M3/M4S3 STATISTICAL THEORY II
PROPERTIES OF MEASURABLE FUNCTIONS

The function f defined with domain E C €, for measurable space (2, F), is Borel measurable
with respect to F if the inverse image of set B, defined as

f'B)={weE:f(vw)eB}

is an element of sigma-algebra F, for all Borel sets B of R (strictly, of the extended real number system
R*, including 0o as elements). The following conditions are each necessary and sufficient for f to be
measurable
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L(A) € F for all open sets A C R*
H

=
f1([~o0,2)) € F for all z € R*
=
F= A
f=(

—00
—oo,z]) € F for all z € R*
L[, 00]) € F for all z € R*

L((z,¢]) € F for all x € R*

NOTES:

(i)

(iii)

Recall that the Borel sigma-algebra in R, B, is the smallest (or minimal) sigma-algebra con-
taining all open sets (that is, essentially, sets of the form

(a,b) or [a,b]
for a < b € R) which are known as the Borel sets in R.

It is possible to extend this definition to a general topological space 2 equipped with a topology,
that is, a collection, 7, of sets in  that (I) 7 contains () and Q, (II) 7 is closed under finite
intersection, and (III) if A is a sub-collection of 7, A C 7, and Aj, Ay, As, ... € A, then

G A, eT.
i=1

In this context, it is possible to define a general Borel sigma-algebra on 2; the open sets are
the elements 17,15, T3, ... of the topology 7, and the Borel sets are the elements of the smallest
sigma-algebra generated by 7, o (7). However, we will not be studying general toplogical spaces;
we shall restrict attention to R, and thus refer to the Borel sets and the Borel sigma-algebra,
meaning the Borel sets/sigma-algebra defined on R.

Strictly, a function f is a Borel function if, for B € B, f~! (B) € o (T); however, we will generally
consider measure spaces (€2, F) and say that f is a Borel function if it is Borel measurable, as
defined in the first paragraph above.



EXAMPLE Consider Lebesgue measure, m, defined for real numbers a < b (on the Borel sigma-

algebra on R, B) by
m ([a,b]) = m ((a,b)) = m((a,b]) = m ([a,b)) = b—a.

Suppose f is an increasing function on R. Then the set A = f~! ([~o0, z]) is an interval in R, and thus
f is measurable with respect to Lebesgue measure, as the measure of A, m(A), is well-defined. Now
consider the function g defined by g(x) = = for x € R. This function is measurable with respect to
Lebesgue measure (on B), as it is increasing. However, consider the sigma-algebra, Z, generated by

the sets {0, (—o0, 0], (0,00),R} . Then
g (~o0 1) ¢ 2

S0 ¢ is not measurable on Z.

RESULTS FOR MEASURABLE FUNCTIONS

Theorem 1 MEASURABILITY UNDER COMPOSITION
Let g1 and go be measurable functions on E C ) with ranges in R*. Let f be a Borel function from
R* x R* into R*. Then the composite function h, defined on E by

h(w) = f (g1 (w1),92 (w2))
18 measurable.

Proof. The function g = (g1,92) has domain E and range R* x R*, and is measurable as g1 and go
are measurable, and denote h = f o g (the operator o indicates composition, i.e.

h (w1, w2) = (f o g) (w1, w2) if  h(wi,we) = f(g9(wi,we)) = f(g1(w1),92 (w2)).

If B € B, then f~'(B) is a Borel set as f is a Borel function. Thus the inverse image under h,

R (B) =g~ (f71(B))

1s measurable as g1 and go, and hence g, are measurable.

Corollary. If g is a measurable function from E into R*, and f is a continuous function from R* into

R*, then h = f o g is measurable.

Theorem 2 MEASURABILITY UNDER ELEMENTARY OPERATIONS

Let g1 and g2 be measurable functions defined on E C 2 into R*, and let ¢ be any real number. Then

all of the following composite and other related functions are measurable

g1+ 92,91 + ¢ 9192,¢91,91/92,191|7, 91 V 92, 91 /\92,g1+;9f-

Proof. In each case, we examine the domain of the composite function to ensure measurability in the

Borel sigma-algebra. Consider g; 4 g2; this is not defined on the set

{wigr(w) = —g2 (w) =Fo0}

(as 0o & 0o is not defined), but this set is measurable, and so is the domain of g; + go. Let
f (z1,22) = 1 + x2 be a continuous function defined on R* x R*. Then, by Theorem 1 and its
corollary, g1 + g2 is measurable. Taking g3 = c proves that g1 + ¢ is measurable.



The function g1g2 is defined everywhere on F; it’s measurability follows from Theorem 1, setting
f(x1,22) = x1x9. Setting go = ¢ proves that cg; is measurable.

The function g1/gs is defined everywhere except on the union of sets
{wig(w) =g2(w) =0} U{w: +g1 (w) = £g2 (w) = o0}
Similarly, if ¢ = 0, |g1|° is defined except on
{w:g1(w) = +oo};

if ¢ < 0, it is defined except on
{w: g1 (w) =0}.

If ¢ > 0, it is defined everywhere. All of these sets are measurable Thus, we consider in turn
functions

f (w1, 22) = 21/ 22 f(x) =2a°

and use Theorem 1.
The functions g1 V g2,91 A g2 are defined everywhere; so we consider functions

f(z1,22) = max {x1,x2} f(x1,29) = min{x1,x2}

and again use Theorem 1. Finally, setting go = 0 yields the measurability of gf and g; .

Theorem 3 If g1 and g» are measurable functions on a common domain, then each of the sets

g <gew} A{vigWw=g0wW} {vigWw>gpW))}
18 measurable.

Proof. Since g; and go are measurable, then f = g; — go is measurable, and thus the two sets

{w:fw) >0} {w: [f(w)=0}

are measurable. Since
{w:gt(w)<g(w)}={w: f(w) >0}
and
{fwigr (W) =g W)} ={w: f(w) =0tU{w: g (W) = g2 (w) = +o0}

then {w: ¢1 (W) < g2 (w)} and {w : g1 (w) = g2 (w)} are measurable, and so is

wigw<gWl={w:gW <gWiviv:g(w =g ()}



Theorem 4 MEASURABILITY UNDER LIMIT OPERATIONS

If {gn} is a sequence of measurable functions, the functions sup g, and inf g, are measurable.
n n

Proof. Let ¢ =supg,. Then for real x, consider
n

9n' ([-o0,2]) = {w: gn (w) < 2}
and
g ([~oo,z]) ={w: g (w) < a}.
If g = sup gn, then g, < g for all n, and
gw)<z=gp(w) <z so that weg([~o0,1)) = we g, ([~o0,])

so that
97 ([-o0,2]) C g, ([-00,2])

for all n. Thus, in fact

g ([ooa]) = (gn " ([0, 2])

and hence ¢ is measurable, as the intersection of measurable sets is measurable. The result for inf
n
follows by noting that
inf g, = —sup (—gn) -
n n

Theorem 5 MEASURABILITY UNDER LIMINF/LIMSUP
If {gn} is a sequence of measurable functions, the functions limsup g, and liminf g,, are measurable.
n n

Proof. This follows from Theorem 4, as

limsup g, = inf {sup gn} and liminf g, = sup { inf gn}
n k n>k n k n>k

SIMPLE FUNCTIONS AND THEIR CONVERGENCE PROPERTIES.

Recall the definition of a simple function ),

k
bw) =Y ails, (@)
=1

for real constants aq, ..., ax and measurable sets A1, ..., Ag, for some k = 1,2,3,.... Note that any such
simple function, can be re-expressed as a simple function defined for a partition of ), 4, ..., Ej,

l
Y (W) =) el W)
=1

by suitable choice of the constants e, ..., €.



Theorem 6 A non-negative function on € is measurable if and only if it is the limit of an increasing
sequence of non-negative simple functions.

Proof. Suppose that g is a nonnegative measurable function. For each positive integer n, define the
simple function v,, on €2 by

m m+41

wn(w):% if2=n§ (w) < 5

form=0,1,2,...,n2" — 1, and
Y, (W) =n if n<gw).

Then {1,,} is an increasing sequence of non-negative simple functions. Since
Yo (@) g @) < 5r it n>g(w)
and 9, (w) =n if g(w) = oo, then, for all w,
Uy (W) = g (w)
and we have found the sequence required for the result.

Now suppose that ¢ is a limit of an increasing sequence of non-negative simple functions. Then it is
measurable by Theorem 5. "

Theorem 7 A function g defined on £ is measurable if and only if it is the limit of a sequence of
simple functions.

Proof. Suppose that g is measurable. Then g" and g~ are measurable and non-negative, and thus
can be represented as limits of simple functions {¢;" } and {t,, }, by the Theorem 6. Consider the
sequence of simple functions defined by {1/1,‘1; -, }; this sequence converges to g™ — g~ = g, and we
have the sequence of simple functions required for the result.

Now suppose that g is a limit of a sequence of simple functions. Then it is measurable by Theorem 5.



