
M3S3/M4S3
ASSESSED COURSEWORK 2

SOLUTIONS

(a) Using the estimator of I (θ) denoted În

(
θ̃n

)
, where

În
(
θ̃n
)

= −1

n

n∑

i=1

Ψ
(
Xi, θ̃n

)
= −1

n

n∑

i=1

∂2

∂θ2
log fX (Xi, θ)|θ=θ̃n

= −1

n

∂2

∂θ2

n∑

i=1

log fX (Xi, θ)

∣∣∣∣∣
θ=θ̃n

= −1

n

∂2

∂θ2
ln (θ)|θ=θ̃n

= −1

n
l̈n

(
θ̃n

)

we have

Wn = n
(
θ̃n − θ0

)T
În

(
θ̃n

)(
θ̃n − θ0

)
= −

(
θ̃n − θ0

)
2

l̈n

(
θ̃n

)

as
(
θ̃n − θ0

)
is a scalar quantity.

[2 MARKS]

Similarly, for the Rao statistic, we may use

În (θ0) = −
1

n

n∑

i=1

Ψ(Xi, θ0) = −
1

n
l̈n (θ0)

as an estimator/estimate of I (θ0), the single datum or unit information matrix Then

Zn ≡ Zn (θ0) =
1√
n

n∑

i=1

S (Xi, θ0) =
1√
n

n∑

i=1

∂

∂θ
log fX (Xi, θ)|θ=θ0

=
1√
n

∂

∂θ

n∑

i=1

log fX (Xi, θ)

∣∣∣∣∣
θ=θ0

=
1√
n
l̇n (θ0)

and thus, as all quantities are scalars

Rn = Zn (θ0)
T
[
În (θ0)

]−1
Zn (θ0) =

{Zn (θ0)}2

În (θ0)
=

{
1√
n
l̇n (θ0)

}2

−1

n
l̈n (θ0)

= −
{
l̇n (θ0)

}
2
{
l̈n (θ0)

}−1

[2 MARKS]

For the Rao statistic it is more common and more straightforward to use În (θ0) rather than În

(
θ̃n

)
as

the estimate of the Fisher information, although under the null hypothesis the asymptotic distribution
is the same in both cases - using θ0 is obviously more straightforward as we do not need to compute θ̃n.
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(b) For the Poisson case, for λ > 0

fX (x;λ) =
e−λλx

x!
x = 0, 1, 2, ...

and so if sn =
n∑
i=1
xi

ln (λ) = −nλ+ sn log λ−
n∑

i=1

log xi!

and so

l̇n (λ) = −n+
sn
λ

l̈n (λ) = −
sn

λ2

and hence the MLE, from l̇n
(
λ̂n
)
= 0, is λ̂n = sn/n = x, with estimator Sn/n = X. Thus

• Wald Statistic: using the formula above

Wn = −
(
θ̃n − θ0

)
2

l̈n

(
θ̃n

)
= −

(
X − λ0

)2
(
−Sn(
X
)2

)
= n

(
X − λ0

)2

X
.

[3 MARKS]

• Rao Statistic: using the formula above

Rn = −
{
l̇n (θ0)

}2 {
l̈n (θ0)

}−1
=

−
(
Sn
λ0
− n

)
2

−Sn
λ2
0

=
(Sn − nλ0)2

Sn
=
n
(
X − λ0

)2

X

that is, identical to Wald.

[3 MARKS]

Note: in this case, we can compute the Fisher Information I (λ0) exactly - we have

I (λ0) = EX|λ0 [−Ψ(X,λ0)] = EX|λ0

[
X

λ2
0

]
=

1

λ2
0

EX|λ0 [X] =
λ0

λ2
0

=
1

λ0

so a perhaps preferable version of the Rao statistic is

Rn =
{Zn (θ0)}2
I (θ0)

=

(
1√
n

(
Sn
λ0
− n

))2

1

λ0

=
λ0
n

(
Sn
λ0
− n

)2
=
n
(
X − λ0

)2

λ0

As a general rule, if the Fisher Information can be computed exactly, then the exact version should be
used for the Rao/Score statistic rather than an estimated version.

• Likelihood Ratio Statistic: by definition, using the notation Λ̃n (... sorry ...)

Λ̃n =
Ln

(
λ̂n

)

Ln (λ0)
=
e−nλ̂n λ̂

Sn
n

e−nλ0λSn
0

= exp
{
−n

(
λ̂n − λ0

)
+ Sn

(
log λ̂n − logλ0

)}

or equivalently

2 log Λ̃n = −2n
(
λ̂n − λ0

)
+ 2Sn

(
log λ̂n − log λ0

)

[3 MARKS]
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(c) Under the normal model, the likelihood is

Ln (µ, σ) = fX|µ,σ
(
x;µ, σ2

)
=

(
1

2πσ2

)n/2
exp

{
− 1

2σ2

n∑

i=1

(xi − µ)2
}

and thus, in terms of the random variables, for general X,

l (X; θ) = log fX|µ,σ
(
X;µ, σ2

)
= −1

2
log
(
2πσ2

)
− 1

2σ2
(X − µ)2

and, for µ

∂

∂µ
l (X; θ) =

1

σ2
(X − µ) ∂2

∂µ2
{l (X; θ)} = − 1

σ2

whereas for σ2

∂

∂σ2
{l (X; θ)} = − 1

2σ2
+

1

2σ4
(X − µ)2 ∂2

∂ (σ2)2
{l (X; θ)} = 1

2σ4
− 1

σ6
(X − µ)2

and

∂2

∂µ∂σ2
{l (X; θ)} = − 1

σ4
(X − µ)

(here taking σ2 as the variable with which we differentiating with respect to). Now

EfX|µ,σ [(X − µ)] = 0 EfX|µ,σ

[
(X − µ)2

]
= σ2

we have for the Fisher Information for
(
µ, σ2

)
from a single datum as

I
(
µ, σ2

)
= −




E

[
− 1

σ2

]
E

[
− 1

σ4
(X − µ)

]

E

[
− 1

σ4
(X1 − µ)

]
E

[
1

2σ4
− 1

σ6
(X − µ)2

]


 =




1

σ2
0

0
1

2σ4


 =

[
I11 I12

I21 I22

]

say, and In
(
µ, σ2

)
= nI

(
µ, σ2

)
.

(i) The Wald Statistic in this multiparameter setting is, from notes

Wn = n
(
θ̃n1 − θ10

)T [
Î11n

(
θ̃n

)]−1 (
θ̃n1 − θ10

)
.

Here, σ2 is estimated under H1 as given in notes, so

θ̃n1 = X θ10 = 0
[
Î11n

(
θ̃n

)]−1
= Î11 − Î12Î−122 Î21 = Î11 =

1

σ̂2
=

1

S2

=⇒Wn = n
(
X
)T
[
1

S2

] (
X
)
=
n
(
X
)2

S2

[4 MARKS]
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(ii) Under H0, the µ and σ2 are completely specified, whereas under H1, the MLEs of µ and σ2 are

X =
1

n

n∑

i=1

Xi S2 =
1

n

n∑

i=1

(
Xi −X

)2
.

Hence the Wald Statistic is

Wn = n
(
θ̃n − θ0

)T [
În

(
θ̃n

)](
θ̃n − θ0

)
=

[ √
n
(
X − 0

)
√
n
(
S2 − σ2

0

)
]T



1

S2
0

0
1

2S4



[ √

n
(
X − 0

)
√
n
(
S2 − σ2

0

)
]

=
n
(
X
)2

S2
+
n
(
S2 − σ2

0

)
2

2S4

[3 MARKS]

To clarify notation, if fX , l, S and Ψ denote the density, its log, the score (first partial derivative of
l wrt θ) and the second partial derivative

l (θ) = log fX (X; θ)

S (θ) ≡ S (X; θ) =
∂

∂θ
{l (θ)} a k × 1 vector

Ψ (θ) ≡ Ψ(X; θ) =
∂2

∂θ2
{l (θ)} a k × k matrix

with the “full-likelihood” versions

ln (θ) =
n∑

i=1

log fX (X; θ) Sn (θ) ≡ Sn (X, θ) ≡
∂

∂θ
{ln (θ)} Ψn (θ) ≡ Ψn (X, θ) =

∂2

∂θ2
{ln (θ)}

• UNIT INFORMATION MATRIX (with scalar X)

I (θ) = EX|θ

[
S (X; θ)S (X; θ)T

]
= −EX|θ [Ψ (X; θ)]

• FULL LIKELIHOOD INFORMATION MATRIX (with vector X = (X1, ...,Xn))

In (θ) = EX|θ

[
Sn (X; θ)Sn (X; θ)T

]
= −EX|θ [Ψn (X; θ)] = nI (θ)

• ESTIMATORS

În (θ) =
1

n

n∑

i=1

S (Xi; θ)S (Xi; θ)
T = −1

n

n∑

i=1

Ψ
(
Xi, θ̃n

)
estimator of I (θ)

Înn (θ) = nÎn (θ) =
n∑

i=1

S (Xi; θ)S (Xi; θ)
T = −

n∑

i=1

Ψ(Xi, θ) estimator of In (θ)

• ESTIMATES (OBSERVED INFORMATION) (with observed data)

În (θ) =
1

n

n∑

i=1

S (xi; θ)S (xi; θ)
T = −1

n

n∑

i=1

Ψ(xi, θ) estimate of I (θ)

Înn (θ) = nÎn (θ) estimate of In (θ)
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