50],z,add=T)
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2D Plots

persp(x[1:50],y[1:50],z)
persp(x[1:50],y[1:50],z,xlab="x",ylab="y")

persp(x[1:50],y[1:50],z,phi=45)
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R Functions

User-defined functions can be used in R. The main function
definition syntax is

functionname <- function ( args) {
computation
return( result)

}

where args is a set of arguments.

A function is called as follows

functionname(args)
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Example

Here is a small function to evaluate the function

f(x) = α1 exp{−λ1x} + α2 exp{−(λ1 + λ2)x}

at any value of x > 0, for user-supplied parameters
(α1, α2, λ1, λ2).

The function needs to have the arguments

x, α1, α2, λ1, λ2

supplied (in some form) and return the function value
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my.function

my.function<-function(x,al1,al2,lam1,lam2) {

y<-al1 * exp(-lam1 * x)+al2 * exp(-(lam1+lam2) * x)
return(y)

}
x<-seq(from=0,to=10,length=101)
fx<-my.function(x,1.0,2.0,0.1,0.2)
plot(x,fx,type="l",ylim=range(0,4))
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Alternative my.function

Supply the parameters as a vector θ = (α1, α2, λ1, λ2).

my.function.alt<-function(x,th) {

y<-th[1] * exp(-th[3] * x)
y<-y+th[2] * exp(-(th[3]+th[4]) * x)
return(y)

}
x<-seq(from=0,to=10,length=101)
theta<-c(1.0,2.0,0.1,0.2)
fx<-my.function.alt(x,theta)
plot(x,fx,type="l",ylim=range(0,4))
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Exercise

We will simulate some data using the function above and try
to recover the parameters

set.seed(300905)
theta<-c(3.0,2.0,0.5,0.2)
x<-c(1:40)/2
expected.y<-my.function.alt(x,theta)
y<-expected.y + rnorm(length(x),sd=0.2)
plot(x,y,ylim=range(-1,5))
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Example Data
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Least-squares Fit

We will slightly change the defined function so that the R
minimization function nlm can be used to find the best fit.

my.function.new<-function(th,xvals,yvals){

fy<-th[1] * exp(-th[3] * xvals)
fy<-fy+th[2] * exp(-(th[3]+th[4]) * xvals)
ssq<-sum((yvals-fy)ˆ2)
return(ssq)

}

th.start<-c(3.0,2.0,0.5,0.2)
nlm(f=my.function.new,p=th.start,xvals=x,yvals=y)
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Results

>nlm(f=my.function.new,p=c(3.0,2.0,0.5,0.2),xvals=x ,yvals=y)

$minimum [1] 1.415276

$estimate [1] 2.9522862733 1.9203908648 0.5204927933 0.0 002269101

$gradient [1] 7.890393e-07 -7.270481e-07 -9.703349e-08 7 .016610e-08

$code [1] 2

$iterations [1] 31

This means that the line of best fit is obtained when

α1 = 2.952 α2 = 1.920 λ1 = 0.520 λ2 = 0.0002
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Best Fit ?

my.fit<-nlm(f=my.function.new,p=c(3.0,2.0,0.5,0.2), xvals=x,yvals=y)

param.estimates<-my.fit$estimate

xv<-c(0:200)/10
true.y<-my.function.alt(xv,theta)
fitted.y<-my.function.alt(xv,param.estimates)
plot(x,y,ylim=range(-1,5))
lines(xv,true.y)
lines(xv,fitted.y,col="red")
legend(10,5,c("True","Best
Fit"),lty=c(1,1),col=c("black","red"))
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Best Fit !
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Extended Example

In this example, we will

simulate a large data set

automate its analysis

process and plot the results

The key components will be the use of the function apply to
a numerical matrix.
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Simulated Microarray data

Microarrays are a high-throughput technology for the analysis
of the function of genes.

Typically, thousands of genes are processed simultaneously.

Interest lies in distinguishing genes that are “differentially
expressed" in two tissue types.

In this experiment we will simulate some appropriate data.
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Simulation
#Number of genes
ngenes<-7500

#Number of samples
N0<-20
N1<-37

#Select the genes that are differentially expressed
Ndiff<-50
gene.list<-sample(c(1:ngenes),size=Ndiff,rep=F)

#The amount of up-regulation
Up.mean<-2.0
Y0<-matrix(rnorm(N0 * ngenes),ncol=N0,nrow=ngenes)
Y1<-matrix(rnorm(N1 * ngenes),ncol=N1,nrow=ngenes)
Y1[gene.list,]<-Y1[gene.list,]+Up.mean
Y<-cbind(Y0,Y1) Extended Example – p. 97/120



Method I

#One method of analysis

date()
test.results<-numeric(ngenes)
for(igene in 1:ngenes){

y0<-Y0[igene,]
y1<-Y1[igene,]
test.igene<-t.test(y1,y0,var.equal=T)
test.results[igene]<-test.igene$statistic

}
date()
hist(test.results)
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Method II
Using apply

my.test<-function(x){
n0<-x[1]
n1<-x[2]
y0<-x[3:(2+n0)]
y1<-x[(2+n0+1):(2+n0+n1)]
t.res<-t.test(y1,y0,var.equal=T)
return(t.res$statistic)

}
tmp.Y<-cbind(rep(N0,ngenes),rep(N1,ngenes),Y)
date()
my.test.results<-apply(tmp.Y,1,my.test)
date()
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R Programming : Control Structures

To release the power of the programming language, we need
to learn about the language constructs the provide control

structures, that provide the capacity for selection and iteration.

Think back to the ChickWeight example: had we required to
consider all 4 diet groups, we would have had to write
effectively the same piece of code 4 times. An alternative
would be to write a new function that conducts the
computation for selected data.

First we will look at control structures.
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Selection

It is often the case that we want a program to take different
actions according to the value of a variable. The R language
statement if provides this functionality. The general format is

if (condition)
true.branch

else
false.branch

We have already seen a variety of logical comparisons that
can serve as condition . If condition evaluates as TRUE,
then true.branch is followed otherwise false.branch is
followed. If condition evaluates as NA, an error occurs.
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Selection
Example

if (x >3) {
y <- 1
z <- 2

} else {
y <- 2
z <- 1

}
Note the use of curly braces allow us to deliver compound
(that is multi-line) statements. Also note the use of indenting
to try to clarify structure.
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Selection

The else part of an if statement is optional. As regular
parts of the R language, if statements can occur within the
branches of if statements – that is, they can be nested. For
example

if (x > 2)

if (y < 3)
count <- count + 1

else
...

Note R is quite fussy about placement of symbols in scripts.
For a more elegant alternative to multiply nested if
statements, use the switch function.
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Selection

It is often useful to have compound conditions with an if
statement. We can combine conditions with the logical
operators && (for AND) and || (for OR). Note these are
different to the single character vector operators. For
example, in an optimisation problem we may have

if (iterations > max.it && abs(error) < tol)
converged <- T

We will sometimes need to use brackets to clarify compound
conditions. Note also order of evaluation for %%and || .

Be careful with conditions. If the condition evaluates to a
vector, the first element is used (and could be coerced to
logical).
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Selection

For selection operations on vectors, use the ifelse function.
The general form of ifelse is

ifelse(test,true.value,false.value)

Here, all the arguments are vectors. test is a comparison
operation applied to each element of a vector, true.value
is returned in positions where the comparison is TRUE, and
false.value is returned otherwise. For example

ifelse(1:10 < 5,0,1)

This should be efficient even for large vectors, and is to be
preferred over explicit looping wherever possible. ifelse
switch

Programming – p. 105/120



Iteration

We can distinguish two types of iteration construct: count
controlled loops, provided by the for statement, and variable
length loops, provided by the while and repeat statements.

WARNING: bad use of loops is the most common source of
inefficient R code. This is particularly true of nested loops.
Always think hard about how use functions like apply rather
than using a loop. Of course, sometimes it is unavoidable.
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Iteration

The general format of the for statement is

for (variable in sequence) statement And note

that statement can be compound. variable is the counter
variable, that will take consecutive values in sequence . As a
simple example, of something NOT to do, consider the
following

for(i in 1:length(x)) { y[i] <- sin(x[i]) }
In the exercises, you will see just how inefficient this is,
compared to using a vectorised function. We can nest for
loops, but do this with caution. Be careful not to change the
vale of the the counter variable.
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Iteration

The general format of the while statement is

while (condition) statement

Note that a while loop may never execute the statement. The
statement is executed repeatedly until condition becomes
false. In contrast, a repeat loop, with general format

repeat statement

will execute at least once, and continue until it is explicitly
interrupted with a break statment. In fact, break will
immediately exit from any loop structure. This can be useful
for diagnostic purposes.
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R Demo: Bracketing

The function
x2 − 1

has a single zero in the interval (0, 1).

A simple approach to finding zeros is bracketing, where we find
an interval containing the zero, evaluate the function in the
middle of the interval, and restrict attention to the half interval
containing the zero (as is indicated by the sign of the function
at the three points). This process is repeated until the width of
the interval is smaller than a specified tolerance.
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R Demo: Bracketing

# Start values

hi <- 1

lo <- 0

f.hi <- hi * hi-1/2

f.lo <- lo * lo-1/2

# set tolerance

tol <- 1e-9

found <- abs(hi-lo) < tol

# iteration counter

its <- 0
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R Demo: Bracketing

# search

while (! found) {

mid <- (hi+lo)/2

f.mid <- mid * mid-1/2

if (sign(f.mid) == sign(f.hi))

{

f.mid <- f.hi

hi <- mid

}

else

{

f.mid <- f.lo

lo <- mid

}

its <- its + 1

if ((its %% 3) ==0)

cat("Iteration ",its," hi= ",hi," lo= ",lo," mid=", mid," \ n")

found <- abs(hi-lo) < tol

} Programming – p. 111/120



R Demo: Bracketing

Of course, this is not the only way of implementing this
procedure. We may have wanted to stop after a certain
number of iterations. We could achieve this by modifying the
convergence criterion

found <- (abs(hi-lo) < tol) && (its <= maxit)

Or, by using a break statement

if (its > 10) break()

Note that we could embody this code in a function, and that
this function could be made to deal with arbitrary equations.

Be aware that while and repeat loops may never stop - the
condition may not be satisfied.

Programming – p. 112/120



Miscellany

In this section, we will look at a some miscellaneous features
of R . Some or all of them might be regarded as useful for
automation. In particular, we have often found it useful to
automatically examine a collection of data files in a directory.
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R Calling the Operating System

The R command for interfacing with the operating system is

shell(cmd, shell, flag="/c", intern=FALSE,

wait=TRUE,translate=FALSE, mustWork=FALSE,
...)

Here cmd is a system command, enclosed in brackets. We
have seen one example already

shell("dir")

By default, this will run under the DOS shell, although other
shells can be specified. Note that the effect here is to display
the directory listing – it is not stored in .Last.value .
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Calling the Operating System

To manipulate what is returned (if anything) by the system call
as an object, set the argument intern=T . In this case, the
result of dir is stored as a vector of class character, where
each line of the result of dir is stored as an element.
a typical line might be

[124] "09/27/2005 11:36 AM 731 sol8.R"

I have often found it useful to access the names of files of a
specific type in a directory. This is best done with

files <- shell("dir /b * .type",intern=T)
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Calling the Operating System

Now, suppose we want to read the contents of a number of
sensibly formatted files, into different data frames, that share
the name but not extension of the file. We can readily
determine the filenames (let’s assume they will make legal R
object names). Two tasks remain (i) reading the file and (ii)
creating the named object.

The first stage is often easy. Assume that read.table will
do the job, as follows

read.table(files[1])

We now need to truncate the filename, and creating the
object.
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String Handling

R has a range of string handling facilities. For the immediate
purpose of dividing a string like "hills.txt" , we simply use
the substr function

substring(files[1],1,nchar(files[1])-4)

to produce the character vector hills . Here, nchar counts
the number of characters. This takes advantage of the fact we
know the length of the extension. If more complicated
handling were required, functions such as strsplit would
be useful.

Now, we have computed the name we wish to use for the
object. It is not obvious from what we have seen so far how to
do this.
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Assigning to Computed Names

We use the assign function as follows

assign(substring(files[1],1,
nchar(files[1])-4),read.table(files[1]),1)

This complicated looking call associates the characters in the
first argument as the name of the object in the second
argument. The object is assigned to the database indicated
by the third argument. In this case we write to the workspace
- the database at position 1 (actually, things are more
complicated that this, but it serves our purposes).
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Handling Characters

Suppose the file names are such that they would not make
legal object names - by beginning with a number, say. Here
we can use the paste function, which is used to join
characters together. For example

paste("a","b") paste("a","b",sep="")

produces

"a b"
"ab"

respectively. Now we simply proceed as before, but with the
more complicated (that is modified with paste ) first
argument.
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Resources

WEB

http://www.r-project.org/

http://cran.uk.r-project.org/

BOOKS

John M. Chambers. Programming with Data. Springer, New York, 1998.

William N. Venables and Brian D. Ripley. Modern Applied Statistics with S. Fourth
Edition. Springer, 2002.

William N. Venables and Brian D. Ripley. S Programming. Springer, 2000.

Peter Dalgaard. Introductory Statistics with R. Springer, 2002.

John Maindonald and John Braun. Data Analysis and Graphics Using R.

Julian J. Faraway. Linear Models with R. Chapman & Hall/CRC, Boca Raton, FL,
2004

Paul Murrell. R Graphics. Chapman & Hall/CRC, Boca Raton, FL, 2005.

available on web.
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