
M3/M4S3 STATISTICAL THEORY II
INTEGRAL WITH RESPECT TO MEASURE :

KEY THEOREMS

The following key theorems describe the behaviour of the Lebesgue-Stieltjes integral. In particular,
the theorems specify when it is legitimate to exchange the order of limit and integral operators. In the
theorems, we have a general measure space (Ω,F, ν), and measurable set E ∈ F .

Theorem 1 Lebesgue Monotone Convergence Theorem
If {fn} is an increasing sequence of nonnegative measurable functions, and if

lim
n→∞

fn = f almost everywhere

then

lim
n→∞

∫

E

fndν =

∫

E

fdν

Proof. Let the (real) sequence {in} be defined by

in =

∫

E

fndν.

Then, by a previous result

in =

∫

E

fndν ≤

∫

E

fn+1dν = in+1 as fn ≤ fn+1

so {in} is increasing. Let L denote the (possibly infinite) limit of {in}. Now, since fn ≤ f almost
everywhere for all n, we have (by the same previous result) that

∫

E

fndν ≤

∫

E

fdν =⇒ L ≤

∫

E

fdν. (1)

Now consider constant c with 0 < c < 1, and let ψ be any simple function satisfying 0 ≤ ψ ≤ f . Let

En ≡ {ω : ω ∈ E and cψ (ω) ≤ fn (ω)}

and as En ⊆ E, En is measurable, and because fn ≤ fn+1, En ⊆ En+1 for all n, so {En} is increasing.
Let the limit of the {En} sequence be denoted

F =

∞⋃

i=1

En.

The set E ∩ F ′ has measure zero, because lim
n→∞

fn = f a.e. and 0 ≤ cψ ≤ ψ ≤ f. Hence, as En ⊆ E

∫

E

fndν ≥

∫

En

fndν ≥

∫

En

cψdν = c

∫

En

ψdν.

Taking the limit as n→∞,

L = lim
n→∞

∫

E

fndν ≥ c lim
n→∞

∫

En

ψdν = c

∫

F

ψdν = c

∫

E

ψdν
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the final step following as E ∩ F ′ has measure zero. Thus, as this holds for all c such that 0 < c < 1,
we must have that

L ≥

∫

E

ψdν

whenever 0 ≤ ψ ≤ f . Hence L is an upper bound the integral of such a simple function on E. But,
by the supremum definition from lectures, the integral of f with respect to ν on E is the least upper
bound on the integral of such simple functions on E. Hence

L ≥

∫

E

fdν. (2)

Thus, combining (1) and (2), we have that

L = lim
n→∞

∫

E

fndν =

∫

E

fdν.

Theorem 2 Fatou’s Lemma (or Lebesgue-Fatou Theorem)
If {fn} is a sequence of non-negative measurable functions, and if

lim inf
n→∞

fn = f almost everywhere

then ∫

E

fdν ≤ lim inf
n→∞

{∫

E

fndν

}

Proof. The function lim inf
n→∞

fn is measurable (by the measure theory handout result). For

k = 1, 2, 3, ... let
hk = inf {fn : n ≥ k} .

Then, by definition of infimum, hk ≤ fk for all k, and thus

∫

E

hkdν ≤

∫

E

fkdν for all k =⇒ lim inf
k→∞

{∫

E

hkdν

}
≤ lim inf

k→∞

{∫

E

fkdν

}
. (3)

Now {hk} is an increasing sequence of non-negative functions, we have in the limit

lim
k→∞

hk = lim inf
n→∞

fn = f

almost everywhere. Now, by the Monotone Convergence Theorem,

lim
k→∞

{∫

E

hkdν

}
=

∫

E

{
lim
k→∞

hk

}
dν =

∫

E

fdν

Hence, by (3), ∫

E

fdν ≤ lim inf
k→∞

{∫

E

fkdν

}
.

Some corollaries follow immediately from this important theorem
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1. If E1, E2, ..., En are disjoint, with
n⋃

i=1
Ei ≡ E, and f is non-negative, then

∫

E

fdν =
n∑

i=1

{∫

Ei

fdν

}

Proof: Let {ψk} be an increasing sequence of simple functions that converge to f , where

ψk =

mk∑

j=1

akjIAkj

say. Then,

∫

E

ψkdν =

mk∑

j=1

akjν (E ∩Akj) =

mk∑

j=1

n∑

i=1

akjν (Ei ∩Akj) as the Ei are disjoint

=
n∑

i=1






mk∑

j=1

akjν (Ei ∩Akj)





=

n∑

i=1

{∫

Ei

ψkdν

}

by hence the monotone convergence theorem,

∫

E

fdν = lim
k→∞

{∫

E

ψkdν

}
= lim
k→∞

{
n∑

i=1

{∫

Ei

ψkdν

}}

=
n∑

i=1

{
lim
k→∞

{∫

Ei

ψkdν

}}

=
n∑

i=1

{∫

Ei

{
lim
k→∞

ψk

}
dν

}
=

n∑

i=1

{∫

Ei

fdν

}
.

2. Now consider a countable (rather than merely finite) collection {Ei} with
∞⋃

i=1
Ei ≡ E. Then if

f is non-negative ∫

E

fdν =
∞∑

i=1

{∫

Ei

fdν

}

Proof: For each positive integer n, let An ≡
n⋃

i=1
Ei, and define fn = IAnf . Then {fn} is an

increasing sequence of non-negative functions, that converges to f (on E). Hence

∫

E

fdν = lim
n→∞

{∫

E

fndν

}
= lim
n→∞

{∫

An

fdν

}
= lim
n→∞

{
n∑

i=1

{∫

Ei

fdν

}}

=
∞∑

i=1

{∫

Ei

fdν

}

3. Let f be a non-negative function on Ω. Then the function defined on F by

ϕ (E) =

∫

E

fdν

is a measure. The only part of the definition of a measure that needs verifying is the countable
additivity, by the last result, we have directly that

ϕ

(
∞⋃

i=1

Ei

)

=

∞∑

i=1

ϕ (Ei)

when the {Ei} are disjoint.
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For the results above (and the results proved in lectures), we have considered only the integrals of
non-negative measurable functions. We now extend them for general measurable functions, using the
decomposition into positive and negative part functions f = f+ − f− where both f+ and f− are
measurable and non-negative, and we have

∫

E

fdν =

∫

E

f+dν −

∫

E

f−dν.

Recall that we say that f is integrable if both f+ and f− are integrable, and now denote the set of all
functions integrable on E with respect to ν by LE (ν). From previous arguments we have that

f ∈ LE (ν)⇔ f+ and f− ∈ LE (ν)

Some results can be proved for the functions in this class.

Lemma 1 If ν (E) = 0, then

f ∈ LE (ν) and

∫

E

fdν = 0

Proof. We have by definition
∫

E

fdν =

∫

E

f+dν −

∫

E

f−dν = 0− 0 = 0

Lemma 2 If f ∈ LE2 (ν) and E1 ⊂ E2, then f ∈ LE1 (ν).

Proof. By a result from lectures
∫

E1

f+dν ≤

∫

E2

f+dν and

∫

E1

f−dν ≤

∫

E2

f−dν

Lemma 3 If {En} is a sequence of disjoint sets with
∞⋃

n=1
En ≡ E, and f ∈ LE (ν), then

∫

E

fdν =
∞∑

n=1

{∫

En

fdν

}

Proof. The previous Lemma ensures that f ∈ LEn (ν) as En ⊂ E for all n. By using the result
proved earlier, that if f is non-negative then

∫

E

fdν =
∞∑

n=1

{∫

En

fdν

}

we use the positive and negative part decompositions
∫

E

fdν =

∫

E

f+dν −

∫

E

f−dν =

∞∑

n=1

{∫

En

f+dν

}
−

∞∑

n=1

{∫

En

f+dν

}

=

∞∑

n=1

[∫

En

f+dν −

∫

En

f−dν

]

=
∞∑

n=1

{∫

En

(
f+ − f−

)
dν

}
=

∞∑

n=1

{∫

En

fdν

}
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Corollary. If f ∈ LΩ (ν), then the function ϕ defined on F by

ϕ (E) =

∫

E

fdν

is additive.

Proof. As for previous result.

Lemma 4 If f = g a.e. on E, and if g ∈ LE (ν), then f ∈ LE (ν) and
∫

E

fdν =

∫

E

gdν

Proof. Define A ≡ {ω : ω ∈ E, f (ω) = g (ω)}. Then E ∩A′ has measure zero, and
∫

E

f+dν =

∫

A

f+dν =

∫

A

g+dν =

∫

E

g+dν

and ∫

E

f−dν =

∫

A

f−dν =

∫

A

g−dν =

∫

E

g−dν

Adding these equations, we have immediately that f ∈ LE (ν) and
∫

E

fdν =

∫

E

gdν

Lemma 5 If f ∈ LE (ν) and c is any real number, then cf ∈ LE (ν) and
∫

E

(cf) dν = c

∫

E

fdν

Proof. Consider only the non-trivial case c �= 0. Suppose first c > 0, and let g be a non-negative
function. For any simple function ψ, say

ψ =
k∑

i=1

aiIAi

we have
ψ ≤ g ⇔ cψ ≤ cg.

and ∫

E

(cψ) dν =
k∑

i=1

(cai) ν (E ∩Ai) = c

k∑

i=1

aiν (E ∩Ai) = c

∫

E

ψdν

Therefore ∫

E

(cf) dν = c

∫

E

fdν

by the supremum definition, and the result follows for c > 0 using this result, and the decomposition
cf = cf+ − cf−. For c < 0, write

cf = (−c) f− − (−c) f+

so that the result follows, as −c > 0.
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Lemma 6 If f, g ∈ LE (ν), then f + g ∈ LE (ν) and
∫

E

(f + g) dν =

∫

E

fdν +

∫

E

gdν

Proof. We prove the result two several stages. First suppose that f and g are non-negative, and let{
ψ
(f)
n

}
and

{
ψ
(g)
n

}
be increasing sequences of simple functions with limits f and g respectively. Then

{
ψ
(f)
n + ψ

(g)
n

}
has limit f + g, and as

∫

E

(
ψ(f)n + ψ(g)n

)
dν =

∫

E

ψ(f)n dν +

∫

E

ψ(f)n dν

(see this result by using the measure definition of the integral of a simple function), we have, taking
the limit as n→∞, ∫

E

(f + g) dν =

∫

E

fdν +

∫

E

gdν.

Now consider the general case; define the following subsets of E

E1 ≡ {ω : f (ω) ≥ 0, g (ω) ≥ 0}

E2 ≡ {ω : f (ω) < 0, g (ω) ≥ 0}

E3 ≡ {ω : f (ω) ≥ 0, g (ω) < 0, (f + g) (ω) ≥ 0}

E4 ≡ {ω : f (ω) < 0, g (ω) ≥ 0, (f + g) (ω) ≥ 0}

E5 ≡ {ω : f (ω) ≥ 0, g (ω) < 0, (f + g) (ω) < 0}

E6 ≡ {ω : f (ω) < 0, g (ω) ≥ 0, (f + g) (ω) ≥ 0}

Then En, n = 1, 2, ...,6 are disjoint, and
6⋃

n=1
En ≡ E. By the Lemma 3, proving that

∫

En

(f + g) dν =

∫

En

fdν +

∫

En

gdν

for each n is sufficient to prove the result. The proofs for each separate case are very similar; so
consider for example set E3. Then on E, the functions f,−g and f + g are non-negative, and threfore
by part one of this proof,

∫

E3

fdν =

∫

E3

(−g) dν +

∫

E3

(f + g) dν = −

∫

E3

gdν +

∫

E3

(f + g) dν

and the result follows.

Lemma 7 The function f ∈ LE (ν) if and only if |f | ∈ LE (ν). In this instance,
∣∣∣∣

∫

E

fdν

∣∣∣∣ ≤
∫

E

|f | dν.

Proof. We have identified previously that f is integrable if the positive and negative part functions
are integrable, and this is the case if and only if the function

|f | = f+ + f−

is integrable. If this is the case, then
∣∣∣∣

∫

E

fdν

∣∣∣∣ =
∣∣∣∣

∫

E

f+ − f−dν

∣∣∣∣ ≤
∣∣∣∣

∫

E

f+dν

∣∣∣∣+
∣∣∣∣

∫

E

f−dν

∣∣∣∣ =
∫

E

|f | dν
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Corollary. If g ∈ LE (ν), and |f | ≤ g, then f ∈ LE (ν)

Lemma 8 If f, g ∈ LE (ν), and f ≤ g a.e. on E, then

∫

E

fdν ≤

∫

E

gdν

that is, the Lebesgue-Stieltjes Integral operator preserves ordering of functions.

Proof. We have g − f ≥ 0, so the result follows from Integral Result (e) from lectures, and Lemma 6.

Corollary. If υ (E) <∞, and m ≤ f ≤M on E, for real values m and M , then by considering simple
functions ψm =mIE and ψM =MIE, for which ψm ≤ f ≤ ψM , we have

mυ (E) ≤

∫

E

fdν ≤Mυ (E)

Lemma 9 Suppose f, g ∈ LE (ν) , and that for A ⊂ E,

∫

A

fdν ≤

∫

A

gdν.

Then f ≤ g a.e. on E.

Proof. Let F1 ≡ {ω : ω ∈ E, f (ω) ≥ g (ω)}, so that f − g ≥ 0 on F1. Thus, by the assumption of the
Lemma, ∫

F

(f − g) dν = 0

and hence by f − g = 0 or f = g a.e. on F1, by Integral Result (f) from lectures.

Corollary. If f, g ∈ LE (ν) and if ∫

A

fdν =

∫

A

gdν.

for A ⊂ E, then f = g a.e. on E.

Theorem 3 Lebesgue Dominated Convergence Theorem
If {fn} is a sequence of measurable functions, and if

lim
n→∞

fn = f almost everywhere

and |fn| ≤ g for all n, for some g ∈ LE (ν), then

lim
n→∞

∫

E

fndν =

∫

E

fdν
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Proof. {fn} and f are measurable functions. By using Fatou’s Lemma (Theorem 2) on non-negative
sequence {g + fn} ∫

E

(g + f) dν ≤ lim inf
n→∞

{∫

E

(g + fn) dν

}

so that ∫

E

fdν ≤ lim inf
n→∞

{∫

E

fndν

}
. (4)

Similarly, by applying the result to {g − fn}, we have that

∫

E

(g − f) dν ≤ lim inf
n→∞

{∫

E

(g − fn) dν

}
∴ −

∫

E

fdν ≤ lim inf
n→∞

{
−

∫

E

fndν

}

Multiplying through by −1, we have by properties of limsup and lim inf that

∫

E

fdν ≥ lim sup
n→∞

{∫

E

fndν

}
(5)

and hence combining (4) and (5), we have by definition

lim
n→∞

∫

E

fndν =

∫

E

fdν

Corollary. If {fn} is a uniformly bounded sequence (bounded above and below by a pair of real
constants) of measurable functions such that

lim
n→∞

fn = f almost everywhere

and if υ (E) <∞, then

lim
n→∞

∫

E

fndν =

∫

E

fdν.

LEBESGUE-STIELTJES INTEGRALS ON R.
Rather than considering a general sample space Ω, we now consider the specific case when Ω ≡ R,

with corresponding sigma-algebra which is the Borel sigma-algebra. In this case, the measure υ will
often be expressed in terms of (or be generated by) an increasing real function F on E. Let E be a
set in the Borel sigma-algebra. Then for measurable function g, we can express the integral as

∫

E

gdν =

∫

E

gdF or

∫

E

gdν =

∫

E

g(x)dF (x)

with special cases ∫ b

a

g dF =

∫

(a,b]

g dF and

∫
∞

−∞

g dF =

∫

R

g dF
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