
M3/M4S3 STATISTICAL THEORY II

JOINT DISTRIBUTION OF THE SAMPLE QUANTILES

RESULT 1: If Y1, Y2, ..., Yn+1 ∼ Exponential (1) are independent random variables, and S1, S2, ..., Sn+1
are defined by

Sk =
k∑

j=1

Yj k = 1, 2, ..., n+ 1

then the random variables [
S1

Sn+1
,

S2

Sn+1
, ...,

Sn

Sn+1

]

given that Sn+1 = s, say, have the same distribution as the order statistics from a random sample of
size n from the Uniform distribution on (0, 1) .

Proof: Let the Yjs be defined as above. Then the joint density for the Yjs is given by

exp





−
n+1∑

j=1

yj





y1, y2, ..., yn+1 > 0.

Now
S1 = Y1
S2 = Y1 + Y2
S3 = Y1 + Y2 + Y3

Sn =
n∑

j=1
Yj

Sn+1 =
n+1∑

j=1
Yj






⇔






Y1 = S1
Y2 = S2 − S1
Y3 = S3 − S2

Yn = Sn − Sn−1
Yn+1 = Sn+1 − Sn

and so the Jacobian of the transformation from (Y1, ..., Yn+1)→ (S1, ..., Sn+1) is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
...

...
... 1 0

0 0 0 · · · −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1

and hence the joint density for (S1, ..., Sn+1) is given by

exp{−sn+1} 0 < s1 < s2 < ... < sn+1.

The marginal distribution for Sn+1 isGamma (n+ 1, 1) and thus the conditional distribution of (S1, ..., Sn)
given Sn+1 = s is

exp {−s}
1

Γ (n+ 1)
sn exp{−s}

=
n!

sn
0 < s1 < s2 < ... < s.
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Finally, conditional on Sn+1 = s, define the joint transformation

Vj =
Sj

s
⇔ Sj = sVj j = 1, 2, ..., n

which has Jacobian sn. Then, conditional on Sn+1 = s, (V1, ..., Vn) have joint pdf equal to n! for
0 < v1 < v2 < ... < vn < 1. Finally, if U1, ..., Un are independent random variables each having a
Uniform distribution on (0, 1), then (U1, ..., Un) have joint pdf equal to 1 on the unit hypercube in n

dimensions, and thus the corresponding order statistics U(1), ..., U(n) also have joint pdf equal to

n! 0 < u1 < u2 < ... < un < 1.

RESULT 2: Let the Sk be defined as in Result 1. Then

√
k

(
1

k
Sk − 1

)
L→ N (0, 1) as k→∞

Proof: We have that Sk is the sum of k independent and identically distributed Exponential(1)
random variables, Y1, ..., Yk, so that E [Yj ] = V ar [Yj ] = 1. Thus the Central Limit Theorem applies,
and the result follows.

RESULT 3: Let the Sk be defined as in Result 1. Then, if

k1

n
→ p1

for some p1 with 0 < p1 < 1,

√
n+ 1

(
1

n+ 1
Sk1 −

k1

n+ 1

)
L→ N (0, p1) as n→∞

Proof: We have

√
n+ 1

(
1

n+ 1
Sk1 −

k1

n+ 1

)
=

√
k1

n+ 1

√
k1

(
1

k1
Sk1 − 1

)
L→√

p1N (0, 1) ≡ N (0, p1)

as n→∞ (so that by assumption k1 →∞ also).
Corollary: Using the same approach, if

k1

n
→ p1 and

k2

n
→ p2

for 0 < p1 < p2 < 1, then

√
n+ 1

(
1

n+ 1
(Sk2 − Sk1)−

k2 − k1

n+ 1

)
=

√
k2 − k1

n+ 1

√
k2 − k1



 1

k2 − k1

k2∑

j=k1+1

Yj − 1





and the right-hand side converges in law to
√
p2 − p1N (0, 1) ≡ N (0, p2 − p1). Similarly

√
n+ 1

(
1

n+ 1
(Sn+1 − Sk2)−

n+ 1− k2

n+ 1

)
L→ N (0, 1− p2)

where the limiting variables in the three cases are independent, as Sk1 , (Sk2 − Sk1), and (Sn+1 − Sk2)
are independent.
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RESULT 4: Let

Z1 =
1

n+ 1
Sk1

Z2 =
1

n+ 1
(Sk2 − Sk1)

Z3 =
1

n+ 1
(Sn+1 − Sk2)

and suppose that
√
n

(
k1

n
− p1

)
→ 0 and

√
n

(
k2

n
− p2

)
→ 0

as n→∞. Then

√
n+ 1








Z1
Z2
Z3



−




p1

p2 − p1
1− p2







 L→ N (0,Σ)

as n→∞, where Σ = diag (p1, p2 − p1, 1− p2).

Proof: We have

√
n+ 1

(
1

n+ 1
Sk1 − p1

)
−
√
n+ 1

(
1

n+ 1
Sk1 −

k1

n+ 1

)
=
√
n+ 1

(
k1

n+ 1
− p1

)
→ 0

as n→∞ by assumption, so

√
n+ 1

(
1

n+ 1
Sk1 − p1

)
and

√
n+ 1

(
1

n+ 1
Sk1 −

k1

n+ 1

)

have the same asymptotic distribution, and thus the result follows from Result 3. The proof is similar
for the other two terms. Independence (that is, ths diagonal nature of Σ) follows from the independence
of Sk1 , (Sk2 − Sk1), and (Sn+1 − Sk2).

RESULT 5: If U(1), ..., U(n) are the order statistics from a random sample of size n from a Uniform (0, 1)
distribution, and if n→∞, k1 →∞ and k2 →∞ in such a way that

√
n

(
k1

n
− p1

)
→ 0 and

√
n

(
k2

n
− p2

)
→ 0

for 0 < p1 < p2 < 1, then

√
n

((
U(k1)
U(k2)

)
−
(

p1
p2

))
L→ N

(
0,

[
p1 (1− p1) p1 (1− p2)
p1 (1− p2) p2 (1− p2)

])
.

Proof: Define

g (x1, x2, x3) =
1

x1 + x2 + x3

[
x1

x1 + x2

]

which yields first derivative

ġ (x1, x2, x3) =
1

(x1 + x2 + x3)
2

[
x2 + x3 −x1 −x1

x3 x3 − (x1 + x2)

]
.

Now

g

(
Sk1
n+ 1

,
Sk2 − Sk1
n+ 1

,
Sn+1 − Sk2

n+ 1

)
=

1

Sn+1

[
Sk1
Sk2

]
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which has the same distribution as
(
U(k1), U(k2)

)T
, by Result 1. By Cramer’s Theorem

√
n

((
U(k1)
U(k2)

)
−
(

p1
p2

))
L→ N

(
0, ġ (µ)Σġ (µ)T

)

where Σ is as defined in the Result 4, where here µ = (p1, p2 − p1, 1− p2)
T . It can be easily verified

that

ġ (µ) Σġ (µ)T =

[
p1 (1− p1) p1 (1− p2)
p1 (1− p2) p2 (1− p2)

]

and thus the result follows.

RESULT 6: If X(1), ...,X(n) are the order statistics from a random sample of size n from a distri-
bution with continuous distribution function FX and density fX which is continuous and non-zero in a
neighbourhood of quantiles xp1 and xp2 corresponding to probabilities p1 < p2, then if k1 = ⌈np1⌉ and
k2 = ⌈np2⌉

√
n

((
X(k1)

X(k2)

)
−
(

xp1
xp2

))
L→ N





0,






p1 (1− p1)

{fX (xp1)}2
p1 (1− p2)

fX (xp1) fX (xp2)

p1 (1− p2)

fX (xp1) fX (xp2)

p2 (1− p2)

{fX (xp2)}2











Proof: We use Cramer’s Theorem on the result from Result 5, with the transformation

g (y1, y2) =

[
F−1X (y1)

F−1X (y2)

]

so that

ġ (y1, y2) =






1

fX
(
F−1X (y1)

) 0

0
1

fX
(
F−1X (y2)

)






with y1 = p1 and y2 = p2.
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