M3/M4S3 STATISTICAL THEORY II
INTEGRAL WITH RESPECT TO MEASURE :
KEY THEOREMS

The following key theorems describe the behaviour of the Lebesgue-Stieltjes integral. In particular,
the theorems specify when it is legitimate to exchange the order of limit and integral operators. In the
theorems, we have a general measure space (2, F, v), and measurable set F € F.

Theorem 1 Lebesgue Monotone Convergence Theorem
If {fn} is an increasing sequence of nonnegative measurable functions, and if

lim f,=f almost everywhere
n—oo

then

n—o0

lim fndy—/ fdv
E

Proof. Let the (real) sequence {i,} be defined by

in—/fndy.
E

in:/ fndyg/fn-i-ldyzin-i-l as fn < fo41
E E

Then, by a previous result

0 {in} is increasing. Let L denote the (possibly infinite) limit of {i,}. Now, since f, < f almost
everywhere for all n, we have (by the same previous result) that

/fndy</fdu:>L</fdy (1)

Now consider constant ¢ with 0 < ¢ < 1, and let ) be any simple function satisfying 0 < < f. Let
E,={w:we€ F and ¢ (w) < fr, (w)}

and as E, C E, E, is measurable, and because f, < fnt1, En C Epy1 for all n, so {E,} is increasing.
Let the limit of the {F,,} sequence be denoted

oo
F = U E,.
=1

The set E'N F’ has measure zero, because lim f, = f a.e. and 0 < ¢y <1 < f. Hence, as E, C F
n—oo

/ fndv > fndv > / cpdry = ¢ Ydv.
E En n

En

Taking the limit as n — oo,

L = lim fndv > ¢ lim z/)dy—c/ z/)dyzc/ Wdv

n—o0 E n—o0



the final step following as F N F’ has measure zero. Thus, as this holds for all ¢ such that 0 < ¢ < 1,

we must have that
L> / Ydy
E

whenever 0 < < f. Hence L is an upper bound the integral of such a simple function on E. But,
by the supremum definition from lectures, the integral of f with respect to v on FE is the least upper
bound on the integral of such simple functions on E. Hence

L> /E fdv. (2)

Thus, combining (1) and (2), we have that

L = lim fndu/ fdv.

n—oo

Theorem 2 Fatou’s Lemma (or Lebesgue-Fatou Theorem)
If {fn} is a sequence of non-negative measurable functions, and if

liminf f, = f almost everywhere
then
fdv < liminf {/ fndy}
E n—oo E

Proof. The function liminf f,, is measurable (by the measure theory handout result). For
n—oo
k=1,2,3,.. let
hi =inf{f, :n > k}.

Then, by definition of infimum, h; < fi for all k, and thus

/ hydv g/ frdv for all k = likminf{/ hkdl/} < hmlnf{/ fkdu} (3)
E E 0 E

Now {hy} is an increasing sequence of non-negative functions, we have in the limit
lim Ay =liminf f, = f
k—o0 n—00

almost everywhere. Now, by the Monotone Convergence Theorem,

klirgo{/]ghkdy} :/ {klingohk}du—/ fdv
[ fav < hmmf{/ fkdz/}

Some corollaries follow immediately from this important theorem

Hence, by (3),



n
1. If By, Es, ..., B, are disjoint, with |J E; = E, and f is non-negative, then
i=1

1=

n

/Efdu—Z{/Eifdu}

=1

Proof: Let {9} be an increasing sequence of simple functions that converge to f, where
my
Yy, = Z akjla,,
j=1
say. Then,
mg mgE n
Ydv = ariv (ENAg;) = arv (E; N Ag;j) as the E; are disjoint
/ S oy (BN A) = 33 aigw (B Ay, ,

j=1 j=1i=1

n n

S %akju(EmAm) ZZ{A‘/’W}

i=1 | j=1 i=1
by hence the monotone convergence theorem,

oo = pm{ o} =i {8 e} - S { o)

i =1

- g{éi{kh_{goiﬂk}d’/}zg{/&fdy}.

(e.9]
. Now consider a countable (rather than merely finite) collection {E;} with |J E; = E. Then if
i=1

/Efdu:g{/&fdu}

n

Proof: For each positive integer n, let A, = |J E;, and define f, = I, f. Then {f,} is an
i=1

increasing sequence of non-negative functions, that converges to f (on E). Hence

ot {fr)am{,)-gm ($ () - )

i=1 =1

f is non-negative

. Let f be a non-negative function on 2. Then the function defined on F by

o (E) = /Efdv

is a measure. The only part of the definition of a measure that needs verifying is the countable
additivity, by the last result, we have directly that

@ (U Ez) = Z@ (Es)
=1 i—1

when the {E;} are disjoint.



For the results above (and the results proved in lectures), we have considered only the integrals of
non-negative measurable functions. We now extend them for general measurable functions, using the
decomposition into positive and negative part functions f = f* — f~ where both f* and f~ are
measurable and non-negative, and we have

[ par= [ yrav— [ av

Recall that we say that f is integrable if both f* and f~ are integrable, and now denote the set of all
functions integrable on F with respect to v by Lg (). From previous arguments we have that

feLew) o ftand f~ eLp (v)

Some results can be proved for the functions in this class.
Lemma 1 If v (F) =0, then
feLg) and / fdv=0
E

Proof. We have by definition
/fdy:/ f*du—/ ffdv=0-0=0
E E E

Lemma 2 If f € Lg, (v) and Ey C Es, then f € Lg, (v).

Proof. By a result from lectures

frav < frdv and fdv < fdv
Eq E> Eq Es

oo
Lemma 3 If {E,} is a sequence of disjoint sets with |J E, = F, and f € Lg (v), then

n=1

Lfdyzg{/Enfdy}

Proof. The previous Lemma ensures that f € Lg, (v) as E, C E for all n. By using the result
proved earlier, that if f is non-negative then

/Efdu:g{/&fdy}

we use the positive and negative part decompositions

/Efdu = /Ef%ly—/Efduzi{éﬂf*dy}—g{énf+dy}
_ g[/Enf+dy_/nf—dy]
- S { o] el



Corollary. If f € Lg (v), then the function ¢ defined on F by

¢(E)=/Efdv

is additive.

Proof. As for previous result.

Lemma 4 If f =g a.e. on E, and if g € L (v), then f € L (v) and

/Efdy:/Egdz/

Proof. Define A={w:we€E, f(w) =g (w)}. Then EN A" has measure zero, and

/]Ef+dyz/4f+duz/49+dyz/159+dy
/Ede:/Afdz/z/Agdy:/Egdy

Adding these equations, we have immediately that f € Lg (v) and

/Efdy:/Egdz/

Lemma 5 If f € Lg (v) and c is any real number, then ¢f € L (v) and

/E(cf)dl/—c/Ede

Proof. Consider only the non-trivial case ¢ # 0. Suppose first ¢ > 0, and let g be a non-negative
function. For any simple function ), say

and

we have
Y <gecep<cg.
and
k k
/ (c)dv = Z (ca;)v(ENA;) = CZ aiv (ENA;)=c | Ydv
E =1 i=1 E
Therefore

/E(cf)dl/—c/Ede

by the supremum definition, and the result follows for ¢ > 0 using this result, and the decomposition
cf =cft —cf~. For c <0, write

cf = (=) f~ = (=) f"

so that the result follows, as —c > 0.



Lemma 6 If f,g € Lg (v), then f+g € Lg (v) and

/E(f—l-g)du—/Ede—i-/Egdl/

Proof. We prove the result two several stages. First suppose that f and g are non-negative, and let
{@b%f )} and {@Z}ﬁlg )} be increasing sequences of simple functions with limits f and g respectively. Then

{ o 4 1/,;9)} has limit f + g, and as

[ (@0 +v0)avr= [ 6Pav+ [ olPa
E E E

(see this result by using the measure definition of the integral of a simple function), we have, taking

the limit as n — oo,
/ (f—i—g)dyz/ fdl/—|—/ gdv.
E E E

Now consider the general case; define the following subsets of F

E = {w:f(w)>0,9(w) >0}
E, = {w:f(w)<0,g9(w) >0}
By = {w:f(w)20,9w)<0,(f+9)(w) =0}
Ey = {w: f(w) <0,9(w)=0,(f+g)(w) =0}
E; = {w: f(w) 20,9(w) <0,(f+9) (w) <0}
Es = {w:f(w) <0,9(w)=0,(f+9)(w) =0}

6
Then E,,n =1,2,...,6 are disjoint, and |J E,

n=1

/ (f+9)dv= Enfdv—i—/ngdv

n

Il
&

By the Lemma 3, proving that

for each n is sufficient to prove the result. The proofs for each separate case are very similar; so
consider for example set F3. Then on E, the functions f, —g and f 4 g are non-negative, and threfore
by part one of this proof,

/ fdu—/ (—g)du—l—/ (f+g)dv——/ gdu—i—/ (f+g)dv

E3 E3 E3 ES E3

and the result follows. .
Lemma 7 The function f € Lg (v) if and only if |f| € Lg (). In this instance,

]/Efdu < [ Ifla.

Proof. We have identified previously that f is integrable if the positive and negative part functions
are integrable, and this is the case if and only if the function

fl=f"+f

/E frdv

is integrable. If this is the case, then

/Efdu /Eﬁ—fdy

= < +

/E fdv

=/Efdu



Corollary. If g € Lg (v), and |f| < g, then f € Lg (V)
Lemma 8 If f,g € Lg (v), and f < g a.e. on E, then

/Efdug/Egdy

that is, the Lebesgue-Stieltjes Integral operator preserves ordering of functions.

Proof. We have g — f > 0, so the result follows from Integral Result (e) from lectures, and Lemma 6.

Corollary. If v (E) < 0o, and m < f < M on E, for real values m and M, then by considering simple
functions ,,, = mIg and ¥ ,; = M I, for which ¢,,, < f <1, we have

mu (F) < /Efdy < Mv (F)

Lemma 9 Suppose f,g € Lg (v), and that for A C E,

[ g < [ ga

Proof. Let 1 ={w:w € E, f(w) > g(w)}, so that f —g > 0 on F;. Thus, by the assumption of the

Lemma,
[ r-graw=o
F

and hence by f —g =0 or f = g a.e. on Fy, by Integral Result (f) from lectures. .

[ g = | gav.

Theorem 3 Lebesgue Dominated Convergence Theorem
If {fn} is a sequence of measurable functions, and if

Then f < g a.e. on E.

Corollary. If f,g € Lg (v) and if

for A C E, then f =g a.e. on E.

lim f,=f almost everywhere
n—oo

and |fn| < g for all n, for some g € Lg (v), then

lim fndu:/ fdv



Proof. {f,} and f are measurable functions. By using Fatou’s Lemma (Theorem 2) on non-negative

sequence {g + fn}
/ (g+ f)dv < liminf{/ (9+ fn) dV}
E n—00 E

so that
fdv < liminf {/ fndy} : (4)
E n—oo E
Similarly, by applying the result to {g — f,}, we have that

/E(g—fmuSI;Lrgg.;f{/E<g—fn)dy} L= Efdyglinrgi;gf{—/Efndu}

Multiplying through by —1, we have by properties of limsup and liminf that

fdv > limsup {/E fndy} (5)

E n—oo

and hence combining (4) and (5), we have by definition

lim fndu—/ fdv
E E

n—oo

Corollary. If {f,} is a uniformly bounded sequence (bounded above and below by a pair of real
constants) of measurable functions such that

lim f,=f almost everywhere

and if v (E) < oo, then
lim fndv = / fdv.
E E

n—oo

LEBESGUE-STIELTJES INTEGRALS ON R.

Rather than considering a general sample space {2, we now consider the specific case when 2 = R,
with corresponding sigma-algebra which is the Borel sigma-algebra. In this case, the measure v will
often be expressed in terms of (or be generated by) an increasing real function F' on E. Let E be a
set in the Borel sigma-algebra. Then for measurable function g, we can express the integral as

/gdu:/ng or /ng:/g(m)dF(x)
E E E E

b 00
/ng:/ g dF and / ng:/ng
a (a,b] —oo R

with special cases



