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PREFACE
Introduction Welcome to the S-PLUS 2000 Guide to Statistics, Volume 2.

This book is designed as a reference tool for S-PLUS users wanting to
use the powerful statistical techniques in S-PLUS. The Guide to
Statistics, Volume 2 covers a wide range of statistical and mathematical
modeling; no one user is likely to tap all of these resources since
advanced topics such as survival analysis and time series are complete
fields of study in themselves.

All examples in this guide are run using input through the
Commands window—the traditional method of accessing the power
of S-PLUS. Many of the functions can also be run through the Statistics
menu and dialogs available in the graphical user interface. We hope
you will find this book a valuable aid for exploring both the theory
and practice of statistical modeling.

Online Version The Guide to Statistics, Volume 2 is also available online, through the
Online Manuals entry of the main Help menu. It can be viewed using
Adobe Acrobat Reader, which is included with S-PLUS.

The online version is identical in content to the printed one but with
some particular advantages. First, you can cut-and-paste example
S-PLUS code directly into the Commands window and run these
examples without having to type them. Be careful not to cut-and-paste
the “>” prompt character and notice that distinct colors differentiate
between command language input and output.

Second, the online text can be searched for any character string. If
you wish information on a certain function, for example, you can
easily browse through all occurrences of it in the guide.

Also, contents and index entries in the online version are hot-links;
click on them to go to the appropriate page.

Evolution of 
S-PLUS

S-PLUS has evolved considerably from its beginnings as a research
tool, and the contents of this guide have grown steadily, and will
continue to grow, as the language is improved and expanded. This
may mean that some examples in the text do not match your output
from S-PLUS in every formatting detail. However, the underlying
theory and computations are as described here.
xi



In addition to the huge range of functionality covered in this guide,
there are additional modules, libraries, and user-written functions
available from a number of sources. Refer to the User’s Guide for more
details.

Companion 
Guides

The Guide to Statistics, Volume 2, together with Guide to Statistics,
Volume 1, is a companion volume to the User’s Guide and the
Programmer’s Guide. All four are available both in printed form and
online through the help system.

This volume covers the following topics:

• Multivariate analysis, including factor analysis, principal
components analysis, and discriminant analysis

• Cluster analysis

• Time series analysis

• Survival analysis

• Quality control charting

• Resampling methods (bootstrap and jackknife)

• Mathematical computing

The Guide to Statistics, Volume 1 covers basic statistical inference,
regression techniques, mixed-effects models, and ANOVA methods.
xii
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Chapter 1  Principal Components Analysis
INTRODUCTION

For investigations involving a large number of observed variables, it is
often useful to simplify the analysis by considering a smaller number
of linear combinations of the original variables. For example, scholastic
achievement tests typically consist of a number of examinations in
different subject areas. In attempting to rate students applying for
admission, college administrators frequently attempt to reduce the
scores from all subject areas to a single, overall score. If the reduction
can be done with minimal information loss, all the better.

One obvious choice for the overall score is the mean over all subject
areas. For three subject areas s1, s2, and s3, the mean corresponds to

the linear combination , or equivalently , where l

is the vector of coefficients . A linear combination with

 is called a standardized linear combination, or SLC. By

restricting attention to SLCs, you can make meaningful comparisons
between various choices of linear combinations. For example, with
the test scores, you can seek the combination with the greatest
variance as a way of ranking the students and separating them.

Principal components analysis finds a set of SLCs, called the principal
components, which are orthogonal and taken together explain all the
variance of the original data. The principal components are defined
as follows (from Mardia, Kent, and Bibby (1979)):

If x is a random vector with mean µ and covariance matrix Σ,
then the principal component transformation is the transformation

,

where Γ is orthogonal,  is diagonal, and

. The ith principal component of x may

be defined as the ith element of the vector y, namely, as
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Introduction
Here γi is the ith column of Γ and may be called the ith vector
of principal component loadings.

Note: Definition of loadings

Some authors define the loadings somewhat differently, as the covariances of the principal
components with the original variables. S-PLUS follows Mardia, Kent, and Bibby (1979).

The first principal component has the largest variance among all SLCs of x. Similarly, the second
principal component has the largest variance among all SLCs of x uncorrelated with the first
principal component, and so on.

In general, there are as many principal components as variables. However, because of the way
they are calculated, it is usually possible to consider only a few of the principal components,
which together explain most of the original variation.
3



Chapter 1  Principal Components Analysis
CALCULATING PRINCIPAL COMPONENTS

To calculate principal components, use the princomp function. In
general, the first argument to princomp is a numeric matrix or a data
frame consisting solely of numeric variables. For example, Table 1.1
shows the results of qualifying examinations for 25 graduate students
in mathematics at a fictional university. The students sat for
examinations in each of five subject areas—differential geometry,
complex analysis, algebra, real analysis, and statistics. The differential
geometry and complex analysis examinations were closed book,
while the remaining three exams were open book.

Table 1.1:  Examination scores for graduate students in mathematics.

diffgeom complex algebra reals statistics

1 36 58 43 36 37

2 62 54 50 46 52

3 31 42 41 40 29

4 76 78 69 66 81

5 46 56 52 56 40

6 12 42 38 38 28

7 39 46 51 54 41

8 30 51 54 52 32

9 22 32 43 28 22

10 9 40 47 30 24

11 32 49 54 37 52
4



Calculating Principal Components
You can use matrix together with scan to create an S-PLUS matrix
from the data in Table 1.1:

> testscores <- matrix(scan(), ncol=5, byrow=T)

1: 36 58 43 36 37
2:  . . .
76:

12 40 62 51 40 49

13 64 75 70 66 63

14 36 38 58 62 62

15 24 46 44 55 49

16 50 50 54 52 51

17 42 42 52 38 50

18 2 35 32 22 16

19 56 53 42 40 32

20 59 72 70 66 62

21 28 50 50 42 63

22 19 46 49 40 30

23 36 56 56 54 52

24 54 57 59 62 58

25 14 35 38 29 20

Table 1.1:  Examination scores for graduate students in mathematics. (Continued)

diffgeom complex algebra reals statistics
5



Chapter 1  Principal Components Analysis
> dimnames(testscores) <- list(1:25, c("diffgeom",
+ "complex", "algebra", "reals", "statistics"))
> testscores

   diffgeom complex algebra reals statistics
 1       36      58      43    36         37
 2    . . .

You can then use princomp to perform a principal components
analysis as follows:

> testscores.prc <- princomp(testscores)
> testscores.prc

Standard deviations:
  Comp. 1  Comp. 2  Comp. 3  Comp. 4  Comp. 5
 28.48968 9.035471 6.600955 6.133582 3.723358

The number of variables is 5
        and the number of observations is 25

Component names:
 "sdev" "loadings" "correlations" "scores" "center"
 "scale" "n.obs" "call" "factor.sdev" "coef"

Call:
princomp(x = testscores)

The princomp function returns an object of mode "princomp", and
the printing method for objects of this class shows the standard
deviations of the resulting principal components, together with
information on the size of the original data set, the names of the
components making up the object, and the original call.

By default, princomp uses a weighted covariance estimation function,
cov.wt, to perform the principal components analysis. If you want to
use a minimum volume ellipsoid covariance estimate, use the
cov.mve function, which is described in the section Estimating the
Model Using a Covariance or Correlation Matrix.
6



Calculating Principal Components
Use summary to produce a summary showing the importance of the
calculated principal components:

> summary(testscores.prc)

Importance of components:
                          Comp. 1    Comp. 2
    Standard deviation 28.4896795 9.03547104
Proportion of Variance  0.8212222 0.08260135
 Cumulative Proportion  0.8212222 0.90382353
                          Comp. 3    Comp. 4
    Standard deviation 6.60095491 6.13358179
Proportion of Variance 0.04408584 0.03806395
 Cumulative Proportion 0.94790936 0.98597332
                          Comp. 5
    Standard deviation 3.72335754
Proportion of Variance 0.01402668
 Cumulative Proportion 1.00000000

In our example, the first principal component explains 82% of the
variance, and the first two principal components together explain
90% of the variance.
7



Chapter 1  Principal Components Analysis
PRINCIPAL COMPONENT LOADINGS

The principal component loadings are the coefficients of the principal
components transformation. They provide a convenient summary of
the influence of the original variables on the principal components,
and thus a useful basis for interpretation. A large coefficient (in
absolute value) corresponds to a high loading, while a coefficient near
zero has a low loading.

You can view the loadings for a principal components object in either
of two ways. First, you can print them as part of the object summary
by using the loadings = T argument to summary:

> summary(testscores.prc, loadings=T)

Importance of components:
                          Comp. 1    Comp. 2
    Standard deviation 28.4896795 9.03547104
Proportion of Variance  0.8212222 0.08260135
 Cumulative Proportion  0.8212222 0.90382353
                          Comp. 3    Comp. 4
    Standard deviation 6.60095491 6.13358179
Proportion of Variance 0.04408584 0.03806395
 Cumulative Proportion 0.94790936 0.98597332
                          Comp. 5
    Standard deviation 3.72335754
Proportion of Variance 0.01402668
 Cumulative Proportion 1.00000000

Loadings:
          Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
  diffgeom  0.598  -0.675  -0.185  -0.386
   complex  0.361  -0.245   0.249   0.829  -0.247
   algebra  0.302   0.214   0.211   0.135   0.894
     reals  0.389   0.338   0.700  -0.375  -0.321
statistics  0.519   0.570  -0.607          -0.179
8



Principal Component Loadings
To see the loadings alone, use the loadings function:

> loadings(testscores.prc)

          Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
  diffgeom  0.598  -0.675  -0.185  -0.386
   complex  0.361  -0.245   0.249   0.829  -0.247
   algebra  0.302   0.214   0.211   0.135   0.894
     reals  0.389   0.338   0.700  -0.375  -0.321
statistics  0.519   0.570  -0.607          -0.179

The loadings function returns an object of class "loadings". This
class has methods for printing and plotting; a plot of the loadings lets
you see at a glance which variables are best explained by each
component. For example, consider the loadings plot created by the
following call to plot (and shown in Figure 1.1):

> plot(loadings(testscores.prc))

The loadings for the first principal component are all of the same
sign, and of moderate size. A reasonable interpretation is that this
component represents an “average” score for the five qualifying
examinations. The second component contrasts the two closed book
exams with the three open book exams, with the first and last exams
weighted most heavily.
9



Chapter 1  Principal Components Analysis
PRINCIPAL COMPONENTS ANALYSIS USING CORRELATION

The principal components decomposition is not scale-invariant, so
that you will obtain different decompositions depending on whether
you calculate them for the (unscaled) covariance matrix or the
(scaled) correlation matrix. In general, you use the covariance matrix
when the original observations are on a common scale (as, for
example, our test scores example), but use the correlation matrix
when you have observations of different types (such as those of the
variables in state.x77). Use the cor = T argument to princomp to
calculate principal components for scaled data:

> state.prc <- princomp(state.x77, cor=T)
> state.prc

Standard deviations:
 Comp. 1  Comp. 2  Comp. 3   Comp. 4   Comp. 5   Comp. 6
1.897076 1.277466 1.054486 0.8411327 0.6201949 0.5544923
  Comp. 7   Comp. 8
0.3800642 0.3364338

The number of variables is 8 and the number of observations 
is 50

Component names:

"sdev" "loadings" "correlations" "scores" "center" "scale" 
"n.obs" "call"

Call:
princomp(x = state.x77, cor = T)

> summary(state.prc, loadings=T)

Importance of components:
                         Comp. 1   Comp. 2   Comp. 3
    Standard deviation 1.8970755 1.2774659 1.0544862
Proportion of Variance 0.4498619 0.2039899 0.1389926
 Cumulative Proportion 0.4498619 0.6538519 0.7928445
                          Comp. 4    Comp. 5
    Standard deviation 0.84113269 0.62019488
Proportion of Variance 0.08843803 0.04808021
10



Principal Components Analysis Using Correlation
 Cumulative Proportion 0.88128252 0.92936273
                          Comp. 6   Comp. 7
    Standard deviation 0.55449226 0.3800642
Proportion of Variance 0.03843271 0.0180561
 Cumulative Proportion 0.96779544 0.9858515
                          Comp. 8
    Standard deviation 0.33643379
Proportion of Variance 0.01414846
 Cumulative Proportion 1.00000000

Loadings:
          Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
Population -0.126   0.411   0.656   0.409   0.406
    Income  0.299   0.519   0.100          -0.638
Illiteracy -0.468                  -0.353
  Life Exp  0.412           0.360  -0.443   0.327
    Murder -0.444   0.307  -0.108   0.166  -0.128
   HS Grad  0.425   0.299          -0.232
     Frost  0.357  -0.154  -0.387   0.619   0.217
      Area          0.588  -0.510  -0.201   0.499
          Comp. 6 Comp. 7 Comp. 8
Population                  0.219
    Income -0.462
Illiteracy -0.387  -0.620   0.339
  Life Exp -0.219  -0.256  -0.527
    Murder  0.325  -0.295  -0.678
   HS Grad  0.645  -0.393   0.307
     Frost -0.213  -0.472
      Area -0.148   0.286

From the loadings for this decomposition, we see that the first
principal component contrasts “good” variables such as income and
life expectancy with “bad” variables such as murder and illiteracy. It
is tempting to interpret this component as a real measure of some
nebulous quantity labeled, for example, “Quality of Life.” From the
importance-of-components summary, however, we see that this
component explains only about 45% of the total variance. If we give
this “obvious” interpretation to the first principal component, what
natural interpretation can we give to the second principal component,
which seems to contrast the proportion of frosty days with virtually all
of the other variables, and explains another 20% of the variance? This
11



Chapter 1  Principal Components Analysis
example shows that, while calculating principal components is
straightforward, interpreting the resulting components in physical or
social terms is not always so.

Figure 1.1:  Loadings plot for the test scores data.
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Estimating the Model Using a Covariance or Correlation Matrix
ESTIMATING THE MODEL USING A COVARIANCE OR 
CORRELATION MATRIX

If you do not have raw data, but either a covariance or correlation
matrix derived from the original data, you can use the covlist
argument of the princomp function to perform a principal
components analysis. The data object that is passed to princomp
must be a list object with two components, cov and center.

For example, suppose you have a data object covmatrix containing
the following covariance matrix:

           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760

Convert covmatrix into a list object containing the cov and center
components as follows:

> cov.obj <- list(cov = covmatrix, center = c(0,0,0,0,0))
> cov.obj

$cov:
           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760
$center:
[1] 0 0 0 0 0

To perform the principal components analysis, pass the cov.obj
object to the princomp function by using the covlist argument, as
follows:

> princov <- princomp(covlist = cov.obj)
13



Chapter 1  Principal Components Analysis
> princov

Standard deviations:
  Comp. 1  Comp. 2  Comp. 3  Comp. 4  Comp. 5
 28.48968 9.035471 6.600955 6.133582 3.723358

The number of variables is 5 and the number of
    observations is unknown.

Component names:

 "sdev" "loadings" "correlations" "center" "scale" "call"

Call:
princomp(covlist = cov.obj)

If you have a correlation matrix, you can use the covlist argument
in the same way. For example, suppose you have a data object
cormatrix containing the following correlation matrix:

             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
      reals 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999

Convert cormatrix into a list object containing the cov and center
components as follows:

> cor.obj <- list(cov = cormatrix, center = c(0,0,0,0,0))
> cor.obj

$cov:
             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
      reals 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999

$center:
[1] 0 0 0 0 0
14



Estimating the Model Using a Covariance or Correlation Matrix
To perform the principal components analysis, pass the cor.obj
object to the princomp function by using the covlist argument, as
follows:

> princor <- princomp(covlist = cor.obj)
> princor

Standard deviations:
  Comp. 1   Comp. 2   Comp. 3   Comp. 4   Comp. 5
 2.020188 0.6114408 0.4653519 0.4525298 0.3516317

The number of variables is 5 and the number of observations 
is unknown.

Component names:
 "sdev" "loadings" "correlations" "center" "scale" "call"

Call:
princomp(covlist = cor.obj)

By default, princomp uses a weighted covariance estimation function,
cov.wt, to perform the principal components analysis. If you want to
use a minimum volume ellipsoid covariance estimate, use the
cov.mve function by performing the following steps:

1. Use the cov.mve function with the raw data, in this example,
the rawdataobj object, as follows:

> mve.object <- cov.mve(rawdataobj)

The returned object is a list containing the cov and center
components.

2. Pass the raw data and mve.object to princomp by using the
covlist argument as follows:

> prin.obj <- princomp(rawdataobj, covlist=mve.object)
15



Chapter 1  Principal Components Analysis
EXCLUDING PRINCIPAL COMPONENTS

The purpose of principal components analysis is to reduce the
complexity of multivariate data by transforming the data into the
principal components space, and then choosing the first n principal
components that explain “most” of the variation in the original
variables. Many criteria have been suggested for deciding how many
principal components to retain, including the following:

• (Cattell) Plot the eigenvalues λj against j. The resulting plot,
called a screeplot because it resembles a mountainside with a
jumble of boulders at its base, often provides a convenient
visual method of separating the important components from
the less-important components.

• Include just enough components to explain some arbitrary
amount (typically, 90%) of the variance.

• (Kaiser) Exclude those principal components with eigenvalues
below the average. For principal components calculated from
a correlation matrix, this criterion excludes components with
eigenvalues less than 1.

Mardia, et al. point out that using Cattell’s criterion typically results in
too many included components, while Kaiser’s criterion typically
includes too few. The 90% criterion is often a useful compromise.

Creating a 
Screeplot

A screeplot plots the eigenvalues against their indices, and generally
breaks visually into a steady downward slope (the mountainside) and
a gradual tailing away (the scree). The break from the steady
downward slope indicates the break between the “important”
principal components and the remaining components which make up
the scree. The screeplot is the default plot for objects of class
"princomp". Thus, to create a screeplot for a principal components
object, simply use the plot function:

> plot(state.prc)

[1] 0.700000 1.900000 3.100000 4.300000 5.500000
[6] 6.700000 7.900000 9.099999
16



Excluding Principal Components
By default, the screeplot takes the form of a barplot, and the call to
plot returns the x-coordinates of the centers of the bars. The resulting
plot is shown in Figure 1.2. Looking for an obvious break between
mountainside and scree, you would probably conclude that four or
six components should be retained. The 90% criterion retains five
components.

You can also create a screeplot as a line graph, using the argument
style = "lines":

> plot(testscores.prc, style="lines")

[1] 1 2 3 4 5

The screeplot for the test scores is shown in Figure 1.3. Only the first
and second components appear important here, in agreement with
the 90% criterion.

Figure 1.2:  Screeplot for the state.x77 data.
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Chapter 1  Principal Components Analysis
The plot method objects of class "princomp" simply calls the
screeplot function. You can call screeplot directly to create the
plots in Figure 1.2 and Figure 1.3. Using screeplot is particularly
useful when writing functions or S-PLUS scripts; it clearly indicates
what type of plot is being created.

Evaluating 
Eigenvalues

To apply Kaiser’s criterion for excluding eigenvalues:

1. Square the sdev component of the principal components
object to obtain the vector of eigenvalues.

2. Take the mean of the vector of eigenvalues.

3. Exclude those components with eigenvalues less than the
mean.

For example, for the testscores data:

> testscores.eigen <- testscores.prc$sdev^2
> testscores.eigen

 Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
 811.662 81.6397 43.5726 37.6208 13.8634

Figure 1.3:  Screeplot for the state.x77 data, using style = "lines".
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Excluding Principal Components
> mean(testscores.eigen)

[1] 197.672

Using Kaiser’s criterion, we exclude all components except the first.
The 90% criterion suggests keeping the first two.

For principal components objects created from correlation matrices,
such as our state.prc example, the mean of the eigenvalues is 1, so we
can simply look at the eigenvalues to determine which components to
exclude:

> state.prc$sdev^2

 Comp. 1 Comp. 2 Comp. 3  Comp. 4  Comp. 5  Comp. 6
  3.5989 1.63192 1.11194 0.707504 0.384642 0.307462
  Comp. 7  Comp. 8
 0.144449 0.113188

Kaiser’s criterion suggests including only the first three principal
components. The 90% criterion suggests including the first five.
19



Chapter 1  Principal Components Analysis
PREDICTION: PRINCIPAL COMPONENT SCORES

One important use of principal components is interpreting the
original data in terms of the principal components. For example, the
first principal component of the test scores data seems to reflect a
weighted average of the test scores. Evaluating this average for each
student provides a simple criterion for ranking the students. The
images of the original data under the principal components
transformation are referred to as principal component scores. By default,
princomp calculates the scores and stores them in the scores
component of the returned object:

> testscores.prc$scores

      Comp. 1    Comp. 2    Comp. 3    Comp. 4
 1  -7.540322 -10.216765  -2.537471   8.670900
 2  20.361037      . . .

You can force princomp to omit the scores by giving the argument
scores = F.

Alternatively, if you view the principal components as estimates of
interpretable quantities (for example, interpreting the first principal
component of the test scores as an estimate of overall ability), it is
perhaps more natural to view the principal component scores as
predictions from the principal components model. In this case, it is
most natural to obtain the scores using the generic predict function:

> predict(testscores.prc)

      Comp. 1    Comp. 2    Comp. 3    Comp. 4
 1  -7.540322 -10.216765  -2.537471   8.670900
 2  20.361037      . . .

You can use predict to obtain estimated scores for new data, as well.
The new data must be in the same form as the original data. For
20



Prediction: Principal Component Scores
example, suppose you obtained test scores for five additional students
and stored them in the matrix newscores:

> newscores

  diffgeom complex algebra reals statistics
1       22      50      70    54         30
2       22      46      38    52         62
3       22      42      50    40         62
4       42      49      70    42         50
5       32      35      44    66         32

You can obtain the predicted scores for this new data using predict
as follows:

> predict(testscores.prc, newdata=newscores)

     Comp. 1   Comp. 2    Comp. 3     Comp. 4
1  -7.273022  9.070945  20.624141   3.8263656
2  -2.559011 20.754755  -7.975341  -0.7556388
3  -5.044379 20.243279 -14.834342   2.0521791
4  10.041295  3.158848  -3.878835   1.2183456
5  -8.851869  5.635621  16.724818 -20.3311596
      Comp. 5
1  16.4349148
2 -16.2811592
3  -0.7045226
4  18.1853226
5  -6.7149242
21



Chapter 1  Principal Components Analysis
ANALYZING PRINCIPAL COMPONENTS GRAPHICALLY

The Biplot We have already seen several graphical views of some portions of the
principal components analysis, namely the screeplot and the loadings
plot. However, neither of these plots gives a comprehensive view of
both the principal components and the original data. The biplot
(Gabriel (1971)) allows you to represent both the original variables
and the transformed observations on the principal components axes.
By showing the transformed observations, you can easily interpret the
original data in terms of the principal components. By showing the
original variables, you can view graphically the relationships between
those variables and the principal components.

To create a biplot in S-PLUS, use the biplot function, giving an object
of class "princomp" as its first argument. For example, to create a
biplot for the test scores data, use biplot as follows:

> biplot(testscores.prc)

The resulting plot is shown in Figure 1.4.

Figure 1.4:  Biplot of test scores data.
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Analyzing Principal Components Graphically
Interpreting the biplot is straightforward: the x-axis represents the
scores for the first principal component, the y-axis the scores for the
second principal component. The original variables are represented
by arrows which graphically indicate the proportion of the original
variance explained by the first two principal components. The
direction of the arrows indicates the relative loadings on the first and
second principal components. For example, the variable diffgeom
has the largest loadings in absolute value for both the first and second
components, and the loading on the second component has negative
sign. Thus diffgeom is represented by a longish, downward sloping
arrow. The variable algebra has the smallest loadings on the first two
components, and both loadings have the same sign. Thus, algebra is
represented by a short, slightly upward-pointing arrow.
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Chapter 2  Factor Analysis
INTRODUCTION

In many scientific fields, notably psychology and other social
sciences, you are often interested in quantities, such as intelligence or
social status, that are not directly measurable. However, it is often
possible to measure other quantities which reflect the underlying
variable of interest. Factor analysis is an attempt to explain the
correlations between observable variables in terms of underlying
factors, which are themselves not directly observable. For example,
measurable quantities such as performance on a series of tests can be
explained in terms of an underlying factor such as intelligence.

At first glance, factor analysis closely resembles principal components
analysis. Both use linear combinations of variables to explain sets of
observations of many variables. In principal components analysis, the
observed variables are themselves the quantities of interest. The
combination of these variables in the principal components is
primarily a tool for simplifying the interpretation of the observed
variables. In factor analysis, by contrast, the observed variables are of
relatively little intrinsic interest—the underlying factors are the
quantity of interest.

Formally, if x is a p x 1 random vector with mean µ and covariance
matrix Σ, then the k-factor model holds for x if x can be written in the
form

where  is a p x k matrix of constants called the matrix of
factor loadings and f and u are random vectors representing,
respectively, the k underlying common factors and p unique factors

Note: Different uses of the word “factor”

The use of the word “factor” in factor analysis has nothing to do with the usual S-PLUS sense of a
factor as a categorical data object. In this chapter, we reserve the phrase “S-PLUS factor” for this
usual sense; the word “factor” alone refers to the traditional meaning in factor analysis, that is, an
underlying variable that is not directly observable.

(2.1)x µ Λf u+ +=

Λ λ ij{ }=
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Introduction
associated with the original observed variables. Equivalently, the
covariance matrix Σ can be decomposed into a factor covariance matrix
and an error covariance matrix:

where . The diagonal of the factor covariance matrix is

called the vector of communalities hi
2, where

.

The communalities represent the common variation in the factors,
while the ψii, called the uniquenesses, represent the variation in the xi
not shared with the other variables.

The k-factor model makes sense only if the degrees of freedom ,
where s is given by the equation

.

For example, if p = 5, s > 0 for k = 1 and k = 2, but s < 0 for k = 3,
k = 4, and k = 5. Thus, if a factor model is appropriate for a set of five
variables, it will have no more than two factors.

(2.2)Σ ΛΛ' Ψ+=

Ψ VAR u( )=

hi
2 λ i j

2

j 1=

k

∑=

s 0≥

s
1
2
--- p k–( )2 1

2
--- p k+( )–=
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Chapter 2  Factor Analysis
ESTIMATING THE MODEL

To perform factor analysis in S-PLUS, use the factanal function.
There are two main techniques for estimating the factors in factor
analysis: the principal factor estimate and the maximum likelihood
estimate. For a description of these techniques, see Harman (1976) or
Mardia, Kent, and Bibby (1979). The principal factor estimate
(method = "principal") is the default.

For example, consider again the test scores data of Table 1.1. We
suppose a two-factor model, one factor representing the overall ability
of each student and the second factor representing the relative effects
of open vs. closed book exams. We perform the factor analysis as
follows, giving factanal the raw data testscores and specifying
the number of factors with the factors argument:

> testscores.fa <- factanal(testscores, factors=2)

The factanal function returns an object of class "factanal". As
always, you can look at the object by typing its name. The print
method for objects of class "factanal" shows the sum of squares of
the factor loadings, the size of the data, the names of the components
in the returned object, and the call that created the object:

> testscores.fa

Sums of squares of loadings:
  Factor1  Factor2
 2.219645 1.866672
The number of variables is 5 and the number of observations 
is 25

Component names:

 "loadings" "uniquenesses" "correlation" "criteria"
 "factors" "dof" "method" "center" "scale" "n.obs"
 "scores" "call"

Call:
factanal(x = testscores, factors = 2)
28



Estimating the Model
By default, factanal uses a weighted covariance estimation function,
cov.wt, to perform the factor analysis. If you want to use a minimum
volume ellipsoid covariance estimate, use the cov.mve function,
which is described in the section Estimating the Model Using a
Covariance or Correlation Matrix.

To see a numeric summary of the factor solution, use the summary
function:

> summary(testscores.fa)

Importance of factors:
                Factor1   Factor2
   SS loadings 2.219645 1.8666722
Proportion Var 0.443929 0.3733344
Cumulative Var 0.443929 0.8172634

The degrees of freedom for the model is 1.

Uniquenesses:
  diffgeom   complex   algebra     reals statistics
 0.1970121 0.1879035 0.1201226 0.1984058  0.2102388

Loadings:
           Factor1 Factor2
  diffgeom 0.506   0.739
   complex 0.457   0.777
   algebra 0.787   0.510
     reals 0.775   0.448
statistics 0.730   0.507
attr(, "names"):
 [1] Factor1 Factor1 Factor1 Factor1 Factor1 Factor2
 [7] Factor2 Factor2 Factor2 Factor2

The table at the top of the summary, labeled “Importance of Factors,”
shows the sum of squares of the loadings on each factor, along with
the proportion of the total variance explained by each factor, and the
cumulative proportion explained after each factor is included. Thus,
the two-factor model for the test scores data explains about 80% of the
variation in the original data, with the first factor accounting for about
45%.
29



Chapter 2  Factor Analysis
The summary also shows the number of degrees of freedom in the
model, the uniquenesses, and the factor loadings. The factor loadings
can also be seen by themselves, using the loadings function:

> loadings(testscores.fa)

           Factor1 Factor2
  diffgeom 0.506   0.739
   complex 0.457   0.777
   algebra 0.787   0.510
     reals 0.775   0.448
statistics 0.730   0.507
attr(, "names"):
 [1] Factor1 Factor1 Factor1 Factor1 Factor1 Factor2
 [7] Factor2 Factor2 Factor2 Factor2

Since the uniquenesses and communalities sum to 1 for each variable,

you can calculate the communalities hi
2 from the uniquenesses as

follows:

> 1 - testscores.fa$uniquenesses

  diffgeom   complex   algebra     reals statistics
 0.8029879 0.8120965 0.8798774 0.8015942  0.7897612
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Estimating the Model Using Maximum Likelihood
ESTIMATING THE MODEL USING MAXIMUM LIKELIHOOD

To use the maximum likelihood factor estimate, specify
method = "mle" in the call to factanal:

> testscores.fa2 <- factanal(testscores, factors=2,
+ method="mle")
> testscores.fa2

Sums of squares of loadings:
 Factor1  Factor2
 2.48222 1.726735

The number of variables is 5 and the number of observations 
is 25

Test of the hypothesis that 2 factors are sufficient versus 
the alternative that more are required:
The chi square statistic is 0.78 on 1 degree of freedom.
The p-value is 0.378

Component names:

"loadings" "uniquenesses" "correlation" "criteria" 
"factors" "dof" "method" "center" "scale" "n.obs" "scores" 
"call"

Call:
factanal(x = testscores, factors = 2, method = "mle")

With the maximum likelihood method, it is possible to perform a test
of the hypothesis that the specified number of factors is adequate to
explain the model, and the print method for objects of class
"factanal" gives the results of this test. In this case, there is no
evidence that more factors should be added.
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Chapter 2  Factor Analysis
ESTIMATING THE MODEL USING A COVARIANCE OR 
CORRELATION MATRIX

If you do not have raw data, but either a covariance or correlation
matrix derived from the original data, you can use the covlist
argument of the factanal function to estimate the factors. The data
object that is passed to factanal must be a list object with two
components, cov and center.

For example, suppose you have a data object covmatrix containing
the following covariance matrix:

           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760

Convert covmatrix into a list object containing the cov and center
components as follows:

> cov.obj <- list(cov = covmatrix, center = c(0,0,0,0,0))
> cov.obj

$cov:
           diffgeom  complex  algebra    reals statistics
  diffgeom 334.8224  174.424 132.0432 169.8096    224.312
   complex 174.4240  139.920  87.6320 104.1360    136.800
   algebra 132.0432   87.632  91.5776 101.8928    129.776
     reals 169.8096  104.136 101.8928 160.2784    160.848
statistics 224.3120  136.800 129.7760 160.8480    261.760

$center:
[1] 0 0 0 0 0

To perform the factor analysis, pass the cov.obj object to the
factanal function by using the covlist argument, as follows:

> factcov <- factanal(covlist = cov.obj)
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Estimating the Model Using a Covariance or Correlation Matrix
> factcov

Sums of squares of loadings:
  Factor1
 3.854577

The number of variables is 5 and the number of observations 
is unknown.

Component names:

"loadings" "uniquenesses" "correlation" "criteria" 
"factors" "dof" "method" "center" "scale" "call"

Call:
factanal(covlist = cov.obj)

If you have a correlation matrix, you can use the covlist argument
in the same way. For example, suppose you have a data object
cormatrix containing the following correlation matrix:

             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
       real 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999

Convert cormatrix into a list object containing the cov and center
components as follows:

> cor.obj <- list(cov = cormatrix, center = c(0,0,0,0,0))
> cor.obj

$cov:
             diffgeom   complex   algebra     reals statistics
   diffgeom 1.0000000 0.8058590 0.7540744 0.7330229  0.7576935
    complex 0.8058590 0.9999999 0.7741556 0.6953821  0.7148164
    algebra 0.7540744 0.7741556 1.0000000 0.8410298  0.8382009
      reals 0.7330229 0.6953821 0.8410298 1.0000000  0.7852836
 statistics 0.7576935 0.7148164 0.8382009 0.7852836  0.9999999

$center:
[1] 0 0 0 0 0
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Chapter 2  Factor Analysis
To perform the factor analysis, pass the cor.obj object to the
factanal function by using the covlist argument, as follows:

> factcor <- factanal(covlist = cor.obj)
> factcor

Sums of squares of loadings:
  Factor1
 3.854577

The number of variables is 5 and the number of observations 
is unknown.

Component names:

"loadings" "uniquenesses" "correlation" "criteria" 
"factors" "dof" "method" "center" "scale" "call"

Call:
factanal(covlist = cor.obj)

By default, factanal uses a weighted covariance estimation function,
cov.wt, to estimate the factors. If you want to use a minimum
volume ellipsoid covariance estimate, use the cov.mve function by
performing the following steps:

1. Use the cov.mve function with the raw data, in this example,
the rawdataobj object, as follows:

> mve.object <- cov.mve(rawdataobj)

The returned object is a list containing the cov and center
components.

2. Pass the raw data and mve.object to factanal by using the
covlist argument as follows:

> fact.obj <- factanal(rawdataobj, covlist=mve.object)
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Rotating Factors
ROTATING FACTORS

The solution to Equation (2.2) is not unique (unless the number of
factors k is 1); if G is a k x k orthogonal matrix, then

which has the form of Equation (2.2) with ∆ = ΛG being the matrix of
rotated factor loadings. Thus, the factor loadings are inherently
indeterminate. Any solution can be rotated arbitrarily to arrive at a
new solution. In practice, this indeterminancy is used to arrive at a
factor solution that has what Thurstone (1935) named simple structure.
Loosely, the factor solution has simple structure if each variable is
loaded highly on one factor, and all factor loadings are either large (in
absolute value) or near zero.

Factor analysts have developed many different criteria for choosing
the appropriate rotation. By default, S-PLUS uses the “varimax”
method. You can specify a different rotation with the rotation
argument to factanal. For example, to compute the factor solution
to the test scores data using the "oblimin" rotation, call factanal as
follows:

> testscores.fao <- factanal(testscores, factors=2,
+ rotation="oblimin")
> summary(testscores.fao)

Importance of factors:
                 Factor1   Factor2
   SS loadings 404.22436 400.63064
Proportion Var  80.84487  80.12613
Cumulative Var  80.84487 160.97100

The degrees of freedom for the model is 1.

Uniquenesses:
  diffgeom   complex   algebra     reals statistics
 0.1970121 0.1879035 0.1201226 0.1984058  0.2102388

(2.3)Σ ΛG'( ) G'Λ'( ) Ψ+=
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Chapter 2  Factor Analysis
Loadings:
          Factor1 Factor2
  diffgeom  8.875   9.040
   complex  8.759   8.985
   algebra  9.425   9.229
     reals  8.911   8.680
statistics  8.972   8.814
attr(, "names"):
 [1] Factor1 Factor1 Factor1 Factor1 Factor1 Factor2
 [7] Factor2 Factor2 Factor2 Factor2

You can rotate any object of class "factanal" using the rotate
function:

> rotate(testscores.fa, rotation="biquartimin")

Sums of squares of loadings:
  Factor1  Factor2
 3.943076 2.836276

The number of variables is 5 and the number of observations 
is 25

Component names:

"loadings" "uniquenesses" "correlation" "criteria" 
"factors" "dof" "method" "center" "scale" "n.obs" "scores" 
"call"

Call:
rotate.factanal(x = factanal(x = testscores, factors = 2), 
rotation = "biquartimin")

> loadings(.Last.value)

          Factor1 Factor2
  diffgeom -0.153   1.042
   complex -0.372   1.252
   algebra  1.137  -0.210
     reals  1.235  -0.359
statistics  0.981
attr(, "names"):
[1] Factor1 Factor1 Factor1 Factor1 Factor1 Factor2
[7] Factor2 Factor2 Factor2 Factor2
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Rotating Factors
S-PLUS recognizes the following character strings as valid rotation
arguments:

"varimax"      "quartimax"  "equamax"
"parsimax"     "orthomax"   "covarimin"
"biquartimin"  "quartimin"  "oblimin"
"procrustes"   "promax"     "none"
"crawford.ferguson"

See Harman (1976) for descriptions of the various rotations. See the
rotate help file for additional information on using the various
rotations in S-PLUS.
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Chapter 2  Factor Analysis
VISUALIZING THE FACTOR SOLUTION

The loadings matrix provides a precise, numeric answer to the
question of which variables are loaded most strongly on each factor.
However, you can get a much more intuitive feel for the answer if you
look at the loadings visually. You obtain a loadings plot by calling
plot on the factor loadings:

> plot(loadings(testscores.fa))

The resulting plot is shown in Figure 2.1.

Figure 2.1:  Loadings for the test scores principal factor solution.
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Visualizing the Factor Solution
To see the relation of the factors to both the original variables and the
original data, use biplot:

> biplot(testscores.fa)

The resulting plot is shown in Figure 2.2.

Figure 2.2:  Biplot for the test scores principal factor solution.
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Chapter 2  Factor Analysis
PREDICTION: FACTOR ANALYSIS SCORES

An important use of factor analysis is to translate the original data into
the planes of the factors. You view the factors as estimates of
interpretable quantities (for example, interpreting the first factor of
the test scores as an estimate of overall ability). The images of the
original data under the factor analysis transformation are referred to
as factor analysis scores. By default, factanal calculates the scores and
stores them in the scores component of the returned object:

> testscores.fa$scores

       Factor1   Factor2
 1  -1.1778029 0.7612478
 2  -0.2755734     . . .

You can force factanal to omit the scores by giving the argument
scores = F.

It is perhaps more natural to view the factor scores as predictions
from the factor analysis model. In this case, it is most natural to obtain
the scores using the generic predict function:

> predict(testscores.fa)

       Factor1    Factor2
 1  -1.1778029  0.7612478
 2  -0.2755734      . . .

You can use predict to obtain estimated scores for new data, as well.
The new data must be in the same form as the original data. For
example, suppose you obtained test scores for five additional students
and stored them in the matrix newscores:

> newscores

  diffgeom complex algebra reals statistics
1       22      50      70    54         30
2       22      46      38    52         62
3       22      42      50    40         62
4       42      49      70    42         50
5       32      35      44    66         32
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Prediction: Factor Analysis Scores
You can obtain the predicted scores for this new data using predict
as follows:

> predict(testscores.fa, newdata=newscores)

          Factor1    Factor2
[1,]  1.454873272 -0.9626068
[2,] -0.001166622 -0.5764937
[3,]  0.493414880 -0.8808624
[4,]  1.216808651 -0.3201456
[5,]  0.570954434 -1.1814138
attr(, "type"):
[1] "regression"
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Chapter 3  Discriminant Analysis
INTRODUCTION

Suppose you have a set of quantitative observations about individuals
belonging to two or more groups, such as the three species in Fisher’s
iris data, or patients infected with or free of some disease.
Membership in a given group can be represented by a categorical
variable. You can use the quantitative observations to create a model
that explains the grouping of the given individuals, and can further be
used to assign additional observations to the correct group. Such
models can be fit in a variety of ways, all of which are encompassed
by the general term discriminant analysis.

In the simplest case, assume that all the groups have equal covariance
matrices. In this case, called the homoscedastic model, you can derive a
linear discriminant function of the form:

In the most general case, the various groups have independent
covariance matrices, leading to the heteroscedastic model, which leads to
a quadratic discriminant function of the form:

Relationships among feature variables with respect to the grouping
variable can be expressed by their mean values and their variance-
covariance matrices. You can quantify these relationships and take
advantage of group variance-covariance similarities to reduce the
number of parameters estimated.

l x( ) βi0 β i 1x+=

d x( ) β i 0 β i1x xTβ i2x+ +=
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A Simple Example
A SIMPLE EXAMPLE

As a simple example of using the discrim function, consider Fisher’s
iris data in the S-PLUS data set iris. This data set is an array
containing 50 observations of each of three species of iris. We first
need to convert it to a data frame:

Species <- factor(c(rep("Setosa", 50), rep("Versicolor",
     50), rep("Virginica", 50)))
exiris <- rbind(iris[,,1], iris[,,2], iris[,,3])
exiris <- data.frame(Species, exiris)

Next we fit a default (homoscedastic) model:

exiris.discrim <- discrim(Species ~ ., data=exiris)

Call:
discrim(Species ~ ., data = exiris)

Prior probabilities of groups:
    Setosa Versicolor Virginica 
 0.3333333  0.3333333 0.3333333

Number of observations:
 Setosa Versicolor Virginica 
     50         50        50

Group means:
           Sepal.L. Sepal.W. Petal.L. Petal.W. 
    Setosa    5.006    3.428    1.462    0.246
Versicolor    5.936    2.770    4.260    1.326
 Virginica    6.588    2.974    5.552    2.026
...

The “.” on the right-hand side of the formula tells S-PLUS to fit a
model using all the remaining variables in exiris as predictor
variables. We next obtain predictions for our training data:

exiris.predict <- predict(exiris.discrim)
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Chapter 3  Discriminant Analysis
How well did our model do? There were 150 observations in the
original data; as the following expression shows, only 3 are
misclassified by our simple model:

sum(exiris.predict$groups != Species)

[1] 3
46



Models
MODELS

The various models for discriminating between the groups specify
some relationships among the groups’ covariance matrices; the two
extremes that are typically considered are the heteroscedastic model,
in which there is no posited relationship among the covariance
matrices, and the homoscedastic model, in which the covariance
matrices are assumed to be all alike.. For the discrim function a
model is specified by the family argument. Currently, there are
three family constructors for the discrim function: Classical, CPC,
and Canonical. Each family defines a possible hierarchy of models
that makes use of the posited similarity among the group covariances.

The Classical family includes the following covariance structures,
from most general to specific:

• heteroscedastic

• equal correlation

• proportional

• group spherical

• homoscedastic

• spherical.

As you move from the heteroscedastic to the spherical model, there is
in general a reduction in the number of parameters which have to be
estimated. There is some overlap in the number of parameters
estimated for the proportional and group spherical models, however,
depending on the number of groups and number of feature variables.
Models with fewer estimated parameters tend to be more stable in
terms of standard errors than models with more parameters. You fit
the Classical hierarchy of models in S-PLUS using the discrim
function with the argument family=Classical(cov.structure=).
For example, an equal correlation model would be fit by specifying
cov.structure="equal correlation".

The family CPC is the common principal component family (Flury,
1984). The two covariance structures currently available for this
family are the proportional and common principal component. These
do not exhaust the possibilities discussed by Flury (1988), but together
with the homoscedastic and heteroscedastic models of the classical
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Chapter 3  Discriminant Analysis
family, they complete another logical hierarchy of models. The
discrim function with argument family=CPC(cov.structure=)
provides the two principal component models.

The Canonical family consists of just one model, using the
homoscedastic covariance structure.

We assume that the feature vectors are p-variate normal random
variables , for i=1,...,g. The normality assumption is not
required for the canonical discriminant function, however.

Heteroscedastic The heteroscedastic model is the most general model and requires
estimating the maximum number of parameters: 
variance-covariance estimates. Here, we have .

To fit a heteroscedastic model, use discrim with the argument
family=Classical(cov="heteroscedastic"):

> exiris.h5 <- discrim(Species ~ ., data=exiris,
+ family=Classical(cov="heteroscedastic"))
> exiris.h5

Call:
discrim(Species ~ ., data = exiris, family = Classical(cov
     = "heteroscedastic"))

Prior probabilities of groups:
    Setosa Versicolor Virginica 
 0.3333333  0.3333333 0.3333333

Number of observations:
 Setosa Versicolor Virginica 
     50         50        50

Group means:
           Sepal.L. Sepal.W. Petal.L. Petal.W. 
    Setosa    5.006    3.428    1.462    0.246
Versicolor    5.936    2.770    4.260    1.326
 Virginica    6.588    2.974    5.552    2.026
...

N µµµµi ΣΣΣΣ i,( )

g p⋅ p 1+( ) 2⁄
ΣΣΣΣ i ΣΣΣΣ j  for i j≠≠
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Models
Equal 
Correlation 
Matrix

The equal correlation matrix model assumes that the groups have a
common correlation structure, but different variances. The
covariance matrix of each group is then , where

 and  is the common correlation matrix.

Here, we estimate  correlation and variance
parameters, a reduction of  from the
heteroscedastic model.

To fit an equal-correlation model, use discrim with the argument
family=Classical(cov="equal correlation"):

exiris.eqcor <- discrim(Species ~ ., data=exiris,
     family=Classical(cov="equal"))

Common 
Principal 
Component

The group covariances matrices for the common principal
component model can be written as , where

 and A is the matrix of common principal
components. The number of parameters estimated here is

.

To fit a common principal component model, use discrim with the
argument family=CPC() (the common principal component is the
default for the CPC family):

exiris.cpc <- discrim(Species ~ ., data=exiris,
     family=CPC())

Proportional 
Covariances

The proportional covariances model further reduces the number of
parameters to estimate to  by assuming each
group’s covariance is proportional to a common covariance:

. Note that one proportionality constant, κi, is redundant, so

we set  In the common principal component family, the

proportional model assumes , for i=2,...,g and k=1,...,p.

ΣΣΣΣ i K i ΨΨΨΨK i=

K i diag σi1 … σip, ,( )= ΨΨΨΨ

g p⋅ p p 1–( ) 2⁄⋅+

g 1–( ) p p 1–( ) 2⁄⋅ ⋅

ΣΣΣΣ i AΛΛΛΛiA=

ΛΛΛΛi diag λ i1 … λ ip, ,( )=

g p p p⋅+⋅

g 1–( ) p p 1+( ) 2⁄⋅+

ΣΣΣΣ i κ i
2ΣΣΣΣ=

κ1 1.≡

λ ik κ i
2λ1k=
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Chapter 3  Discriminant Analysis
To fit a classical proportional covariances model, use discrim with
the argument family=Classical(cov="proportional"):

exiris.propcov <- discrim(Species ~ ., data=exiris,
     family=Classical(cov="proportional"))

Spherical Here we assume that the feature vectors are independent. Two
spherical models can be fit. The more general is the group spherical
model, in which the variances for the feature vectors for each group

are different . To fit a group spherical model,
use discrim with the argument family = Classical(cov =
"group"):

exiris.gs <- discrim(Species ~ ., data=exiris,
     family=Classical(cov="group"))

The spherical model, on the other hand, assumes the feature vector

variances are the same for each group , for

all . Thus, the spherical model is the most restrictive
model, but also the simplest to compute, with only p variances to be
estimated. 

To fit a spherical model, use discrim with the argument
family=Classical(cov="spherical"):

exiris.sph <- discrim(Species ~ ., data=exiris,
     family=Classical("spherical"))

Homoscedastic The homoscedastic model assumes that the group covariance
matrices are equal , for all . Here, 
variance-covariances are estimated. You can fit a homoscedastic
model using either the Classical or Canonical families. (It is the
only covariance structure permissible for the Canonical family.) To
fit a classical homoscedastic model, use discrim with the argument
family=Classical(cov=”homoscedastic”):

exiris.homcl <- discrim(Species ~ ., data=exiris,
     family = Classical(cov=”homoscedastic”))

ΣΣΣΣ i diag σ i1
2 … σ ip

2, ,( )=

ΣΣΣΣi ΣΣΣΣ diag σ1
2 … σp

2, ,( )= =

i 1 … g, ,=

ΣΣΣΣi ΣΣΣΣ= i 1 … g, ,= p p 1+( ) 2⁄⋅
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To fit a canonical homoscedastic model, use discrim with the
argument family = Canonical():

exiris.homcan <- discrim(Species ~ ., data=exiris,
     family = Canonical())
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Chapter 3  Discriminant Analysis
HYPOTHESIS TESTING

A likelihood ratio test can be performed between two or more fitted
models to test for a plausible covariance structure for the groups.
One hierarchy of models that can be constructed is the
heteroscedastic, call it hypothesis H5, equal correlation, H4,
proportional, H3, group spherical H2, homoscedastic, H1, and
spherical, H0, covariance structures. A sequence of tests proceeds
from the most general, H4 versus H5, to the most restrictive, H0
versus H1, until a significant likelihood ratio statistic is observed
(McLachlan, 1992, pp. 175-178). You perform these tests using the
anova method for the discrim class.

For example, to compare our heteroscedastic model discrim.het to
our equal-correlation model discrim.eqcor, we call anova as
follows:

> anova(exiris.het, exiris.eqcor)

Group Variable: Species 
                 Cov.Structure Df     AIC     BIC 
  exiris.het   heteroscedastic 46 -838.57 -792.08
exiris.eqcor equal correlation 34 -823.08 -788.72
             Loglik    Test Lik.Ratio     P.value 
  exiris.het 511.28                              
exiris.eqcor 479.54 1 vs. 2    63.489 5.1801e-009

The models differ significantly, so in this case we believe the full
heteroscedastic model is required.

Within the CPC family, there is just a two level hierarchy. This
permits a two level hierarchy for the principal component models:
Hproportional versus HCPC. For a full hierarchy, you should include the
classical heteroscedastic and homoscedastic models.
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Estimation
ESTIMATION

How parameters are estimated depends on the model fitted. The
classical homoscedastic and heteroscedastic covariance structures of
the Classical family require only simple manipulation of the
estimated means and covariances. The equal correlation and
proportional covariance structures of the Classical family require
numerical optimization with respect to the Wishart distribution.  The
canonical discriminant function requires eigenvalue estimation, while
the common principal component family requires both optimization
and eigenvalue estimation.

Classical 
Homoscedastic 
and 
Heteroscedastic

The classical homoscedastic and heteroscedastic discriminant
functions are derived from the log of the normal distribution

For the heteroscedastic model, the quadratic discriminant function is
then

where , , and

. Substituting the unbiased estimates for ΣΣΣΣi and µµµµi results

in the estimated quadratic discriminant function.

A linear discriminant function is obtained if we can assume the group
covariance matrices are equal, the homoscedastic model. In this case
we replace the common covariance matrix ΣΣΣΣ with the group
covariance matrices ΣΣΣΣi above. Once done, the quadratic term

 is constant for all groups and may be discarded from the

l x µµµµi ΣΣΣΣ i,( ) p
2
--- ΣΣΣΣi

1
2
--- x µµµµi–( )TΣΣΣΣ i

1– x µµµµi–( )T–log⋅–∝

p
2
--- ΣΣΣΣilog⋅–=

1
2
---xTΣΣΣΣi

1– x µµµµi
TΣΣΣΣ i

1– x 1
2
---µµµµ

i

T
ΣΣΣΣ i

1– µµµµi–+–

di x( ) 1
2
--- p ΣΣΣΣ i µµµµi

TΣΣΣΣi
1– µµµµ i+log( )– µµµµi

TΣΣΣΣi
1– x 1

2
---xTΣΣΣΣi

1– x+ +=

 β i 0 β i1x xTβi 2x+ +=

β i0
1
2
--- p ΣΣΣΣ i µµµµi

TΣΣΣΣ i
1– µµµµi+log( )–= β i1 µµµµ i

TΣΣΣΣ i
1–=

β i2
1
2
---ΣΣΣΣ i

1––=

1
2
---xTΣΣΣΣ i

1– x
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Chapter 3  Discriminant Analysis
discriminant function leaving only the constant terms  and the

linear terms .

Proportional 
Covariance and 
Equal 
Correlation 
Matrices

For the proportional covariance matrices model we assume that
 for . Under the assumption of p-variate

normality of the feature variables the maximum likelihood estimates,
denoted by a ‘hat’ over the variable, of κi and ΣΣΣΣ satisfy

 and , where κ1 ≡ 1, tr() is the trace

function,  is the number of observations in the training data from

group i and  (McLachlan, 1992, p. 139). These equations are

solved iteratively until convergence.

McLachlan (1992, p. 139) also provides an iterative solution for the
equal correlation problem. Instead of working with the common
correlation matrix, however, we work with the group covariance
matrices such that , where the diagonal matrices

 and for the first group , for

. The estimating equations are then

 and , for

 and .

Common 
Principal 
Components

Flury (1984) developed the common principal component model,
which is also discussed in McLachlan (1992, p. 140). Here, the group
covariance matrices share the same principal axes, A, which is
expressed as  where .

A special case is the proportional covariance model where
 for .

β i 0

β i1

ΣΣΣΣ i κ i
2ΣΣΣΣ= i 1 … g, ,=

κ̂ i
tr ΣΣΣΣ̂ ΣΣΣΣ̂ i

1–
( )

p
----------------------

 
 
 

1 2/–

= ΣΣΣΣ̂
niΣΣΣΣ̂ i

nκ̂ i

---------

i 1=

g

∑=

ni

n ni∑=

ΣΣΣΣ i K i ΣΣΣΣK i=

K i diag κi 1 … κ ip, ,( )= κij 1≡

j 1 … p, ,=

ΣΣΣΣ̂ ni n⁄( ) K̂ i
1– ΣΣΣΣ̂ iK̂ i

1–( )
i 1=

g

∑= κ̂ ij ΣΣΣΣ̂ 1–( )kj ΣΣΣΣ̂ i( )kj( ) κ̂ ik⁄
k 1=

p

∑=

i 2 … g, ,= j 1 … p, ,=

ΣΣΣΣ i ATΛΛΛΛiA= ΛΛΛΛi diag λ i1 … λ ip, ,( )=

λ ij κ i
2λ1 j= j 1 … p, ,=
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discrim.fm  Page 55  Tuesday, June 8, 1999  9:31 AM
Canonical 
Variates

The canonical discriminant function is a dimension reduction
technique that can be applied only to the homoscedastic model.
Define B as the between-groups sum of squares product matrix
divided by ,

where . The canonical variates are then the eigenvectors

associated with the eigenvalues of ΣΣΣΣ-1B. There are at most
 nonzero eigenvalues. Denote the canonical

variates by the p × d matrix . 

We can then write the constants and linear coefficients of the
discriminant function as

and .

g 1–

B 1
g 1–
------------ µµµµi µµµµ–( ) µµµµi µµµµ–( )T

i 1=

g

∑=

µ µµ µµ µµ µii∑=

d min g 1– p,( )=

ΓΓΓΓ

βi 0
1
2
--- p λjlog

f

d

∑
 
 
 

– µµµµi
TΓΓΓΓΓΓΓΓTµµµµ i+=

βi 1 µµµµ i
TΓΓΓΓΓΓΓΓT=
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Chapter 3  Discriminant Analysis
PREDICTION

We assume that an observation with feature vector  is drawn
randomly from a mixture of  groups with probability density

, where  are the mixing proportions and

 is the probability density function for the observation for each

group . Using the notation of McLachlan (1992), denote
the probability of group membership given an observation with

feature vector  as .

The optimal rule, or Bayes Rule, is to assign observation  to group

 if . 

The discrim function assumes the group density function for x is
multivariate normal. Estimates for the mean, , and covariance, ,

for the p-variate normal density for group  are estimated from
training data, , , . Treatment of the mixing

proportions, , is dependent on the sampling scheme used to obtain
the training data.

There are two sampling schemes in which the training data can be
obtained: mixture sampling and group conditional sampling. The
mixture sampling design is where a random sample of  observations
are obtained and each observation’s group membership and feature
vector is recorded, thereby making the number of observations from
each group, , multinomial random variables so the maximum

likelihood estimate for   is .

In group conditional sampling, the number of individuals sampled
from each group is fixed. If the  are not known in advance,
McLachlan (1992, pp. 31-33) discusses a technique to use an
additional unclassified mixture sample to estimate the group
proportions using the group conditional error rates obtained from the
training data (the confusion matrix).

X x=

g

fX x( ) ππππ i fi x( )
i 1=
g∑= ππππi

fi x( )

i 1 … g, ,=

x ττττ i x( ) ππππi fi x( )( ) ππππkfk x( )
k 1=
g∑[ ]⁄=

x

k ττττk x( ) max i 1=
g ττττ i x( )=

µµµµ i ΣΣΣΣ i

i

xi j i 1 … g, ,= j 1 … ni, ,=

ππππi

n

ni

ππππ i ni n⁄

ππππ i
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Plug-In Plug-in estimates of the population densities are computed by
substituting the unbiased estimates of the group means, , and

covariances, Si, for the parameters of the densities,  and Si, without
regard to their being random variables.

To obtain the plug-in estimates, use predict on a discrim object
with the argument method=”plug-in”:

> predict(exiris.het, method="plug-in")

        groups Setosa Versicolor Virginica
  ...
 69 Versicolor      0  0.8130906 0.1869094
 70 Versicolor      0  0.9999643 0.0000357
 71  Virginica      0  0.3359442 0.6640558
 72 Versicolor      0  0.9999898 0.0000102
 73 Versicolor      0  0.6993187 0.3006813
 74 Versicolor      0  0.9721091 0.0278909
 75 Versicolor      0  0.9999794 0.0000206
  ...

Unbiased 
Estimates

An unbiased estimate of the log of the p-variate normal densities is
obtained as follows. Denote the estimated squared Mahalanobis
distance between an observed feature set x and the mean of group i to

be , where Si is the unbiased
estimate of the group covariance, ΣΣΣΣi. Based on the Wishart
distribution, its expected value is

,

where . Moreover, the expected

value of  is

xi

µµµµi

δi x xi Si,( ) x x i–( )TS i
1– x x i–( )=

n 1–
n p– 2–
--------------------- δi x µµµµi ΣΣΣΣi,( ) p

ni
----+ 

  i 1 … g, ,=

δi x µµµµi ΣΣΣΣ i,( ) x µµµµi–( )TΣΣΣΣ i
1– x µµµµi–( )=

Silog

ΣΣΣΣ ilog p
ni 1–

2
------------- 

 log– ψψψψ 1
2
--- ni k–( ) 

 

k 1=

p

∑+ i 1 … g, ,=
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Chapter 3  Discriminant Analysis
where  is the digamma function (McLachlan, 1992, p. 57).  These
results are used to compute unbiased log density estimates for the
heteroscedastic model. Ripley (1996, p. 56) gives the unbiased
estimator of the log of the p-variate normal density explicitly.

McLachlan (1992, p. 57) gives similar results for the homoscedastic
model. Let S be the unbiased estimate of the common covariance ,
then

To obtain unbiased estimates, use predict with
method=”unbiased”:

> predict(exiris.het, method="unbiased")

        groups Setosa Versicolor Virginica
  ...
69 Versicolor      0  0.8052674 0.1947326
70 Versicolor      0  0.9999080 0.0000920
71  Virginica      0  0.3745987 0.6254013
72 Versicolor      0  0.9999702 0.0000298
73 Versicolor      0  0.7020916 0.2979084
74 Versicolor      0  0.9640201 0.0359799
75 Versicolor      0  0.9999439 0.0000561
  ...

Predictive Predictive estimation of group membership is a Bayesian method.
Here, we estimate the posterior density function for each group given
the training data by taking the product of the p-variate normal
probability density  and the posterior probability density

function of the unknown parameters, ,

, and integrating out the ΘΘΘΘ. A non-
informative prior for the unknown mean and covariance is derived

using Jeffery’s rule, and is taken to be  and

the likelihood of the unknown parameters given the training data is

ψψψψ

ΣΣΣΣ

E δi x x i S,( )[ ] n g–
n g– p– 1–
------------------------------ δ i x µµµµi ΣΣΣΣ,( ) p

ni
----+ 

 =

fi x µµµµi ΣΣΣΣ i,( )

ΘΘΘΘ µµµµi ΣΣΣΣ i,{ }i 1=
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fΘΘΘΘ ΘΘΘΘ xi j( ) l ΘΘΘΘ ΘΘΘΘ x ij( )p ΘΘΘΘ( )∝
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l ΘΘΘΘ xij( ) ΣΣΣΣi
1 2/– δi xi j( )–( )exp
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n∏i 1=

g∏∝
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The resulting densities are multivariate . For the heteroscedastic
model we have

whereas for the homoscedastic model we have

Further details and original authors can be found in Krzanowski and
Marriot (1995, §9.20 and §9.21), McLachlan (1992, p. 68), and Geisser
(1982, pp. 106–108).

If the group proportions are also unknown, estimation of the  can
be done within the Bayesian framework using a Dirichlet prior

proportional to  (Krzanowski and Marriot, 1995, p.20). The

posterior density is then proportional to

Krzanowski and Marriot (1995) then remove  from the posterior

probability that  belongs to group  by multiplying 

by  and integrating out the , .

The result is

In the case of group condition sampling Krzanowski and Marriot
(1995) set . A non-informative prior sets  (Box and
Tao, 1972).  As pointed out by Ripley (1996, p. 53), we are left with a
Bayes rule that is essentially the same as .
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Chapter 3  Discriminant Analysis
To obtain predictive estimates, use predict with
method=”predictive”:

> predict(exiris.het, method="predictive")

        groups   Setosa Versicolor Virginica
  ...
69 Versicolor      0  0.7970519 0.2029481
70 Versicolor      0  0.9998288 0.0001712
71  Virginica      0  0.3816198 0.6183802
72 Versicolor      0  0.9999235 0.0000765
73 Versicolor      0  0.7021942 0.2978058
74 Versicolor      0  0.9582749 0.0417251
75 Versicolor      0  0.9998786 0.0001214
  ...
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Error Analysis
ERROR ANALYSIS

Apparent Error 
Rate

An estimate of the misclassification rate provides a quantitative
assessment of the discriminating power of an estimated discriminant
function. One such estimate is the apparent error rate where each
observation in the training data is classified and the number of
misclassifications for each group is divided by the group sample size.
This estimate provides an overly optimistic assessment of the true
error rate (conditioned on the training data). The overall conditional
error rate are weighted means of the group error rates where the
weights are the mixture proportions.

> exiris.plug<-predict(exiris.het)
> tbl<-table(exiris$Species,exiris.plug$groups)
> tbl<-cbind(tbl,error=(apply(tbl,1,sum)-diag(tbl))/
+ exiris.het$counts)
> tbl

           Setosa Versicolor Virginica error
    Setosa     50          0         0  0.00
Versicolor      0         48         2  0.04
 Virginica      0          1        49  0.02

> sum(exiris.het$prior*tbl[,'error'])

[1] 0.02

Cross-
Validation

Cross-validation is a leave-one-out technique for estimating the error
rate conditioned on the training data. Conceptually, each observation
is systematically dropped, the discriminant function reestimated, and
the excluded observation classified. Fortunately, for the
homoscedastic, heteroscedastic, and spherical models the
discriminant function does not need to be reestimated. The leave-one-
out formulas for Mahalanobis distance and the determinant of the
estimated covariances matrices the for the homoscedastic and
heteroscedastic models can be found in McLachlan (1992, pp. 342-
343) and Ripley (1996, p. 100).

> exiris.cross <- crossvalidate(exiris.het)
> tbl <- table(exiris$Species,exiris.cross$groups)
> tblx <- table(exiris$Species,exiris.cross$groups)
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> tblx <- cbind(tblx,error=(apply(tblx,1,sum)-diag(tblx))/
+ exiris.het$counts)
> tblx

           Setosa Versicolor Virginica error
    Setosa     50          0         0  0.00
Versicolor      0         47         3  0.06
 Virginica      0          1        49  0.02

> sum(exiris.het$prior*tblx[,'error'])

[1] 0.02666667

Estimating 
Error Rates 
Based on 
Posterior 
Probabilities

One can use the posterior probabilities for error rate estimation.
Borrowing the discussion from McLachlan (1992, p. 365) or Ripley
(1996, pp. 75-76), let  be the discriminant rule for the observation

 randomly chosen from a mixed population that has the

mixture distribution ,  if

, where  is the

posterior probability of an observation belonging to group . Also let
 be the indicator function that evaluates to 1 if  and 0

otherwise. Then

Substituting the expectation with the averages over the training data
gives the posterior based error rate estimator

r x( )
X x=

fX x( ) πi fi x( )
i 1=
g∑= r x( ) i=

maxj τj x( )( ) τ i x( )= τ i x( ) π i fi x( ) fX x( )⁄=

i

I i j,( ) i j=

eij Pr r X( ) j X Gi∈={ }
Pr X Gi r X( ),∈ j=( )

π i
----------------------------------------------------= =

1
π i
----EX τ i X( )I r X( ) j,( )[ ]=

1
π i
---- πk Ek τ i X( )I r X( ) j,( )[ ]( )
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g

∑=

êij
1
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n

∑
k 1=

g

∑=
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where  if observation  from the training data came from

group Gk. The following example exploits .

> Z <- diag(3)[exiris.cross$groups,]
> P <- NULL
> for (i in 1:3)
+ P <- rbind(P,apply(exiris.cross[,i+1]*Z,2,sum)/
+ exiris.het$counts[i])
> P

     [,1]       [,2]       [,3]
[1,]    1 0.00000000 0.00000000
[2,]    0 0.93595428 0.02613819
[3,]    0 0.02404572 1.01386181

Note that  does not necessarily equal 1 so one can normalize the

estimates.

> P/apply(P,1,sum)

     [,1]      [,2]       [,3]
[1,]    1 0.0000000 0.00000000
[2,]    0 0.9728319 0.02716806
[3,]    0 0.0231675 0.97683250

The SAS® system takes a different approach to the formulation of the
posterior probability error rate estimates. Here, they define the
classification error rate for group  as

where the interval of integration is over the set of observations such
that  is maximum, that is all x such that  (SAS, 1988). This
leads to the unstratified and stratified estimates

zlk 1= l

π̂ i ni n⁄=

êi jj∑

i

ei 1  fi x( ) xd∫–=

1 1
πi
---- τ i x( )fX x( ) xd∫–=

τ i r x( ) i=

êi 1 1

π̂ i n⋅
------------– τ̂ i xj( )I r̂ xj( ) i,( )

j 1=

n

∑=
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Chapter 3  Discriminant Analysis
and

respectively. Huberty (1994, p. 90) also discusses these estimates. If

, the stratified estimate reduces to the unstratified. Note
also that negative estimates can occur.

> 1-apply(Z*as.matrix(exiris.cross[,-1]),2,sum)/
+ exiris.het$counts

 Setosa Versicolor   Virginica
      0 0.06404572 -0.01386181

Example > summary(exiris.het)

Call:
discrim(Species ~ Sepal.L. + Sepal.W. + Petal.L. +
     Petal.W., data = exiris, family =
     Classical(cov.structure = "heteroscedastic"),
     na.action = na.omit, prior = "proportional")

...

Plug-in classification table:
           Setosa Versicolor Virginica Error
    Setosa     50          0         0  0.00
Versicolor      0         48         2  0.04
 Virginica      0          1        49  0.02
   Overall                              0.02
           Posterior.Error
    Setosa       0.0000000
Versicolor       0.0443544
 Virginica       0.0021883
   Overall       0.0155142
(from=rows,to=columns)

Rule Mean Square Error: 0.02304681
(conditioned on the training data)

êi
1

π̂ i

----
π̂k

nk
----- τ̂k xj( )I r̂ xj( ) i,( ) zjk⋅

j 1=

n

∑
k 1=

g

∑=

π̂ i ni n⁄=
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Cross-validation table:
           Setosa Versicolor Virginica     Error
    Setosa     50          0         0 0.0000000
Versicolor      0         47         3 0.0600000
 Virginica      0          1        49 0.0200000
   Overall                             0.0266667
           Posterior.Error
    Setosa       0.0000000
Versicolor       0.0640457
 Virginica      -0.0138618
   Overall       0.0167280
(from=rows,to=columns)

The error estimates labeled Posterior.Error are the same
estimates as those computed by SAS.

The rule mean squared error reported above is computed as

 where  is an indicator variable that

is equal to one if observation  is from group  and zero otherwise
(McLachlan, 1992, p. 20).

MSE
1
n
--- τ̂ j xi( ) zij–( )2

i 1=

nj

∑
j 1=

g

∑= zij

i j
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Chapter 4  Cluster Analysis
INTRODUCTION

Cluster analysis is the searching for groups (clusters) in the data, in
such a way that objects belonging to the same cluster resemble each
other, whereas objects in different clusters are dissimilar.

In two or three dimensions, clusters can be visualized. With more
than three dimensions, or in the case of dissimilarity data (see below),
we need some kind of analytical assistance.

Generally speaking, clustering algorithms fall into two categories:

1. Partitioning Algorithms. A partitioning algorithm describes a
method that divides the data set into k clusters, where the
integer k needs to specified by the user. Typically, the user
runs the algorithm for a range of k-values. For each k, the
algorithm carries out the clustering and also yields a “quality
index,” which allows the user to select the “best” value of k
afterwards. Algorithms of this type described in this chapter
are used by the functions kmeans, pam, clara, and fanny.

2. Hierarchical Algorithms. A hierarchical algorithm describes a
method yielding an entire hierarchy of clusterings for the
given data set. Agglomerative methods start with the situation
where each object in the data set forms its own little cluster,
and then successively merges clusters until only one large
cluster remains which is the whole data set. The functions
agnes, mclust, and hclust use agglomerative methods.
Divisive methods start by considering the whole data set as one
cluster, and then splits up clusters until each object is separate.
Algorithms of this type are used in the functions diana and
mona.

The clustering functions daisy, pam, clara, fanny, agnes, diana,
and mona make up the cluster library, which implements the algorithms
described in Kaufman & Rousseeuw (1990).

The functions kmeans, mclust, and hclust are not part of the cluster
library. They have a slightly different syntax than the cluster library
functions.
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Data and Dissimilarities
DATA AND DISSIMILARITIES

Data sets for clustering can have either of the following structures:

1. n x p data matrix:

where rows stand for objects and columns stand for variables.

2. n x n dissimilarity matrix:

where d(i,j) = d(j,i) measures the “difference” or dissimilarity
between the objects i and j. This kind of data occurs
frequently in the social sciences and in marketing.

Many of the clustering algorithms considered here operate on a
dissimilarity matrix. If the data consist of an n x p data matrix, the
algorithm first constructs the corresponding dissimilarity matrix.

The functions kmeans, clara, mona, and mclust operate on a data
matrix. The hclust function operates on a dissimilarity matrix. The
functions pam, fanny, diana, and agnes will take either a data or
dissimilarity matrix.

Dissimilarity 
Matrices

The function daisy constructs a dissimilarity matrix. The algorithm
used by daisy is described in full in Kaufman and Rousseeuw (1990,
Chapter 1). Compared to the older function dist whose input must
be numeric variables, daisy accepts other variable types (for
example, nominal, ordinal, asymmetric binary) even when the
different types occur in the same data set. (Although we refer to the
object produced by daisy or dist as a dissimilarity matrix, it is

x11 … x1p

A A
xn1 … xnp

0
d 2 1,( ) 0
d 3 1,( ) d 3 2,( ) 0

A A A

d n 1,( ) d n 2,( ) … … 0
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Chapter 4  Cluster Analysis
actually a vector representing the below-diagonal elements of such a
matrix, with additional attributes giving information such as the
number of observations.)

Dissimilarities The dissimilarity between two objects measures “how different” they
are. Sometimes we can use an actual metric (distance function)
between objects, but a dissimilarity function is not necessarily a
metric. Often only the following three axioms of a metric are
satisfied:

1. d(i, i) = 0

2. d(i, j) ≥ 0

3. d(i, j) = d(j, i)

Computation How we compute the dissimilarity between two objects depends on
the type of the original variables.

By default, numeric columns are treated as interval-scaled variables,
factors are treated as nominal variables, and ordered factors are
treated as ordinal variables. The type argument to daisy may be
used to specify that a column should be treated in a manner other
than the default.

1. Interval-scaled variables

Interval-scaled variables are continuous measurements on a (roughly)
linear scale. Typical examples are temperature, height, weight, and
energy.

If all variables are interval-scaled, we can use an actual metric such as:

or

(4.1)

(4.2)

d i j,( ) xif xjf–( )2

f 1=

p

∑=       (Euclidean distance)

d i j,( ) xif xjf–
f 1=

p

∑=      (Manhattan distance)
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Note that the choice of measurement units strongly affects the
resulting clustering. The variable with the largest dispersion will have
the largest impact on the clustering. If all variables are considered
equally important, the data need to be standardized first.

Put  and ; then the standardized

measurements are defined as follows:

Here we have used sf, the mean absolute deviation instead of the usual
standard deviation, because the former is more robust: since the
deviations are not squared, the effect of outliers is somewhat reduced.
Of course, there are more robust measures of dispersion, such as the
median absolute deviation (the function mad). The advantage of using
a robust measure of dispersion is that the z-scores of outliers do not
become too small, hence the outliers remain detectable (and hence
visible in the clustering).

2. Continuous ordinal variables

Continuous ordinal variables are continuous measurements on an
unknown scale, or where only the ordering is known but not the
actual magnitude. Then the dissimilarities are computed as follows:

1. Replace the xif by their rank rif ∈ {1, ..., Mf}.

2. Transform the scale to [0,1] as follows: .

3. Compute the dissimilarities as for interval-scaled variables.

3. Ratio-scaled variables

Ratio-scaled variables are positive continuous measurements on a
nonlinear scale, such as an exponential scale. One example would be

the growth of a bacterial population (say, with a growth function AeBt).
With this model, equal time intervals multiply the population by the
same ratio.

(4.3)

mf
1
n
--- xif

i 1=

n

∑= sf
1
n
--- xif mf–

i 1=

n

∑=

zif

xif mf–

sf
-----------------=

zif

r if 1–

Mf 1–
---------------=
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Chapter 4  Cluster Analysis
There are different ways to compute dissimilarities for ratio-scaled
variables:

1. Simply as interval-scaled variables, though this is not
recommended as it can distort the measurement scale.

2. As continuous ordinal data.

3. By first transforming the data (perhaps by taking logarithms),
and then treating the results as interval-scaled variables.

4. Discrete ordinal variables

A discrete ordinal variable has M possible values (scores) which are
ordered. The dissimilarities are computed in the same way as for
continuous ordinal variables.

5. Nominal variables

Nominal variables have M possible values, which are not ordered.
The dissimilarity between objects i and j is usually defined as:

This is called the simple matching coefficient.

6. Symmetric binary variables

Symmetric binary variables have two possible values, coded 0 and 1,
which are equally important (such as male and female, or vertebrate
and invertebrate).

Symmetric binary variables are nominal variables, hence we again
use the simple matching coefficient given above for nominal variables.
Let us also consider the contingency table of the objects i and j:

i\j 1 0

1 a b

0 c d

d i j,( )
# variables taking different values for i  and j

total number of variables
------------------------------------------------------------------------------------------------------------------=
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We can then rewrite the simple matching coefficient as

7. Asymmetric binary variables

Asymmetric binary variables have two possible values, one of which
carries more importance than the other. The most meaningful
outcome is coded as 1, and the less meaningful outcome as 0.
Typically, 1 stands for the presence of a certain attribute (for example,
a particular disease), and 0 for its absence.

The dissimilarity between i and j is then defined as:

Using the contingency table again, this becomes ,

which is called the Jaccard coefficient.

8. Variables of mixed types

The above formulas hold when all variables in the data set are of the
same type. However, many data sets contain variables of different
types. Therefore, we want a method to compute dissimilarities
between objects when the data set contains p variables that may be of
different types. For this the function daisy uses the formula

(4.4)

(4.5)

d i j,( ) b c+
a b c d+ + +
------------------------------=

d i j,( )
# variables taking different values for i  and j

total number of meaningful comparisons
------------------------------------------------------------------------------------------------------------------=

d i j,( ) b c+
a b c+ +
---------------------=

d i j,( )

δ f( )
i j

d
ij

f( )

f 1=

p

∑

δ f( )
ij

f 1=

p

∑
-------------------------------- 0 1,[ ]∈=
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where = 0 if xif or xjf is missing,  if xif = xjf = 0 and

variable f is asymmetric binary = 1 otherwise. And = the

contribution of variable f, which depends on its type:

1. f binary or nominal: = 0 if xif = xjf and = 1

otherwise.

2. f interval-scaled: = .

3. ordinal and ratio-scaled variables: compute ranks rif and

 and treat these zif as interval-scaled.

Example: 
Calculating 
Dissimilarities

As a simple example of using daisy, we will calculate dissimilarities
for a data frame where the rows are the first five integers:

> my.df <- data.frame(inds=1:5)
> daisy(my.df)

Dissimilarities :
[1] 1 2 3 4 1 2 3 1 2 1

Metric :  euclidean
Number of objects :  5

δ
f( )
ij

δ
f( )
ij

0=

δ
f( )
ij

d
f( )
ij

d
f( )
ij

d
f( )
ij

d
f( )
ij

xif xjf–

maxhxhf minhxhf–
---------------------------------------------

zif

r if 1–

Mf 1–
---------------=
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PARTITIONING METHODS

Partitioning methods are based on specifying an initial number of
groups, and iteratively reallocating observations between groups until
some equilibrium is attained.

K-Means One of the most well-known partitioning methods is k-means. In the
k-means algorithm the observations are classified as belonging to one
of k groups. Group membership is determined by calculating the
centroid for each group (the multidimensional version of the mean)
and assigning each observation to the group with the closest centroid.

The k-means algorithm alternates between calculating the centroids
based on the current group memberships, and reassigning
observations to groups based on the new centroids. Centroids are
calculated using least-squares, and observations are assigned to the
closest centroid based on least-squares. This use of a least-squares
criterion makes k-means less resistant to outliers than the medoid-
based methods which will be discussed in later sections.

The kmeans function performs k-means clustering. It is an older
function which does not have special plot or summary methods. The
main arguments to kmeans are dissimilarities as produced by daisy
or dist and the number of clusters. Alternatively, a matrix of starting
centroids may be specified in place of the number of centroids. If
starting values are not specified the initial centroids are obtained
using the hierarchical clustering algorithm in hclust.

Example: 
K-Means

The ruspini data were originally used by Ruspini (1970) in order to
illustrate fuzzy clustering techniques. The data set consists of 75
points; see Figure 4.1. We will use k-means to cluster the observations
into four groups:

> kmeans(ruspini, 4)

Centers:
            x        y
[1,] 98.17647 114.8824
[2,] 20.15000  64.9500
[3,] 43.91304 146.0435
[4,] 68.93333  19.4000
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Clustering vector:
 [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
[28] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1
[55] 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Within cluster sum of squares:
[1] 4558.235 3689.500 3176.783 1456.533

Cluster sizes:
[1] 17 20 23 15

Available arguments:
[1] "cluster"  "centers"  "withinss" "size"

Partitioning 
Around 
Medoids

The partioning around medoids algorithm is similar to k-means but uses
medoids rather than centroids.

The method pam is fully described in Chapter 2 of Kaufman and
Rousseeuw (1990). Compared to the function kmeans, the function
pam has the following features: (a) it accepts a dissimilarity matrix; (b)
it is more robust because it minimizes a sum of dissimilarities instead
of a sum of squared euclidean distances; (c) it provides novel
graphical displays (silhouette plots and clusplots).

Figure 4.1:  The Ruspini data.
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Algorithm The function pam operates on the dissimilarity matrix of the given
data set. When it is presented with an n x p data matrix, pam will first
compute a dissimilarity matrix.

The algorithm computes k representative objects, called medoids, which
together determine a clustering. The number k of clusters is an
argument of the function.

Each object is then assigned to the cluster corresponding to the
nearest medoid. That is, object i is put into cluster vi when medoid

 is nearer than any other medoid mw:

The k representative objects should minimize the sum of the
dissimilarities of all objects to their nearest medoid:

The algorithm proceeds in two steps:

1. Build-step 

This step sequentially selects k “centrally located” objects to
be used as initial medoids.

2. Swap-step 

If the objective function can be reduced by interchanging
(swapping) a selected object with an unselected object, then
the swap is carried out. This is continued until the objective
function no longer decreases.

Graphical 
Displays: 
Silhouette Plots

A partition of the data, such as the clustering found by pam, can be
displayed by means of the silhouette plot (Rousseeuw 1987).

For each object i, the silhouette value s(i) is computed and then
represented in the plot as a bar of length s(i). In order to define s(i), A
denotes the cluster to which object i belongs, and the calculation
proceeds as

a(i) = average dissimilarity of i to all other objects of A

mvi

d i mvi
,( ) d i mw,( ) for all w 1 … k, ,=≤

objective function d i mvi
,( )

i 1=

n

∑=
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Now consider any cluster C different from A and define

d(i, C) = average dissimilarity of i to all objects of C

After computing d(i, C) for all clusters C not equal to A, we take the
smallest of those:

The cluster B which attains this minimum, namely d(i, B) = b(i), is
called the neighbor of object i. This is the second-best cluster for object
i.

The value s(i) can now be defined:

We see that s(i) always lies between -1 and 1. The value s(i) may be
interpreted as follows:

s(i) ≈ 1 ⇒ object i is well classified

s(i) ≈ 0 ⇒ object i lies between two clusters

s(i) ≈ -1 ⇒ object i is badly classified

The silhouette of a cluster is a plot of the s(i), ranked in decreasing
order, of all its objects i. The entire silhouette plot shows the
silhouettes of all clusters next to each other, so the quality of the
clusters can be compared. The overall average silhouette width of the
silhouette plot is the average of the s(i) over all objects i in the data set
(Figure 4.2).

It is possible to run pam several times, each time for a different k, and
to compare the resulting silhouette plots (as in Figure 4.3). The user
can then select that value of k yielding the highest average silhouette
width. If even that highest width is below (say) 0.25, one may
conclude that no substantial structure has been found.

Graphical 
Displays: 
Clusplots

A clusplot is a bivariate plot displaying a partition (clustering) of the
data (Figure 4.2). All observations are represented by points in the
plot, using principal components or multidimensional scaling.
Around each cluster an ellipse is drawn. The clusplot provides a
convenient projection of the points into a two dimensional space with
an indication of cluster membership.

(4.6)

b i( ) minC A≠ d i C,( )=

s i( ) b i( ) a i( )–
max a i( ) b i( ),{ }
----------------------------------------=
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Example: 
European 
Countries

The euro data set is an extract from the brochure “Cijfers en feiten:
Een statistisch portret van de Europese Unie” (1994) published by
Eurostat, the European agency for statistics. For each country
belonging to the European Union during 1994, it gives the gross
national product (bbp) in 1992 and the percentage of the gross
national product due to agriculture (landbouw).

Here, both partitioning and hierarchical methods yield the same
division of the European countries into two clusters; with one cluster
consisting of four countries that are more oriented towards agriculture
and whose gross national product is relatively low relative to the
other countries.

> euro

    landbouw  bbp
  B      2.7 16.8
 DK      5.7 21.3
  D      3.5 18.7
 GR     22.2  5.9
  E     10.9 11.4
  F      6.0 17.8
IRL     14.0 10.9
  I      8.5 16.6
  L      3.5 21.0

Table 4.1:  Countries of the European Union

Code Country Code Country

B Belgium I Italy

D Germany IRL Ireland

DK Denmark L Luxembourg

E Spain NL Netherlands

F France P Portugal

GR Greece UK United Kingdom
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 NL      4.3 16.4
  P     17.4  7.8
 UK      2.3 14.0

> pam(euro, 2)

Call:
pam(x = euro, k = 2)
Medoids:
  landbouw  bbp
D      3.5 18.7
P     17.4  7.8
Clustering vector:
 B DK D GR E F IRL I L NL P UK
 1  1 1  2 2 1   2 1 1  1 2  1
Objective function:
    build    swap
 3.429317 3.36061

Available arguments:
[1] "medoids"    "clustering" "objective"  "isolation"
[5] "clusinfo"   "silinfo"    "diss"       "data"
[9] "call"
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> plot(pam(euro, 2))

Example: Ruspini 
Data

We will compare the silhouette plots for two different partitionings of
the Ruspini data. We first use pam to partition the data into four
clusters. After that, a partition into five clusters is constructed. The
four medoids resulting from the first call are points in the centers of
the four clusters. The second call to pam produces the same four
medoids, and takes an intermediate object as the fifth medoid. The
minimal value reached for the objective function is a little smaller
when five clusters are formed. However, that does not necessarily
imply that the second clustering is better. From the clustering vector,
and the numerical output per cluster, it can be seen that both

Figure 4.2:  Clusplot and silhouette plot of pam(euro,2).
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Chapter 4  Cluster Analysis
clusterings are similar. The second partition places the three most
outlying points of the third cluster in a separate cluster. This new
cluster is an isolated one.

On the other hand, the clusters resulting from the second call are not
as well-separated as those from the first call. Looking at the silhouette
plots (see Figure 4.3), the conclusion is similar. With the first
clustering, all s(i) are above 0.4. The second clustering yields very
large silhouette widths for the new cluster with three objects. But
some of the silhouette widths of the second and third cluster have
decreased. That is, those objects lie somewhere between two clusters.
According to the overall average silhouette width both clustering
structures are approximately of the same quality, k = 4 slightly
preferable over k = 5.

> plot(pam(ruspini, 4), which=2)
> plot(pam(ruspini, 5), which=2)
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Clustering 
Large 
Applications

As the k-means and partitioning around medoids techniques
construct dissimilarities between all pairs of observations, their
memory requirements are quadratic in the number of observations.
This can be prohibitive when the number of observations is large.
The Clustering Large Applications technique uses a less memory
intensive algorithm.

The method clara is fully described in Chapter 3 of Kaufman and
Rousseeuw (1990). Compared to other partitioning methods such as
pam, clara can deal with much larger data sets. Internally, this is
achieved by considering data subsets of fixed size, so that the overall
time and storage requirements become linear in the total number of
objects, rather than quadratic.

The function pam needs to store the dissimilarity matrix of the entire

data set (which has O(n2) entries) in central memory, while its
computation time goes up accordingly. For larger data sets (say, with
more than 250 objects) this becomes less convenient.

To avoid this problem, the function clara does not compute the
entire dissimilarity matrix at once. Therefore, this function only
accepts input of an n x p data matrix.

Algorithm The algorithm takes a data subset, and then applies the pam algorithm
to it. This divides the data subset into k clusters. The remaining
objects of the original data set are then assigned to the nearest

Figure 4.3:  Silhouette plots generated by pam(ruspini,4) and 
pam(ruspini,5).
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Chapter 4  Cluster Analysis
medoid. In this way, all n objects are assigned. The objective function
is then computed for the entire data set, namely by summing all n
terms .

This procedure is repeated for several data subsets, and the clustering
with the lowest overall objective function is retained. In this way, we
only need to compute and store the dissimilarity matrix of one data
subset at any one time, which makes the overall order of complexity
linear in n.

The first data subset is drawn randomly. Each of the following data
subsets is forced to contain the currently best medoids, supplanted
with randomly drawn objects.

Graphical Display The clustering obtained by clara can also be represented by means
of clusplots and silhouette plot, described in the previous section on
pam. Due to the potential sizes of the data sets, the silhouette plot is
given only for the best data subset.

Example: A Large 
Data Set

This data set, consisting of 500 two-dimensional points, is generated
in S-PLUS using the following command:

> x <- rbind( cbind(rnorm(200,0,8),rnorm(200,0,8)),
+ cbind(rnorm(300,50,8),rnorm(300,50,8)))
> plot(x[,1], x[,2])

A plot of the points is shown in Figure 4.4.

d i mvi
,( )

Figure 4.4:  A large data set of 500 points. 
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Partitioning Methods
The objects in the data set are clearly divided into two clusters. If pam
had been used with this data set, 124750 (= 500*499/2)
dissimilarities would have been considered. The function clara uses
only 946 (= 44*43/2) dissimilarities, since the default sample size is
40 + 2*k = 40 + 2*2 = 44. clara still finds the correct
clustering. The average silhouette width, 0.82, indicates a good
clustering structure.

> a<- clara(x, 2)
> names(a)

[1] "sample"     "medoids"    "clustering" "objective"
[5] "clusinfo"   "silinfo"    "diss"       "data"
[9] "call"

> a$medoids

          [,1]         [,2]
[1,]  2.374335  -0.05215445
[2,] 49.636427  48.02134564
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Chapter 4  Cluster Analysis
> plot(a)

Fuzzy Analysis The functions kmeans, pam and clara are crisp clustering methods.
This means that each object of the data set is assigned to exactly one
cluster. For instance, an object lying between two clusters must be
assigned to one of them. In fuzzy clustering, each observation is given
fractional membership in multiple clusters.

The method fanny is fully described in Chapter 4 of Kaufman and
Rousseeuw (1990). Compared to other fuzzy clustering methods,
fanny has the following features: (a) it accepts a dissimilarity matrix;

Figure 4.5:  Clusplot and silhouette plot of clara(x,2), where x is the large 
data set.
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Partitioning Methods
(b) it is more robust to the “spherical cluster” assumption (see
Kaufman and Rousseuw); (c) graphical display is in the form of a
clusplot or silhouette plot.

For each object i and each cluster v there will be a membership uiv
which indicates how strongly object i belongs to cluster v.

Memberships have to satisfy the following conditions:

1. uiv ≥ 0 for all i = 1, ..., n and all v = 1, ..., k.

2. = 100% for all i = 1, ..., n.

Algorithm The memberships are defined through minimization of:

In this expression, the dissimilarities d(i , j) are known and the
memberships uiv are unknown. The minimization is carried out
numerically by means of an iterative algorithm, taking into account
the above conditions that memberships need to obey. To have an idea
of “how fuzzy” the resulting clustering is, Dunn’s partition coefficient is
computed:

Fk always lies in the range .

uiv 1=
v 1=

k

∑

(4.7)

(4.8)

objective function

u
2
iv

u
2
jv

d i j,( )
i j, 1=

n

∑

2 u
2
jvj 1=

n

∑

-------------------------------------------
v 1=

k

∑=

Fk

uiv
2

n
------

v 1=

k

∑
i 1=

n

∑=

1
k
--- 1,
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Chapter 4  Cluster Analysis
Dunn’s partition coefficient attains its extreme values in the following
situations:

1. entirely fuzzy clustering; all 

2. crisp clustering; all uiv = 0 or 

The normalized version of this coefficient is

which always lies in the range [0, 1].

Graphical Display For any fuzzy clustering, such as the one produced by fanny, the
nearest crisp clustering method should be considered for graphical
output. It assigns each object i to the cluster v in which it has the
highest membership uiv. This crisp clustering is then represented
graphically by means of a clusplot or silhouette plot.

Example: Ruspini 
Data

When we call fanny with the ruspini data and k = 4, nearly all
objects have a large membership to one of the clusters. The three
objects that were placed in a separate cluster when calling pam for
k = 5 now are classified in a fuzzy way, since none of their
memberships is much higher than the other memberships. We
conclude that the majority of the data can be divided into four
clusters, but some objects are situated between the clusters. The
nearest crisp clustering is the same as that from pam with k = 4.
Hence, the silhouette plots are identical. But this is not always the
case. When we call fanny for k = 5, the nearest crisp clustering is
different from that produced by pam. The second cluster has been
split instead of the third one. Because the average silhouette width is
smaller than before, the clustering structure is less clear (Figure 4.6).

> plot(fanny(ruspini, 4), which=2)
> plot(fanny(ruspini, 5), which=2)

(4.9)

uiv
1
k
--- Fk nk

1

nk
2

--------=⇒ 1
k
---= =

1 Fk
n
n
--- 1= =⇒

Fk′
Fk

1
k
---–

1 1
k
---–

---------------
kFk 1–

k 1–
------------------= =
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> fanny(ruspini, 4)

Call:
fanny(x = ruspini, k = 4)
 iterations objective
         12  422.8389
Membership coefficients:
         [,1]       [,2]       [,3]       [,4]
 1 0.65700251 0.10241150 0.09105386 0.14953212
 2 0.71377401 0.09277800 0.07872431 0.11472369
 3 0.76033966 0.07322710 0.06478832 0.10164492

…
73 0.09673152 0.04828669 0.06629964 0.78868216
74 0.11367653 0.05369059 0.07298550 0.75964738
75 0.11731903 0.04977991 0.06446637 0.76843470
Coefficients:
 dunn_coeff normalized
  0.6237448  0.4983264
Closest hard clustering:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1  2  2
 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  2  2  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3
 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4

Available arguments:
[1] "membership" "coeff"      "clustering" "objective"
[5] "silinfo"    "diss"       "data"       "call"
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Chapter 4  Cluster Analysis
Figure 4.6:  Silhouette plots generated by fanny(ruspini,4) and 
fanny(ruspini,5).
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Hierarchical Methods
HIERARCHICAL METHODS

The partitioning algorithms discussed previously are based on
specifying an initial number of groups, and iteratively reallocating
observations between groups until some equilibrium is attained. In
contrast, hierarchical algorithms proceed by combining or dividing
existing groups, producing a hierarchical structure displaying the
order in which groups are merged or divided.

Agglomertive methods start with each observation in a separate group,
and proceed until all observations are in a single group. Divisive
methods start with all observations in a single group and proceed
until each observation is in a separate group.

Agglomerative 
Nesting

The two most widespread clustering techniques are k-means and
agglomerative hierarchical clustering. S-PLUS has three functions for
agglomerative hierarchical clustering: hclust, mclust, and agnes.
The oldest is hclust, and its capabilities have largely been subsumed
by mclust and agnes. The agnes function provides more
sophisticated plots than mclust, and has an interface consistent with
the other functions in the cluster library. However, mclust does offer
some computational methods not available in agnes, and is thus of
interest in its own right. (The mclust function is discussed in a later
section.)

The method agnes is fully described in Chapter 5 of Kaufman and
Rousseeuw (1990). Compared to other agglomerative clustering
methods such as hclust, agnes has the following features: (a) it
yields the agglomerative coefficient which measures the amount of
clustering structure found; (b) apart from the usual clustering tree it
also utilizes the banner plot.

As the function agnes is an agglomerative hierarchical clustering
method, it yields a sequence of clusterings. In the first clustering each
of the n objects forms its own separate cluster. In subsequent steps
clusters are merged, until (after n - 1 steps) only one large cluster
remains, consisting of all the objects.

Algorithm The algorithm is based on dissimilarities only. If a data matrix is
input, the function starts by computing the dissimilarity matrix.
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Chapter 4  Cluster Analysis
Initially (at step 0), each object is considered as a separate cluster. The
rest of the computation consists of iteration of the following steps:

1. Merge the two clusters with smallest between-cluster
dissimilarity;

2. Compute the dissimilarity between the new cluster and all
remaining clusters.

The between-cluster dissimilarity can be defined in various ways,
notably:

1. Group average method

2. Nearest neighbor method = single linkage method

3. Furthest neighbor method = complete linkage method

The group average method is taken as the default, based on arguments of
robustness and consistency.

The function agnes also provides the agglomerative coefficient
(Rousseeuw 1986), which measures the clustering structure of the data
set.

For each object i, d(i) denotes its dissimilarity to the first cluster it is
merged with, divided by the dissimilarity of the merger in the last step
of the algorithm. The agglomerative coefficient (AC) is defined as the
average of all 1 - d(i).

Because the AC grows with the number of objects, this measure
should not be used to compare data sets of very different sizes.

d R Q,( ) 1
R Q
-------------- d i j,( )

i R∈ j Q∈,
∑=

d R Q,( ) min
i R∈ j Q∈,

d i j,( )=

d R Q,( ) max
i R∈ j Q∈,

d i j,( )=
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Hierarchical Methods
Graphical 
Display: The 
Clustering Tree 
and Banner

The hierarchy obtained from agnes can be graphically displayed in
two ways, by means of a clustering tree or by a banner.

1. Clustering tree. This is a tree in which the leaves represent
objects. The vertical coordinate of the place where two
branches join equals the dissimilarity between the
corresponding clusters.

2. Banner. The banner shows the successive mergers from left to
right. (Imagine the ragged flag parts at the left, and the
flagstaff at the right.) The objects are listed from top to
bottom. The mergers (which commence at the between-
cluster dissimilarity) are represented by horizontal bars of the
correct length. The banner thus contains the same
information as the clustering tree.

Note that the agglomerative coefficient (AC) defined above can also
be defined as the average width (or the percentage filled) of the
banner plot.

Example: 
Republican Votes 
Data

The votes.repub data set is standard in S-PLUS. This matrix
contains the percentage of people in the 50 states of the USA that
voted Republican in the 31 presidential elections between 1856 and
1956. If a state did not yet belong to the USA in the year in question,
an NA value is given.

When agnes is applied to this data set, the clustering tree indicates a
division of the data into two well-separated clusters. A cluster
containing eight of the Southern states is merged with the other states
in the last step. The dissimilarity between the two clusters is large in
comparison with the dissimilarities of the mergers at the other stages.
When the complete linkage method is used, the same clustering
structure is found. The clustering tree obtained by the single linkage
method looks very different. Upon closer scrutiny, one sees that the
states which are merged in the final steps are exactly those states that
the other methods considered as a separate cluster. The single linkage
method has a tendency towards chains of clusters, which causes the
differences between the trees in this example. The diana function
discussed in the next section finds the same main clustering structure:
the eight Southern states are already split off at the first stage.
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Chapter 4  Cluster Analysis
Since all of these hierarchical methods seem to agree on the division
of the data set into two clusters, the conclusion might be that the
voting behavior in the Southern states of the USA is rather different
from that in the other states. The further division of the clusters is not
so clear-cut: different methods yield more or less different structures.

> plot(agnes(votes.repub), which=2)

Divisive 
Analysis

While agglomerative clustering starts with many groups and
combines them to form one group, divisive analysis starts with one
group and repeatedly divisdes groups to form many groups.

Figure 4.7:  Clustering tree of agnes(votes.repub).
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Hierarchical Methods
The method diana is fully described in Chapter 6 of Kaufman and
Rousseeuw (1990). It is probably unique in computing a divisive
hierarchy, because most other software for hierarchical clustering is
agglomerative. Moreover, diana provides (a) the divisive coefficient
which measures the amount of clustering structure found; and (b) the
banner plot.

The function diana is a divisive hierarchical method. The initial
clustering (at step 0) consists of one large cluster containing all n
objects. In each subsequent step, the largest available cluster is split
into two smaller clusters, until finally all clusters contain but a single
object.

In the first step of an agglomerative method, there are

 possible ways to merge two clusters. But in the first

step of a divisive method, we are faced with 2n-1-1 possibilities to
split up the data set into two clusters. The latter number is much
larger than the first, and in practice it is not feasible to try all possible
splits.

Algorithm To avoid considering all possible splits, diana divides the data set in
the following way (based on dissimilarities only).

1. Find the most disparate object, which is the one with the
highest average dissimilarity to the other objects. This object
initiates the splinter group, analogous to a dissenting fraction of
a political party.

2. For each object i outside the splinter group, compute

To find the object h for which this difference is largest; if
Vh > 0, then h is on average closer to the splinter group than
to the remainder, so add object h to the splinter group.

3. Repeat step 2 until all differences Vh are negative. The data set
is then split into two clusters.

4. Select the cluster with the largest diameter. (The diameter of a
cluster is the largest dissimilarity between any two of its
objects.) Then divide this cluster as in steps 1 to 3.

5. Repeat step 4 until all clusters contain only a single object.

n
2 

  n n 1–( )
2

--------------------=

Vi averagej splinter group∉ d i j,( ) average j splinter group∈ d i j,( )–=
95



Chapter 4  Cluster Analysis
The function diana also provides the divisive coefficient (Rousseeuw
1986), which measures the clustering structure of the data set.

For each object i, d(i) denotes the diameter of the last cluster to which
it belongs (before being split off as a single object), divided by the
diameter of the whole data set.

The divisive coefficient (DC) is then defined as the average of all d(i).

Like the AC in the previous section on agnes, the DC also grows
with the number of objects. Therefore, the DC should not be used to
compare data sets of very different sizes.

Graphical Display The hierarchy obtained from diana can again be graphically
displayed either as a clustering tree or as a banner.

Note that the divisive coefficient (DC) defined above can also be
defined as the average width (or the percentage filled) of the banner
plot.

Examples We mentioned in the Agglomerative Nesting section that diana gives
a clustering tree quite similar to that from agnes on the Republican
voting data:

> plot(diana(votes.repub), which=2)
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Hierarchical Methods
Monothetic 
Analysis

When all of the variables in a data set are binary, a natural way to
divide the observations is by splitting the data into two groups based
on the two values of a particular binary variable. Monothetic analysis
produces a hierarchy of clusters in which at each step a group is split
in two based on the value of one of the binary variables.

The method mona is fully described in Chapter 7 of Kaufman and
Rousseeuw (1990). It is a different type of divisive hierarchical
method. Contrary to diana, which can process a dissimilarity matrix
as well as a data matrix with interval-scaled variables, mona operates
on a data matrix with binary variables. For each split mona uses a

Figure 4.8:  Clustering tree of diana(votes.repub).
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Chapter 4  Cluster Analysis
single (well-chosen) variable, which is why it is called a monothetic
method. Most other hierarchical methods (including agnes and
diana) are polythetic (that is, they use all variables simultaneously).

Algorithm First all missing values in the binary data matrix (all those values
not = 0 or 1) are replaced by estimated values, obtained as follows.
Suppose that xif is missing. Then we consider any other variable g,
and construct the contingency table

The association between f and g is then defined as

Afg = | afg dfg – bfg cfg |

The variable t for which  is the most correlated with

variable f. The missing values of f are then estimated by means of
variable t in the following way:

put xif = xit when aft dft – bft cft > 0

put xif = 1 – xit when aft dft – bft cft < 0

When all missing values have been replaced, the actual splitting can
begin. (If the data matrix cannot be filled in completely, due to too
many missing values in the original data, the method stops with an
error message.)

The mona algorithm constructs a hierarchy of clusterings, starting with
one large cluster. In each step, each available cluster is divided
according to one variable. The cluster is divided into two: one cluster
with all objects having value 1 for that variable, and another cluster
with all objects having value 0 for that variable.

f\g 1 0

1 afg bfg

0 cfg dfg

Aft maxAfgg
=
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The variable used for splitting a cluster is the variable with the largest
total association to the other variables. The association between
variables f and g is given by the expression Afg above, but now the
contingency table uses only the objects of the cluster to be split. The
total association of a variable f is then defined as:

The variable t which satisfies  is selected for splitting the

cluster. We continue to divide clusters in this way, until each cluster
consists of objects having identical values for all variables. Such
clusters cannot be split any more. A final cluster is thus a singleton or
an indivisible cluster.

Graphical Display The clustering hierarchy constructed by mona can be represented by
means of a banner. This is again a divisive banner; however, the
length of a bar is now given by the number of divisive steps needed to
make that split. Inside the bar, the variable is listed which was
responsible for the split.

Example: Animals 
Data

Six binary attributes are considered for twenty animals.

(4.10)Af Afg
g f≠
∑=

At
maxAf

f
=

Table 4.2:  Animal attributes.

Abbreviation Attribute

war warm or cold blooded

fly flying or nonflying

var vertebrate or invertebrate

end endangered or not
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This example illustrates the use of mona. The banner shows that mona
classifies the animals according to the six attributes. In the first step,
cold- and warm-blooded animals are put in separate clusters. The first
cluster is then split into vertebrate and invertebrate animals, and the
second cluster into flying and nonflying animals. Finally, after the
fifth step, animals belonging to the same group have the same value
for all six variables (on the banner, no bar is drawn between these
animals).

If we wished to apply agnes or diana to this data set, we would have
to compute the dissimilarities with daisy, because the variables are
not numeric. The instruction is: agnes(daisy(animals),diss=T).
When we consider variable two (flying or not flying), and six (hairy or
not hairy) as asymmetric binary, the call becomes:

agnes(daisy(animals,type=list(asymm=c(2,6))),diss=T)

The resulting clusterings will differ from the previous clustering since
agnes and diana operate on the dissimilarities only, they do not use
the individual variables. The function mona is probably more suitable
for this example, where the animals have been classified nicely
according to their attributes.

gro lives in social groups, or not

hai hairy or not hairy

Table 4.2:  Animal attributes. (Continued)

Abbreviation Attribute

Table 4.3:  The animals and the three-letter abbreviations used in the data.

ant caterpillar frog man

bee duck hermit crab rabbit

cat eagle lion salamander

chimpanzee elephant lizard spider

cow fly lobster whale
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> animals

    war fly ver end gro hai
ant   1   1   1   1   2   1
bee   1   2   1   1   2   2
cat   2   1   2   1   1   2
cpl   1   1   1   1   1   2
chi   2   1   2   2   2   2
cow   2   1   2   1   2   2
duc   2   2   2   1   2   1
eag   2   2   2   2   1   1
ele   2   1   2   2   2   1
fly   1   2   1   1   1   1
fro   1   1   2   2  NA   1
her   1   1   2   1   2   1
lio   2   1   2  NA   2   2
liz   1   1   2   1   1   1
lob   1   1   1   1  NA   1
man   2   1   2   2   2   2
rab   2   1   2   1   2   2
sal   1   1   2   1  NA   1
spi   1   1   1  NA   1   2
wha   2   1   2   2   2   1
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> mona(animals)

Model-Based 
Hierarchical 
Clustering

Another approach to hierarchical clustering is model-based clustering,
which is based on the assumption that the data are generated by a
mixture of underlying probability distributions. The mclust function
fits model-based clustering models. It also fits models based on
heuristic criteria similar to those used by pam. The mclust function is
separate from the cluster library, and has somewhat different
semantics than the methods discussed previously.

Heuristic Criteria The basic hierarchical agglomeration algorithm starts with each
object in a group of its own. At each iteration it merges two groups to
form a new group; the merger chosen is the one that leads to the
smallest increase in the sum of within-group sums of squares. The
number of iterations is equal to the number of objects minus one, and
at the end all the objects are together in a single group. This is known
variously as Ward’s method, the sum of squares method, or the trace
method.

The hierarchical agglomeration algorithm can be used with criteria
other than the sum of squares criterion. For example, in the single link
(or nearest neighbor) method, the distance between two groups is
defined to be the smallest distance between any two members from
different groups, and at each iteration the two closest groups are

Figure 4.9:  Banner of mona(animals).
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Hierarchical Methods
merged. The complete link method (also known as the compact or
farthest neighbor method) is similar except that the distance between
any two groups is defined to be the largest distance between any two
members from different groups, while the centroid method defines
the distance between two groups to be the distance between their
centroids. The average weighted link method uses the average of the
distances between the objects in one group and the objects in the
other group. These are all heuristic criteria.

Model-Based 
Criteria

Model-based clustering is based on the assumption that the data are
generated by a mixture of underlying probability distributions.
Specifically, it is assumed that the population of interest consists of G
different subpopulations, and that the density of an observation x
from the kth subpopulation is fk(x; θ) for some unknown vector of
parameters θ. Given data D = (x1, ... , xn), we let γ = (γ1, ..., γn) denote

the identifying labels, where γi = k if xi comes from the kth
subpopulation. In the classification maximum likelihood procedure, θ
and γ are chosen so as to maximize the likelihood.

We consider mainly the situation where fk(x; θ) is a multivariate

normal density with mean µk and variance matrix Σk. If Σk = σ2I for
each k, where I is the identity matrix, then maximizing the likelihood
(4.11) is the same as minimizing the sum of within-group sums of
squares that underlies Ward’s method. Thus, Ward’s method
corresponds to the situation where clusters are hyperspherical with
the same variance. If clusters are not of this kind (for example, if they
are thin and elongated), Ward’s method will tend to break them up
into hyperspherical blobs.

Other forms of Σk yield clustering methods that are appropriate in
different situations; see Banfield and Raftery (1992). The key to
specifying this is the eigenvalue decomposition of Σk. The
eigenvectors of Σk specify the orientation of the kth cluster, the biggest
eigenvalue specifies its variance or size, and the ratios of the other

(4.11)L D  θ γ,;( ) fγ i
xi θ;( )

i 1=

n

∏=
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eigenvalues to the largest one specify its shape. We can constrain
some but not all of these features (orientation, size and shape) to be

the same across clusters. For example, if we let , the

criterion corresponds to hyperspherical clusters of different sizes; this
is the “Spherical” criterion.

A criterion that appears to work well in a variety of situations results
from constraining only the shape to be the same across clusters; this is
denoted by S*. Here the user must specify the shape, represented by
the eigenvalue ratios αj = λj/λ1 (j = 2, ..., p), where {λ1, ..., λp} are the
eigenvalues ordered from largest to smallest. Specifying each αj = 0.2
leads to elliptical clusters that are moderately concentrated about a
line in p-space, while choosing each αj = 0.01 yields very
concentrated and linear clusters. Setting each αj = 1 gives the
Spherical criterion as a special case. The user’s choice will be
determined by the kind of data that he or she is working with, but we
have found setting each αj = 0.2 often to be a good first guess.

Table 4.4 shows the different model-based clustering criteria and the
assumptions that they embody.

Σk σk
2
I=

Table 4.4:  Model-based clustering criteria with corresponding assumptions.

Criterion Reference Distribution Orientation Size Shape

Sum of Squares Ward (1963) Spherical None Same Same

Spherical Banfield and
Raftery (1992)

Spherical None Different Same

Determinant Friedman and
Rubin (1967)

Ellipsoidal Same Same Same

S Murtagh and
Raftery (1984)

Ellipsoidal Different Same Same
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Choosing the 
Number of 
Clusters

In model-based clustering, choosing the number of clusters is the
same as choosing a model for the data. A standard approach to this is
to calculate the Bayes factor, Bk, for the model defined by k clusters
against the model defined by a single cluster (that is, all the objects
belong to the same group). The Bayes factor is the odds for one
model against another given the data (provided that one has no initial
preference for either model). Thus the larger Bk, the more evidence
there is for the existence of k clusters.

The approximate weight of evidence for k clusters (AWEk) is an
approximation to 2 logBk; see Banfield and Raftery (1992). This is
calculated by mclust. The larger AWEk, the more evidence there is
for the existence of k clusters. by definition, AWE1 = 0, so if all the
AWEk (k = 2, ..., n) are negative, there is no evidence for any
clustering.

The value of k which maximizes AWEk is the number of clusters for
which there is the most evidence. However, we do not recommend
using the AWE criterion to choose a single number of clusters unless
the evidence is overwhelming. Rather, we suggest that the plot of
AWEk be inspected with a view to picking several plausible
possibilities to be further investigated. The change in the approximate
weight of evidence, AWEk - AWEk-1, is often large and positive for the
first few values of k, k = 2, ..., K, say, and small or negative thereafter.
If that is the case, ideas of parsimony suggest considering the
classification into K groups, as well as the value of k which maximizes
AWEk, and any intervening values.

S* Banfield and
Raftery (1992)

Ellipsoidal Different Different Same

Unconstrained Scott and
Symons (1971)

Ellipsoidal Different Different Different

Table 4.4:  Model-based clustering criteria with corresponding assumptions. (Continued)

Criterion Reference Distribution Orientation Size Shape
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Robust Clustering So far, it has been assumed that each object belongs to a cluster.
However, even when a data set is made up mainly of clusters of the
prescribed type, there may be other data points that do not follow this
pattern. This possibility can be allowed for by extending the model
(4.11) to include such isolated observations, or outliers, assumed to
occur according to a Poisson process with an intensity which is
constant over the region from which the data have been drawn. The
likelihood (4.11) is modified accordingly. This yields a class of
clustering algorithms designed to be robust to outliers; see Banfield
and Raftery (1992).

Performing 
Model-Based 
Clustering

The function mclust performs the analyses described in this section.
It carries out hierarchical agglomerative clustering using the six
model-based criteria shown in Table 4.4, and also the five heuristic
criteria discussed at the start of this section. For the model-based
criteria, it returns the AWE statistic for each number of clusters k; this
is used to determine the number of clusters. Functions related to
model-based clustering are listed in Table 4.5.

If noise = T is specified in mclust, it will do robust clustering
(available for the model-based criteria only). If the existence of
outliers is suspected, it may be a good idea to run mclust with
noise = F and noise = T and to compare the results. Important
differences between the resulting classifications would suggest that
there are outliers that are contaminating the results, in which case
either these outliers could be removed from the data sets and studied
separately, or the robust clustering results (with noise = T) could be
used. Note that the number of clusters indicated by the AWE in the
nonrobust case (noise = F) will tend to be larger than in the robust
case (noise = T), because in the nonrobust case some of the outliers
may be classified as single-member groups.

Iterative relocation for any of the eleven criteria listed can be done
using the function mreloc. The function mclass takes the output of
mclust or mreloc and produces a classification of the data objects.

The output of mclust and mreloc can be used to plot and
manipulate classification trees. The function plclust plots the tree,
subtree extracts part of the tree, clorder reorders the leaves of the
tree, labclust labels the leaves of the tree, and cutree creates
groups using the tree.
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The function hclust also does hierarchical agglomerative clustering,
but only for three of the heuristic criteria included in mclust. mclust
is much more general and is to be preferred for many purposes.
However, hclust has two features which can be advantages in
certain situations. It takes as argument a distance matrix rather than a
data matrix, and it is applicable even when the data cannot be
represented by points in Euclidean space; it accepts a dissimilarity
matrix which need not be a distance matrix in the strict sense. A
distance matrix can be calculated from a data matrix using the
function dist. Also, unlike mclust, hclust returns the height at
which each merger was made; this can yield more informative plots
of the classification tree.

Table 4.5:  Functions for model-based clustering.

Function Use

clorder Re-Order Leaves of a Classification Tree

cutree Create Groups from Hierarchical Agglomerative
Clustering

labclust Label the Leaves of a Classification Tree

mclass Classify Objects (uses output of mclust)

mclust Model-Based and Heuristic Hierarchical Agglomerative
Clustering; Determination of the Number of Clusters;
Robust Clustering

mreloc Model-Based Iterative Relocation

plclust Plot a Classification Tree

subtree Extract Part of a Classification Tree
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Example of 
Simple Use

We can use model-based clustering to explore the percent of votes
given to the Republican candidate in presidential elections from 1856
to 1976. In the votes.repub data, rows represent the 50 states and
columns the 31 elections.

> elect.years <- c( "1960", "1964", "1968", "1972", "1976")
> votes.S <- mclust( votes.repub[,elect.years],
+ method="S", noise=T)
> # display dendrogram
> plclust( votes.S$tree, label = state.abb)
> # plot the awe
> plot( x = 1:length(votes.S$awe), y = votes.S$awe)
> # 9-cluster classication
> votes.9 <- mclass( votes.S, 9)
> # 3-cluster classification
> votes.3 <- mclass( votes.S, 3, votes.9)
> votes.3 <- mreloc( votes.3, votes.repub[,elect.years],
+ method="S", noise = T)
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APPENDIX: CLUSTER LIBRARY ARCHITECTURE

Object-Oriented 
Structure

The algorithms of Kaufman and Rousseeuw (1990), summarized
above, have been implemented in S-PLUS as a library of functions,
which generate objects of seven different classes. For each class of
objects, methods for textual or graphical output are available. Most of
the objects are named after the function that generates them. In this
way, classes pam, clara, fanny, agnes, diana, and mona exist. The
seventh class, class dissimilarity, is generated by the function
daisy, but will also be part of the objects of classes pam, clara and
fanny.

Some of these classes are grouped together and inherit from the same
superclass. The created hierarchy of classes is as follows:

1. Class dissimilarity

2. Class partition

• Class pam

• Class clara

• Class fanny

3. Class hierarchical

• Class agnes

• Class diana

4. Class mona

These classes have methods for the following functions:

1. print: For classes dissimilarity, pam, clara, fanny,
agnes, diana, and mona.

2. summary: For classes pam, clara, fanny, agnes, diana,
and mona. These summary methods return new objects of
class summary.<old-class>. For each of those new
summary classes, a print method is available.

3. plot: For classes partition, agnes, diana, and mona.

4. clusplot: For class partition.

5. pltree: For class hierarchical.
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The partition class has a method for the generic plot function that
is common to all its subclasses.

Calling the 
Functions

The daisy function, for calculating dissimilarities, is similar to the
older function dist. One advantage of daisy it that it accepts data
sets with different types of variables. The function’s header is

daisy(x, metric = "euclidean", stand = F, type = list())

When all variables are interval scaled, this specifies the metric to be
used for calculating dissimilarities, and whether or not to standardize
first. When other variable types occur, a list of types can be given.
The output of daisy can be used as input for several of the new
clustering functions.

The input arguments of the six clustering functions are similar. The
calls to the six functions are given in Table 4.6.

All functions, except for clara and mona, accept two possible input
structures: a dissimilarity matrix or a data matrix. The logical
argument diss tells the algorithm how x should be interpreted, the
default being a data matrix of observations by variables. When a
dissimilarity matrix is given as input, it is preferably an object of class
dissimilarity. However, the functions will also accept
dissimilarities produced with dist, or a vector that can be interpreted
as a dissimilarity matrix.

The algorithms of clara and mona don’t accept dissimilarities as
input, but only accept the second input form: a matrix of observations
by variables.

If a function has to compute dissimilarities from a given data matrix,
the function needs to know which metric to use and whether or not to
standardize first. These arguments are similar to the corresponding
arguments of daisy. Since mona doesn’t compute dissimilarities, it
does not have the arguments metric and stand.

The function clara has two additional arguments, specifying the
number of samples and the size of each sample. Also agnes has a
special argument defining the method to be used for calculating
dissimilarities between clusters.

By default, all functions store a copy of the data (if specified) and the
dissimilarities as part of the returned model object. This information
is needed to produce clusplots, but otherwise is provided solely for
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reference. The size of the returned model object may be reduced by
setting save.x and/or save.diss to FALSE, in which case the data
and/or dissimilarities are not returned.

Sometimes the output of the functions is rather extensive, especially
when the summary method is invoked for an object of one of the
partition classes. In those cases, the output scrolls off the screen.
Therefore, all available components of the output are listed on the last
output lines. Those components can be extracted from the result like
a component from a list: object$component.

Objects resulting from the clustering functions can be given as input
to high level graphics functions.

• The plot method for partition objects (pam, clara, and
fanny) produces clusplots and silhouette plots.

• The plot methods for agnes and diana produce clustering
trees and banner plots.

• The plot method for mona produces a banner plot.

More information and details about the input arguments and the
structure of the output can be found in the help files.

Table 4.6:  Summary of clustering functions

Function Description and example function call

daisy Computes a dissimilarity matrix from a data matrix.

daisy(x, metric = "euclidean", stand = F, type = list())

pam A crisp partitioning method for smaller data sets.

pam(x, k, diss = F, metric = "euclidean", stand = F, 
save.x = T, save.diss = T)

clara A method for larger data sets (more than 250 objects) using the same basic
algorithm as pam.

clara(x, k, metric = "euclidean", stand = F, samples = 5, 
sampsize = 40 + 2 * k, save.x = T, save.diss = T)
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fanny A fuzzy partitioning method, employing the concept of memberships.

fanny(x, k, diss = F, metric = "euclidean", stand = F, 
save.x = T, save.diss = T)

agnes An agglomerative hierarchical method, computes a measure of the clustering
found.

agnes(x, diss = F, metric = "euclidean", stand = F, 
method = "average", save.x = T, save.diss = T)

diana A divisive hierarchical method, computing a measure of the divisive clustering
found.

diana(x, diss = F, metric = "euclidean", stand = F, 
save.x = T, save.diss = T)

mona A divisive hierarchical method that works on binary data.

mona(x)

Table 4.6:  Summary of clustering functions (Continued)

Function Description and example function call
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Chapter 5  Hexagonal Binning
INTRODUCTION

This chapter describes the use of the hexbin function to graphically
display spatial data. The S+SPATIALSTATS module, available for both
UNIX and Windows, provides a more extensive set of tools for
analyzing spatial data in the form of geostatistical data, lattice data,
and spatial point patterns.
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THE APPEAL OF HEXAGONAL BINNING

Hexagonal binning is a data grouping or reduction method typically
employed on large data sets to clarify spatial structure. It can be
thought of as partitioning a scatter plot into larger units to reduce
dimensionality, while maintaining a measure of data density. The
groups or bins are used to make hexagon mosaic maps colored or
sized according to density. Rectangular or square grids are often used
in this context for image-processing applications, for example, in
grayscale, contour, and perspective maps. However, hexagons are
preferable for visual appeal and representational accuracy (Carr,
Olsen, and White, 1992). Hexagonal binning can also be used to
group geostatistical data into a lattice for use in spatial regression
modeling.

The data frame quakes.bay contains the locations of earthquakes in
the San Francisco Bay Area for 1962-1981. Hexagonal bins are
maintained in an object of class hexbin. Use the function hexbin to
create the hexbin object for the earthquake data as follows.

> quakes.bin <- hexbin(quakes.bay$longitude,
+ quakes.bay$latitude)
> summary(quakes.bin)

Call:
hexbin(x = quakes.bay$longitude, y = quakes.bay$latitude)
Total Grid Extent: 36 by 31
      cell            count            xcenter
Min.   :  17.0   Min.   :  1.000   Min.   :-123.3
1st Qu.: 239.0   1st Qu.:  1.000   1st Qu.:-122.0
Median : 419.0   Median :  3.000   Median :-121.6
Mean   : 467.9   Mean   :  7.505   Mean   :-121.5
3rd Qu.: 696.0   3rd Qu.:  5.000   3rd Qu.:-121.0
Max.   :1091.0   Max.   :144.000   Max.   :-119.8
     ycenter
Min.   :36.01
1st Qu.:36.51
Median :36.94
Mean   :37.06
3rd Qu.:37.59
Max.   :38.50
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The summary function shows the four components of the hexbin
object and their distributions. The hexagon identified by cell
contains count observations, and has center of mass at (xcenter,
ycenter). The default settings for hexbin partition the range of x
values into approximately 30 equal-sided hexagonal bins. The most
useful bin size depends on the number of observations, and is best
chosen iteratively. Plot the hexagonal bins as follows.

> trellis.device(color=F)
> at.quakes <- c(0,10,20,30,40,50,150)
> plot(quakes.bin,border=T, col.regions=80:15,
+ at=at.quakes)

The Trellis graphics device produces the best color and grayscale
images for hexagonal binning. The default settings for plot.hexbin
plot the hexagonal bins as a full tessellation, containing equally sized
hexagons with color corresponding to grouped bin counts. By default,
the groups are equal in range. Since the distribution of
quakes.bin$count (shown by the summary output above) is

Figure 5.1:  The San Andreas Fault has a clear ridge of frequent earthquakes.
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skewed, we have chosen the groups formed by at.quakes. The plot
in Figure 5.1 shows the ridge of frequent earthquakes along the San
Andreas Fault.

Hexagonal Bin 
Plot Styles

Besides the default grayscale style used here, there are four other plot
styles available which plot the hexagons in varying sizes depending
on cell density. Plot the earthquake hexbin object with differing sizes
of hexagons as follows:

> plot(quakes.bin, style="centroids", cuts=6)

The "centroids" style shown in the figure scales the hexagon sizes
by cell count, and plots them at the center of mass determined by
xcenter and ycenter. The cuts = 6 argument yields six different
hexagon sizes. There are two nested plot styles (nested.lattice
and nested.centroids, not shown) which provide depth when
plotted on a color screen.

Figure 5.2:  As an alternative to using different grayscales in a hex plot, the 
hexagons can be drawn to a range of sizes. The range is determined by the cuts= 
argument.
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Examining 
Individual Bins

There are several large bins in the plot which we may want to
examine more closely. The generic identify function can be used to
interactively identify points on a hexagonal bin plot. The two largest
bins can be identified as follows.

> quake.par <- plot(quakes.bin, style="centroids", cuts=6)
> oldpar <- par(quake.par)
> identify(quakes.bin, use.pars = quake.par, offset=1)

[1] 114 79

> par(oldpar)

First it is necessary to save the graphical parameters used to plot the
hexagonal bin. After entering the identify command, use the cross-
hairs to locate the point of interest on the graphics screen, and click
the left mouse button. The count in the closest cell will appear on the
graphics screen. We have used the optional argument offset to
make the count easier to read. When you have identified both points,
click the center or right mouse button, while keeping your pointer
within the graphics window. The index of the points you have
identified will appear on your command line, as above. Then use the
par function to reset the graphics parameters.

Directional 
Rays

The rayplot function can be used to display the magnitudes of a
variable of interest at spatial locations using directional rays. For
smaller data sets, these rays or other types of symbols can be plotted
at each data location. However, when the number of sites is large, the
magnitudes and trends are easier to visualize if the locations are first
binned using hexbin. The following example uses the ozone data set:

1. Create a hexbin object for the ozone data, using eight bins in
the x direction.

> ozone.bin <- hexbin(ozone.xy$x, ozone.xy$y,
+ xbins=8)

2. Map each (x, y) pair in the original data to a hexagonal cell
using the function xy2cell.

> ozone.cells <- xy2cell(ozone.xy$x, ozone.xy$y,
+ xbins=8)
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3. Use the function tapply to calculate the median for each cell,
and use these values as angles for the rayplot.

> ozone.angle <- tapply(ozone.median, ozone.cells,
+ median)
> library(maps)

Warning messages:
The functions and datasets in library section maps
are not supported by MathSoft. in: library(maps)

> map(region=c("new york","new jersey","conn",
+ "mass"),lty=2)
> rayplot(ozone.bin$xcenter,ozone.bin$ycenter,
+ ozone.angle)

The plot shows the median ozone emissions for the group of sites
within each hexagonal bin. The ray is plotted at the center of each
bin, and the medians are scaled so the rays follow an arc from -π/2
(lowest median) to π/2 (highest median). It appears that the highest

Figure 5.3:  Rayplots add direction as well as density. This plot shows median ozone 
emissions.
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emissions for the time period covered are in Connecticut. Additional
attributes can be used with rayplot to add confidence intervals and a
second variable to the plot. Also, the lengths and widths of the rays
and the size of the base octagon can be changed. See the online help
file for more information on rayplot.
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Chapter 6  Creating and Viewing Time Series
INTRODUCTION

Time series arise in situations where the timing of the data acquisition
is an important feature of the values and their analysis. For example,
weekly or monthly measurements of sunspot activity can be used to
study cycles in sunspot activity. Old records from the Hudson’s Bay
Company on annual trappings of the Canadian lynx can be used to
study yearly fluctuations in population numbers of the lynx. Yearly
measures of the U.S. corn crop yield can be used to study factors that
might influence corn production.

This chapter describes how to create, manipulate, and view time
series in S-PLUS. The section Creating and Modifying Time Series
describes how to create time series in S-PLUS, how to combine two
series, and various ways of subsetting time series. The section
Visualizing Correlation in Time Series Data explores some methods
for plotting and visually analyzing time series.
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CREATING AND MODIFYING TIME SERIES

A time series is a collection of observations made sequentially in time.
If the observations are multidimensional, then we have a multivariate
time series. Three classes of time series are recognized in S-PLUS:

• Regularly spaced time series, which are series sampled at
equal intervals, make up the class "rts".

• Calendar time series, in which the regularly spaced
observations are associated with a calendar date, make up the
class "cts".

• Irregularly spaced time series, in which the observations may
be sampled at irregular intervals and which may have
calendar or noncalendar time domains, make up the class
"its".

A time series can have the form of a vector, a factor, a matrix, or a
data frame. A univariate time series has the form of a vector or factor;
a multivariate time series has the form of a matrix or data frame. A
univariate S-PLUS time series object is just a special case of the general
multivariate S-PLUS time series object. The columns, or channels, of
an S-PLUS multivariate time series represent univariate time series
with simultaneous observations across the rows.

Creating 
Regular Time 
Series

A regular time series (rts) is a sequence of observations obtained at
regular intervals. A regular time series is characterized by four time
parameters which together give a summary of the sequence of
observation times:

1. the time of the first observation,

2. the interval between observation times, ∆t,

3. the sampling rate, which is the reciprocal of the interval ∆t,
and

4. the time of the last observation.

Use the function rts to create a regular time series data object from
your time series data. Use the arguments to rts (start, deltat (∆t),
frequency, and end) to specify the time parameters. The data
generally supply the length of the time sequence. You can, however,
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create an empty time series, with NA for all the values, by supplying
both a beginning and an ending time, and either frequency or
deltat.

> empty.rts <- rts(start=0, end=8.8, deltat=0.2)
> empty.rts

    1  2  3  4  5
0: NA NA NA NA NA
1: NA NA NA NA NA
2: NA NA NA NA NA
3: NA NA NA NA NA
4: NA NA NA NA NA
5: NA NA NA NA NA
6: NA NA NA NA NA
7: NA NA NA NA NA
8: NA NA NA NA NA
 start deltat frequency
     0    0.2         5

Since frequency and deltat are reciprocals, you can define either
one and the other is determined automatically. For instance, suppose
you want to make a time series of the outcomes of presidential
elections, which are held every four years. In this case it is easier to
define deltat. The matrix votes.repub shows the percent of votes
in each state given to the Republican candidate in presidential
elections starting in the year 1856. The rows of this matrix are the
states, so you transpose the matrix to make each column a univariate
time series.

> votes.rts <- rts(t(votes.repub), start = 1856,
+ deltat = 4, units = "years")

When the observation intervals occur in regular cycles, it is often
easier to define the frequency, for example, frequency = 12,
units = "months" or frequency = 1000, units = "kHz". Note
that "units" always refers to the interval between observations
(deltat), never to the larger period deltat x frequency.

You can define the start argument, the end argument, or both. If
you define both, they must agree with the length of the data. The end
must be later than the start. The start argument may be a single
numeric value giving the starting time (for example, for votes.rts,
the starting year was start = 1856) or a pair of values giving the
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base time and an integer offset (for example, start = c(1962,2)).
The offset gives the position in the cycle of the first observation. Thus
to indicate a starting time of the second quarter of 1962, use the
start argument as follows:

> freeny.rts <- rts(freeny.y, start=c(1962, 2), freq=4,
+ units="quarters")
> freeny.rts

           1Q      2Q      3Q      4Q
1962:         8.79236 8.79137 8.81486
1963: 8.81301 8.90751 8.93673 8.96161
1964: 8.96044 9.00868 9.03049 9.06906
1965: 9.05871 9.10698 9.12685 9.17096
1966: 9.18665 9.23823 9.26487 9.28436
1967: 9.31378 9.35025 9.35835 9.39767
1968: 9.42150 9.44223 9.48721 9.52374
1969: 9.53980 9.58123 9.60048 9.64496
1970: 9.64390 9.69405 9.69958 9.68683
1971: 9.71774 9.74924 9.77536 9.79424
   start deltat frequency
 1962.25   0.25         4
Time units :  quarters

The end argument is used similarly.

You can name the component series (columns) of a time series
directly with the names argument to rts or allow the creating
function to use the dimnames of the matrix or data frame which
contains the data. If neither of these are given, the series are named
"Series 1", "Series 2", etc. The rows are named with the times
that correspond to the observations.

Suppose you want to create a bivariate white noise series of length
100 and sampling interval ∆t = 1/5, starting at 1. Since 1 is the default
starting time for time series, you don’t need to give the starting time
explicitly in this case:

> whitenoise2 <- rts(matrix(rnorm(200), ncol=2),
+ deltat=1/5)
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> whitenoise2

        Series 1   Series 2
 1.0 -0.40333165  0.3468278
 1.2  1.32106086 -0.7209995
 1.4 -1.21063699  1.6346167
 1.6 -0.06814786  3.2141895
 1.8 -0.65618203 -1.9486379
 2.0 -0.20831037 -0.2666580
 2.2  0.03356625 -0.7492557
 2.4 -1.92188396 -1.1880001
 2.6  1.00097830  0.9222979
 2.8  0.96451061 -0.2713598
 . . .
 start deltat frequency
     1    0.2         5

To view information about a time series without printing the entire
object, use the summary function. This function gives the type of time
series (regular, calendar, or irregular), the number of component
series (channels), and the number of observations in each, a vector
summary of each channel (range, quartiles, and median) and the time
parameters start, deltat, frequency, and units:

> rain.rts <- rts(cbind(rain.nyc1, rain.nyc2),
+ start=1869, names=c("nyc1", "nyc2") )
> summary(rain.rts)

Regular Time Series:
Observations: 89  on 2 channels

       nyc1            nyc2
 Min.   :32.70   Min.   :32.6
 1st Qu.:37.80   1st Qu.:38.8
 Median :40.80   Median :42.1
 Mean   :42.31   Mean   :42.9
 3rd Qu.:46.00   3rd Qu.:46.7
 Max.   :56.10   Max.   :58.7

Time Parameters :
 start deltat frequency
 1869     1      1
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The functions start and end return the starting and ending times of
the series, respectively.

> start(rain.rts)

[1] 1869

> end(rain.rts)

[1] 1957

Manipulating 
Dates

Dates in S-PLUS can be represented and manipulated in very natural
ways. Use the dates function to create a dates object from a
character string or a vector of character strings.

> holiday93 <- dates(c("01/01/93", "01/18/93",
+ "02/15/93", "05/31/93", "07/04/93", "09/06/93",
+ "10/11/93", "11/11/93", "11/25/93", "12/25/93"))
> holiday93

[1] 01/01/93 01/18/93 02/15/93 05/31/93 07/04/93
[6] 09/06/93 10/11/93 11/11/93 11/25/93 12/25/93

You can specify dates in a variety of formats; use the format
argument to specify the format you are using for the input, and the
out.format argument for the format of the output. The strings that
control the way a date object is interpreted and printed consist of the
letters "y", "m", and "d" in any order, with or without a separator.

> election <- dates("931102", format="ymd",
+ out.format="month day year")
> election

[1] November 02 1993

> attr(election,"format")

[1] "month day year"
131



Chapter 6  Creating and Viewing Time Series
The formats "d-m-y", "m/d/y", and "ymd" cause election to be
printed as 02-11-93, 11/02/93, and 931102, respectively. Spelling
out "month" and "year" causes them to print out fully, as in the
example above, while abbreviating month as "mon" causes the month
to print as a three-letter abbreviation.

> dates(election, out.format="day mon y")

[1] 02 Nov 1993

The default input and output format for "dates" is "m/d/y".

Sequences and 
Dates

You can create a sequence of dates with the seq function much the
same way you create a sequence of integers by using a date as the first
(from) argument. The other necessary arguments are the interval
between the elements, by, and either an ending date, to, or an integer
length, length. You can specify by as one of "days", "weeks",
"months", "quarters", or "years" or as an integer number of
days.

> start.dates <- seq(dates("09/27/93"), length=5,
+ by ="weeks")
> start.dates

[1] 09/27/93 10/04/93 10/11/93 10/18/93 10/25/93

> seq(dates("09/27/93"), length = 5, by = 7 )

[1] 09/27/93 10/04/93 10/11/93 10/18/93 10/25/93

You must supply a starting date and an increment (by). You may
supply an ending date (to) instead of a desired length.

> seq(dates("09/27/93"), dates("10/30/93"), by="weeks")

[1] 09/27/93 10/04/93 10/11/93 10/18/93 10/25/93

Unlike the case when using the seq function with numbers, you
cannot give seq a starting and ending date and ask for a vector of a
specific length.
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Operations on 
Dates

You can perform certain types of arithmetic operations on dates. The
operations that work on dates are addition or subtraction of a scalar
number of days, subtraction of one date from another to get the
number of days between them, and logical comparison of dates:

> end.dates <- start.dates + 10
> preview.dates <- start.dates - 30
> max(start.dates) - min(start.dates)

Time in days:
[1] 28

> max(start.dates) > min(end.dates)

[1] T

You cannot do arithmetic calculations with dates that make no sense—
for example, you cannot multiply or divide a date by a scalar, nor can
you add two dates.

All of the usual tools for examining and manipulating vectors are
available for use on date objects, so, for example to obtain a vector of
differences between elements in a dates vector, use diff:

> diff(holiday93)

Time in days:
[1]  17  28 105  34  64  35  31  14  30

Julian Dates Dates in S-PLUS are represented internally as Julian dates, that is, the
number of days from an arbitrary day of origin. The default origin
date in S-PLUS is January 1, 1960. The dates function interprets
integers as Julian dates, and so does any function that is expecting a
date as an argument. You can specify a different origin when you
create a date. For example, to create a vector of five random days in
August 1993 use the origin argument as follows:

> random.days <- dates(sample(0:30, size=5),
+ origin=c(8, 1, 1993))
> random.days

[1] 08/12/93 08/10/93 08/22/93 08/19/93 08/07/93
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View the origin of a date with the origin function:

> origin(start.dates)

 month day year
     1   1 1960

> origin(random.days)

[1]    8    1 1993

You can convert a dates object to an ordinary integer with
as.integer.

Calendar Time 
Series

A calendar time series is a sequence of observations taken at regular
intervals, in which each observation is associated with a calendar
date. The time parameters that define a calendar time series are the
start date, the units of the observation interval, and a multiplier which
indicates how many units of time in each interval.

To create a calendar time series (cts object), use the cts function.
You can present the start argument with a date created by the
dates function, a string of the appropriate format or a Julian date (an
integer).

The units argument of cts, which defaults to "years", must be one
of "days", "weeks", "months", "quarters", or "years". Each of
these has a default sampling frequency, as is shown in Table 6.1.

Table 6.1:  Units and frequencies in calendar time series.

Units Frequency

"days" 365

"weeks" 52

"months" 12

"quarters" 4

"years" 1
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Suppose you have monthly temperature records for three different
weather stations for the years 1985-1987, stored as S-PLUS data sets
temp1, temp2, and temp3. To create a three-dimensional time series
with these records as the component series and name each series, use
the commands:

> temp1 <- scan(file="Aberdeen.temp")
> temp2 <- scan(file="Forks.temp")
> temp3 <- scan(file="Quinault.temp")
> temp.cts <- cts(cbind(temp1,temp2,temp3),
+ start="01/01/85", units="months",
+ names=c("Aberdeen","Forks","Quinault"))

Sometimes you have data that are sampled at regular intervals that
are not one of the five shown in Table 6.1, for instance, bi-weekly or
every ten days. The multiplier, set by the argument k.units, allows
sampling intervals that are whole numbers of units apart. Thus, to
specify observations taken every ten days, set the units to "days"
and k.units to 10; to specify bi-weekly data, set the units to
"weeks" and k.units to 2; to specify semi-annual data, set the
units to "months" and k.units to 6 or set units to "quarters"
and k.units to 2. Other intervals can be defined similarly.

The sampling frequency is determined by the units of the time
interval and the multiplier k.units. It does not need to be set
directly. However, to create a sampling cycle within a time series, you
can set the frequency to the length of the desired cycle. In the
example below the starting time is the full moon on October 30, and
the weekly observations are whether the moon is approximately full,
half, or new.

> moon <- cts(rep(c(1, 1/2, 0, 1/2), 4),
+ start="10/30/93", units="weeks", freq=4)
> moon

    week 1 week 2 week 3 week 4
  :                      1.0
93: 0.5    0.0    0.5    1.0
93: 0.5    0.0    0.5    1.0
93: 0.5    0.0    0.5    1.0
94: 0.5    0.0    0.5
    start units k.units frequency
 10/30/93 weeks 1       4
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> end(moon)

 02/12/94

See the section Manipulating Time Series and the functions time and
cycle for more about the use of frequency and sampling cycles.

Irregular Time 
Series

An irregular time series is a set of observations taken over time at
unequal intervals. Each observation of an irregular time series (its
object) is associated with an observation time. To create an irregular
time series, use the its function and supply as the times argument a
vector containing the times of each successive observation. This
vector may be either numeric or of class "dates". The observation
times must be unique and in ascending order. You can supply the time
units with the argument units, and the names of the channels
(columns) with names, in the case of a multivariate time series.

> votes.its <- its(t(votes.repub), times = votes.year,
+ names = state.abb)
> votes.its[,1:8]      #print only the first 8 states

        AL    AK    AZ    AR    CA    CO    CT    DE
1856    NA    NA    NA    NA 18.77    NA 53.18  2.11
1860    NA    NA    NA    NA 32.96    NA 53.86 23.71
1864    NA    NA    NA    NA 58.63    NA 51.38 48.20
1868 51.44    NA    NA 53.73 50.24    NA 51.54 40.98
1872 53.19    NA    NA 52.17 56.38    NA 52.25 50.99
1876 40.02    NA    NA 39.88 50.88    NA 48.34 44.55
...

> faithful.its <- its(geyser$duration,
+ cumsum(geyser$waiting), units="minutes")
> number.of.deaths

 [1] 156  89  40  71  84  47  84  57 118  88

> vehicular <- its(death, holiday93)
> ts.plot(vehicular)
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You can retrieve the observation times of an irregular time series with
the time function; the result is a vector, not a time series.

> time(faithful.its)[1:10]

 [1]  80 151 208 288 363 440 500 586 663 719

You can plot, subset, and summarize irregular time series in the same
way as regular or calendar time series.

> summary(faithful.its)

Irregular Time Series:
Observations: 299

   Min. 1st Qu. Median  Mean 3rd Qu. Max.
 0.8333       2      4 3.461   4.383 5.45

Time Parameters :
 start   end
 80    21622

There are as yet no methods in S-PLUS for analyzing irregular data
sets.

Updating Old 
Time Series 
Objects

Time series created in S-PLUS versions 3.1 and earlier were classless
objects with a "tsp" attribute. Since the "tsp" attribute supplies
values for start and frequency, old ts objects can be easily
coerced to rts objects with as.rts:

> sunspots.rts <- as.rts(sunspots)
> tspar(sunspots.rts)

 start     deltat frequency
  1749 0.08333333        12

All the time series functions that were available for S-PLUS versions
3.1 and before still accept "ts" objects, but newer ones may not, and
ts will eventually be deprecated.

Binding Time 
Series Together

To bind two or more time series together into a single multivariate
time series, use ts.intersect and ts.union. For example, if you
have a weekly and a bi-weekly time series with different starting and
ending times, you can use ts.intersect to create a matrix of two
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bi-weekly series. The starting time of the new series is the later of the
starting times of the input series, and the ending time of the new series
is the earlier of the ending times of the input series. The following
example shows how to create a bivariate irregular time series from
two subscripted time series.

> rain.low <- rts(corn.rain,
+ start=1890)[corn.rain < mean(corn.rain)]
> yield.low <- rts(corn.yield,
+ start=1890)[corn.yield < mean(corn.yield)]
> ts.intersect(rain.low, yield.low)

You can use ts.union to create a multivariate series retaining all the
data of the component series. The starting time of the new series is the
earlier of the starting times of the input series, and the ending time of
the new series is the later of the ending times of the input series. NAs
fill the places of the missing data.

> lynx.lag <- ts.union(lynx.rts, lag(lynx.rts, k=10))
> ts.plot(lynx.lag)

Figure 6.1:  Time series plot of lynx data and lagged lynx data.
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Manipulating 
Time Series

To get the time of each observation of a time series, use the function
time. In this example, the number of lynx trappings is plotted versus
the year, and then specific years are identified interactively on the
plot.

> lynx.rts <- as.rts(lynx)
> lynxtime <- time(lynx.rts)
> ts.plot(lynx.rts)
> # interactively identify points on the plot
> identify(lynxtime, lynx.rts, lynxtime)

Whenever the frequency of a time series is greater than one, there is
an implied sampling cycle of length frequency. The layout of a
univariate series such as freeny.rts shows this clearly—all the
observations occurring at the same point in the cycle are in columns
labeled with their position in the cycle while the sampling period
increases by one at each row.

> freeny.rts

           1Q      2Q      3Q      4Q
1962:         8.79236 8.79137 8.81486
1963: 8.81301 8.90751 8.93673 8.96161
1964: 8.96044 9.00868 9.03049 9.06906
1965: 9.05871 9.10698 9.12685 9.17096
1966: 9.18665 9.23823 9.26487 9.28436

Figure 6.2:  Time series plot of lynx data with high and low points identified.
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1967: 9.31378 9.35025 9.35835 9.39767
1968: 9.42150 9.44223 9.48721 9.52374
1969: 9.53980 9.58123 9.60048 9.64496
1970: 9.64390 9.69405 9.69958 9.68683
1971: 9.71774 9.74924 9.77536 9.79424

   start deltat frequency
 1962.25   0.25         4
 Time units :  quarters

To obtain a time series giving the position of each observation in the
sampling cycle, use the cycle function.

> cycle(freeny.rts)

      1Q 2Q 3Q 4Q
1962:     2  3  4
1963:  1  2  3  4
       .  .  .

You can use the result of cycle to get subsets of the time series. For
example, to get all the fourth quarter revenue from freeny.rts, use
the results of cycle to subset the time series:

>  freeny.rts[cycle(freeny.rts)==4]

1961.75:         8.81486 8.96161 9.06906
1965.75: 9.17096 9.28436 9.39767 9.52374
1969.75: 9.64496 9.68683 9.79424
   start deltat frequency
 1962.75      1         1

As you can see from the example above, when you subscript a
univariate regular time series using the cycle function, you get
another regular time series. In fact, subscripting a univariate time
series or the rows (time dimension) of multivariate time series yields a
time series of the same type as long as the observations in the
resulting time series are still at equal intervals. For instance, in the
following example the monthly housing starts of the data set hstart
are sampled quarterly:

> hstart.cts <- cts(hstart, start="01/31/66",
+ units="months")
> qtrs <- rep(c(F,F,T), length=length(hstart.cts))
> hstart.qtrs <- hstart.cts[qtrs]
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> hstart.qtrs

            1     2     3     4
Mar 66: 122.4 123.5  91.9  62.3
Mar 67:  92.9 131.6 125.8  83.1
Mar 68: 128.6 142.5 139.5  99.3
Mar 69: 135.6 150.5 132.9  85.3
Mar 70: 117.8 141.9 133.8 124.1
Mar 71: 169.3 196.8 175.6 155.3
Mar 72: 205.8 226.2 204.4 152.7
Mar 73: 201.1 203.4 148.9  90.6
Mar 74: 127.2 149.5  99.6  54.9
    start  units k.units frequency
 03/31/66 months 3       4

and in the next the monthly sunspot data of sunspots.rts is
sampled at two year intervals:

> twoyear<- seq(from=13,  to=end(sunspots.rts), by=24)
> ts.plot(sunspots.rts[twoyear], sunspots.rts[twoyear -6],
+ sunspots.rts[twoyear + 12])

Whenever the observations of the resulting time series are not at equal
intervals, it is returned as an irregular time series (class "its"). This
often happens when you subscript on the values of the observations,
as in the following:

> hi <- rain.rts[,1] > 46 & rain.rts[,2] > 46
> rain.hi <- rain.rts[hi,] #46 = 3rd Quartile for nyc1
> rain.hi

     nyc1 nyc2
1871 49.2 48.8
1884 49.7 55.3
1888 51.0 53.0
1889 54.4 58.7
1893 46.6 53.0
1901 47.0 47.1
1902 50.3 47.1
1903 55.5 48.6
1919 50.8 48.4
1920 53.2 48.8
1926 47.8 49.7
1927 56.1 49.9
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1933 53.5 49.7
1936 49.8 46.3
1937 53.0 48.1
1938 48.5 46.5
1942 48.5 49.6
1948 46.9 54.2
 start      end
 1871  ... 1948

Of course, when you subscript the columns of a multivariate time
series, the result is a time series with the same class and time
parameters as the original, as demonstrated below:

> freeny2.rts <- rts(freeny.x, start=c(1962, 2), freq=4,
+ units="quarters")
> price.rts <- freeny2.rts[ ,2:3]
> price.rts

        price index income level
1962.25     4.70997      5.82110
1962.50     4.70217      5.82558
1962.75     4.68944      5.83112
1963.00     4.68558      5.84046
 . . .

1971.00     4.30552      6.18231
1971.25     4.29627      6.18768
1971.50     4.27839      6.19377
1971.75     4.27789      6.20030
   start deltat frequency
 1962.25   0.25         4
 Time units :  quarters

To obtain a segment of a time series with only portion of the time
domain, use the window function. Suppose you want to look more
closely at two shorter segments of sunspots.rts, one from a time
with relatively few sunspots, and one from a time with relatively
many.

> ts.plot(sunspots.rts)
> suntime<- time(sunspots.rts)
> identify(suntime, sunspots.rts, suntime)
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By selecting various points on the plot with the mouse, you determine
that the years 1790 to 1840 were a relatively quiet time for sunspots,
while between 1925 and 1975 there were high peaks of sunspot
activity. You can then use window to extract the intervals of interest:

> quiet.rts <- window(sunspots.rts,start = 1790,
+ end = 1840)
> noisy.rts <- window(sunspots.rts,start = 1925,
+ end = 1975)

A lagged time series is a new time series with the same data as a given
time series shifted in time by a specified amount. You can create a
lagged series in S-PLUS with the function lag. A positive lag shifts the
series earlier in time; a negative lag shifts it later.

> hstart.rts <- as.rts(hstart)
> lag.yr <- lag(hstart.rts, 12)
> adv.yr <- lag(hstart.rts, -12)

The three commands above create three time series with the same
data but different starting dates:

> c(start(lag.yr), start(hstart.rts), start(adv.yr))

[1] 1965 1966 1967

Figure 6.3:  Ranges in sunspot data identified interactively.
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Chapter 6  Creating and Viewing Time Series
You can look at them all side by side. In the example below, you can
see that the data in lag.yr at 1965.883 and 1965.917 (November and
December of 1965) are the same as the data in hstart.rts as
1966.883 and 1966.917, twelve months later.

> hstart.lag <- ts.union(lag.yr, hstart.rts, adv.yr)
> window(hstart.lag, 1965.8, 1967)

         lag.yr hstart.rts adv.yr
1965.833   75.1         NA     NA
1965.917   62.3         NA     NA
1966.000   61.7       81.9     NA
1966.083   63.2       79.0     NA
1966.167   92.9      122.4     NA
1966.250  115.9      143.0     NA
1966.333  134.2      133.9     NA
1966.417  131.6      123.5     NA
1966.500  126.1      100.0     NA
1966.583  130.2      103.7     NA
1966.667  125.8       91.9     NA
1966.750  137.0       79.1     NA
1966.833  120.2       75.1     NA
1966.917   83.1       62.3     NA
1967.000   82.7       61.7   81.9
    start     deltat frequency
 1965.833 0.08333333        12
time units :  months

> ts.plot(hstart.lag, lty=c(2,1,3) )

To find the difference between numeric observations at fixed
intervals, use the diff function. The lag argument gives the numbers
of intervals apart to take the differences; the default is 1. The diff
function creates a time series whose channels are lag shorter than the
original, with a starting time lag intervals later than the starting time
of the original. A differences argument greater than one repeats
the process, so that diff(x,1,4) is the same as
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Creating and Modifying Time Series
diff(diff(diff(diff(x)))). The following example shows how
to take the yearly difference in the values of freeny.rts by quarter:

> diff(freeny.rts, lag=4)

            1       2       3       4
1963:         0.11515 0.14536 0.14675
1964: 0.14743 0.10117 0.09376 0.10745
1965: 0.09827 0.09830 0.09636 0.10190
1966: 0.12794 0.13125 0.13802 0.11340
1967: 0.12713 0.11202 0.09348 0.11331
1968: 0.10772 0.09198 0.12886 0.12607
1969: 0.11830 0.13900 0.11327 0.12122
1970: 0.10410 0.11282 0.09910 0.04187
1971: 0.07384 0.05519 0.07578 0.10741
   start deltat frequency
 1963.25   0.25         4
 Time units :  quarters

The diff function also works for vectors and matrices. See the
section Integrals, Differences, and Derivatives in Chapter 15 for more
uses of the diff function.
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Chapter 6  Creating and Viewing Time Series
VISUALIZING CORRELATION IN TIME SERIES DATA

If data are collected over time, there may be correlation between
successive observations. You can visually explore whether or not your
data is serially correlated by using S-PLUS functions to make three kinds
of plots:

• simple time series plots, which you have already explored in the
User’s Guide

• lagged scatter plots, which are scatter plots of pairs of values
(yt,yt+m) of a time series separated by a lag of one or more time
units

• autocorrelation function plots, which provide an estimate of the
correlation between observations separated by a lag of zero,
one, or more time units

To illustrate the use of these functions, we use the function rnorm to
create uncorrelated normal random numbers and from these numbers
create a correlated series x.cor:

> r.norm <- rnorm(100)
> x.cor <- r.norm[1:98] + r.norm[2:99] + r.norm[3:100]

The series x.cor is serially correlated at lags 1 and 2; that is,
x.cor[i] is correlated with x.cor[i+1] and x.cor[i+2]. But
x.cor is serially uncorrelated at lags greater than 2; that is, x.cor[i]
and x.cor[i+k] are uncorrelated for k > 2.

Basic Time 
Series Plots

The basic time series plot shows each observation plotted against its
observation time. For example, our time series x.cor can be plotted
as follows:

> ts.plot(x.cor,type="b",pch=16)

This expression yields the plot of Figure 6.4.
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Visualizing Correlation in Time Series Data
The values of successive observations tend to be close together, so
you suspect some serial correlation. You can see this more clearly
with lag.plot and acf, as described in the following sections.

Lagged Scatter 
Plots

The lagged scatter plots in Figure 6.5 consist of scatter plots of pairs of
values (yt, yt+m) of a time series separated by m time units for m = 1, 2,
..., M. The figure is generated with the following expression:

> lag.plot(x.cor,lags=4,layout=c(2,2))

Figure 6.4:  Time series plot for a correlated series.
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Chapter 6  Creating and Viewing Time Series
The maximum lag M is specified by the lags= argument to
lag.plot. For the above example, the choice lags=4 results in
M = 4, and so there are four plots. The argument layout= specifies
the way the M lagged scatter plots are arranged in a single figure, just
as you use the function par to specify multiple figure layout.

A circular shape for a lagged scatter plot at a specific lag m indicates
that there is little correlation at that lag. On the other hand, an
elliptical shape for a lag m scatter plot in the 45 degree direction
indicates positive correlation at lag m. An elliptical shape in the 135
degree direction indicates negative correlation. In the above example

Figure 6.5:  Lagged scatter plots for a correlated series.
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Visualizing Correlation in Time Series Data
using x.cor, the lag 1 plot shows clear evidence of positive
correlation, and the lag 2 plot shows some indication of positive
correlation.

Autocorrela-
tion Plots

An autocorrelation function (acf ) plot provides an estimate of the
correlation between observations separated by a lag of m time units,
for m = 0, 1, 2, ..., M. Use the following expressions to obtain the plots
shown in Figure 6.6:

> ts.plot(x.cor)
> acf(x.cor)

You can specify the number of lags M for which you want
autocorrelations by using the optional argument lag.max=.

The value of the autocorrelation function at lag 0 is always 1. The
horizontal dotted lines provide an approximate 95% confidence
interval for the autocorrelation estimate at each lag. If no

Figure 6.6:  Time series plot and ACF plot for a correlated series.
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Chapter 6  Creating and Viewing Time Series
autocorrelation estimate (given by the vertical lines for positive lags)
falls outside the strip defined by the two dotted lines (and the data
contain no outliers!), you may safely assume that there is no serial
correlation. Otherwise, you should be concerned about the presence
of serial correlation. In our example, the acf plot indicates serial
correlation at lags 1 and 2.
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Introduction
INTRODUCTION

There are two general approaches to analyzing time series and
signals. One is to use time domain methods in which the values of the
process are used directly; the other is to use frequency domain
methods. Frequency methods investigate the periodic properties of
the process. The books by Chatfield (1984) and Shumway (1988)
provide readable introductions to time series analysis, which covers
both time domain and frequency domain methods.

Fields of study tend to focus on analyzing data in one domain or the
other. For example, economists use the time domain extensively
while electrical engineers often use the frequency domain. To a large
extent, this division arises from the types of questions that are being
asked of the data. However, combining the approaches can at times
give a more thorough understanding of the data.

Robust methods are necessary for both domains because the failure of
model assumptions (such as Gaussian errors) can cause misleading
results when classical techniques are applied.
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Chapter 7  Analyzing Time Series
COVARIANCE, CORRELATION, AND PARTIAL 
CORRELATION

Univariate 
Series

The autocovariance and autocorrelation functions are important tools
for describing the serial (or temporal) dependence structure of a
univariate time series. Let xt be a stationary time series with mean µ

and variance , and assume for ease of notation that t takes on
integer values t = 0, ±1, ±2, … . The autocovariance function of xt at
lag k is defined as

Since xt is stationary, this does not depend on t. The autocorrelation
function at lag k is defined as

and is simply a standardized version of the autocovariance function.
Both the autocovariance function and the autocorrelation function are
even functions; that is,  and . In addition,
the autocorrelation function satisfies

(7.1)

(7.2)

(7.3)

σx
2

γ k( ) E xt µ–( ) xt k+ µ–( )=

ρ k( ) γ k( )
γ 0( )----------

γ k( )
σx

2
----------= =

γ k( ) γ k–( )= ρ k( ) ρ k–( )=

ρ k( ) 1     for all k≤ 0 1 2 …,±,±,=
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Covariance, Correlation, and Partial Correlation
Example 1: White Noise. A stationary time series for which  and 

are uncorrelated, that is,  for all

integers , is called white noise. Such a process is sometimes

loosely termed a “purely random process.” Since , a white
noise process has autocovariance function

and autocorrelation function

Example 2: Moving Average Process. A moving average process of order
q, denoted MA(q), is defined by the equation

where εt is a white noise process. It is easy to show that the
autocovariance function for this process is given by

(7.4)

(7.5)

(7.6)

(7.7)

xt xt k+

γ k( ) E xt µ–( ) xt k+ µ–( ) 0= =

k 0≠
γ 0( ) σx

2=

γ k( )
σx

2 k 0=

0 k 0≠






=

ρ k( ) 1 k 0=

0 k 0≠



=

xt µ β0εt β1εt 1–
… βqεt q–+ + + +=

γ k( ) βtβt k+
t 0=

q k–

∑     k q≤

0     k q>





=

155



Chapter 7  Analyzing Time Series
and the autocorrelation function is given by

The autocovariance function estimate at lag k is:

where

is the mean of the series and n is the length of the observed series.
Notice that the divisor n is used, even though there are only n - k
terms. As a result,  is a biased estimate, even if  is replaced by
the true mean µ. However,  has some other properties which
make up for a small amount of bias. In particular, use of the divisor n
ensures positive semi-definiteness of the function , and the mean
squared error of this estimate is often smaller than that obtained when

n-1 is replaced by (n - k)-1. See Priestley (1981) for details.

The autocorrelation function estimate at lag k is

Multivariate 
Series

The autocovariance and autocorrelation functions for multivariate
series are defined analogously to those of univariate series. In
addition, one is interested in crosscovariance and crosscorrelation

(7.8)

(7.9)

(7.10)

ρ τ( ) βtβt τ+
t 0=

q τ–

∑     τ q≤

0     τ q>





=

γ̂ k( ) 1
n
--- xt x–( ) xt k+ x–( )

t 1=

n k–

∑=

x
1
n
--- xt

t 1=

n

∑=

γ̂ k( ) x

γ̂ k( )

γ̂ k( )

ρ̂ k( ) γ k( )
γ̂ 0( )
----------=
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Covariance, Correlation, and Partial Correlation
functions. Suppose that xt is an m-variate stationary time series and
xit = (xt)i is the ith time series i = 1, …, m with mean values µi = Exit,
i = 1, …, m.

The covariance function matrix for xt = (x1t , …, xmt) at lag k is defined
as

where aT is the transpose of a and µµµµT = µ1 , …, µm. ΓΓΓΓ(k) is an m x m

matrix with the property that . The ith main diagonal
element of ΓΓΓΓ(k) is the autocovariance function

for the ith time series xit, i = 1, …, m. The ij th off-diagonal element of
ΓΓΓΓ(k) is the crosscovariance

for the ith and jth series xit and xjt; . Note carefully

that a crosscovariance function  is not generally symmetric

in k; that is, in general . The estimate of either an
autocovariance or crosscovariance at lag k is given by

(7.11)

(7.12)

(7.13)

(7.14)

ΓΓΓΓ k( ) E xt µµµµ–( ) xt k+ µµµµ–( )T=

ΓΓΓΓT k( ) ΓΓΓΓ k–( )=

γi i k( ) E xit µi–( ) xi t k+( ) µi–( )=

γi j k( ) E xit µi–( ) xj t k+( ) µj–( )=

i j, 1 … m i j≠, , ,=

γi j k( ) i j≠,

γi j k( ) γ i j k–( )≠

γ̂i j k( ) 1
n
--- xit xi–( ) xj t k+( ) xj–( )

t 1=

n k–

∑=
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Chapter 7  Analyzing Time Series
where

Note that for i = j, the autocovariance estimate  in Equation
(7.14) has the same form as Equation (7.9). The autocorrelation and
crosscorrelation estimates at lag k are

Partial Auto-
correlation

Another useful diagnostic tool for the analysis of the serial
dependence is the partial autocorrelation function. Background on
this will be deferred to the next section, after introducing
autoregressive processes.

Examples of Simple Use

The function acf can be used to compute the sample autocovariance,
autocorrelation, or partial correlation functions for a specified
number k of lags.

To compute an estimate of the autocorrelation function γ(k) for lags
k = 0, 1, …, 40 of the univariate series log.lynx, x.cor, we can use
the command:

> llynx.acr <- acf(log(lynx), 40, “correlation”)

(7.15)

xi
1
n
--- xit

t 1=

n

∑=

γ̂ i j k( )

ρi j k( )
γ̂ij k( )

γ̂i i 0( )γ̂j j 0( )
--------------------------------=
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Covariance, Correlation, and Partial Correlation
The result is plotted automatically (Figure 7.1). The horizontal band
about zero represents the approximate 95% confidence limits for
H0:ρ = 0.

The function acf.plot can be used to plot the results from acf. This
function will take the list returned by the function acf and use its
components in calculating approximate limits and deciding layout
and appropriate labeling.

Figure 7.1:  Autocorrelation for the logarithm of the lynx data.
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AUTOREGRESSION METHODS

Univariate 
Autoregression

Consider a time series xt that satisfies the difference equation
(recursion)

where εt is a white noise process with zero mean and finite variance

. The time series xt is called an autoregressive process of order p
and is denoted AR(p). The xt in Equation (7.16) has zero mean, a fact
which can be easily verified. An AR(p) process with nonzero mean µ
is generated by the equation

It is worth noting that an AR(p) process is a pth-order Markov
process.

Not all values of the autoregression coefficients α1, …, αp result in a
stationary process. In particular, in an AR(1) process

it is fairly easy to show that the condition for stationarity is that
. For α = 1, the AR(1) process becomes a discrete time random

walk, which is well known to be nonstationary. For an AR(p) process,
the condition for stationarity is that the (complex) roots of

lie outside the unit circle. An interpretation of AR(2) models from a
physical point of view is given by Priestley (1981).

(7.16)

(7.17)

(7.18)

(7.19)

xt α1xt 1– α2xt 2–
… αpxt p– εt+ + + +=

σε
2

xt µ– α1 xt 1– µ–( ) … αp xt p– µ–( ) εt+ + +=

xt αxt 1– εt+=

α 1<

φ z( ) 1 α1z– α2 z2– …– αp zp–=
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Autoregression Methods
Autoregressive models have seen a wide range of uses in statistics (for
example, for forecasting and autoregression-type spectral density
function estimation) and engineering (for example, in speech analysis
and recognition systems) where autoregression modeling is referred
to as linear prediction modeling. For many applications
autoregression provides a good approximate (linear) model which has
the virtue of extreme simplicity. In particular, the equations used to
estimate the unknown coefficients α1, …, αp are linear, as we point
out below. Of course one should be careful not to insist on using an
autoregression model where another type of model may be
appropriate (for example, a moving average component is needed,
nonstationarity must be dealt with, or a nonlinear model is needed).
When in doubt consult an experienced statistician with a time series
background.

The Yule-
Walker 
Equations

Let γ(k) be the autocovariance function for the AR(p) process xt. Then
it may be shown that the AR(p) coefficients α1, …, αp satisfy the Yule-
Walker equations

In addition, one can show that

(7.20)

(7.21)

γ k i–( ) αk
k 1=

p

∑ γ i( )        i 1 2 … p, , ,= =

σx
2 γ k( ) αk σε

2+
k 1=

p

∑=
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Chapter 7  Analyzing Time Series
Given that the AR(p) coefficients satisfy the Yule-Walker equations in

(7.20), there is a very natural way to obtain estimates 
based on a finite sample x1, x2, …, xn of the time series. Namely,
replace the γ(k) in (7.20) by the estimates

where

and solve the resulting equations for . Since ,
we can write the equations as

We call these equations the sample-based Yule-Walker equations.
Once the ’s are obtained by solving (7.24), we can use them along

with the  in Equation (7.21):

to solve for .

(7.22)

(7.23)

(7.24)

(7.25)

α1
ˆ α2

ˆ … αp
ˆ, , ,

γ̂ k( ) 1
n
--- xt x–( ) xt k+ x–( )

t 1=

n k–

∑=

x xt
t 1=

n

∑=

α1
ˆ … αp

ˆ, , γ̂ k–( ) γ̂ k( )=

γ 1( ) α1γ 0( ) α2γ 1( ) α3γ 2( ) … αpγ p 1–( )+ + + +=

γ̂̂ 2( ) α1 γ̂̂ 1( ) α2 γ̂̂ 0( ) α3 γ̂̂ 1( ) … αpγ̂ p 2–( )+ + + +=

γ̂̂ 3( ) α1 γ̂̂ 2( ) α2 γ̂̂ 1( ) α3 γ̂̂ 0( ) … αpγ̂ p 3–( )+ + + +=

…

γ̂̂ p( ) α1 γ̂̂ p 1–( ) α2 γ̂̂ p 2–( ) α3 γ̂̂ p 3–( ) … αpγ̂ 0( )+ + + +=

α̂ j

γ̂ k( )

γ̂ 0( ) α1 γ̂ 1( ) α2 γ̂ 2( ) … αpγ̂ p( ) σ̂ε
2+ + + +=

σε
2
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In practice, the order of the autoregression is not known and often it
is desired to compare solutions of various orders. Hence, we will wish
to solve (7.24) for a variety of values of p from 1 up through pmax,
where pmax is sometimes 10 or 15 or even larger.

The Levinson-
Durbin 
Recursion

Because the matrix of coefficients in (7.24) is a Toeplitz matrix (that is,
the elements on each diagonal are all the same), there is a recursive
method which allows you to obtain estimates for a kth-order model
from the estimates of the k - 1 model in a fast and accurate manner.
The method is referred to as the Levinson or Levinson-Durbin
algorithm. Let ai,k denote the estimate of the ith autoregression
coefficient (αi) in an AR(k) model. If we have the estimates

 and the estimated error variance  assuming an
AR(k - 1) model, then estimates for an AR(k) model are

where

and

From Equation (7.28), it may be seen that the squares of the ak,k can
be interpreted as a measure of the usefulness of increasing the order
of the AR process from k - 1 to k. The ak,k sequence is called the
partial autocorrelation function or “reflection coefficients,” depending
on the field of study. This sequence is useful in diagnosing whether
the series is in fact an AR process. If the process is an AR(p), then all

(7.26)

(7.27)

(7.28)

ai k, … ak 1– k 1–,, , σk 1–
2

ak k,

γ̂ k( ) aj k 1–, γ̂ j k–( )
j 1=

k 1–∑–

σk 1–
2

------------------------------------------------------------------=

aj k, aj k 1–, ak k, ak j k 1–,–      for  1 j k 1–≤ ≤–=

σk
2 σk 1–

2 1 ak k,
2–( )=
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ak,k should be close to zero for k > p. A common approximation for

the standard error of the ak,k for k > p is (1/n)1/2. See Box and Jenkins
(1976).

AIC Order 
Selection

A way of selecting the order of the AR process is to find an order that
balances the reduction of estimated error variance with the number of
parameters being fit. One such measure is Akaike’s Information
Criterion (AIC). For the present case of an order k model, this
criterion can be written as

If the series is an AR process, then the value of k which minimizes
AIC(k) is an estimate of the order of the autoregression.

Multivariate 
Autoregression

If the scalar quantities xt, εt, and µ in Equation (7.17) are replaced by
m-dimensional vectors xt, εεεεt, and µµµµ, and the scalars αt are replaced by
m x m matrices At, we obtain the multivariate pth-order
autoregression

Here, εεεεt is an m-dimensional white noise series with mean zero and
covariance matrix Q. This covariance matrix is sometimes loosely
referred to as the “prediction variance.”

The vector autoregression xt satisfies a vector analogue of the Yule-

Walker equations in (7.20). Namely, with  we
have

(7.29)AIC k( ) n σ̂ε k,
2( )log 2k+=

(7.30)

(7.31)

xt µ– A1 xt 1– µµµµ–( ) … Ap xt p– µµµµ–( ) εεεεt+ + +=

ΓΓΓΓ i( ) cov xt xt i+{ , }=

Γ k i–( )Ak
k 1=

p

∑ ΓΓΓΓ i( ),      i 1 2 … p, , ,= =
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We also have the vector autoregression analogue of (7.21), namely

Sample Yule-Walker equations for this vector case are obtained by
replacing the ’s in (7.22) by

where

and solving the equations

for the estimates , k = 1, …, p. The multivariate version of (7.25) is
then

which may be solved for .

(7.32)

(7.33)

(7.34)

(7.35)

(7.36)

ΓΓΓΓ 0( ) ΓΓΓΓ k( )Ak Q+
k 1=

p

∑=

γ̂ k( )

ΓΓΓΓ̂ k( )
1
n
--- xt x–( ) xt k+ x–( )T

t 1=

n k–

∑=

x
1
n
--- xt

t 1=

n

∑=

ΓΓΓΓ̂ k i–( )Âk

k 1=

p

∑ ΓΓΓΓ̂ i( ),     i 1 2 … p, , ,= =

Âk

ΓΓΓΓ̂ 0( ) ΓΓΓΓ̂ k( )Âk Q̂+
k 1=

p

∑=

Q̂
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There is also an analogue of the Levinson-Durbin algorithm ((7.26)-

(7.28)), which may be used to obtain estimates , i = 1, …, k and 

for a kth-order vector autoregression given estimates , i = 1, …,

k - 1, and  for an order k - 1 vector autoregression. This method
is referred to as “Whittle’s recursion.”

Autoregression 
Estimation Via 
Yule-Walker 
Equations

The S-PLUS function ar.yw fits autoregressive models to multivariate
time series using Whittle’s extension to the Levinson-Durbin
recursion.

Examples of simple use

The following S-PLUS commands fit an autoregression model to the
log of the lynx time series.

> llynx.ar <- ar.yw(log(lynx))
> llynx.ar$order.max

[1] 20

> llynx.ar$order

[1] 11

> acf.plot(llynx.ar)
> ts.plot(llynx.ar$aic, main=
+ “Akaike Information Criteria for log(lynx)”)

Âi k, Q̂k

Âi k,

Q̂k 1–
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Autoregression Methods
The result of the acf.plot command is shown in Figure 7.2; the
output from the ts.plot command is shown in Figure 7.3. The
maximum order fit defaults to 20 in this case, and the AIC picks a
model of order 11.

Figure 7.2:  Partial autocorrelation for the lynx data.
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Figure 7.3 shows the minimum AIC at 12; this plot starts indexing at
1, but the first element of the aic component is for order 0.

A plot is also made of the residuals:

> ts.plot(llynx.ar$resid, main=
+ “Residuals after fitting an AR(11) to log(lynx)”)
> abline(h=0, lty=2)

Figure 7.3:  AIC for the lynx data.
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Autoregression Methods
The resulting plot is shown in Figure 7.4.

Autoregression 
Estimation 
With Burg’s 
Algorithm

This section presents Burg’s algorithm, an alternative to using Yule-
Walker equations for fitting autoregressive models. Burg’s approach is
based on estimating the kth partial correlation coefficient by
minimizing the sum of forward and backward prediction errors.

Given all of the coefficients for the order k - 1 model, this is a function
only of ak,k. Equation (7.37) essentially measures how well the order k
model predicts forwards and backwards. The algorithm is optimal in
the sense of maximizing a measure of entropy. See Burg (1967).

Figure 7.4:  Residuals for the lynx data.

Residuals after fitting an AR(11) to log(lynx)

1820 1840 1860 1880 1900 1920

-1
.0

-0
.5

0.
0

0.
5

1.
0

(7.37)
SS ak k,( ) xt a1 k, xt 1–– …– ak k, xt k––[ ]2

xt k– a1 k, xt k– 1+– …– ak k, xt–[ ]2 }+

{
t k 1+=
n∑=
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Examples of simple use

The following S-PLUS commands fit an AR(2) model to the log of the
lynx time series using Burg’s algorithm.

> llynx.arb <- ar.burg(log(lynx), F, 2)
> llynx.ar <- ar(log(lynx), aic=F, order.max=2)
> llynx.arb$ar

, , 1
           [,1]
[1,]  1.5595934
[2,] -0.5711427

> llynx.ar$ar

, , 1
           [,1]
[1,]  1.3504381
[2,] -0.7200314

Finding the 
Roots of a 
Polynomial 
Equation

The function polyroot finds the zeroes of the complex-valued
polynomial equation:

Use this function to find the roots of an autoregression or moving
average operator with user-specified coefficients. For example, if one

has estimated pth-order autoregressive coefficients, ,

then the autoregression polynomial is , and

one would choose a = (a0, …, ak ) with k = p, a0 = 1, and ai = ,
i = 1, …, p.

Examples of simple use

To solve the equation z2 + 5z + 6 = 0 in S-PLUS, we use the following
command:

> polyroot(c(6,5,1))

  [1] -2+0i -3+0i

akzk … a1z a0+ + + 0=

φ̂1 φ̂2 … φ̂p, , ,

1 φ̂1 z– φ̂2 z2– …– φ̂p zp–

φ̂ i–
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UNIVARIATE ARIMA MODELING

S-PLUS provides several functions for fitting autoregressive integrated
moving-average (ARIMA) models to univariate time series data.
ARIMA models are useful for a wide variety of problems including
forecasting, quality control, seasonal adjustment, spectral estimation,
as well as providing a summary of the data. Box and Jenkins (1976)
give a comprehensive account of ARIMA modeling, and discussions
of ARIMA models can be found in many recent standard textbooks
for time series.

ARMA Models A stationary autoregressive moving-average process is obtained by
combining the equations for an MA process given by (7.6) and an AR
process given by (7.16). A zero mean ARMA(p,q) process xt can be
written in the form

where εt is a white noise process; that is, the εt are uncorrelated, and

have zero mean and variance σ2. The process εt is sometimes called
the innovations process. The parameters φ1, …, φp are the
autoregressive coefficients, and the parameters θ1, …, θq are the
moving-average coefficients.

If the innovations εt are Gaussian (the process xt is Gaussian) and the
εt are uncorrelated, then they are also independent. This is a
frequently used assumption.

The ARMA model of (7.38) is often written in the form φ(B)xt = θ(B)εt,
where B is a backshift operator (that is, B(xt) = xt - 1) and

(7.38)

(7.39)

xt φ1xt 1–– …– φpxt p–– εt θ1εt 1–– …– θqεt q––=

φ B( ) 1 φ1B– …– φpBp–=

θ B( ) 1 θ1B– …– θqB
q.–=
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ARIMA Models Many time series encountered in practice are nonstationary. For these
series, simple ARMA models are typically inadequate. However, the
differenced series may be stationary. Box and Jenkins (1976) developed
a methodology for fitting ARMA models to differenced data. These
are known as autoregressive integrated moving-average (ARIMA)
models. An ARIMA(p,d,q) process xt can be defined by

where εt, φ(B), and θ(B) are as above,  is the first-difference

operator and  is the d-fold differencing operator. For
example, with d = 1, the differenced series  is

assumed to follow an ARMA(p,q) process: . When
d = 2, the twice differenced series wt is an ARMA(p,q) process:

Seasonal 
Models

Time series data frequently exhibit seasonal cycles or periodicities.
For example, data collected on a monthly basis may have a period of
length s = 12 months, reflecting the seasonal behavior of the process.
The framework for ARIMA models can be extended to handle
periodicities as well (see Box and Jenkins (1976), Chapter 9). The
seasonal behavior is modeled by using seasonal autoregressive,
moving average, and differencing operators. For a period of length s,
these operators are of the form

(7.40)φ B( )∇2xt θ B( )εt=

∇ 1 B–=

∇d 1 B–( )d=

wt xt∇ xt xt 1––= =

φ B( )wt θ B( )εt=

wt ∇2xt ∇ xt xt 1––( ) xt 2xt 1–– xt 2–+= = =

(7.41)

Φ Bs( ) 1 Φ1Bs– …– ΦPBsP–=

Θ Bs( ) 1 Θ1Bs– …– ΘQBsQ–=

∇s
D 1 Bs–( )D=
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Univariate ARIMA Modeling
The parameters Φ1, …, Φp are the seasonal autogressive coefficients
and the parameters Θ1, …, ΘQ are the seasonal moving average

coefficients.  is the seasonal d-fold differences operator. Typically,

Φ(Bs), Θ(Bs), and  are combined with the ordinary operators φ(B),

θ(B), and ∇d in a multiplicative fashion.

The multiplicative seasonal ARIMA(p,d,q) x (P,D,Q)s process can be
represented by

In general, S-PLUS allows for any number of multiplicative operators
with arbitrary periods. However, (7.42) should be sufficiently general
for most problems.

ARIMA Models 
With 
Regression 
Variables

In addition to using past values to model a series, it is often desirable
to use explanatory or regression variables. The regression variables
may simply be a constant (intercept) term, a deterministic function of
time, dummy variables to model outliers, or lagged values of another
time series.

Let zt be a vector of m elements. An ARIMA process yt with (known)
regression variables is defined by

where β is an (unknown) parameter vector and xt is an ARIMA

process. For example, setting  would result in a straight line

regression model component  with slope β2 and
intercept β1.

(7.42)

∇s
D

∇s
D

Φ Bs( )φ B( )∇s
D ∇dxt Θ Bs( )θ B( )εt=

(7.43)yt zt'β xt+=

zt' 1 t( , )=

zt'β β1 β2t+=
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Identifying and 
Fitting ARIMA 
Models

Box and Jenkins (1976) give a paradigm for fitting ARIMA models,
which is to iterate through the following steps:

1. Model identification: Determination of the ARIMA model
orders (p,d,q) and (P,D,Q).

2. Estimation of model parameters: The unknown parameters in
(7.42) and (7.43) are estimated.

3. Diagnostics and model criticism: The residuals are used to
validate the model and to suggest potential alternative models
which may be better.

These steps are repeated until a satisfactory model is found.

Model 
Identification

Initial model identification is done using the autocorrelation and
partial autocorrelation functions. These can be computed using the
S-PLUS function acf. See Chapter 6 of Box and Jenkins (1976) for a
complete discussion on the identification of ARIMA models.

An alternative procedure for selecting the model order is use of a
penalized log-likelihood measure. One such measure is Akaike’s
Information Criterion (AIC). For autoregressive models, AIC is given
by (7.29). For general ARIMA models, AIC is defined below in (7.46).

Estimation of 
Model 
Parameters

ARMA models

The log likelihood for an ARMA model (7.40) can be computed using
the prediction error decomposition (see Harvey (1981)). Consider an
ARMA process xt as in (7.38) and assume the innovations εt are
independent Gaussian random variables. Let

denote the conditional mean one-step-ahead prediction of xt based on
the data x1, x2, …, xt - 1, and let

(7.44)

x̂t
t 1– E xt x1 … xt 1– φ1 … φp θ1 … θq, , , , , , , ,( )=

σ2ft var x1 … xt 1– φ1 … φp θ1 … θq, , , , , , , ,( )=
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denote the conditional variance of . The parameter σ2 is the

variance of the innovations process εt. Defining the prediction errors by

 and letting L = L(x1, …, xn) denote the likelihood, one can
show that

Fitting an ARMA(p,q) model by Gaussian maximum likelihood

involves finding the estimates  and  that yield a
minimum in (7.45). The parameters φ1, …, φp and θ1, …, θq enter into

(7.45) through (7.44). The estimate of σ2 is , which can be

concentrated out of the likelihood. The likelihood is, in general,
nonlinear in φ1, …, φp and θ1, …, θq and so a nonlinear optimizer
must be used.

The likelihood for an ARMA model (7.43) with regression variables
can be computed in a similar fashion. In this case replace xt’s by yt’s in
(7.45). The regression coefficients can be concentrated out of the
likelihood (see Kohn and Ansley, (1985)).

A so-called conditional log-likelihood approximation to (7.45) can be
obtained by conditioning on the first p values of the series, where p is
the order of the autoregressive operator.

This conditional log-likelihood function is given by

(7.45)

(7.46)

x̂t
t 1–

et xt xt
ˆ–=

2 L x1 … xn, ,( )log– n 2πσ2( )log ft
t 1=

n

∑ 1
σ2
------ et

2 f⁄ t
t 1=

n

∑+ + +=

φ̂1 … φ̂p, , θ̂1 … θ̂1q, ,

et
2 ft⁄

t 1=
n∑

2 L xp 1+ … xn x1 … xp, ,, ,( )log– n p–( ) 2πσ2( )

ftlog
t p 1+=

n

∑ 1
σ2
------ et

2 f⁄ t
t p 1+=

n

∑+ +

log=
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Bell and Hillmer (1987) give several arguments in favor of using
(7.46). The main advantage with (7.46) is that the AR parameters φ1,
…, φp can be concentrated out of the likelihood, reducing the
computational complexity of the nonlinear optimization. Usually,
little information is lost in using (7.46) instead of (7.45).

The prediction errors et and their variances ft can be computed in a
number of ways. Ansley (1979) gives an efficient algorithm based on
the Choleski decomposition of the covariance of the process xt.
However, if missing values are present, this algorithm no longer
applies. Alternative algorithms are based on applying the Kalman
filter to a state space representation of an ARMA process. See Jones
(1980), Harvey (1981), and Kohn and Ansley (1986) for various
methods based on the Kalman filter approach. All of these methods
handle missing values, although the Kohn and Ansley approach is the
most general.

Multiplicative ARIMA models

Estimating multiplicative ARIMA models by Gaussian maximum
likelihood is a straightforward extension from estimating ARMA
models. With no missing data present, the likelihood for a
nonstationary series is obtained by differencing the data and
computing the likelihood for the differenced process.

With missing values present, the likelihood can be computed using
the Kalman filter: see Kohn and Ansley (1986) and Bell and Hillmer
(1987). The simplest approach is to condition on the first p* + d*
observations, where p* and d* are the orders of the expanded
autoregressive and differencing operators obtained by multiplying the
regular and seasonal AR and the regular and seasonal difference
operators in (7.42). Specifically, p* = p + sP is the order of the

polynomials Φ(Bs)φ(B), and d* = d + sD is the order of . This
gives the general ARIMA analog to the ARMA log-likelihood (7.46)
and is equivalent to the differencing approach in the case of no
missing values.

Missing values in the beginning of the series

If a missing value occurs in the first p* + d* observations, then
conditioning on the first p* + d* observations is not possible. In this
case, the series can be reversed, and the likelihood function can be

∇s
D∇d
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computed for the reversed series. The likelihood is invariant to
reversing the order of the data. If there are missing values at both the
beginning and the end of the series, then the exact likelihood must be
computed using a modification of the Kalman filter, derived by Kohn
and Ansley (1986). However, an approximate likelihood can be
obtained by including a dummy regression variable for each missing
value and replacing the missing value by an arbitrary number (see
Bruce and Martin (1989)). The dummy regression variable is zero at
all time points except for the time of the missing value.

Starting values for the optimizer

The likelihood is maximized using a general quasi-Newton optimizer
(see the nlmin help file for a discussion of the optimizer). It is
necessary to provide starting values for the ARIMA parameters. Poor
starting values can lead to slow convergence to the maximum, or
even worse, convergence to a local maximum. To avoid this, it is
advisable to use a stepwise fitting procedure, starting with relatively
simple ARIMA models and adding one coefficient at a time. Several
tuning constants can be adjusted to provide better performance (see
the nlmin help file). However, these usually do not need to be
adjusted.

Transformation to ensure stationarity and invertibility

The ARIMA coefficients can be transformed to ensure stationarity
and invertibility of the model (see Jones, (1980)). If the solution lies on
the boundary of stationarity or invertibility, then the optimizer may
take many steps to converge. For this reason it may be desirable not to
constrain the model to be invertible.

Warning

If printed output from the optimizer is requested, the printed coefficients are the transformed
coefficients and not the original ARIMA coefficients.
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AIC and model selection

One method of model selection is based on Akaike’s information
criterion (AIC). The best model is given by the model with the lowest
AIC value. AIC is a penalized version of the log-likelihood function
(7.46) and is defined by

where r is the total number of parameters estimated. Specifically, r is
the number of AR, MA, and regression coefficients. For example, for
an ARIMA (1,1,1) model, r = 2.

When comparing the AIC values for different models, it is important
to condition the likelihood on the same number of observations. In
other words, m should be the same in (7.47) for all models. This allows
one to compare models with different numbers of AR or differencing
coefficients using AIC.

Computational notes

The S-PLUS function arima.mle fits ARIMA models to univariate
time series data through Gaussian maximum likelihood. The
conditional form of the likelihood (7.46) is used.

The regression parameters are concentrated out of the likelihood, as
in Kohn and Ansley (1985). With no missing data, an algorithm
similar to that of Ansley (1979) is used to compute the likelihood.
With missing data, the Kalman filter is used with the state space
representation of Kohn and Ansley (1986). However, missing values
are not permitted in the beginning of the series; see the above
discussion on missing values.

By default, the moving average parameters are transformed to ensure
invertibility. However, if the solution lies on the boundary of
invertibility, better performance by the optimizer can be obtained by
not transforming the parameters. In certain circumstances, it might be
useful to fit models in which lower order AR or MA parameters are
constrained to be zero. In this case, the coefficients cannot be
transformed to ensure stationarity or invertibility.

(7.47)AIC 2 L xm 1+ … xn x1 … xm, ,, ,( ) 2r+log–=
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Examples of simple use

Simulate an MA(2) series and fit it using a Gaussian maximum
likelihood.

> ma <- arima.sim(100, model=list(ma=c(-.5, -.25))
> ma.fit <- arima.mle(ma, model=list(ma=c(-.5, -.25))

Fit a Box-Jenkins (0,1,1) x (0,1,1) Airline model to the ship data. Use
zeroes as the starting values for the optimizer.

> model <- list(list(order=c(0,1,1)), list(order=
+ c(0,1,1), period=12))
> fit <- arima.mle(ship, model=model)

Diagnostics and 
Model Criticism

The third stage in fitting ARIMA models consists of validating the
model through examination of the one-step prediction residuals et.
See Chapter 8 of Box and Jenkins (1976) for a more complete
discussion of ARIMA model diagnostics. The single most important

diagnostic is a plot of the standardized residuals  over time. If

the correct ARIMA model is fit and the data are Gaussian, then 
should behave approximately like a Gaussian white noise process
with zero mean and unit variance. Problems to look for in the plot of

 include outliers, nonhomogeneity of variance, and obvious
structure in time.

Another basic technique is to examine the autocorrelation function of
the residuals et. Let  be the autocorrelations of the residuals et. If

the model is adequate, then  should be uncorrelated and
approximately Gaussian random variables with mean zero and

variance n
-1. Hence, the presence of large autocorrelations 

indicates that the model may be inadequate. The nature of the
autocorrelations  may suggest how to improve the model.

However, some caution should be exercised in the use of  to

evaluate the model. For example, the variance times n-1 can be a
serious overestimate of the true variance for small lags, leading to an
underestimate of the significance for lack of fit.

ẽt et ft⁄≡

ẽt

ẽt

γ̂k

γ̂k

γ̂k

γ̂k

γ̂k
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In addition to examining the ’s individually, it is useful to base a
diagnostic on the autocorrelations taken as a whole. Define the
portmanteau test statistic Q by

where K is a fixed maximum number of lags and n is the number of
observations used to compute the likelihood. Typically, K should be
between 10 and 20. If the correct ARIMA model is fit, and the data

are Gaussian, then Q is approximately distributed as a χ2 random
variable on K - r degrees of freedom, where r is the number of
parameters fit to the model.

The S-PLUS function arima.diag computes these diagnostics for an
ARIMA model fit to a univariate time series.

Examples of simple use

Compute diagnostics for simulated AR(1) series.

> x <- arima.sim(model=list(ar=.9))
> fit <- arima.mle(x, model=list(ar=.9))
> diag <- arima.diag(fit)

Since, by default, plot = TRUE in arima.diag, the diagnostics will be
plotted using the function arima.diag.plot.

Forecasting 
Using ARIMA 
Models

An important application of ARIMA models is to forecast beyond the
end of a series. Under the assumption that the model order and
parameters are known, the forecast means and confidence intervals
are easily produced using the Kalman filter (see Harvey (1981)).
Typically, one would first fit an ARIMA model using the techniques
described beginning on page 174. The resulting model can then be
used to produce forecasts for the series.

The S-PLUS function arima.forecast produces forecasts given an
ARIMA model for a univariate time series.

γ̂k

Q n γ̂k
2

k 1=

K

∑=
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Predicted and 
Filtered Values 
for ARIMA 
Models

The S-PLUS function arima.filt produces one-step predicted values
and their variances ft, defined in (7.44). The primary application of
arima.filt is for use in other S-PLUS functions: arima.diag (to
compute the residuals) and arima.forecast (to compute the
forecasts).

If autoregressive or differencing operators are present in the model,
then predicted values are not produced for the first p* + d* time
points (p* and d* are the orders of the expanded autoregressive and
differencing polynomials).

Computational 
Note

The function arima.filt also returns filtered values and their
variances. Let yt be a process which behaves according to a signal
plus noise model

where xt is the signal and vt is the noise. A common problem is to
extract the signal by filtering the observed process yt. The filtered
values and their variances are E(xt | y1, …, yt ) and var(xt | y1, …, yt).

For a pure signal (vt is 0 for all t), the filtered values are simply the
observations themselves. The current version of S-PLUS does not
support signal plus noise models. Hence, the filtered values are the
same as the input series. However, the filtered values are returned for
compatibility with future releases.

Simulating 
ARIMA 
Processes

The S-PLUS function arima.sim generates a simulated ARIMA
process of the form (7.42) or (7.43) given an ARIMA model structure,
regression variables and a vector of innovations or a random
generator. The innovations vector corresponds to εt of (7.40), and can
be input directly. Alternatively, a random generator may be supplied,
and the innovations are generated accordingly.

For stationary ARMA processes, the series can be initialized by
generating an initial random state vector according to a state space
form of the model. The initial state vector is computed through
transforming a white noise vector by the Choleski decomposition of
the unconditional covariance matrix of the state vector.

yt xt vt+=
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For nonstationary ARIMA processes, the unconditional covariance
matrix of the state vector doesn’t exist. Hence, the simulated series is
initialized by assuming that the initial state vector is zero. This is
equivalent to assuming past innovations and simulated values are
zero. To avoid the effects of the initialization, a series longer than the
one needed is generated, and the simulated series is taken from the
end of the generated series.

Examples of Simple use

Simulate an ARMA(1,1):

> x <- arima.sim(model=list(ar=.5, ma=-.6), n=100)

Simulate an ARIMA(0,1,1) with contaminated innovations:

> rand.gen <- function(n) ifelse(runif(n)>.90, rnorm(n),
+ rcauchy(n))
> x.wild <- arima.sim(100, model=list(ndiff=1, ma=.6),
+ start.innov=50, rand.gen=rand.gen)

Modeling 
Effects of 
Trading Days

In many monthly or quarterly economic time series, the data are
affected by the number of trading days in that month. For example, if
a given month has more weekdays and fewer weekends than other
months, then one might expect a higher level of economic activity
during that month. One approach to handling the trading day effect is
to include regression variables reflecting the number of Mondays,
Tuesdays, etc. in each month (or quarter).

The function arima.td returns a multivariate time series which is
suitable for use as a regression variable. The first column gives the
number of days in the month (quarter). The following six columns
give the number of Saturdays, Sundays, Mondays, Tuesdays,
Wednesdays, and Thursdays minus the number of Fridays in the
month (quarter). See Hillmer, Bell, and Tiao (1983) for use of trading
day variables in ARIMA modeling of time series data.

Examples of simple use

> td.ship <- arima.td(ship)
> mle.td <- arima.mle(ship, model=list(order=c(0,1,1)),
+ xreg=td.ship)
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LONG MEMORY TIME SERIES MODELING

Long memory is a common feature of time series in a wide variety of
areas. It has enormous effects on standard statistical quantities such as
standard errors and tests and hence on the conclusions drawn, but it is
hard to detect. One major application has been to time series of wind
speeds (Haslett and Raftery, (1989)), and there long memory means
intuitively that there is a tendency to observe not just windy weeks
and months, but windy years and decades and presumably also
windy centuries and millennia; we often say that there is variation at
all temporal scales.

Long memory time series have autocorrelations that decay slowly as
lag increases; typically the autocorrelations tend to zero
hyperbolically (that is, , with α > 0) so that the sum of the

autocorrelations is infinite (that is, ). Thus, the

autocorrelations between observations far away from one another in
time while small, are not negligible. The spectrum of a long memory
time series goes to infinity as the frequency goes to zero at the rate

.

One important property is that the variance of the sample mean
declines not at the usual rate of , but at a slower rate. If

, then . (Note that a long memory time
series is stationary only if 0 < α ≤ 1.) This can have huge
consequences. For example, in the wind data a was estimated to be
0.34, and this implied that for estimating the mean wind speed at a
given location, twenty years of actual data were worth only about the
same as one month of independent daily observations.

The ARMA models (with no differencing) discussed in the section
Autoregression Methods on page 160 and the section Univariate
ARIMA Modeling on page 171 are, by contrast, short memory
models. For them, the autocorrelations decay exponentially, the sum
of the autocorrelations is finite, the spectrum is finite at zero, and the
variance of the sample mean is the usual . Fitting a (short
memory) ARMA model to data can give very misleading results if the
long memory property holds, even if the fitted model matches the

ρ k( ) k α–∼

ρ k( )
k 0=
∞∑ ∞=

f ω( ) ω 1 α–( )–∼

O n 1–( )

ρ k( ) k α–∼ var X( ) O n α–( )=

O n 1–( )
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lower-lag autocorrelations well. In the wind example, a fitted short
memory ARMA model underestimated the variance of the sample
mean by a factor of more than ten in many cases.

The long memory property in time series was discussed by
Mandelbrot (1977) who called it the “Joseph effect” because of the
sequence of seven years of plenty followed by seven lean years
recounted in the Book of Genesis story of Joseph. Mandelbrot
pointed out that long memory time series tend to be asymptotically
approximately self-similar and hence to be, at least approximately,
equivalent to fractals.

Fractionally 
Differenced 
ARIMA 
Modeling

Fractionally differenced ARIMA models

The fractionally differenced ARIMA (p,d,q) model has been found to
represent long memory time series quite well. It is defined by
Equation (7.40), namely

except that now d may take any value in the unit interval [0, 1]
instead of being restricted to being either 0 or 1, and  is

defined by the binomial expansion ,

where  are the binomial coefficients. When the series has a
nonzero mean µ, the model is better written as

For model (7.48), , so that α = 1 - 2d, where α was
defined in the section Long Memory Time Series Modeling. This
model is stationary only for 0 ≤ d < 1/2 and reduces to the usual short
memory ARMA(p,q) model when d = 0.

Estimation of model parameters

The log-likelihood for the fractionally differenced ARIMA(p,d,q)
model of Equation (7.48) can be computed exactly using the

prediction error decomposition given by Equation (7.45), where 

(7.48)

φ B( )∇dxt θ B( )εt=

∇d 1 B–( )d=

1 B–( )d C d j,( ) 1–( )jBj

j 0=

∞
∑=

C d j,( )

xt µ ∇ d– φ B( ) 1– θ B( )εt+=

ρ k( ) k 1 2d–( )–=

xt
ˆ t 1–
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Long Memory Time Series Modeling
and ft are given by Equations 4.3 and 4.4 of Haslett and Raftery
(1989). A major practical problem with maximum likelihood
estimation based on this likelihood is that the required CPU time is

O(n2) and this can be enormous for the long series that are typical of
application areas where long memory is known to arise often; for
example in the wind data set, n = 6574.

We therefore use an approximation described in section 4.3 of Haslett
and Raftery (1989) that essentially approximates the dependence of xt
on xt - j for j > M by asymptotic values. This reduces the order of the

required CPU time from O(n2) to O(n) and, in practice, for the wind
data it reduced the actual computer time by a factor of 70. It is
extremely accurate. We have found M = 100 to be a good choice; the
exact maximum likelihood estimator can be recovered by setting
M = n.

Computational notes

The S-PLUS function arima.fracdiff estimates the parameters of
the fractionally differenced ARIMA(p,d,q) model and returns exact
or approximate maximum likelihood estimators, standard errors, the
covariance and correlation matrices of the parameter estimates, and
the log-likelihood. The degree of approximation is determined by M;
we recommend M = 100. The exact maximum likelihood estimator
can be found by setting M = n, but if the series is long it can require a
lot of CPU time. The log-likelihood is useful for comparing models;
that is, for choosing the number of AR and MA parameters. An
approximate test of the long memory property can be carried out by
dividing the estimate of d by its standard error and comparing the
result with a standard normal distribution.

Simulating 
Fractionally 
Differenced 
ARIMA 
Processes

The S-PLUS function arima.fracdiff.sim generates a simulated
fractionally differenced ARIMA(p,d,q) series of the form in Equation
(7.48) given the values of d, the AR and MA parameters, and the
mean µ.

This uses the prediction error decomposition to generate xt from its
conditional distribution given the previous values.
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Examples of simple use

Simulate a fractionally differenced ARIMA(2, .33,0):

> x.sim <- arima.fracdiff.sim( model = list( d=.33,
+ ar=c(.01,-.06), mu=3.1))
> arima.fracdiff( x.sim, model = list( ar=rep(2,NA)))
186



Spectral Analysis
SPECTRAL ANALYSIS

Let xt be a stationary time series with sampling interval ∆t. A major
theorem for time series states that any series with zero mean

(µ = Ext = 0) and finite variance σ2 = varxt may be well approximated
by a truncated Fourier series

where Aj and Bj are random Fourier (series) coefficients, the fj are well-
chosen frequencies, and J is sufficiently large. This approximation of
xt as a Fourier series may be re-expressed in complex exponential
form

where the Cj are complex random Fourier coefficients which have zero
mean, ECj = 0 and are uncorrelated:

The notation  denotes the complex conjugate of a.

Sometimes the set of real coefficients Aj, Bj, or complex coefficients Cj
are referred to as the (discrete time) Fourier transform of xt.

(7.49)

(7.50)

(7.51)

xt Aj 2πfj t( )cos
j 1=

J

∑ Bj 2πfj t( )sin+≈

xt Cje
i2πfj t

j J–=

J

∑≈

cov Cj Ck,( ) ECjCk 0    for  j k≠= =

a
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Time series with a nonzero mean may be approximated by adding
the mean µ to the right hand side of Equation (7.50):

The exact version of approximation (7.50) is an integral known as the
spectral representation of xt. The spectrum or spectral density S(f) for the
series xt can be described in terms of the coefficients Cj defined in
(7.50) as

Thus, the value of the spectrum at frequency fj is the second moment
of the random amplitude at frequency fj. The spectrum S(f) at an
arbitrary frequency f may also be expressed exactly in terms of the
autocovariance sequence

Namely, S(f) has the exact Fourier series representation

and the autocovariances are the Fourier coefficients of S(f)

(7.52)

(7.53)

(7.54)

(7.55)

(7.56)

xt µ Cje
i2πfj t

j 1=

J

∑+≈

S fj( ) E Cj
2=

R l( ) EXtXt l+ ,      l 0 1 2 …,±,±,= =

S f( ) R l( )e il 2πf–

l ∞–=

∞
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2
---–

1
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---

∫=
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Spectral Analysis
Again, we often refer to S(f) as the (discrete time) Fourier transform of
R(l), and refer to R(l) as the inverse Fourier transform of S(f).

Estimating the 
Spectrum 
From the 
Periodogram

Suppose that we have a time series x1, …, xn observed at a sampling
interval ∆. The spectrum of this series may be estimated from the
periodogram by using the function spec.pgram. The steps involved
in this computation are described below.

1.  Detrending and de-meaning

The first step in estimating the spectrum is to ensure that the mean is
zero for the time series. If it is thought that the original series may
contain a linear trend, then this is accomplished by subtracting a least
squares regression line from the series (that is, by replacing xt with

 where  is the least squares linear fit to the data). If it is
thought that there is no trend in the data, it will suffice to subtract the
mean from the series (that is, xt is replaced by  where  is the
sample mean of x1, …, xN). By default, the spec.pgram function
removes the least squares line.

2. Tapering

A data taper is often applied to the (detrended or de-meaned) series.
A taper sequence wt multiplies each value in a series by a number
between 0 and 1. Tapering reduces “leakage” of power. See
Bloomfield (1976) and Priestley (1981) for discussions of tapering. The
spec.pgram function includes a default split cosine taper of ten
percent on each end of the series. See page 196 for further details.

3. Padding

Padding consists of increasing the length of the series xt from n to 

by adding  zero values . Padding may
generally be ignored for the spectrum function—see discussions of the
fast Fourier transform (FFT) in the references for explanation.

4. The periodogram

To avoid extra notation, let n be the length of the series with or
without padding. Let ∆ be the sampling interval; that is, ∆ = 1/freq
where freq is the frequency sampling rate component of the tspar

xt γ̂– β̂t– γ̂ β̂t+

xt x– x

n'

n' n– xn 1+ … xn' 0= = =
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attribute, and where following the above operations, an estimate of
the power spectrum at discrete Fourier frequencies fk = k/∆n is found
by forming the periodogram

where  is the tapered, detrended series. Note that

 and  if only a mean was removed from the series. The
discrete Fourier transform (DFT) sum in Equation (7.57) is computed
using a mixed radix fast Fourier transform (FFT) algorithm.

5. Smoothing

The periodogram is smoothed to reduce variability in the spectrum
estimate (the estimates in Equation (7.57) do not become less variable
as the length of the series increases). However, smoothing also
introduces bias in the estimates. There is a trade-off between the
variability of the estimates and the bias. A thorough analysis might
include inspecting the periodogram with several levels of smoothing.
The smoothing that is performed on the periodogram is a sequence of
running averages. The user can specify the lengths of modified
Daniell windows to be run sequentially over the periodogram for the
spec.pgram function. The spec.pgram function yields the smoothed

estimate , expressed in decibels, that is, .

6. Degrees of freedom and bandwidth

The degrees of freedom for a χ2 approximation of the spectral density
estimate at each Fourier frequency is also computed by spec.pgram.
When there is no smoothing, tapering or padding, there are n = 2
degrees of freedom. The degrees of freedom n increase with the
amount of smoothing.

(7.57)

Ŝ fk( ) ∆
n
--- x̃t 2π ifkt–( )exp

t 1=

n∑ 2
=

n
4
--- Ak

2 Bk
2+( ),    k 0 1 … n 2⁄, , ,==

x̃t wt xt γ̂– β̂t–( )=

β̂ 0= γ̂ x=

S̃ fk( ) 10 10S̃ fk( )log×
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Spectral Analysis
Bandwidth is a measure of the amount of smoothing. The formula for
bandwidth used by the spec.pgram is

where aj, j = 0, …, 2k are the values of the smoothing filter (which is
returned in the filter component with the index starting at zero)
and 1/∆n is the interval between discrete Fourier frequencies. See
Bloomfield (1976) for details.

Readers with no interest in multivariate time series may skip to page
192.

Cross Spectra 
Coherency and 
Phase

The cross-spectrum Sxy(fj) between two time series xt and yt at frequency

fj is approximately , where the Cxj and Cyj are given by the
approximation (7.50), with an extra subscript (x or y) to distinguish
coefficients for the two different series. One may think of this
complex quantity as the complex covariance between Cxj and Cyj.
The phase of xt and yt at frequency fj is the argument (angle) of the
cross spectrum Sxy(fj).

The squared-coherency K(fj) between xt and yt at frequency fj is the
squared modulus of the cross spectrum at fj, normalized by the
product of the two spectral densities Sx(fj) and Sy(fj):

In view of (7.53), we have

which provides the most natural interpretation of squared coherency
as the square of the correlation between the random coefficients Cxj
and Cyj of the series xt and yt at frequency fj.

(7.58)bw
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Smoothing of the spectral estimates is mandatory for the estimation of
coherency—if no smoothing is performed, the estimate is identically 1.
See Priestley (1981). Similarly, the estimation of phase will be
basically meaningless unless smoothing is done.

The spec.pgram function gives estimates of the squared-coherency
and the phase for multivariate series. This output is in the form of
matrices with each column being identified with a particular pair of
univariate components of x. If j is less than k, then the column
associated with the pair (j,k) is (k - 1)(k - 2)/2 + j.

Example of simple use

A spectral estimate of the square root of the sunspots data may be
obtained with:

> srsun.sp <- spec.pgram(sqrt(sunspots),
+ spans=c(3, 5, 7, 9), detrend=F, demean=T)

The result is shown in Figure 7.5.

Figure 7.5:  Smoothed periodogram of the sunspot data.
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Spectral Analysis
This subtracts the mean from the series but assumes that there is no
trend. The spectrum is smoothed with a series of 4 running averages.
By default ten percent on each end of the series has been tapered with
a split cosine bell. The length of the series was automatically padded
from 2739 to 2744. A plot of the spectrum is automatically produced
as a side effect (see function spec.plot for details).

Another simple example of the use of this function is:

> llynx <- log(lynx)
> ll.sp <- spec.pgram(llynx, taper=0)

The result is shown in Figure 7.6.

This spectral estimate uses no tapering, and since it uses no
smoothing it is the raw periodogram estimate. The data are
detrended—allowing for the possibility that there is a linear trend in
the data. Note that this is probably a poor spectral estimate for this
dataset.

Below we analyze monthly CO2 concentrations at Mauna Loa,
Hawaii from January 1958 to December 1975. A ts.plot of the data
reveals a strong linear trend and obvious cyclic behavior. Not

Figure 7.6:  Periodogram of the lynx data.
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surprisingly the cycles appear to be yearly. The analysis is shown in
Figure 7.7.

> par(mfrow=c(3,1)) # put three plots in the figure
> co.sp1 <- spec.pgram(co2)
> co.sp2 <- spec.pgram(co2, spans=c(9, 9))
> co.sp3 <- spec.pgram(co2, spans=c(3, 3, 3))

Autoregressive 
Spectrum 
Estimation

An alternative spectral estimate to the smoothing of the periodogram
is to estimate an autoregressive (or some other) model and use the
spectrum of the estimated model as the spectral estimate.

Figure 7.7:  Spectral estimates for the CO2 data.
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Spectral Analysis
The spectrum S(f) of an autoregressive process with coefficients
α1, …, αp is

where f is the frequency in cycles per unit time and  is the variance
of the innovation process εt.

Phase and coherency may also be estimated for multivariate series.
The S-PLUS function spec.ar computes the autoregressive spectrum
of a time series.

Examples of simple use

> lynx.ar <- ar(log(lynx))
> lynx.spar <- spec.ar(lynx.ar, plot=T)

(7.59)

Figure 7.8:  Autoregression spectral estimate for the lynx data.
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Chapter 7  Analyzing Time Series
The function spectrum can be used in the same way as spec.pgram.
This function allows for different types of spectrum estimates. The
function spec.plot can be used to plot the output of any spectrum
estimation function.

Tapering Tapering is a technique applied to time series to reduce the leakage
phenomenon in spectral estimates. Leakage occurs when there is a
large amplitude peak at a particular frequency f. Then the spectral
estimates at frequencies near f can be higher than expected, and can
easily obscure nearby lower amplitude peaks.

A data taper wt, 0 ≤ wt ≤ 1, applied to a time series xt produces a new
tapered series.

Typically the values of wt are close to zero at the ends and close to one
in the central part of the data.

The function spec.taper implements a split cosine bell taper. Let p
be the portion to be tapered at each end of the series and n the length
of the series, then for m = np the split cosine bell taper is

Examples of simple use

> lynx.taper <- spec.taper(lynx)
> lynx.taper.5 <- spec.taper(lynx, .05)

All the values in lynx.taper are smaller than the corresponding
value in lynx. In lynx.taper.5, five percent of the values on each
end are tapered.

(7.60)

(7.61)
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LINEAR FILTERS

The most important and widely used type of filter (referred to as a
digital filter by engineers) is a linear time-invariant filter; that is, a filter
in which the relationship between the input series xt and the filtered
output series is described by a constant coefficient linear difference
equation. The class of linear time invariant (digital) filters has two
primary types:

1. Convolution filters, which are usually called finite-impulse
response (FIR) filters in the engineering literature, and moving
average (MA) filters in the statistical literature.

2. Recursive filters, which are usually referred to as infinite-impulse
response (IIR) filters in the engineering literature, and are
called autoregressive (AR) filters in the statistics literature.

Convolution 
Filters

If xt is the original series and a = (a0, …, aq) is the set of filter
coefficients, then the filtered series yt is related to the original series xt
by the convolution equation

We note that the filter is a “causal” in that each yt is formed as a linear

combination of present and past xt’s, namely, . If one
is dealing with a spatial series rather than a time series, or one is
dealing with a time series in an “off-line” mode as opposed to a real-
time application (as is usually the case for users of S-PLUS), then one
can use the noncausal symmetric form of convolution filter

(7.62)

(7.63)
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where the filter coefficients are now 
with q an even integer. Usually in this case the aj are symmetric, that

is,  for j = 1, …, q/2.

Recursive 
Filters

A recursive filter uses an autoregressive-type recursion to transform
the series. If xt is the original series and a = (a0, …, aq) are the
coefficients, then the filtered series yt is obtained by the recursion

Examples of simple use

Here are two examples using convolution filters:

> flynx <- filter(log(lynx), rep(.2,5))
> ts.plot(log(lynx), flynx)
> gaussfilt <- exp(-((-15:15)^2/7))
> gaussfilt <- gaussfilt/sum(gaussfilt)
> gflynx <- filter(log(lynx), gaussfilt)
> ts.plot(log(lynx), gflynx)

The resulting plots are shown in Figure 7.9 and Figure 7.10.

a q– 2⁄ a q– 2⁄ 1+ … a0 a1 … aq 2⁄, , , , , ,
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Linear Filters
The flynx structure is a simple equal weight moving average of the
logarithm of the lynx data, while gflynx is filtered with a Gaussian
filter.

Figure 7.9:  Moving average of the lynx data.

Figure 7.10:  Gaussian filtering of the lynx data.
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Here is an an example using a recursive filter:

> set.seed(14) # set the seed to reproduce this example
> ar.sim <- filter(rnorm(500),c(.5,-.3, .35),"r",
+ init=rnorm(3))
> ar.sim <- ar.sim[101:500]
> ts.plot(ar.sim,main="AR(3) simulation")

The above example is a simulation of an AR(3) process. The first part
of the simulation is removed to more closely approximate a stationary
process. The resulting plot is shown in Figure 7.11.

Complex 
Demodulation 
and Least 
Squares Low-
Pass Filtering

Complex demodulation is a technique for analyzing a time series
which does not assume stationarity. Inherent in the technique is the
use of a low-pass filter. Hence these two topics are presented together.
The function demod can be used not only to perform complex
demodulation of a time series but also to generate a least squares low-
pass filter with specific qualities.

Figure 7.11:  Simulated autoregression.
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Complex 
Demodulation

Suppose that a time series xt satisfies

where Rt and φt are smooth processes (that is, they vary slowly over
time) and zt is a process without a component at frequency λ. Rt is the
amplitude at time t of the periodic component with frequency λ, and
φt is the phase at time t of this component.

Hence the model is of a series with an oscillation at some given
frequency λ that changes slowly over time.

Equation (7.65) may be rewritten using complex numbers.

Now the series is transformed into

A smooth component of yt will yield estimates of Rt and φt. The
problem is to extract this component.

Least Squares 
Low-Pass 
Filtering

An ideal low-pass filter with cutoff frequency fc has transfer function

That is, all frequencies less than fc are left unchanged while no
frequencies higher than fc are allowed to pass through. Such an ideal
filter does not exist, but it can be approximated arbitrarily well by
using a sufficiently complex filter. A common approach is to design a

(7.65)
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fixed length filter using the least squares approximation method. The
approximation will get better the longer the filter length. See
Bloomfield (1976) for details.

Examples of simple use

In the commands below, the lynx data are demodulated at the peak
frequency of the raw periodogram. The phase and amplitude of the
demodulation are plotted separately.

> lynx.sp <- spectrum(log(lynx))
> lynx.pk <- lynx.sp$freq[lynx.sp$spec==max(lynx.sp$spec)]
> lynx.dem <- demod(log(lynx), lynx.pk, .05, .10)
> ts.plot(lynx.dem$phase, xlab="Time", ylab="Phase")
> ts.plot(lynx.dem$amp, xlab="Time", ylab="Amplitude")

Figure 7.12 shows the phase estimate of demodulation of the lynx
data, while Figure 7.13 shows the amplitude estimate of demodulation.

Figure 7.12:  Phase estimate in the demodulation of the lynx data.
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Linear Filters
A method for obtaining a low-pass filter of length 50 with cutoff
frequency 0.08 when the data are sampled at intervals of one time
unit is shown below.

> filt50 <- demod(rnorm(200), .1, .08-1/49,
+ .08+1/49)$filter

Figure 7.13:  Amplitude estimate in the demodulation of the lynx data.
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ROBUST METHODS

Outliers in time series typically cause bias and an increase in the
variability of conventional Gaussian maximum likelihood or least
squares type estimates. Furthermore, unacceptably large biases may
result even in large sample size situations when the fraction of outliers
is not negligibly small. This problem occurs in particular for both the
Yule-Walker and Burg methods of fitting autoregressions.

As a simple example, consider the Yule-Walker estimate of the first-

order autoregression parameter  (which is also the lag 1
autocorrelation):

Suppose that  is an outlier for some given time t0, say ,

with  large. Then  will be “small,” and in fact,  as ,
as is easily verified.

The robust procedures described in this section are designed to
minimize the increased bias and variability due to outliers, either in
isolation or in patches. We shall describe four functions, ar.gm,
acm.filt, acm.ave, and acm.smo.

Typically, ar.gm and acm.ave will be used in conjunction. The
ar.gm function provides initial robust autoregression parameter
estimates which are used by the robust “smoother” algorithm
acm.ave. The function acm.smo is an alternative robust smoother,
and both acm.ave and acm.smo use the robust filter acm.filt as a
basic building block.

We elaborate on our setup and terminology. Consider the general
replacement (RO) type outliers model

(7.69)

φ̂

φ̂
ytyt 1–t 1=

n 1–∑
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where xt is a pth-order autoregression, zt is a 0-1 process with
probability 1 - γ of being 1; that is, P(zt = 1) = 1 - γ, and wt is a
“contamination” process. Here γ is the fraction of contamination. This
general replacement model contains the so-called additive outliers
(AO) model

as a special case where  with vt = 0 when zt = 0 and

 when zt = 1. Although the methods described in this section
work for the general replacement (RO) type outliers model, it is
sometimes convenient for purposes of discussion to use the AO
model. In doing so, we think in terms of the vt having a contaminated
normal distribution

where H is an arbitrary outlier-generating distribution.  is the
“nominal” Gaussian distribution of the additive noise vt. In the

context of (7.69) or (7.70), a filter  is an estimate of

the unobservable “signal” xt which depends on the present and past

observations y1, …, yt at time t. A smoother  is an

estimate of xt which for each time t = 1, …, n depends upon all the
observations y1, …, yn. This is common terminology in the
engineering literature. Both filters and smoothers often perform a
“smoothing” operation in the sense that linear filters or smoothers are
a weighted linear combination of y1, …, yt and y1, …, yn, respectively,
which often act approximately like local weighted means of the
observations.

Robust filters and smoothers are nonlinear functions of the data
which are designed to give good estimates of xt in the presence of
outliers generated by the model (7.69) or (7.70).

Although acm.filt, acm.ave, and acm.smo are capable of robust
filtering and smoothing, respectively, for the case of  known and
positive, neither these functions nor ar.gm are capable of estimating

(7.70)yt xt vt+=

wt xt ṽt+=

vt ṽt=

Fv 1 γ–( )N 0 σ0
2,( ) γH+=

N 0 σ0
2,( )

x̂
t

x̂
t

y1 … yt, ,( )=

x̂t x̂t y1 … yn, ,( )=

σ0
2
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 from the data. (Estimation of  along with the autoregression
parameters for xt is a more difficult problem which we will hopefully
address in future releases of S-PLUS.) Thus, we shall for the most part
assume that . This corresponds to the frequently occurring
situation where the autoregression xt is observed perfectly a large
fraction 1 - γ of the time and observed with additive outliers a fraction
γ of the time.

In the case where , the values of xt are observed perfectly a
fraction 1 - γ of the time (that is, when zt = 0 in (7.69) or when vt = 0 in
(7.70)) but are unobservable a fraction γ of the time. For this case, we
replace the terms robust filter and robust smoother by robust filter-
cleaner and robust smoother-cleaner, respectively. We often shorten these
terms to simply filter-cleaner and smoother-cleaner.

A well-designed filter-cleaner has the following intuitively desirable
property: For times at which yt = xt by virtue of vt = 0 (or zt = 0), we

will have . This will occur a large fraction 1 - γ of the time. For
times at which yt is a gross outlier by virtue of vt having a large

magnitude,  will be a pure prediction based on the previous (filter)

cleaned values . A well designed smoother-cleaner
behaves similarly except that at the time of occurrence of gross
outliers,  is a pure interpolation based on all the other (smoother)

cleaned data .

In order to use a robust filter cleaner or smoother cleaner for
autoregression models

we must specify the unknown parameters φ1, φ2, …, φp, and sε, where
sε is the scale parameter for the distribution Fε for the innovations εt. In

the case where , we have .

(7.71)
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Since we seldom know the parameters φ1, φ2, …, φp, or sε, we must
estimate them robustly from the data. This may be done using ar.gm
which is a so-called generalized M-estimate or GM estimate (or
bounded influence autoregression estimate) which is described in the
section Generalized M-Estimates for Autoregression. The GM

estimate produces robust parameter estimates , and 
which may be used in any one of the robust filter or smoother
functions acm.ave, acm.filt, and acm.smo.

Typically, one will use least squares autoregression model fitting (via
ar.yw or ar.burg) to produce improved parameter estimates

, . These can in turn be used to run acm.ave again to
obtain improved smoother-cleaned values and further improved least
squares estimates of these autoregression parameters. Although one
could iterate this procedure several times, we recommend using just
one complete iteration of this form, which produces a second set of

improved values , , . (Because of the
strongly nonlinear nature of acm.ave, further iteration can lead to
poor solutions.)

Generalized 
M-Estimates 
for 
Autoregression

Generalized M-estimates (GM estimates) ,  of autoregression

parameters φT = (φ1, φ2, …, φp) and innovations scale sε are obtained
by solving the equations

where the observed time series is ,

, χ is a bounded and continuous function,
and W(yt), wt are nonnegative, data-dependent weight functions. As

φ̂1 φ̂2 … φ̂p, , , ŝε

φ̂1 φ̂2 … φ̂p, , , ŝ

x̂1 x̂2 … x̂p, , , φ̂1 φ̂2 … φ̂p, , , ŝε

(7.72)

(7.73)
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we shall see below, wt depends on  as well. We shall focus our
description on (7.72), details concerning (7.73) being available in
Martin (1980).

Equation (7.72) provides a linear weighted least squares estimate,
linear in the case where the “big” weights W(yt) and the “little”
weights wt are replaced by fixed weights; that is, weights independent

of both the data yt and the estimate . Because the wt (but not W(yt))

depend upon , the equations in (7.72) are nonlinear. They are solved
by an iterative weighted least squares method:

where iter is the desired number of iterations, starting with the least

squares estimate . Equation (7.73) is also iterated, yielding

estimate  at iteration j.

The big weights W(yt) are constructed so that W(yt)yt is bounded and
continuous, and the little weights wt are constructed so that

 is bounded and continuous. This achieves the basic
requirement for robustness that the summands of the estimating
Equation (7.72) be bounded and continuous. Specifically, the weights

 are obtained from a psi-function ψc, with tuning constant c, as
follows:

Two types of psi-functions are used, namely Huber’s (Huber (1964))
favorite psi:

(7.74)
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ŝε
j

wt yt 1+ yt
Tφ̂–( )⋅

wt
j

wt
j

ŝε
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Robust Methods
and Tukey’s bisquare functions (see Mosteller and Tukey, (1977)):

The separate tuning constants chr and cbr for the ψ function applied
to residuals are adjusted to obtain a compromise between high
efficiency when the data are actually Gaussian, and robustness
towards outliers.

The “big” weights W(yt) are also derived from a psi function of either
the Huber or Tukey type. As a default, ar.gm uses the Tukey type psi-
function. Details concerning the formation of the weights W(yt) may
be found in Martin (1980).

The main ideas behind the choice of big weights and little weights is
as follows. The use of the default choice of basing the big weights
W(yt) on the Tukey bisquare is that when yt is not too large, W(yt) will
be close to one and therefore have little effect, but when yt is “very
large” (that is, when yt is a gross outlier in the vector sense), W(yt) will

be zero and yt will have no influence on the estimate .

Similar comments apply when wt is based on the Tukey bisquare.

When the residual  is not too large, wt will be close to

one, whereas when |rt| is “very large”; for example, when  is a
gross outlier, wt will be zero.

The only difficulty is that when wt is based on the Tukey bisquare
ψB,cbr, the equations in (7.72) have multiple solutions and starting the
iteration (7.74) with least squares might lead to a poor solution. This
difficulty is avoided when wt is based on the Huber psi-function
ψH,chr, since then (7.72) has an essentially unique solution. However,
basing wt on ψH,chr does not result in as much robustness toward large
outliers as does basing wt on ψB,cbr. Thus, the strategy adopted is to
iterate (7.74) a number of times iterh using wt based on the Huber psi-
function, followed by a number of iterations iterb using wt based on
the Tukey psi-function.

ψB cbr, r( ) r 1 r2–( )2  r c≤
0             r c>




=

φ̂

r t yt 1+ yt
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Example of simple use

> robar <- ar.gm(bicoal.tons, 2)

Robust 
Filtering

First consider the special case where xt in (7.70) is an AR(1) process
with known parameter φ. In this case the robust filtering algorithm is
given by

where st is a measure of scale for the observation prediction residuals

. The quantity st is computed using an auxiliary data-
dependent recursion. (See Martin (1981) for details). The psi-function
we use is the Hampel two-part redescending type:

The robust filter has the property that if yt is a gross outlier large

enough that the scaled residual  is larger in absolute

value than b, then  is a pure prediction based on the previous

robust filter value, .

Now consider the case where xt is a pth-order autoregression. In this
case, xt may be represented in state space form

x̂t φx̂t 1–

mt

st

-----ψ
yt φx̂t 1––

st

------------------------ 
 +=

r t yt φx̂t 1––=

ψHA a b, , r( )

r      r a≤

r( ) a
b a–
------------ b r–( )sgn      a r b≤<

0      r b>






=

yt φx̂t 1––( ) Rt⁄

x̂t

x̂t φx̂t 1–=

xt Φxt 1– εt+=
210



Robust Methods
where  and  are
p-dimensional vectors, and

is the so-called state transition matrix. In this case the robust filter
value of time t is

namely the first component of the vector filtered value  obtained
from the recursion

where  is obtained from an auxiliary, data-dependent recursion
(see Martin and Thomson (1982), for details), and

is the first component of the vector one-step-ahead prediction .

In the usual case where we can use acm.filt as a filter-cleaner by
setting σ0 (= s0 below) equal to zero, it turns out that

Then it is easy to check that when the Hampel two-part psi-function
ΨHA,a,b is used and yt is a “good” datapoint by virtue of 

being less than a in magnitude, then , so yt is not altered if it is
“good.” This will usually be the case for most of the data points when
acm.filt is used in the filter-cleaner mode.
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Examples of simple use

> gm <- ar.gm(bicoal.tons, 3)
> bicoal.filt <- acm.filt(bicoal.tons, gm)

Two-Filter 
Robust 
Smoother

The robust smoother acm.ave is constructed using two acm.filt
robust filters, one “forward” filter  going forward in time over the

data and one “backward” filter  going backward in time over the
data.

Let  denote the backward one-step-ahead predictor of xt given

the data . Let  denote conditional mean squared error,
conditioned on y1, …, yt, for filtering for the forward filter (this is

computed in acm.filt). And let  be the conditional mean-squared

error, conditioned on , for predicting xt for the backward
filter (this is also computed in acm.filt). Then the robust smoother

 is obtained by confining  and  in the natural Bayesian
way:

This smoother has the following characteristics when used as a
smoother-cleaner by setting ; “good” data points yt are
left unaltered, while gross outliers yt are replaced by interpolates

based on the cleaner data .

Examples of simple use

> gm <- ar.gm(bicoal.tons, 3)
> bicoal.smo <- acm.ave(bicoal.tons, gm)
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Alternative 
Robust 
Smoother

The alternative robust smoother acm.smo is an approximate
conditional mean type robust smoother. For details, see Martin (1979).

Examples of simple use

> gm <- ar.gm(bicoal.tons, 3)
> bicoal.smo <- acm.smo(bicoal.tons, gm)
213



Chapter 7  Analyzing Time Series
REFERENCES

Ansley, C.F. (1979). An algorithm for the exact likelihood of a mixed
autoregressive-moving average process. Biometrika, 66:59-65.

Bell, W. and Hillmer, S. (1987). Initializing the Kalman filter in the
non-stationary case. Research Report CENSUS/SRC/RR-87/33,
Statistical Research Division, Bureau of the Census, Washington, DC,
20233.

Bloomfield, P. (1976). Fourier Analysis of Time Series: An Introduction.
Wiley, New York.

Box, G.E.P. and Jenkins, G.M. (1976). Time Series Analysis: Forecasting
and Control. Holden-Day, Oakland, CA.

Bruce, A. and Martin, R.D. (1989). Leave-k-out diagnostics for time
series. Journal of the Royal Statistical Society, Series B, 51:363-401.

Burg, J.P. (1967). Maximum Entropy Spectral Analysis. Paper
presented at the 37th Annual International S.E.G. Meeting,
Oklahoma City, OK.

Chatfield, C. (1984). The Analysis of Time Series: An Introduction, 3rd ed.
Chapman and Hall, London.

Dennis, J.E., Gay, D.M., and Welsch, R.E. (1980). An adaptive
nonlinear least-squares algorithm. ACM Transaction Mathematical
Software, 7:348-383.

Harvey, A.C. and Pierse, A.G. (1984). Estimating missing
observations in economic time series. Journal of the American Statistical
Association, 79:125-131.

Haslett, J. and Raftery, A.E. (1989). Space-time modelling with long-
memory dependence: Assessing Ireland’s wind power resource (with
Discussion). Journal of the Royal Statistical Society, Series C—Applied
Statistics, 38:1-50.

Huber, P.J. (1964). Robust estimation of a location parameter. Annals
of Mathematical Statistics, 35:73-101.

James, D.A., and Pregibon, D. (1992). Chronological Objects in S.
AT&T Technical Report. AT&T Bell Laboratories, Muray Hill, NJ
07974.
214



References
Jones, R.H. (1980). Maximum likelihood fitting of ARIMA models to
time series with missing observations. Technometrics, 22:389-395.

Kohn, R. and Ansley, C.F. (1985). Efficient estimation and prediction
in time series regression models. Biometrika, 72:694-697.

Kohn, R. and Ansley, C.F. (1986). Estimation, prediction, and
interpolation for ARIMA models with missing data. Journal of the
American Statistical Association, 81:751-761.

Mandelbrot, B.B. (1977). Fractals: Form, Chance and Dimension.
Freeman, San Francisco.

Martin, R D. (1979). Approximate conditional mean type smoothers
and interpolators. In Smoothing Techniques for Curve Estimation, pp. 117-
143. T. Gasser and M. Rosenblatt, eds. Springer Verlag, Berlin.

Martin, R.D. (1980). Robust estimation of autoregressive models. In
Directions in Time Series, pp. 228-254. D.R. Brillinger and G.C. Tiao,
eds. Institute of Mathematical Statistics, Hayward, CA.

Martin, R.D. (1981). Robust methods for time series, pp. 683–759. In
Applied Time Series Analysis. D.F. Findley, ed. Academic Press, New
York.

Martin, R.D. and Thomson, D.J. (1982). Robust resistant spectrum
estimates. Proceedings of the IEEE, 70:1097-1115.

Mosteller, F. and Tukey, J.W. (1977). Data Analysis and Regression.
Addison-Wesley, Reading, MA.

Priestley, M.B. (1981). Spectral Analysis and Time Series. Academic
Press, London.

Shumway, R.H. (1988). Applied Statistical Time Series Analysis. Prentice
Hall, Englewood Cliffs, NJ.

Singleton, R.C. (1969). An algorithm for computing the mixed radix
fast Fourier transform. IEEE Transactions on Audio and Electronics, Au-
17:93–103.

Whittle, P. (1983) Prediction and Regulation by Linear Least-Square
Methods, 2nd ed. University of Minnesota Press, Minneapolis.
215



Chapter 7  Analyzing Time Series
216



Introduction 218

Overview of S-PLUS Functions 219
Survival Curve Estimates 219
Comparing Kaplan-Meier Survival Curves 220
Cox Proportional Hazards Models 221
Parametric Survival Models 222
Predicted Survival 223
Utility Functions 223

Missing Values 225

References 227

OVERVIEW OF SURVIVAL 
ANALYSIS 8
217



Chapter 8  Overview of Survival Analysis
INTRODUCTION

The term survival analysis originated in the study and analysis of times
to death (that is, survival times) for medical patients diagnosed with
some fatal disease. Survival analysis is now a well-developed field of
statistical research and methodology pertaining to modeling and
testing hypotheses of failure time data for humans as well as animals,
machines, electronic equipment, automobile components, etc. Hence,
the methodology is far more general than the analysis of survival
times. In fact, fields of study other than medicine have given other
names to the identical methodology discussed here. This chapter
might just a well have been called any one of the following:

• Analysis of Failure Time Data

• Reliability Analysis

• Event History Analysis

However, because of the focus of most of the examples and because
of the history of the development of this material we call it Survival
Analysis. This helps to simplify the presentation. In examples, we will
simply refer to patients (or people or subjects) and their survival times.
You can substitute the appropriate terminology for your field of study
as you read if you wish.

Modeling of survival times is based on two distinct approaches—
parametric and nonparametric. The material in this and the following
chapters covers both approaches. The addition of parametric survival
models extends the functionality of earlier versions of S-PLUS to
include methods that predate the nonparametric methods but are still
widely used in industrial and manufacturing settings where estimation
of component and system reliability may require extrapolation from
accelerated tests. The nonparametric methods, widely used in clinical
trials, include Kaplan-Meier estimates of survival, Cox proportional
hazards regression models and extensions due to Andersen and Gill
(1982). Miller (1981) and Kalbfleisch and Prentice (1980) are excellent
references.
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OVERVIEW OF S-PLUS FUNCTIONS

Nonparametric survival analysis in S-PLUS 2000 is based on the

survival51 StatLib entry produced by Terry Therneau of the Mayo
Clinic. It differs only slightly from the version 5 code found in
StatLib. Major enhancements are penalized and frailty models. The
expected survival routines have been modified to use "dates"
objects for dates, and there have been some minor bug fixes and
enhancements. Terry Therneau has been an important contributor to
this documentation of survival analysis in S-PLUS.

S-PLUS 4.5 introduced a new set of functions for life testing analysis
based upon estimation code originally developed by Meeker and
Duke (1981) and refined subsequently by W.Q. Meeker. Additional
parametric survival analysis code (survReg) has been added to
S-PLUS 2000; this is also taken from the survival5 library, with a
name change from survreg to survReg for backward compatibility.

In this section we present a brief overview of the functions used for
doing survival analysis in S-PLUS. This section provides an overview
of the type of computations, model fitting, and graphical displays
available for doing survival analysis in S-PLUS. More in depth
information is contained in the chapters that follow.

Survival Curve 
Estimates

The function survfit fits a Kaplan-Meier or a Fleming-Harrington
survival curve or computes the predicted survival curve for a Cox
proportional hazards model.

Examples • Simple Kaplan-Meier estimate

> survfit(Surv(time, status), data = leukemia)

• Print the survival curve estimate, standard errors, and
confidence intervals.

> summary(survfit(Surv(time, status),
+ data = leukemia))

1. Copyright © 1994, 1999, Mayo Foundation for Medical Education
and Research. All Rights Reserved.
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• Fleming-Harrington estimate

> survfit(Surv(time, status), data = leukemia,
+ type = "fleming-harrington")

• Kaplan-Meier estimate with two groups

> survfit(Surv(time, status) ~ group,
+ data = leukemia)

• Predicted survival at the average predictor for a Cox model

> survfit(coxph(Surv(futime, fustat) ~ age,
+ data =ovarian))

• Predicted survival at other than the average predictor for a
Cox model.

> survfit(coxph(Surv(futime, fustat) ~ age, data =
+ ovarian), newdata = data.frame(age = 70))

Important 
Options

Kaplan-Meier or Fleming-Harrington estimate of survival.

Greenwood or Tsiatis variance estimate.

Comparing 
Kaplan-Meier 
Survival Curves

The function survdiff computes one and k-sample versions of the

Fleming-Harrington  family of tests. This includes the log-rank
and Gehan-Wilcoxon tests as special cases.

Examples • Test for the presence of a separate baseline survival for each
sex.

> survdiff(Surv(time, status) ~ sex, data = lung)

• One-sample test

> pred <- survexp(time ~ ratetable(sex = sex,
+ year = 1970, age = age * 365.25), data = lung,
+ cohort = F)
> survdiff(Surv(time, status) ~ offset(pred),
+ data = lung)

G
ρ
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Cox 
Proportional 
Hazards 
Models

The function coxph fits a Cox proportional hazards model.

Examples • Standard Cox model

> coxph(Surv(time, status) ~ group, data =
+ leukemia)

• Time dependent data.

> coxph(Surv(start, stop, event) ~ (age + surgery) *
+ transplant, data = heart)

• Stratified model, with a separate baseline per institution, and
institution specific effects for sex.

> coxph(Surv(time, status) ~ strata(sex) * age,
+ data=lung)

• Force in a known term, age, without estimating a coefficient
for it.

> coxph(Surv(time, status) ~ offset(age) + sex,
+ data=lung)

Important 
Options

Breslow, Efron, or exact partial likelihood methods for handling ties.

cox.zph computes a test of proportional hazards for the fitted Cox
model, and estimates of time-dependent coefficients suitable for
graphing.

Examples • Compute proportional hazards test for fitted model.

> cox.zph(coxph(Surv(time, status) ~ age + sex +
+ ph.ecog, data = lung, na.action = na.omit))

• Display the estimated coefficients as a function of time.

> plot(cox.zph(coxph(Surv(time, status) ~ age +
+ sex + ph.ecog, data = lung, na.action = na.omit)))

Important 
Option

Global test in addition to the tests for each covariate.
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Parametric 
Survival 
Models

The function censorReg fits a parametric survival model. It
supersedes the function survreg. In contrast with the other survival
models, it uses censor to specify the censored response rather than
Surv. The function kaplanMeier, which extends survfit to allow
for left and interval censoring, fits Kaplan-Meier models using the
same syntax as censorReg.

Examples • Fit a Weibull distribution.

> censorReg(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights)

• Predict life times from a model for default failure rates:

> predict(censorReg(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights))

• Predict failure rates from a model for given life times:

> predict(censorReg(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights), q = c(100,
+ 200, 300),  type = "prob")

• Fit an extreme value distribution.

> censorReg(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights,
+ dist="extreme")

• Fit a Weibull distribution stratified by the unique values of
voltage:

> censorReg(censor(days, event) ~ strata(voltage),
+ data = capacitor2, weights = weights)

• Fit a Kaplan-Meier model using the same formula.

> kaplanMeier(censor(days, event) ~ voltage,
+ data = capacitor2, weights = weights)

Important 
Options

Distributions: Weibull, smallest extreme value, logistic, log-logistic,
normal, log-normal, exponential, log-exponential, Rayleigh, or log-
Rayleigh.

Fix the scale parameter.
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Predicted 
Survival

The function survexp predicts survival for an age and sex matched
cohort of subjects given a baseline matrix of known hazard rates for
the population. Most often these are U.S. mortality tables. Also, a
prior Cox model can act as the rate table.

Examples • Average conditional cohort survival, defaults to U.S. white.

> survexp(time ~ ratetable(sex = sex, year = 1970,
+ age = age * 365.25), conditional = T, data = lung)

• Data to enter into a one sample test for comparing the given
group to a known population.

> pred <- survexp(time ~ ratetable(sex = sex,
+ year = 1970, age = age * 365.25), data = lung,
+ cohort = F)

Important 
Options

Matrix of known hazards: U.S., Arizona, Florida, and Minnesota are
included.

Estimates of "individual" or "cohort" expected survival.

Utility 
Functions

Surv is a packaging function; like I and C, it doesn’t transform its
argument. This is used for the left hand side of all formulas used by
the nonparametric survival model fitting functions. (The censorReg
function uses censor rather than Surv.)

Examples • Right censored data with status = 1 for death and
status = 0 for censored.

> Surv(time, status)

• Right censored data, a value of 3 corresponds to a death.

> Surv(time, status == 3)

• Counting process data, as in the agreg function of Version
3.2.

> Surv(start, stop, event)

• Left censored data

> Surv(time, status, type = "left")
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naresid, naprint provide a new way for handling missing values.

• Can specify a global NA action through the options list. For
example:

> options(na.action = "na.omit")

• The print methods label the output of the action taken. For
example, when na.omit is the action a message similar to the
following is printed with the fit object:

"14 observations deleted due to missing".

• NAs are inserted in prediction and residual vectors so they
match the length of the original data. This makes, for
example, the plotting of residuals versus the original variables
easier.

strata marks a variable or group of variables as strata.

• If there are multiple variables, each unique combination
forms a stratum.

Examples These examples use the variables in the ovarian data frame.

• Specify rx as a stratification variable.

> strata(rx)

• Specify rx and residual.dz as stratification variables.

> strata(rx, residual.dz)

• Make NA a separate group rather than omitting NA.

> strata(rx, na.group=T)

• cluster identifies correlated groups of observations, and is
used on the right-hand side of a formula. For example:

> cluster(group)
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MISSING VALUES

The handling of missing values (NA) for the survival analysis functions
has been enriched as outlined in the section Utility Functions on page
223. The main improvements follow:

1. You can specify a global default function for handling missing
values. This frees you from having to do it in the call to the
model fitting function. For example, to set the global missing
value action to delete missing values row-wise you do

> options(na.action = "na.omit")

2. A brief report of the action taken is included when printing a
fitted model. For example, if na.omit is the action, a message
something like the following will be included when the fit
object is printed:

"14 observations deleted due to missing".

3. When residuals and predictions are computed, NAs are
appropriately inserted so that the resulting vectors are the
same length as the original variables. This allows you to plot,
for example, the residuals versus the predictors without
having to worry about the residual vector being a different
length than the original data. Because of this feature you can
do the following:

> fit <- coxph(Surv(time, status) ~ age + sex +
+ ph.ecog + ph.karno, data = lung,
+ na.action =na.omit)
> plot(lung$age, residuals(fit))

 Warning Specifying a global default for handling NAs through the options list
effects all the model fitting functions that call model.frame.default
(which is most of them). The tree function doesn’t, so it is immune to
the global setting. However, virtually all the rest of the model fitting
functions do call model.frame.default, so the global setting will be
in effect for those functions. It is known that there are some side
effects (errors produced) when fitting generalized additive models
(the gam function). Because the global action for handling NAs has not
been thoroughly tested for all the fitting functions, it is recommended
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Chapter 8  Overview of Survival Analysis
that you provide the NA action function (for example, na.omit) as the
na.action argument to the fitting function rather than rely on the
global action.

Additionally, if you fit a survival model relying on a global NA action
and use the fitted model in later computations, errors and/or
incorrect values can result if the global NA action is different than at
the time of fitting the model. If you expect to change the global NA
action, it is safer to provide the NA action function as the na.action
argument to the fitting function rather than as a global action.
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Chapter 9  Estimating Survival
INTRODUCTION

A survival function defined over time t is, by definition, the
probability that a person survives at least to time t. More formally, let
T be a positive random variable with distribution function F(t) and
density f(t). The survival function S(t) is

and the hazard rate or hazard function λ(t) is

.

The hazard rate has the interpretation λ(t) = P{patient dies in the next
small unit of time, ∆t, given they have survived to time t}. A constant
hazard indicates that, over each interval, a constant proportion of
surviving subjects is expected to die. A familiar example is
radioactive decay, where the “death” of an atom corresponds to its
decay. Constant hazard may also be associated with some fatal
diseases, such as metastatic cancer.

The cumulative hazard Λ(t) is defined as

.

What distinguishes survival analysis from most other statistical
methods is the presence of censoring. In a study of survival following
two different treatment regimens, for example, analysis of the trial
typically occurs well before all of the patients have died. For those still
alive at the time of analysis, the true survival time is known only to be
greater than the time observed to date. Such an observation is said to
be censored. Survival data is presented to the computer program as a
pair , where  is the observed survival time and  if the

observation is censored,  if a death is observed. Survival data

is often presented using a + for the censored observation, so that a set
of times might be 8, 11+, 14, 22, 36+, etc.

S t( ) 1 F t( )– P T t>{ }= =

λ t( )
f t( )
S t( )
--------=

Λ t( ) λ t( ) td
0

t

∫ -logS t( )= =

ti δi,( ) ti δi 0=

δi 1=
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Introduction
Let  denote the m distinct death times. Let 

be an indicator function, which is 1 if person i is still at risk at time s

and 0 otherwise, that is, . Then the number at

risk at time s is . We can similarly define d(s) as the

number of deaths occurring at time s.

In order to discuss some of the more recent methods in survival
analysis, it is helpful to recast the problem as a counting process, a
notation found in Andersen and Gill (1982) and others. A good
reference is Fleming and Harrington (1981). Let  be a counting

process associated with the ith subject, so  increases by 1 at each

observed event (for example, heart attack). In this notation a subject
can have multiple events.  is an indicator function as before, but

now can have multiple transitions from 0 (zero) to 1 (one), with a
subject entering and leaving the risk set.

t∗1 t∗2 … t∗m< < < Yi s( )

Yi s( ) 1 if s t i
∗≤=

r s( ) Yi s( )
1

n

∑=

Ni t( )

Ni

Yi t( )
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Chapter 9  Estimating Survival
KAPLAN-MEIER ESTIMATOR

The most common estimate of the survival distribution, the Kaplan-
Meier (KM) estimate, is a product of survival probabilities

,

where r and d are the number at risk and the number of deaths,
respectively, as defined above. Graphically, the Kaplan-Meier
survival curve appears as a step function with a drop at each death.
Censoring times are often marked on the plot as “+” symbols.

Example: AML 
Study

The data presented in Table 9.1 are preliminary results from a clinical
trial to evaluate the efficacy of maintenance chemotherapy for acute
myelogenous leukemia (AML). The study was conducted by Embury,
et al. (1977) at Stanford University. After reaching a status of remission
through treatment by chemotherapy, the patients who entered the
study were assigned randomly to two groups. The first group received
maintenance chemotherapy; the second, or control, group did not.
The objective of the trial was to see if maintenance chemotherapy
prolonged the time until relapse.

ŜKM t( )
r t i( ) d ti( )–

r t i( )
----------------------------

ti t<
∏=

Table 9.1:  Data for AML maintenance study. A+ indicates a censored value.

Group Length of complete remission (in weeks)

Maintained 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+

Nonmaintained 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45
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Kaplan-Meier Estimator
The Kaplan-Meier estimator of survival for the maintained group is
computed by hand as follows:

In S-PLUS, the survfit function produces Kaplan-Meier survival
curve estimates by default. Suppose the data displayed in Table 9.1 is
in a data frame named leukemia, with variables

• time: time to relapse

• status: indicator whether the observed time was a relapse (1)
or censored (0).

• group: treatment group indicator taking values Maintained
and Nonmaintained.

You compute the KM estimate as follows:

> leukemia.surv <- survfit(Surv(time,status) ~ group,
+ leukemia)

S 0( ) 1,=

S 9( ) S 0( ) 10
11
------× 0.91,= =

S 13( ) S 9( ) 9
10
------× 0.82,= =

S 18( ) S 13( ) 7
8
---× 0.72,= =

S 23( ) S 18( ) 6
7
---× 0.61,= =

S 28( ) S 23( ) 6
6
---× 0.61,= =

S 31( ) S 23( ) 4
5
---× 0.49,= =

S 34( ) S 31( ) 3
4
---× 0.37,= =

S 48( ) S 34( ) 1
2
---× 0.18= =
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> summary(leukemia.surv)

Call: survfit(formula = Surv(time, status) ~ group, data = 
leukemia)

               group=Maintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   9     11       1    0.909  0.0867       0.7541        1.000
  13     10       1    0.818  0.1163       0.6192        1.000
  18      8       1    0.716  0.1397       0.4884        1.000
  23      7       1    0.614  0.1526       0.3769        0.999
  31      5       1    0.491  0.1642       0.2549        0.946
  34      4       1    0.368  0.1627       0.1549        0.875
  48      2       1    0.184  0.1535       0.0359        0.944

               group=Nonmaintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   5     12       2   0.8333  0.1076       0.6470        1.000
   8     10       2   0.6667  0.1361       0.4468        0.995
  12      8       1   0.5833  0.1423       0.3616        0.941
  23      6       1   0.4861  0.1481       0.2675        0.883
  27      5       1   0.3889  0.1470       0.1854        0.816
  30      4       1   0.2917  0.1387       0.1148        0.741
  33      3       1   0.1944  0.1219       0.0569        0.664
  43      2       1   0.0972  0.0919       0.0153        0.620
  45      1       1   0.0000      NA           NA           NA

The survfit function returns an object of class "survfit". The
function produces the tabled output including columns for the
survival estimates, the standard errors of the estimates, and
confidence bounds for the estimates. The NAs on the last line result
from not being able to estimate a standard error and, consequently, a
confidence interval for zero survival on a log survival scale.
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Nelson and Fleming-Harrington Estimators
NELSON AND FLEMING-HARRINGTON ESTIMATORS

Another approach is to estimate Λ, the cumulative hazard, using
Nelson’s estimate,

,

or, using counting process notation,

.

The Nelson estimate is also a step function. It starts at zero and has a
step of size d(t)/r(t) at each death.

One problem with the Nelson estimate is that it is susceptible to ties in
the data. For example, assume that 3 subjects die at 3 nearby times t1,
t2, t3, with 7 other subjects also at risk. Then the total increment in the
Nelson estimate will be 1/10 + 1/9 + 1/8. However, if time data were
grouped such that the distinction between t1, t2, and t3 was lost, the
increment would be the smaller step 3/10. If there are a large number
of ties this can introduce significant bias. One solution is to employ a
modified Nelson estimate that always uses the larger increment, as
suggested by Nelson and Fleming and Harrington (1984). This is not
an issue with the Kaplan-Meier estimate. With or without ties the
multiplicative step will be 7/10.

The relationship , which holds for any continuous
distribution, leads to the Fleming-Harrington (FH) [Fleming and
Harrington (1984)] estimate of survival:

(9.1)

Λ̂N t( )
d ti( )
r t i( )-----------

ti t<
∑=

Λ̂N t( )
dNi s( )
r s( )----------------

0

t

∫
i 1=

n

∑=

Λ t( ) S t( )log–=

ŜFH tj( ) e
Λ̂N tj( )–

=
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This estimate has natural connections to survival curves for a Cox
model. For sufficiently large sample sizes the FH and KM estimates
will be arbitrarily close to one another, but keep in mind that unless
there is heavy censoring the number at risk, r(t), is always small in the
right hand tail of the estimated curve.

Example: AML 
Study (cont.)

You produce the Fleming-Harrington estimate of survival for the data
in Table 9.1 by specifying the type argument in the call to survfit.

> summary(survfit(Surv(time, status) ~ group,
+ data = leukemia, type = "fleming-harrington"))

Call: survfit(formula = Surv(time, status) ~ group, data = 
leukemia, type = "fleming-harrington")

               group=Maintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   9     11       1    0.913  0.0871       0.7575        1.000
  13     10       1    0.826  0.1174       0.6253        1.000
  18      8       1    0.729  0.1422       0.4974        1.000
  23      7       1    0.632  0.1572       0.3882        1.000
  31      5       1    0.517  0.1731       0.2687        0.997
  34      4       1    0.403  0.1781       0.1695        0.958
  48      2       1    0.244  0.2038       0.0477        1.000

               group=Nonmaintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   5     12       2   0.8465   0.109       0.6572        1.000
   8     10       2   0.6930   0.141       0.4645        1.000
  12      8       1   0.6116   0.149       0.3791        0.987
  23      6       1   0.5177   0.158       0.2849        0.941
  27      5       1   0.4239   0.160       0.2021        0.889
  30      4       1   0.3301   0.157       0.1300        0.838
  33      3       1   0.2365   0.148       0.0692        0.808
  43      2       1   0.1435   0.136       0.0225        0.914
  45      1       1   0.0528     Inf       0.0000        1.000
236



Nelson and Fleming-Harrington Estimators
You produce the modified Nelson estimate, similarly, by specifying
type = "fh2". You produce the Fleming-Harrington and Nelson
estimates more simply as follows:

# Fleming-Harrington
> survfit(Surv(time, status) ~ group, data = leukemia,
+ type = "flem")
# Nelson Estimate
> survfit(Surv(time, status) ~ group, data = leukemia,
+ type = "fh")
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VARIANCE ESTIMATION

Several estimates of the varaiance of  are possible. Since  can
be treated as a sum of independent increments, the variance is a
cumulative sum with terms of

See Klein (1991) for details. Using Equation (9.1) and the simple

Taylor series approximation , the variance of the
KM or FH estimators is

Klein also considers two other forms for the variance of S, but
concludes

• For computing the variance of  the Tsiatis formula is
preferred.

• For computing the variance of , the Greenwood formula
along with Equation (9.2) is preferred.

Confidence intervals for S(t) can be computed on the plain (identity)
scale,

(9.2)

(9.3)

Λ̂N Λ̂N

d t( )
r t( ) r t( ) d t( )–[ ]
--------------------------------------- Greenwood

d t( )
r 2 t( )
----------- Tsiatis

d t( ) r t( ) d t( )–[ ]
r 3 t( )

---------------------------------------- Klein

var log f var f f
2⁄≈

var Ŝ t( )( ) Ŝ
2

t( )var Λ̂N t( )( )=

Λ̂N

Ŝ

S 1.96se S( )±
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Variance Estimation
on the cumulative hazard or log-survival scale,

or on the log-hazard or log-log survival scale,

where “se” refers to the standard error.

Confidence intervals based on Equation (9.3) may give survival
probabilities that are greater than 1 or less than zero. Those based on
Equation (9.4) may sometimes be greater than 1, but those based on
Equation (9.5) are always between 0 and 1. For this reason many users
prefer the log-hazard formulation. Link (1984), (1986), however,
suggests that confidence intervals based on the cumulative-hazard
scale have the best performance. All three methods have been
implemented in the survfit function and are referred to as the
"plain", "log", and "log-log" confidence types. By default, the
summary.survfit confidence intervals based on the log-survival (or
cumulative hazard) scale. Intervals on the two other scales may be
specified through the conf.type argument to survfit. Intervals on
the other scales are computed based on the following relationships:

A further refinement to the confidence intervals is suggested by
Dorey and Korn (1987). When the tail of the survival curve contains
much censoring and few deaths, there will be one or more long flat
segments. Confidence intervals based strictly on (9.3), (9.4), or (9.5)
are constant across these intervals. Dorey and Korn point out that, as
censored subjects are removed from the sample, the effective sample
size decreases, so the actual reliability of the curve should also
decrease. Their correction retains the original upper confidence limit
and a modified lower limit which agrees with the standard limits at
each death time but is based on the effective number at risk between
death times.

(9.4)

(9.5)

exp log S 1.96 se Λ( )±( )

exp exp– log log S–( ) 1.96 se log Λ( )±( )( )

se S( ) Sse Λ( )≅

se log Λ( ) 1
Λ
---- se Λ( )≅
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Chapter 9  Estimating Survival
Three lower confidence limit methods (the conf.lower argument)
are implemented in survfit. The usual method
(conf.lower = "usual") uses, optionally, either the Greenwood or
the Tsiatis formulation unaltered.

Peto’s method (conf.lower = "peto") assumes that

,

where r(t) is the number at risk, and . The Peto limit is
known to be conservative. The modified Peto limit
(conf.lower = "modified") chooses c such that the variance at
each death time is equal to the usual estimate but between death times
the usual variance estimate is multiplied by r*(t)/r(t), where r(t) is the
number at risk and r*(t) is the number at risk at the last jump in the
curve (last death time). This is almost identical to Dorey and Korn’s
estimator and is the recommended procedure.

Example: AML 
Study (cont.)

Applying the methods of this section to the leukemia data, you can
compute the conservative lower confidence intervals of Peto for
survival based on the log-hazard scale as follows:

> summary(survfit(Surv(time, status) ~ group,
+ data = leukemia,
+ conf.type = "log-log", conf.lower = "peto"))

Call: survfit(formula = Surv(time, status) ~ group, data =
leukemia, conf.type = "log-log", conf.lower = "peto")

               group=Maintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   9     11       1    0.909  0.0867       0.5390        0.987
  13     10       1    0.818  0.1163       0.4729        0.951
  18      8       1    0.716  0.1397       0.3645        0.899
  23      7       1    0.614  0.1526       0.2854        0.835
  31      5       1    0.491  0.1642       0.1802        0.753
  34      4       1    0.368  0.1627       0.1132        0.657
  48      2       1    0.184  0.1535       0.0288        0.525

var Λ̂N t( )( ) c r⁄ t( )=

c 1 Ŝ t( )–≡
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Variance Estimation
               group=Nonmaintained
time n.risk n.event survival std.err lower 95% CI upper 95% 
CI
   5     12       2   0.8333  0.1076       0.5235        0.956
   8     10       2   0.6667  0.1361       0.3753        0.860
  12      8       1   0.5833  0.1423       0.2906        0.801
  23      6       1   0.4861  0.1481       0.2024        0.730
  27      5       1   0.3889  0.1470       0.1421        0.650
  30      4       1   0.2917  0.1387       0.0901        0.561
  33      3       1   0.1944  0.1219       0.0476        0.461
  43      2       1   0.0972  0.0919       0.0166        0.349
  45      1       1   0.0000      NA           NA           NA
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MEAN AND MEDIAN SURVIVAL

For the Kaplan-Meier estimate, the estimated mean survival is
undefined if the last observation is censored. The procedure used by
S-PLUS is to redefine the estimate to be zero beyond the last
observation. This gives an estimated mean that is biased towards zero,
but there are no compelling alternatives that do better. With this
definition, the mean is estimated as

,

where  is the Kaplan-Meier estimate and T is the maximum
observed follow-up time in the study. The variance of the mean is

,

where  is the total number of deaths up to

time t, and  is the number at risk at time t.

The sample median is defined as the first time at which .
Upper and lower confidence intervals for the median are defined in
terms of the confidence intervals for S: the upper confidence interval

is the first time at which the upper confidence interval for .
This corresponds to drawing a horizontal line at 0.5 on the graph of
the survival curve, and using intersections of this line with the curve
and its upper and lower confidence bands. In the event that the
survival curve has a horizontal portion at exactly 0.5 (for example, an
even number of subjects and no censoring before the median) then
the average time of that horizontal segment is used. This agrees with
the usual definition of the median for uncensored data when the
sample size is an even number. If neither confidence band for S(t)
reaches 0.5, as in the example which follows, then the corresponding
confidence limit for the median is unknown and is reported as an NA.

µ̂ Ŝ t( ) td
0

T
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Ŝ
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T
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Ŝ is 0.5≤
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Mean and Median Survival
Example: AML 
Study (cont.)

The mean, median, and confidence intervals for the median survival
time are part of the table produced by printing a "survfit" object.
For the leukemia data set these statistics are produced as follows:

> leukemia.surv <- survfit(Surv(time, status) ~ group,
+ leukemia)
> leukemia.surv

Call: survfit(formula = Surv(time, status) ~ group, data = 
leukemia)

                     n events mean se(mean) median 0.95LCL 0.95UCL
   group=Maintained 11      7 52.6    19.83     31      18      NA
group=Nonmaintained 12     11 22.7     4.18     23       8      NA

Printing the object returned by survfit produces a brief report of
the resulting fits; for each fit, the print method prints the number of
subjects in the cohort (n), the total number of events (events), as well
as the mean, its standard error (se(mean)), the median, and
confidence intervals for the median survival time (the last two
columns).
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COMPARISON OF SURVIVAL CURVES

Assume that we wish to compare p different groups with respect to
their survival distributions. One method is to form the p x 2 table at
each death time.

If there are no tied deaths, then d = 1 for each table. Treating this
table as a simple multinomial experiment with d events in N trials, the
expected number of deaths in each group is  with a standard

multinomial variance matrix V.

Treating each of the k unique death time tables as independent, we
can sum over the tables to obtain an observed and an expected
number of deaths for each group. This “O-E" vector has variance

matrix . The argument may be generalized by the inclusion of

weights wk for each death time. The overall weighted vector is then

, where Ok is the top row of table k, Ek is the

expected, and the variance is . When wk = 1 this is the

Mantel-Haenszel or log-rank test, for wk = nk it is the Gehan-
Wilcoxon test, and for wk = SKM(tk) it is the Peto-Peto modification of
the Wilcoxon test.

The survdiff function implements a family of tests suggested by
Fleming and Harrington (1981) for comparing two or more survival
curves. A single parameter ρ controls the weights given to different

Groups 1 2 ... p

Deaths d1 d2 dp d

Alive and at risk a1 a2 ap a

Totals n1 n2 np N

dni N⁄

Vk∑

wk Ok Ek–( )∑
wk

2
Vk∑
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Comparison of Survival Curves
survival times; ρ = 0 yields the log-rank test and ρ = 1 the Peto-
Wilcoxon. Other values give a test that is intermediate to these two.
The default value is ρ = 0.

The log rank test is most powerful for a proportional hazards
alternative, that is, when  for any two groups i and

j, and some constant c which is independent of time. This assumption
is found to hold, at least approximately, in many clinical trials. Other
values for ρ produce tests more sensitive to early differences in S
(ρ > 0) or to later differences (ρ < 0).

Example: AML 
Study (cont.)

Returning to the leukemia data frame, compare the two treatment
groups using survdiff. The survdiff function takes a formula and
a data frame as its first two arguments. Recalling that ρ = 0 by default,
the log-rank test for difference between the maintained and
nonmaintained groups is produced as follows:

> survdiff(Surv(time, status) ~ group, leukemia)

                     N Observed Expected (O-E)^2/E
   group=Maintained 11        7   10.689     1.273
group=Nonmaintained 12       11    7.311     1.862

Chisq= 3.4 on 1 degrees of freedom, p= 0.06534

Thus, there is mild evidence to suggest that the maintained group has
better survival than the nonmaintained group.

λi t( ) λ j t( )⁄ cij=
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MORE ON SURVFIT

The survfit function fits Kaplan-Meier or, optionally, Fleming-
Harrington survival curves. For example,

> sf <- survfit(Surv(futime, fustat) ~ rx + residual.dz,
+ ovarian)
> sf

Call: survfit(Surv(futime, fustat) ~ rx + residual.dz, data = 
ovarian)

                    n events mean se(mean) median 0.95CI 0.95CI
rx=1, residual.dz=1 5      1  989      101     NA    638     NA
rx=1, residual.dz=2 8      6  430      131    298    156     NA
rx=2, residual.dz=1 6      2  943      161     NA    563     NA
rx=2, residual.dz=2 7      3  833      156     NA    464     NA

results in four Kaplan-Meier survival curves, indexed by the two
levels of treatment (rx) and the two levels of residual disease
(residual.dz). The right hand side of the formula is interpreted
differently than it would be for an ordinary linear or Cox model. The
survfit function uses the + operator to specify an interaction.

A summary of important options to survfit are:

• weights: Case weights

• type: Type of fit—"kaplan-meier", "fleming-
harrington" or "fh2".

• error: Type of variance estimate—"greenwood" or
"tsiatis".

• conf.int = 0.95: Level for the two-sided confidence
interval of median survival.

• conf.type = "log": One of "none", "plain", "log", or
"log-log".

• conf.lower: One of "usual", "peto", or "modified".
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More on survfit
The plot.survfit function plots survival curves returned by
survfit. For the AML data, you can plot survival curves, and add a
title and legend by doing

> plot(leukemia.surv, xlab = "Survival Time in Weeks",
+ ylab = "Proportion Surviving", cex = 2, lty = 2:3)
> title("AML Maintenance Study")
> legend(c(75, 130), c(0.95, 0.85),
+ c("Maintenance", "No Maintenance"), lty = 2:3)

Figure 9.1 displays the results of plotting the Kaplan-Meier estimates
of survival stratified by the maintenance grouping variable group.
Some important optional arguments to plot.survfit are as follows:

• conf.int: Plot confidence intervals for the curves. Default is
TRUE for a single curve and FALSE for multiple curves.

• mark.time: If logical, indicates whether to mark the curves at
censoring times. If a numeric vector, the curve is marked at
each time indicated.

Figure 9.1:  Kaplan-Meier estimates of survival for the maintained and 
nonmaintained groups of the AML study.
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• mark = 3: A vector of characters or integers specifying
special symbols used to mark the curve. The default value
produces a + at the censored values.

• cex = 1: The character size of the censor marks.

By default, confidence intervals are suppressed if there are multiple
curves. Marks are normally placed on the curve(s) at each censoring
time. If there are a large number of censored observations, this can
make the plot too “busy,” and the mark.time option would be used
to specify the time values at which curves are labeled.
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Introduction
INTRODUCTION

The Cox proportional hazards model is the most commonly used
regression model for survival data. If Zi(t) is the vector of covariates
for the ith individual at time t, the model assumes that the hazard for
a subject is of the form

where

is referred to as the risk score for the ith subject, β is a vector of
regression parameters, and λ0(t) is an arbitrary and unspecified
baseline hazard function. The vector of coefficients β does not include
an intercept term; it is absorbed into λ0. The exponential function
guarantees that λ is positive for any β. Assume that a death has
occurred at time t*. Then conditional on this death occurring, the
likelihood that it would be subject i rather than some other subject is

The product of the terms (Equation (10.1)) over all death times,

, was termed a partial likelihood by Cox (1972).

Maximization of  gives an estimate for β without the need
to estimate the nuisance parameter λ0(t). An estimator of the
covariance matrix is given by the inverse of the second derivative
matrix. The proportional hazards model is nonparametric in the

(10.1)

λ t Zi;( ) λ0 t( )r i t( )=

r i t( ) eβ'Zi t( )=

Li β( )
λ0 t∗( ) r i t∗( )

Yj t∗( ) λ0 t∗( ) r j t∗( )
j

∑
---------------------------------------------------

r i t∗( )

Yj t∗( ) r j t∗( )
j

∑
-----------------------------------= =

L β( ) Li β( )∏=

L β( )( )log
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Chapter 10  The Cox Proportional Hazards Model
sense that it depends only on the ranks of the survival times. It
remains sensitive, however, to skewed covariates. The first derivative
of  is the p by 1 vector

and the p by p information matrix is

where  is the weighted covariate mean for those still at risk at time t

Cox proposed, and it was later shown by Efron (1977) and Oakes
(1977), that the partial likelihood contains “nearly” all of the
information about β. That is, the calendar times when deaths occur

(10.2)

(10.3)

(10.4)
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Introduction
give information about the overall hazard rate λ0 but little about the
relative rates for different values of Z. The Cox model thus gives very
efficient estimates as compared to a parametric proportional hazards
model, such as the Weibull, even when the data actually come from
the parametric model. The notation for Li in Equation (10.1) is
derived from the counting process representation found in Fleming
and Harrington (1991). It allows for several extensions to the original
Cox model formulation including:

• multiple events per subject,

• time-dependent covariates including cation variables,

• discontinuous intervals of risk—Yi may change states from 1 to
0 and back again multiple times,

• left truncation—subjects need not enter the risk set at time 0.

This extension is known as the multiplicative hazards model.

Example: 
Ovarian Cancer

This example uses data from a study of ovarian cancer [EFD+79].
The variables are:

• futime: The number of days from enrollment until death or
censoring, whichever comes first.

• fustat: An indicator of death (1) or censoring (0).

• age: The patient age in years (actually, the age in days
divided by 365.25)

• residual.dz: An indicator of the extent of residual disease.

• rx: An indicator of the treatment given.

• ecog.ps: A measure of performance score or functional
status, using the Eastern Cooperative Oncology Group’s scale.
It ranges from 0 (fully functional) to 4 (completely disabled).
Level 4 subjects are usually considered too ill to enter a
randomized trial such as this.
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The data is stored in a data frame named ovarian. A summary
produces the following:

> summary(ovarian)

      futime          fustat           age
 Min.   :  59.0  Min.   :0.0000  Min.   :38.89
 1st Qu.: 368.0  1st Qu.:0.0000  1st Qu.:50.17
 Median : 476.0  Median :0.0000  Median :56.85
 Mean   : 599.5  Mean   :0.4615  Mean   :56.17
 3rd Qu.: 794.8  3rd Qu.:1.0000  3rd Qu.:62.38
 Max.   :1227.0  Max.   :1.0000  Max.   :74.50
  residual.dz         rx            ecog.ps
 Min.   :1.000   Min.   :1.0     Min.   :1.000
 1st Qu.:1.000   1st Qu.:1.0     1st Qu.:1.000
 Median :2.000   Median :1.5     Median :1.000
 Mean   :1.577   Mean   :1.5     Mean   :1.462
 3rd Qu.:2.000   3rd Qu.:2.0     3rd Qu.:2.000
 Max.   :2.000   Max.   :2.0     Max.   :2.000

Start by modeling survival as a function of age only:

> ov.fit1 <- coxph(Surv(futime, fustat) ~ age, ovarian)
> ov.fit1

Call: coxph(formula = Surv(futime,fustat) ~ age, 
data=ovarian)
     coef exp(coef) se(coef)    z      p
age 0.162      1.18   0.0497 3.25 0.0012
Likelihood ratio test=14.3  on 1 df, p=0.000156  n=26

Printing the resulting fit produces the estimated coefficient , the

estimated relative risk for a one unit change in the variable , the

standard error of the estimated coefficient, a z-test  along
with its p-value for the significance of the estimated coefficient, and a
likelihood ratio test for goodness of fit. The z-test is sometimes
referred to as Wald’s test. An estimate of the relative risk of dying of
ovarian cancer for two patients in the study differing in age by one
year is 1.18 which is significantly larger than one (p = 0.000156). The
older patient has an estimated 1.18 times higher risk of dying of

β̂( )

e β̂( )

β̂( ) se β̂( )⁄
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ovarian cancer than the younger patient. You produce a summary of
the survival curve with a combination of the summary function and
the survfit function. For example,

> summary(survfit(ov.fit1))

Call: survfit.coxph(object = ov.fit1)
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   59     26       1    0.988  0.0142        0.961        1.000
  115     25       1    0.974  0.0244        0.927        1.000
  156     24       1    0.955  0.0364        0.886        1.000
  268     23       1    0.933  0.0482        0.844        1.000
  329     22       1    0.897  0.0621        0.783        1.000
  353     21       1    0.862  0.0724        0.732        1.000
  365     20       1    0.824  0.0819        0.678        1.000
  431     17       1    0.775  0.0934        0.612        0.982
  464     15       1    0.724  0.1032        0.548        0.958
  475     14       1    0.673  0.1112        0.487        0.931
  563     12       1    0.596  0.1226        0.398        0.892
  638     11       1    0.520  0.1287        0.321        0.845

The Fleming-Harrington estimate of survival for a patient with age
equal to the average is produced in this case because the model was fit
using coxph and survival for a particular age was not specified with
the newdata argument. Produce a plot of the survival curve, Figure
10.1, at the average age as follows:

> plot(survfit(ov.fit1), xlab = "Survival in Days",
+ ylab = "Proportion Surviving")
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> title("Suvival for Ovarian Cancer Study")

The default, when you plot only one curve, is to add confidence
limits.

Figure 10.1:  Cox regression estimate of survival for a subject of average age (56.17 
years), from the ovarian cancer study.
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Hypothesis Tests
HYPOTHESIS TESTS

Once you fit a Cox model, three tests of hypothesis are produced
which are asymptotically equivalent but not always in practice. Let β0

be the initial value of the coefficients and  the solution after fitting
the model. The likelihood ratio test is defined as

and is the most reliable. The Wald statistic, ,

where  is the estimated variance-covariance matrix, is perhaps

the most natural because it provides a per variable test rather than an
overall measure of significance. The score test is defined as 
where U is the vector of derivatives given by Equation (10.3) and I is
the information matrix given by Equation (10.4), both evaluated at β0.
The score test does not require iteration and, consequently, is more
computationally efficient if a large number of models are to be tested.

Example: 
Ovarian Cancer 
(cont.)

For the ovarian cancer example, you can compute all three tests by
computing a summary of the resulting fit.

> summary(ov.fit1)

Call: coxph(formula = Surv(futime, fustat) ~ age, data = 
ovarian)
  n= 26
     coef exp(coef) se(coef)  z        p
age 0.162      1.18   0.0497 3.25 0.0012
    exp(coef) exp(-coef) lower .95 upper .95
age      1.18      0.851      1.07       1.3

Rsquare= 0.423   (max possible= 0.932 )
Likelihood ratio test= 14.3 on 1 df,    p=0.000156
Wald test            = 10.6 on 1 df,    p=0.00116
Efficient score test = 12.3 on 1 df,    p=0.000463

β̂

2 L β0( )( )log L β̂( )( )log–{ }

β̂ β0–( )′Σ̂βˆ
1–

β̂ β0–( )

Σ̂βˆ
1–

UtIU
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The summary of a fit returns the efficient score test in addition to the
likelihood ratio test and Wald’s test resulting from simply printing the
fit. Additionally, a confidence interval is estimated for the relative risk

estimated by exp(coef), . To produce confidence limits with a
different confidence level use the conf.int argument in the call to
summary. For example, specifying conf.int = .99 produces 99%
confidence intervals for the relative risk. It is clear that age is an
important predictor of survival. Let’s add the other predictors to the
model.

> ov.fit2 <- coxph(Surv(futime, fustat) ~ age +
+ residual.dz + rx + ecog.ps, ovarian)
> ov.fit2

Call:
coxph(formula = Surv(futime, fustat) ~ age + residual.dz + 
rx + ecog.ps, data = ovarian)

              coef exp(coef) se(coef)      z      p
age          0.125     1.133   0.0469  2.662 0.0078
residual.dz  0.826     2.285   0.7896  1.046 0.3000
rx          -0.914     0.401   0.6533 -1.400 0.1600
ecog.ps      0.336     1.400   0.6439  0.522 0.6000

Likelihood ratio test=17 on 4 df, p=0.0019 n= 26

To check for an overall improved fit over the age only model
compute the likelihood ratio test between the models as follows:

> -2*(ov.fit1loglik[2] - ov.fit2loglik[2])

[1] 2.749708

The loglik component of the fit is a vector of the log likelihoods for
two fits. The null model (intercept only) is the first value, and the
current model is the second value. Noting that there is a difference of
three degrees of freedom between the models, the p-value for the
likelihood ratio test is computed as follows:

> pchisq(2.75, df = 3)

[1] 0.5682029

eβ̂
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There is no significant difference between the two models indicating
that residual.dz, rx, and ecog.ps don’t improve the fit. This will
not work if there are missing values.
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STRATIFICATION

A simple extension of the Cox model is to allow multiple strata. The
hazard for a subject contained in stratum j is then

.

When a variable is entered into the model as a stratification factor
rather than as a covariate it allows for nonproportional hazards to
exist between levels of the variable. However, the disadvantage is that
no β is available to estimate the effect of that variable. For instance, in
a multi-center drug study the enrolling center is often entered into the
model as a stratum variable. Because of different patient populations,
for example, a higher proportion of acute cases, the centers may well
have different shapes for their baseline survival curves, and if
modeled as a covariate this nonproportionality could bias the
estimate of the treatment effect.

Example: 
Ovarian Cancer 
(cont.)

You can stratify the ovarian cancer fit with respect to treatment, rx,
still fitting age as a covariate, as follows:

> ov.fit3 <- coxph(Surv(futime, fustat) ~ age +
+ strata(rx), data = ovarian)
> survfit(ov.fit3)

Call: survfit.coxph(object = ov.fit3)
                 n events mean se(mean) median 0.95LCL 0.95UCL
strata(rx)=rx=1 13      7  512     72.8    638     329      NA
strata(rx)=rx=2 13      5  522     22.5     NA     475      NA

Printing the resulting fit displays the usual summary statistics for the
survival curve for each stratum. Applying the summary function to the
fit produces a more detailed table which includes the survival curve,
standard errors and confidence intervals for each stratum:

> summary(survfit(ov.fit3))

Call: survfit.coxph(object = ov.fit3)

               strata(rx)=rx=1
time n.risk n.event survival std.err lower 95% CI upper 95% CI
  59     13       1    0.978  0.0269       0.9264            1
 115     12       1    0.950  0.0481       0.8607            1

λ t Z,( ) λj t( ) eβZ t( )=
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 156     11       1    0.910  0.0758       0.7725            1
 268     10       1    0.862  0.1050       0.6793            1
 329      9       1    0.736  0.1525       0.4902            1
 431      8       1    0.625  0.1698       0.3671            1
 638      5       1    0.341  0.2225       0.0947            1

               strata(rx)=rx=2
time n.risk n.event survival std.err lower 95% CI upper 95% CI
 353     13       1    0.943  0.0560        0.840        1.000
 365     12       1    0.880  0.0814        0.734        1.000
 464      9       1    0.791  0.1126        0.598        1.000
 475      8       1    0.701  0.1319        0.484        1.000
 563      7       1    0.602  0.1461        0.374        0.968

You produce a plot of the stratified fit as follows:

> plot(survfit(ov.fit3), lty = 2:3)
> legend(100, .6, c("Treatment 1","Treatment 2"), lty= 2:3)
> title("Ovarian Cancer Stratified by Treatment")

The plot is one method to view a nonparametric estimate of treatment
effect, after adjusting for possible differences in age distributions.

Figure 10.2:  A plot of the stratified fit of the ovarian cancer data adjusted for 
average age.
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RESIDUALS

The Breslow (or Tsiatis, Link, or Nelson-Aalen) estimate of the
baseline hazard is

.

The martingale residual at time t is

The residual is computed at  and . If there are no time-
dependent covariates, then ri(t) can be factored out of the integral,

giving . The deviance residual is a normalizing
transform of the martingale residual

The other two residuals are based on the score process Uij(b,t) for the
ith subject and the jth variable:

The score residual is defined, for each subject and each variable (an n

by p matrix) as . It is the sum of the score process over time.
The usual score vector U(β) (Equation (10.2)) is the column sum of the
matrix of score residuals. The martingale and score residuals are
integrals over time for a given subject. Specifically, in setting up a
multiplicative hazards model, a single subject is represented by
multiple lines of the input data, as though the subject was a set of

(10.5)
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Residuals
different individuals observed over disjoint times. The residual for
that person is the sum of the residuals for these “pseudo” subjects.
The Schoenfeld residuals (1982) are defined as a matrix

with one row per death and one column per covariate, where i and ti
are the subject and the time that the event occurred. The Schoenfeld
residuals are related to the score process Uij(β,t). Sum the score
process over individuals to get a total score process

. This is just the score vector at time t, so that at

 we must have . Because  is discrete, our
estimated score process will also be discrete, having jumps at each of
the unique death times. There are two simplifying identities for these
residuals:

Note that  is zero when subject i is not in the risk set at time t.
Since the sums are the same for all t, each increment of the processes
must be the same as well. Comparing the second of these to Equation
(10.6), we see that the Schoenfeld residuals are the increments or
jumps in the total score process. There is a small nuisance with tied
death times: under the integral formulation the O-E process has a
single jump at each death time, leading to one residual for each
unique event time, while under the Schoenfeld representation there is
one residual for each event. In practice, the latter formulation has
been found to work better for both plots and diagnostics, as it leads to
residuals that are approximately equivariant. For the alternative of
one residual per unique death time, both the size and variance of the
residual is proportional to the number of events.

(10.6)

(10.7)

sij β( ) Zij ti( ) Zj β ti,( )–=

Uij β t,( )
i∑ U β t,( )=

β̂ U β̂ 0,( ) U β̂ ∞,( ) 0= = Λ̂

U β t,( ) Zij s( ) Mi β s,( )d
0

t∫
i

∑=

Zij s( ) Zj β s,( )–( ) Ni s( )d
0

t∫
i

∑=

M̂i t( )d
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Chapter 10  The Cox Proportional Hazards Model
The last and most general residual is the entire score process Rijk
where i indexes subjects, j indexes the covariates, and k indexes the
event times.

The score and Schoenfeld residuals are seen to be marginal sums of
this array. Lin, Wei and Ying (1992) suggest a global test of the
proportional hazards model based on the maximum of the array.

Uses for the 
Residuals

Four possible uses of residuals are addressed in this section.

1. Discovering the correct functional form for a predictor.

2. Identifying subjects who are poorly predicted by the model.

3. Identifying influential points, that is, points with high
leverage.

4. Assessing the proportional hazards assumption.

Discovering the 
Functional Form 
for a Predictor

The martingale residual, Mi, is given by Equation (10.5) evaluated at

. Assume that the true functional form for a covariate in the
exponent is h(Z). Then Therneau, Grambsch, and Fleming show that
the martingale residuals, after regression on the other variables,
satisfy

A smoothed plot of the Mi versus x will give an approximate image of
the true functional form, with the y-axis scaled by a constant that
depends on the proportion of censoring. If there are several
covariates, then the martingale residuals from a model with all of the
covariates except Z1, say, can be plotted against the residuals of a
regression of Z1 on the others, similar to adjusted variable plots for the
linear model in Chambers, et al. (1983).

Another use is to plot the residuals from a null model, that is, with
iter.max = 0, against each predictor. This is roughly equivalent to
the standard scatter plots of y against each Z that is used for
uncensored data, before a model is fit. Addition of a local regression
smooth curve using loess gives, in both cases, a first approximation
to what transformations, if any, might be appropriate for each Z.

Rijk Zij tk( ) Zj tk( )–[ ] Ni tk( ) r i tk( ) Λ̂0 tk( )d–( )d[ ]=

t ∞=

E Mi( )8 h t( ) h–( ) E Ni( )
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Residuals
Identifying Poorly 
Predicted 
Subjects

The martingale residuals can be highly skewed. The deviance
residual, di, is a normalized transform of Mi. Recent experience has
shown that deviance residuals do not work well and cannot be
recommended.

Identifying 
Influential Points

In a linear model, the influence of a point on the fit depends on both
its residual and its distance from the center of the predictor space,

roughly . In a Cox model, the mean of the covariates
changes over time as subjects leave the risk set, which suggests an
average of some sort. The score residuals are a decomposition of the
first derivative or score vector; large values indicate a point with high
leverage. In particular, , where  is the Cox model variance
matrix, is approximately the change that would occur in β if
observation i were dropped from the model. These changes in β are
returned when you specify type = "dfbeta" or
type = "dfbetas" to the residuals function.

Assessing the 
Proportional 
Hazards 
Assumption

The Schoenfeld residuals are increments in time for the total score
process. See Equation (10.6). If the proportional hazards assumption
holds, the Schoenfeld residuals should be a random walk. Conversely,
assume that some variable, such as treatment, has a large positive
effect early but that the effect trails off. The treatment might influence
how many patients survive to some point t, but once they are “cured”
it has no influence on survival beyond t. In this case, proportional
hazards does not hold and the fitted models will underestimate the
true treatment effect for small t, and overestimate it for large t. If
treatment has a beneficial effect, that is, β < 0, then the Schoenfeld
residuals would have an early negative trend followed by a late
positive trend. Harrell (1986) suggests using the correlation of
rank(time) with this residual as a test for nonproportional hazards.
Therneau, et al. (1990) use the maximum of the absolute cumulative
summed Schoenfeld residual, a Kolmogorov type test. Grambsch and
Therneau further show that a rescaled Schoenfeld residual can correct
for correlation among the covariates and be more interpretable. This
result is the basis for the cox.zph function.

residi Zi Z–( )⋅

I– 1– Li I 1–
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Chapter 10  The Cox Proportional Hazards Model
Example: Lung 
Cancer

This example examines data from a study of lung cancer patients
conducted by the North Central Cancer Treatment Group. The lung
data frame includes the usual survival times (time) and indicator
variable of death or censoring (status) plus the following additional
variables on each patient:

• inst: A numeric code for the institution at which the patient
was hospitalized.

• age: Patient’s age.

• sex: 1 = male, 2 = female.

• ph.ecog: Physician’s estimate of the ECOG performance
score (0-4).

• ph.karno: Physician’s estimate of the Karnofsky score, a
competitor to the ECOG performance score.

• pat.karno: Patient’s assessment of his/her Karnofsky score.

• meal.cal: Calories consumed at meals excluding beverages
and snacks.

• wt.loss: Weight loss in the last 6 months.

A summary of the lung data frame follows:

> summary(lung)

      inst            time          status         age
Min.   : 1.00   Min.   :   5.0   Min.   :1.000   Min.   :39.00
1st Qu.: 3.00   1st Qu.: 166.8   1st Qu.:1.000   1st Qu.:56.00
Median :11.00   Median : 255.5   Median :2.000   Median :63.00
Mean   :11.09   Mean   : 305.2   Mean   :1.724   Mean   :62.45
3rd Qu.:16.00   3rd Qu.: 396.5   3rd Qu.:2.000   3rd Qu.:69.00
Max.   :33.00   Max.   :1022.0   Max.   :2.000   Max.   :82.00
NA’s   : 1.00
sex ph.ecog ph.karno pat.karno
Min.   :1.000   Min.   :0.0000   Min.   : 50.00   Min.   : 30.00
1st Qu.:1.000   1st Qu.:0.0000   1st Qu.: 75.00   1st Qu.: 70.00
Median :1.000   Median :1.0000   Median : 80.00   Median : 80.00
Mean   :1.395   Mean   :0.9515   Mean   : 81.94   Mean   : 79.96
3rd Qu.:2.000   3rd Qu.:1.0000   3rd Qu.: 90.00   3rd Qu.: 90.00
Max.   :2.000   Max.   :3.0000   Max.   :100.00   Max.   :100.00
                NA’s   :1.0000   NA’s   : 1.00    NA’s   :  3.00
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Residuals
    meal.cal         wt.loss
Min.   :  96.0   Min.   :-24.000
1st Qu.: 635.0   1st Qu.:  0.000
Median : 975.0   Median :  7.000
Mean   : 928.8   Mean   :  9.832
3rd Qu.:1150.0   3rd Qu.: 15.750
Max.   :2600.0   Max.   : 68.000
NA’s   :  47.0   NA’s   : 14.000

Note that the status variable takes values one (censoring) and two
(event) as does the sex variable (1 = Male, 2 = Female). The coxph
function recognizes either a 0/1 or a 1/2 binary variable as an
indicator of censored/event status so you needn’t transform the
status variable in this case. Let’s start the example by fitting a model
on all the variables stratified by sex.

> lung.fit1 <- coxph(Surv(time, status) ~ strata(sex) +
+ age + ph.ecog + ph.karno + pat.karno + meal.cal +
+ wt.loss, data = lung, na.action = na.omit)
> lung.fit1

Call: coxph(formula = Surv(time, status) ~ strata(sex) +
              age + ph.ecog + ph.karno + pat.karno +
              meal.cal + wt.loss, data = lung,
              na.action = na.omit)
               coef exp(coef) se(coef)     z      p
age        9.05e-03     1.009 0.011601  0.78 0.4400
ph.ecog    7.07e-01     2.029 0.222773  3.17 0.0015
ph.karno   2.07e-02     1.021 0.011282  1.84 0.0660
pat.karno -1.33e-02     0.987 0.008050 -1.65 0.0980
meal.cal  -5.27e-06     1.000 0.000263 -0.02 0.9800
wt.loss   -1.52e-02     0.985 0.007890 -1.93 0.0540

Likelihood ratio test=21.6 on 6 df, p=0.00145 n=168
   (60 observations deleted due to missing)

The resulting fit indicates that age and meal.cal are not important
predictors of survival. Let’s drop them from the model.

> lung.fit2

Call:
coxph(formula = Surv(time, status) ~ strata(sex) +
        ph.ecog + ph.karno + pat.karno + wt.loss,
        data = lung, na.action = na.omit)
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Chapter 10  The Cox Proportional Hazards Model
             coef exp(coef) se(coef)     z p
ph.ecog    0.6495     1.915  0.20070  3.24 0.0012
ph.karno   0.0173     1.017  0.01031  1.68 0.0930
pat.karno -0.0167     0.983  0.00726 -2.30 0.0220
wt.loss   -0.0137     0.986  0.00691 -1.99 0.0470
Likelihood ratio test=25.7 on 4 df, p=3.61e-05 n=210
   (18 observations deleted due to missing)

Because of the different number of missing values for these two
models, you cannot compare them directly using a likelihood ratio
like we did for the ovarian data.

Assessing 
Functional Form

Now take a look at the functional form of the relationship with respect
to each of the important predictors in the model. Do this by plotting
the martingale residuals from a model with the variable of interest
removed versus the variable of interest. Then add a loess smooth
line to estimate the relationship. You can accomplish both the plot
and adding the smooth by using the scatter.smooth function. To
make the handling of NAs (missing values) a bit easier, begin by
creating a new data frame with just the variables in the model and
with the NAs removed.

> nlung <- na.omit(lung[, c("time", "status", "sex",
+ "ph.ecog", "ph.karno", "pat.karno", "wt.loss")])

Note the 18 row difference between the two data frames is confirmed
by the number of NAs that were deleted in fitting lung.fit2.

> dim(nlung)

[1] 210 7

> dim(lung)

[1] 228 10
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Residuals
The four plots displayed in Figure 10.3 show the estimated
relationships for each predictor.

> par(mfrow = c(2,2))
> attach(nlung)
> fit1 <- coxph(Surv(time,status) ~ strata(sex) +
+ ph.karno + pat.karno + wt.loss, data = nlung)
> scatter.smooth(ph.ecog, resid(fit1))
> fit2 <- coxph(Surv(time,status) ~ strata(sex) +
+ ph.ecog + pat.karno + wt.loss, data = nlung)
> scatter.smooth(ph.karno, resid(fit2))
> fit3 <- coxph(Surv(time,status) ~ strata(sex) +
+ ph.ecog + ph.karno + wt.loss, data = nlung)
> scatter.smooth(pat.karno, resid(fit3))

Figure 10.3:  Plots of the martingale residuals for four models with each variable in turn left out of the model 
for the the lung cancer study.
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Chapter 10  The Cox Proportional Hazards Model
> fit4 <- coxph(Surv(time,status) ~ strata(sex) +
+ ph.ecog + ph.karno + pat.karno, data = nlung)
> scatter.smooth(wt.loss, resid(fit4))

All of the relationships look reasonably linear.

Poorly Predicted 
Subjects

Subjects with large deviance residuals are poorly predicted by the
model. You produce the deviance residual plot for the second lung
cancer model as follows:

> plot(resid(lung.fit2, type = "deviance"))

Figure 10.4 displays the resulting plot. There are no wildly deviant
observations.

Influence Another set of plots examines the influence of individual observations
on the parameter estimates. Use the changes in the estimated scaled
coefficient due to dropping each observation from the fit

Figure 10.4:  Plots of the deviance residuals for model lung.fit2 of the lung 
cancer study.
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Residuals
(type = "dfbetas") as a measure of influence. The first of the four
plots is created as follows:

> bresid <- resid(lung.fit2, type = "dfbetas")
> plot(1:228, bresid[,1], type = "h",
+ ylab = "Scaled change in coef",
+ xlab = "Observation")
> title("ph.ecog")

The remaining plots are created by selecting the appropriate columns
of bresid and changing labels on the plots. The resulting plots are
displayed in Figure 10.5.

Figure 10.5:  A plot of influence by observation number for the four important predictors for the lung cancer 
study.
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Chapter 10  The Cox Proportional Hazards Model
Note the use of 1:228 to generate the indices for the observations
even though the fit had only 210 observations after deleting missing
values. The dimension of bresid is 228 x 4. The number of rows
matches that of lung because the naresid method for omitting
missing values (na.omit) inserts NAs in the residual matrix returned.

The largest change in a regression coefficient is 0.6 standard errors of
the coefficient for ph.karno (upper right corner plot). Since the
coefficient for ph.karno is marginally significant at best you need not
worry much about this observation. The other plots are reasonable.

Assessing 
Proportional 
Hazards

You can examine the assumption of proportional hazards both
graphically and statistically for the lung.fit2 model.

Figure 10.6:  A plot of the rescaled Schoenfeld residuals to assess the proportional hazards assumption for four 
covariates in lung cancer study.
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Residuals
 The plot, Figure 10.6, is produced as follows:

> plot(cox.zph(lung.fit2))

All of the smooth curves are flat indicating proportional hazards is a
reasonable assumption. Statistical tests for significant slope in the
scatter plots of Figure 10.6 support the interpretation of the graphical
displays.

> cox.zph(lung.fit2)

              rho  chisq     p
  ph.ecog 0.05189 0.3905 0.532
 ph.karno 0.14216 2.2081 0.137
pat.karno 0.04773 0.3812 0.537
  wt.loss 0.00857 0.0131 0.909
   GLOBAL      NA 4.4476 0.349

Plotting the 
Resulting Fit

Finally, you can plot estimated survival curves for the lung.fit2
model as follows:

> plot(survfit(lung.fit2), lty = 2:3)
> legend(500, .9, c("Male", "Female"), lty = 2:3)
> title("Survival for Male and Female
+ Patients\nwith Average Covariates")

The fitted Cox models are presented in Figure 10.7.
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Recall that the model was stratified on sex. The resulting survival
curves are for two pseudo patients (a male and a female) with average
values for each of ph.ecog, ph.karno, pat.karno, and wt.loss.

Figure 10.7:  Cox regression estimation of baseline survival curves for a sample of 
lung cancer patients.
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Using the Counting Process Notation
USING THE COUNTING PROCESS NOTATION

The Anderson-Gill formulation of the proportional hazards model as
a counting process is useful not only theoretically but also in the
practice of fitting models. From a data analysis point of view, each
subject is treated as an observation of a (very slow) Poisson process. A
censored subject is thought of not as incomplete data, but as one whose
event count is still zero. Time-dependent covariates effect the rate for
upcoming events, and can depend in any way on past observation of
the subject. Furthermore, intervals of observation need not be
contiguous. Organizing data in this framework has advantages. Each
subject is represented by a set of observations: sij, tij, δij, xij, kij, j = 1,
…, ni, where (sij, tij] is an interval of risk, open on the left and closed
on the right, δij = 1 if the subject had an event at time tij, xij is the
covariate vector over the interval, and kij is the stratum the subject
belongs to during the interval. Data sets like this are easy to construct
in S-PLUS. Following are a few specific examples to aid in
constructing the analysis data frame.

Multiple 
Events

This example comes from a study of myocardial infarction (heart
attack) patients where one of the events of interest is fatal or nonfatal
re-infarction. Several patients had multiple events. The maximum
number of events was three. Analysis was done using the counting
process formulation by breaking any patient with multiple events into
multiple intervals of risk. For example, one patient had infarctions on
days 100 and 185 and was followed until day 250. This patient had
three rows of data with time intervals (0, 100], (100, 185], and
(185, 250] and corresponding event status codes of 1, 1, and 0.

Time-
Dependent 
Covariates

The most common type of time-dependent covariates are repeated
measurements on a subject or a change in the subject’s treatment.
Both of these situations are easily handled by the counting process
formulation. As an example consider the Stanford heart transplant
study, where treatment is a time-dependent covariate. Suppose there
are two patients whose time from enrollment to death is 102 and 343
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days, respectively, and that the second patient had a heart transplant
21 days after enrollment. The data for these two patients displayed is
in Table 10.1.

The static covariates such as age and surgery are repeated over the
multiple rows for a given patient. A minor modification is needed
when there is a tie between the event or censoring time and the time
at which a time-dependent covariate changes value. In this case,
decrease the time for the time-dependent covariate slightly so it
precedes the event or censoring time. For the heart transplant study
for a patient who is transplanted and dies on day 5, the transplant
time is set to 4.9 and the death is recorded at 5. Multiple test results
are easily coded as well. For a patient with tests on days 0, 60, and
120, and follow-up to day 140, the data would be coded as three time
intervals, 0-60, 60-120, and 120-140. This implicitly assumes that the
time-dependent covariate is a step function with jumps at the
measurement points. Alternatively, you can break at the midpoints
between the measurement times or interpolate the test measurements
over smaller intervals of time. If test results vary markedly from visit to
visit, interpolation of the measurements or redesign of the study may
be required.

Discontinuous 
Intervals of 
Risk

In a study of tumor progression and it relationship to a particular
blood marker, the key time-dependent variable is the monthly
measurement of the marker. A few patients, however, had a gaps in
their visit record. One choice for analysis is to interpolate these
patients values over the missing time periods. An alternate, more
conservative, course is to treat the values on the marker as missing.

Table 10.1:  Data for two hypothetical patients in the Stanford heart transplant 
study.

Interval Status Transplant Age Prior Surgery

(0,  102] 1 0 41 0

(0, 21] 0 0 48 1

(21, 343] 1 1 48 0
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This strategy effectively removes these subjects from the risk set for
the missing visit times, but they are not removed entirely from the
study.

Another application of discontinuous risk intervals results when
multiple events are possible, but the treatment for an event
temporarily protects the patient from another event. In the study of
hip-fracture in the elderly, hospitalization following a fracture protects
the patient from further fractures. For studies with low event rates,
discontinuous risk intervals will probably have little impact on the
analysis.

Multiple Time 
Scales

The usual Cox model forms risk groups based on time since entry.
For some studies a more logical grouping might be based on another
alignment, such as age or time since diagnosis. An example is with
Parkinson’s disease patients. Natural history of the disease suggests
that risk groups be based on the time since diagnosis. The Mayo
Clinic is a referral center and frequently receives such patients
sometime after diagnosis. Using the counting process formulation, the
interval for a referred patient who is enrolled one year after diagnosis
and who has an event in the second year is (1, 2]. This patient is not in
the risk set for an early enrollee with an event at six months. The risk
set for the event at two years is all subjects. This is known as left
truncation.

Time-
Dependent 
Strata

Another case where alignment is a potential issue concerns time-
dependent strata. The example is a study of Dutch patients with
primary biliary cirrhosis of the liver (PBC). PBC is a rare but fatal
chronic liver disease of unknown cause. The hazard rate for patients
with the disease grows over time, as does the rate of degeneration in
their hepatic function, tracked by various blood tests. A portion of the
patients receive a liver transplant at some point during the follow-up.
One objective of the study was to assess the value of covariates such
as age and bilirubin in predicting patient outcome, both before and
after transplantation. Transplant was treated as a time-dependent
stratification variable. In the post transplant strata, the most natural
hazard function is based on time since transplant. Surgical death is a
major risk for such an extensive procedure, and this time scale
properly aligns the patient’s clock with the dominating hazard.
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Proper alignment for time-dependent strata is not always clear. One
appealing method of analysis for the myocardial infarction study is to
place patients into new strata after each cardiac event. The baseline
hazard for a patient with multiple events may be quite different than
the group as a whole. It is not obvious, however, whether time since
enrollment or time since last event is the better index of an
appropriate risk group.
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MORE DETAILED EXAMPLES

Complex Cox models usually involve time-dependent data which is
handled by using the counting process notation developed by Andersen
and Gill (1982). For a technical reference see Fleming and Harrington
(1991). The examples in this section involve time-dependent variables
in some way. In the first example, the Stanford Heart Transplant
Study, the time dependency is on a binary covariate indicating
whether the patient has had a heart transplant. For patients that
received a heart transplant during the study, the transplant variable
changes. The second example involves a bladder cancer study for
patients with multiple occurrences of bladder tumors. The multiple
events are modeled using the counting process notation and an
additional notion of correlated responses.

Stanford Heart 
Transplant 
Study

The example below reproduces an analysis of the Stanford heart
transplant study found in Kalbfleisch and Prentice (1980), section
5.5.3. The data itself is taken from Crowley and Hu (1977) because the
values listed in the appendix of Kalbfleisch and Prentice are rounded
and do not reproduce the results of their section 5.5. The covariates in
the study, contained in the heart data frame, are described as
follows:

• transplant: Patient received a heart transplant (1) or not (0)

• age: Age at acceptance in days)/365.25 - 48

• year: Date of acceptance in days since 1 Oct 1967)/365.25

• surgery: Prior surgery (1 = yes, 0 = no)

The transplant variable is the only time-dependent variable. From
the time of admission into the study until the time of death a patient
was eligible for a heart transplant. The time to transplant depends on
the next available donor heart with an appropriate tissue-type match.
In the heart data frame, a transplanted patient is represented by two
rows of data. The first is over the time period from enrollment (time
0) until the transplant, and has transplant = 0. The second is over
the period from transplant to death or last follow-up and has
transplant = 1. All other covariates are the same on the two lines.
Subjects without a transplant are represented by a single row of data.
Each row of data contains two variables start and stop which mark
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the time interval (start, stop] for the data, as well as an indicator
variable event which is 1 (one) if there was a death at time stop and
0 (zero) otherwise. For example, a subject who was transplanted at
day 10 and followed up until day 31, has a first row of data
corresponding to the time interval (0, 10] and a second row
corresponding to the interval (10, 31]. Here is the code to fit the six
models found in Kalbfleisch and Prentice. Note the use of the
options call, which forces the factors to be coded as dummy
variables. See the help file on contr.treatment for more details.
Since the data set contains tied death times, you must use the Breslow
approximation to match the coefficients that Kalbfleisch and Prentice
produce. See the section Computations for Tied Deaths for more
details on methods for handling ties.

> options(contrasts=c("contr.treatment", "contr.poly"))
> heart.fit1 <- coxph(Surv(start, stop, event) ~
+ (age + surgery)*transplant,
+ data = heart, method = "breslow")
> heart.fit2 <- coxph(Surv(start, stop, event) ~
+ year * transplant,
+ data = heart, method="breslow")
> heart.fit3 <- coxph(Surv(start, stop, event) ~
+ (age + year)*transplant,
+ data = heart, method="breslow")
> heart.fit4 <- coxph(Surv(start, stop, event) ~
+ (year + surgery)*transplant,
+ data= heart, method="breslow")
> heart.fit5 <- coxph(Surv(start, stop, event) ~
+ (age + surgery)*transplant + year,
+ data= heart, method="breslow")
> heart.fit6 <- coxph(Surv(start, stop, event) ~
+ age*transplant + surgery + year,
+ data= heart, method="breslow")

A summary of the first fit produces the following:

> summary(heart.fit1)

Call:
coxph(formula = Surv(start, stop, event) ~ (age + surgery) 
* transplant, data = heart, method = "breslow")

n= 172
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              coef         exp(coef) se(coef)      z
               age  0.0138     1.014   0.0181  0.763
           surgery -0.5457     0.579   0.6109 -0.893
        transplant  0.1181     1.125   0.3277  0.360
    age:transplant  0.0348     1.035   0.0273  1.276
surgery:transplant -0.2916     0.747   0.7582 -0.385

                      p
               age 0.45
           surgery 0.37
        transplant 0.72
    age:transplant 0.20
surgery:transplant 0.70

                   exp(coef) exp(-coef) lower .95
               age     1.014      0.986     0.979
           surgery     0.579      1.726     0.175
        transplant     1.125      0.889     0.592
    age:transplant     1.035      0.966     0.982
surgery:transplant     0.747      1.339     0.169
                   upper .95
               age      1.05
           surgery      1.92
        transplant      2.14
    age:transplant      1.09
surgery:transplant      3.30

Rsquare= 0.07   (max possible= 0.969 )
Likelihood ratio test= 12.4 on 5 df,   p=0.0291
Wald test            = 11.6 on 5 df,   p=0.0402
Efficient score test = 12 on 5 df,   p=0.0345

Note that the sixth line of the summary indicates that n = 172. This
is the number of observations in the study, not the number of subjects.
There are actually 103 patients, of which 69 had a transplant and are
thus represented using 2 rows of data. You can create a table of
coefficients similar to Kalbfleisch and Prentice’s table 5.2, as follows:

> var.names <- c("age","year","surgery","transplant",
+ "age:transplant", "year:transplant",
+ "surgery:transplant")
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> round(rbind(heart.fit1$coef[var.names],
+ heart.fit2$coef[var.names], heart.fit3$coef[var.names],
+ heart.fit4$coef[var.names], heart.fit5$coef[var.names],
+ heart.fit6$coef[var.names]), digits = 4)

       age   year surgery transplant age:transplant
[1,] 0.014     NA  -0.546      0.118          0.035
[2,]    NA -0.265      NA     -0.282             NA
[3,] 0.016 -0.274      NA     -0.588          0.034
[4,]    NA -0.254  -0.236     -0.292             NA
[5,] 0.015 -0.136  -0.419      0.077          0.027
[6,] 0.015 -0.136  -0.621      0.047          0.027
     year:transplant surgery:transplant
[1,]              NA             -0.292
[2,]           0.136                 NA
[3,]           0.201                 NA
[4,]           0.164             -0.550
[5,]              NA             -0.298
[6,]              NA                 NA

When there are time-dependent covariates, the predicted survival
curve can present something of a dilemma. The usual call to survfit
is for a pseudo cohort whose covariates do not change:

> heart.surv1 <- survfit(heart.fit2,
+ data.frame(year=2, transplant=0) )
> heart.surv2 <- survfit(heart.fit2,
+ data.frame(year=2, transplant=1) )

The second curve, heart.surv2, represents a cohort of patients
whose transplant variable is always 1, even on day 0, that is,
patients who had no waiting time for a transplant. There were none of
these in the study, so just what does it represent? Time-dependent
covariates that represent repeated measurements on a patient, such as
a blood enzyme level, are particularly problematic. With time-
dependent covariates, it is easy to create predicted survival curves for
“patients” that never would or perhaps never could exist.

Because the model depends on the time-dependent covariate,
transplant, a proper predicted survival requires specification of a
future covariate history for the patient in question. (See the discussion of
internal and external covariates in section 5.3 of Kalbfleisch and
Prentice for a more complete exposition on these issues.) It is possible
to obtain the projected survival for some particular pattern of change
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in the covariates by supplying a multiple-line data frame that reflects
that pattern and setting individual = T. The example below
produces the survival curve for a cohort aged 50 with prior surgery
and a transplant at 6 months. That is, over the time interval (0, .5] the
covariate set is (50, 1, 0), and over the time interval (.5, 3] it is
(50, 1, 1). Note that start and stop times are in days rather than
years. In order to specify the time points the failure time variables,
start, stop, and event, must be specified in the data frame as well
as the covariates, though the value for event will be ignored.

> newdata <- data.frame(start=c(0,183), stop=c(183,3*365),
+ event=c(1,1), age=c(50,50), surgery=c(1,1),
+ transplant=c(0,1))
> survfit(heart.fit1, newdata, individual=T)

Bladder Cancer 
Study

This example is taken from the paper by Wei, Lin, and Weissfeld
(1989). The study is of time to recurrence of bladder cancer and the
data is contained in the bladder data frame. The bladder data
frame has either 4 or 5 rows for each subject. Each subject had four
recurrences of bladder cancer and some were followed beyond the
fourth recurrence. The variables in bladder are defined as follows:

• id: Patient ID

• rx: Treatment group (1 = placebo, 2 = thiopeta)

• size: Size of the largest initial tumor

• number: The number of initial tumors

• start: Entry into the study or the time of last recurrence

• stop: Time to event (months)

• event: Indicator of cancer recurrence (1) or censoring (0)

• enum: Number of recurrences of bladder cancer

A summary of bladder follows:

> summary(bladder)

        id              rx            number           size
    Min.: 1.00      Min.:1.000      Min.:1.000      Min.:1.000
 1st Qu.:22.75   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000
  Median:43.00    Median:1.000    Median:1.000    Median:1.000
    Mean:43.18      Mean:1.443      Mean:2.145      Mean:1.997
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 3rd Qu.:64.00   3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:3.000
    Max.:85.00      Max.:2.000      Max.:8.000      Max.:7.000
      start            stop           event             enum
    Min.: 0.00      Min.: 1.00      Min.:0.0000      Min.:1.000
 1st Qu.: 1.00   1st Qu.:13.00   1st Qu.:0.0000   1st Qu.:2.000
  Median:15.00    Median:25.00    Median:0.0000    Median:3.000
    Mean:18.03      Mean:25.73      Mean:0.3182      Mean:2.585
 3rd Qu.:29.00   3rd Qu.:38.00   3rd Qu.:1.0000   3rd Qu.:4.000
    Max.:59.00      Max.:64.00      Max.:1.0000      Max.:5.000

We create two data frames for analysis. The first one has only the first
four rows for each subject and has start removed.

> bladder1 <- bladder[bladderenum<5,]
> bladder1start <- NULL

The second ones has removed all rows for which start and stop are
equal.

> bladder2 <- bladder[bladderstart< bladderstop, ]

WLW fit four separate models, one for each recurrence, and then
combined the results. The first of the individual fits is based on time
from the start of the study until the first event, for all patients; the
second fit is based on time from the start of the study until the second
event, again for all patients, etc. The model estimated by WLW is fit
by the following commands. The key addition to the model is
cluster(id), which asserts that subjects with the same value of the
variable id may be correlated. In order to compare the results
directly to Wei, Lin, and Weissfeld (1989), we first set the factor
contrasts to "contr.treatment".

> options(contrasts=’contr.treatment’)
> wfit <- coxph(Surv(stop, event) ~ (rx + size + number)*
+ strata(enum) + cluster(id), bladder1, method=’breslow’)
> rx <- c(1,4,5,6) # coefficients for the treatment effect
> cmat <- diag(4); cmat[,1] <- 1 # contrast matrix
> cmat %*% wfit$coef[rx]   # coefs in WLW (table 5)

           [,1]
[1,] -0.5175702
[2,] -0.6194396
[3,] -0.6998691
[4,] -0.6504161
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> wvar <- cmat %*% wfit$var[rx,rx] %*% t(cmat)
> # var matrix (eqn 3.2)
> sqrt(diag(wvar))

[1] 0.3075006 0.3639071 0.4151602 0.4896743

The same coefficients can also be obtained, as WLW do, by
performing four separate fits but it takes more work. A major
advantage of the fitting the model as above is that it allows us to fit
submodels that are not available using separate fits for each stratum.
In particular, the model

> Surv(stop, event) ~ rx + (size + number) *
+ strata(enum) + cluster(id)

differs only in that there is no treatment by strata interaction, and
gives an average treatment coefficient of -.60, which is near to the
weighted average of the marginal fits (based on the diagonal of wvar)
suggested by WLW. WLW also give the results for two suggestions
proposed by Prentice, et al. (1981). For time to first event these are the
same as above. For the second event they use only patients who
experienced at least one event, and use either the time from start of
study (method a) or the time since the occurrence of the last event
(method b). The code for these is follows:

> fit2pa <- coxph(Surv(stop, event) ~ rx + size + number,
+ bladder2, subset = (enum==2))
> fit2pb <- coxph(Surv(stop-start, event) ~ rx + size +
+ number, bladder2, subset = (enum==2))

Lastly, the authors also make use of an Andersen-Gill model for
comparison. This model has the advantage that it uses all of the data
directly, but because of correlation it may underestimate the variance
of the relevant coefficients. A method to address this is given in a
paper by Lee, Wei, and Amato (1992); it is essentially the same
method found in the WLW paper. This method for variance
estimation is invoked by specifying the cluster(id) term.

> afit <- coxph(Surv(start, stop, event) ~ rx + size +
+ number + cluster(id), data=bladder2)
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> afit

Call:
coxph(formula = Surv(start, stop, event) ~ rx + size + 
number + cluster(id), data = bladder2)

          coef exp(coef) se(coef) robust se      z     p
    rx -0.4116     0.663   0.1999    0.2415 -1.704 0.088
  size  0.1637     1.178   0.0478    0.0569  2.876 0.004
number -0.0411     0.960   0.0703    0.0723 -0.568 0.570

Likelihood ratio test=14.7  on 3 df, p=0.00213 n= 190

> sqrt(diag(afit$var))

[1] 0.24151999 0.05690736 0.07228107

> sqrt(diag(afit$naive.var))

[1] 0.19989234 0.04776578 0.07029462

The naive estimate of standard error is .20, the correct estimate of .24
is intermediate between the naive estimate and the linear
combination estimate. Further discussion on these estimators can be
found in the section Robust Variance Estimation.
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PENALIZED COX MODELS

Consider a Cox model with both constrained and unconstrained
effects

where  and  are the covariates and ,  are the unconstrained
and constrained coefficients, respectively. The problem is solved by
maximizing a penalized partial likelihood

over both  and . Here  is the usual Cox partial likelihood,
treating  as “just another parameter,” and  is some constraint
function which gives large values to “bad” values of . For the
moment assume that , a vector of tuning parameters, is known and
constant. 

Following Gray (1992), let  be the usual Cox model information
matrix, and

be the second derivative matrix for the penalized likelihood .
Gray’s suggested estimate of the variance is 

Let  be a column vector of constants, and  be the combined
vector of  parameters. Then, for a general test of the hypothesis

, Gray recommends the Wald test .
Because of the shrinkage, this is not necessarily a chi-square statistic.
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Let  be the eigenvalues of the matrix ; then under

 the Wald test is distributed as  where the  are iid

Gaussian random variables. Let . When the  are all 0 or 1,

the case for non-penalized models, the mean and variance of the test
statistic are  and , respectively, and the distribution is chi-square
on  degrees of freedom. In penalized models,  and the

variance is ; so the distribution of the statistic is more

compact than a standard chi-square based on  degrees of freedom
and the test will be conservative.

The generalized degrees of freedom for the test statistic can be written
as 

so computation of eigenvalues is not strictly necessary. For a
particular term in the model, this becomes ,
where [ ] indicates S-PLUS-style subscripts and  indexes the columns
correspond to the term.

An alternate variance estimator is to use  directly, the inverse of
the second derivative of the full log likelihood, which is the variance
used in the Wald statistic. It has an interpretation as a posterior
variance in a Bayes setting, and tends to be larger than  and thus
more conservative.

S-PLUS returns both var2=  and var= . The chi-square tests are
based on var. Simulation experiments suggest that this is the more
reliable choice for tests.

Fitting 
Penalized 
Models

S-PLUS provides two functions for including penalized terms in the
Cox model. The ridge function implements a simplified pseudo-
ridge-regression, while the pspline function implements a penalized
B-spline fit. Both functions are “packaging” functions that provide a
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convenient interface to the functions that actually do the fitting: a
control function that is used to estimate , and a penalty function that
computes  and its first and second derivatives.

Fitting a Ridge 
Model

For ridge, let , a penalty function which tends

to shrink the coefficients  towards zero. The penalty function inside
ridge is then just

function(coef, theta)
{
    list(penalty = sum(coef^2)* theta/2,
         first = theta * coef,
         second = rep(theta, length(coef)),
         flag = F)
}

The control function is even simpler:

function(parms, ...) list(theta = parms$theta, done = T)

As an example of using ridge, consider again the ovarian data set.
Recall that this data gives the survial time of 26 women with
advanced ovarian carcinoma, with major covariants age and
ecog.ps, a performance score that measures physical debilitation
with 0=normal and 4=bedridden. In the example below, fit0 is the
standard Cox model, and fit1 is the penalized model. The shrinkage
parameter  was chosen arbitrarily:

> fit0 <- coxph(Surv(futime,fustat) ~ rx + age + ecog.ps,
+ data=ovarian)
> fit0

Call:
coxph(formula = Surv(futime, fustat) ~ rx + age +

ecog.ps, data = ovarian)

          coef exp(coef) se(coef)     z      p
     rx -0.815     0.443   0.6342 -1.28 0.2000
    age  0.147     1.158   0.0463  3.17 0.0015
ecog.ps  0.103     1.109   0.6064  0.17 0.8600

Likelihood ratio test=15.9  on 3 df, p=0.00118  n= 26 

θ
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f ω θ,( ) θ 2⁄( ) ω j
2∑=

ω j
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> fit1 <- coxph(Surv(futime,fustat) ~ rx + ridge(age,
+ ecog.ps, theta=1), data=ovarian)
> fit1

Call:
coxph(formula = Surv(futime, fustat) ~ rx + ridge(age, 

ecog.ps, theta = 1), data = ovarian)

                 coef se(coef)    se2 Chisq DF      p 
            rx -0.856 0.6161   0.6156  1.93 1  0.1600
    ridge(age)  0.123 0.0385   0.0354 10.21 1  0.0014
ridge(ecog.ps)  0.109 0.5734   0.5484  0.04 1  0.8500

Iterations: 1 outer, 4 Newton-Raphson
Degrees of freedom for terms= 1.0 1.8 
Likelihood ratio test=15.6  on 2.76 df, p=0.00104  n= 26 

The likelihood ratio test that is printed is twice the difference in the
 between the null model ( ) and the final fitted model.

The p-value is based on comparison to a chi-square distribution with
2.73 degrees of freedom. As mentioned earlier, this comparison is
somewhat conservative (p is too large). The eigenvalues for the
problem, eigen(solve(fit1$var, fit1$var2)), are 1, 0.9156,
and 0.8486. The respective quantiles of this weighted sum of squared
normals and the chi-square distribution qchisq(q, 2.73) are:

from which we see that the actual distribution is somewhat more
compact than the chi-square approximation.

The shrinkage has a smaller effect on age than on the performance
score. Although the unpenalized coefficients for the two covariates
are of about the same magnitude, as shown by fit0, the standard
error for ecog.ps is much larger. The impact on overall fit (Cox )
of shrinking the age coefficient will thus be larger than that for the
performance score; the age coefficient is “harder to change.”

80% 90% 95% 99%

Actual sum 4.183 5.580 7.027 10.248

4.264 5.818 7.337 10.789

PL β ω 0= =

χ2.73
2

PL
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Fitting Spline 
Models

The pspline function is used to fit a general spline term within the
Cox model. The method used is P-splines, described in Eilers and
Marx, 1996. P-splines have several useful properties:

• For moderate degrees of freedom, a smaller number of basis
functions give a fit which is nearly identical to the standard
smoothing spline.

• The P-spline basis has basis functions that are evenly spaced
and identical in shape. Because of the symmetry of the basis

functions, the usual spline penalty  is very close

to the sum of second differences of the coefficients
*sum((diff(diff(coef)))^2), and this last is very easy

to program.

• The penalty does not depend on the values of the data, other
than for establishing the range of the spline basis.

• If the coefficients are a linear series, then the fitted function is
a line. Thus a linear trend test on the coefficients is a test for
the significance of a linear model. This makes it relatively
easy to test for the significance of nonlinearity.

• Since there are a small number of terms, ordinary methods of
estimation can be used, that is, the program can compute and

return the variance matrix of . Contrast this to the classical
smoothing spline basis, which has a term (knot) for each
unique data value. For a large sample size, storage of the n by
n matrix  becomes infeasible.

The penalty function for the P-spline is
, where , and  is the

matrix of second differences. The case  corresponds exactly to
the straight line model (an infinite penalty for curvature).

As an example, consider again the ovarian data, and fit three models:

> fit1 <- coxph(Surv(futime, fustat)~ rx + age, ovarian)
> fit2 <- coxph(Surv(futime, fustat) ~ rx + pspline(age,
+ df=2), data=ovarian)
> fit4 <- coxph(Surv(futime, fustat) ~ rx + pspline(age,
+ df=4), data=ovarian)

θ f ′′ x( )[ ]2 xd∫

θ

β̂
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> fit1

Call:
coxph(formula = Surv(futime, fustat) ~ rx + age, data

 = ovarian)

      coef exp(coef) se(coef)     z      p 
 rx -0.804     0.448   0.6320 -1.27 0.2000
age  0.147     1.159   0.0461  3.19 0.0014

Likelihood ratio test=15.9  on 2 df, p=0.000355  n= 26 

> fit2

Call:
coxph(formula = Surv(futime, fustat) ~ rx + pspline(

age, df = 2), data = ovarian)

                            coef se(coef)    se2 
                       rx -0.589 0.6990   0.6786
pspline(age, df = 2), lin  0.144 0.0433   0.0433
pspline(age, df = 2), non                       
                          Chisq   DF       p 
                       rx  0.71 1.00 0.40000
pspline(age, df = 2), lin 11.09 1.00 0.00087
pspline(age, df = 2), non  0.84 0.93 0.33000

Iterations: 2 outer, 7 Newton-Raphson
     Theta= 0.447 
Degrees of freedom for terms= 0.9 1.9 
Likelihood ratio test=17  on 2.87 df, p=0.0006  n= 26 

> fit4

Call:
coxph(formula = Surv(futime, fustat) ~ rx + pspline(

age, df = 4), data = ovarian)

                            coef se(coef)   se2 Chisq 
                       rx -0.373 0.761    0.749 0.24 
pspline(age, df = 4), lin  0.139 0.044    0.044 9.98 
pspline(age, df = 4), non                       2.59 
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                            DF      p 
                       rx 1.00 0.6200
pspline(age, df = 4), lin 1.00 0.0016
pspline(age, df = 4), non 2.93 0.4500

Iterations: 3 outer, 13 Newton-Raphson
     Theta= 0.242 
Degrees of freedom for terms= 1.0 3.9 
Likelihood ratio test=19.4  on 4.9 df, p=0.00149  n= 26

The printout for the simple Cox model fit1 shows an increase in the
log-hazard for death of .147 per year of age, with an overall chi-square
for the model of 15.9. The P-spline basis functions sum to a constant,
so the first one of them is deleted to remove the singularity. There are
seven coefficients associated with the fit with two degrees of freedom,
which are summarized in the printout as a linear and nonlinear effect.
Similarly, the thirteen coefficients associated with the four degrees of
freedom fit are summarized as simply a linear and nonlinear effect.
Because of the symmetry of the basis functions, the chi-square test for
linearity is a test for zero slope in a regression of the spline coefficients
on the centers of the basis functions, using var as the known variance
matrix of the coefficients. The linear “coefficient” that is printed is the
slope of this regression. This computation of coefficient and p-value is
equivalent to the approximate backwards elimination method of
Lawless and Singhal (1978), here removing all the nonlinear terms for
age. If the terms being dropped are important, that is, there is a
significant nonlinearity, the approximation for the linear coefficient is
not as accurate.

As a more interesting example, consider the data from the Multi-
center Post-Infarction Project (MPIP) contained in the data set mpip.
This data set contains data on 866 patients, gathered after hospital
admission for myocardial infarction. The main goal of the study was
to determine which factors, if any, were predictive of the future
clinical course of the patients. Our model of survival time will use
four variables:

• VED, ventricular ectopic polarizations per hour, obtained
from analysis of a 24 hour Holter monitor. A large number of
these irregular heartbeats is indicative of a high risk for fatal
arrhythmia.
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• New York Heart Association class, a measure of the amount of
activity that a subject is able to undertake without angina,
ranging from 1 to 4.

• Presence of pulmonary rales on initial examination.

• Ejection fraction, the proportion of blood cleared from the
heart on each contraction.

VED is very skewed; it has a mean value of 19.1, a median of .45, a
maximum value of 733, and 14% of the subjects have a value of 0. the
minimum nonzero value is 0.042, so we use the derived covariate
lved = log(ved+0.02). This is still a skewed variable, but not
unmanageably so. A simple linear fit of the four variables shows all to
be highly significant:

> fit1 <- coxph(Surv(futime, status)~lved +nyha+rales+ef,
+ data=mpip, na.action=na.exclude)
> fit1

Call:
coxph(formula = Surv(futime, status) ~ lved + nyha + 

rales + ef, data = mpip, na.action = 
na.exclude)

         coef exp(coef) se(coef)     z        p 
 lved  0.1007     1.106  0.04266  2.36 0.018000
 nyha  0.3707     1.449  0.09379  3.95 0.000077
rales  0.4535     1.574  0.10527  4.31 0.000017
   ef -0.0265     0.974  0.00833 -3.18 0.001500

Likelihood ratio test=79.4  on 4 df, p=2.22e-016  n=764
 (102 observations deleted due to missing values)

Now we explore more complicated forms for the effect of the
covariates. Since rales is a binary covariate it allows no further
transformation, and nyha, with four levels, is entered as a factor
variable. That leaves the two continuous variables, lved and ef, to be
modeled as P-splines with the default  four degrees of freedom:

> fit2 <- coxph(Surv(futime, status) ~ pspline(lved) + 
+ factor(nyha) + rales + pspline(ef), data=mpip,
+ na.action=na.exclude)
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> fit2

Call:
coxph(formula = Surv(futime, status) ~ pspline(lved) + 

factor(nyha) + rales + pspline(ef), data = 
mpip, na.action = na.exclude)

                         coef se(coef)     se2 Chisq 
pspline(lved), linear  0.0982 0.04384  0.04359  5.02
pspline(lved), nonlin                           2.59
        factor(nyha)1 -0.0308 0.15917  0.15890  0.04
        factor(nyha)2  0.2426 0.10380  0.10337  5.46
        factor(nyha)3  0.2008 0.06745  0.06725  8.86
                rales  0.4204 0.10816  0.10761 15.11
  pspline(ef), linear -0.0256 0.00738  0.00737 12.03
  pspline(ef), nonlin                           8.06
                        DF       p 
pspline(lved), linear 1.00 0.02500
pspline(lved), nonlin 3.06 0.47000
        factor(nyha)1 1.00 0.85000
        factor(nyha)2 1.00 0.01900
        factor(nyha)3 1.00 0.00290
                rales 1.00 0.00010
  pspline(ef), linear 1.00 0.00052
  pspline(ef), nonlin 3.01 0.04500

Iterations: 4 outer, 11 Newton-Raphson
     Theta= 0.776 
     Theta= 0.66 
Degrees of freedom for terms= 4.1 3.0 1.0 4.0 
Likelihood ratio test=92.5  on 12.04 df, p=1.69e-014
  n=764 (102 observations deleted due to missing values)

From this, we conclude that the first two classes of nyha can be
combined, that the nonlinear effect for VED is not significant, and
that the nonlinear effect from ejection fraction is important. 

Plots of the two spline terms can be produced as follows:

> temp <- predict(fit2, type="terms", se.fit=T)
> tmat <- cbind(temp$fit[,1], temp$fit[,1] - 1.96 *
+ temp$se.fit[,1], temp$fit[,1] + 1.96 * temp$se.fit[,1])
> jj <- match(sort(unique(mpip$lved)), mpip$lved)
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> matplot(mpip$lved[jj], tmat[jj,], type="l",
+ lty=c(1,2,2), xaxt="n")
> xx <- c(0, 1, 50, 100, 500)
> axis(1, log(xx+.2), as.character(xx))
> title(xlab="VED", ylab="log hazard")
> tmat2 <- cbind(temp$fit[,4], temp$fit[,4] -
+ 1.96*temp$se.fit[,4], temp$fit[,4] +
+ 1.96*temp$se.fit[,4])
> jj2 <- match(sort(unique(mpip$ef)), mpip$ef)
> matplot(mpip$ef[jj2], tmat2[jj2,],type="l", lty=c(1,2,2),
+ xlab="Ejection Fraction", ylab="log hazard")

The resulting plot is shown in Figure 10.8.

Some extra work was required to label the first graph in the original
VED units; this is done with the axis command. The match function
and the jj subscripts sort the plot from left to right; otherwise, the
line becomes a back and forth scribble. The graph shows an increase
in risk with ejection fractions below 60%, sharply so below 20%. The
rise after 70% is not significant, given the wide confidence intervals.

Figure 10.8:  Plots of spline fit terms in MPIP data model.
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This agrees with the conventional wisdom of the physicians that the
instrumentation is not able to reliably distinguish values above this
level.
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FRAILTY MODELS

In this section, we consider survival models to which a random effect
is added. The random effect is usually viewed as a categorical
variable which describes excess risk, or frailty for an individual or
family. The idea is that individuals have different frailties, and that
those who are most frail will die earlier than the others.

Computationally, the frailty is usually viewed as an unobserved
covariate. This has led naturally to the use of the EM algorithm as an
estimation tool. Assume a proportional hazards model with random
effects, or frailties, with hazard function 

Here  is a vector of p fixed effects and  is a vector of q random
effects, where the individual elements  are iid realizations from

some distribution . The matrix  normally contains measured
covariate values, and  is a design matrix that describes how the
random effects apply to individual subjects. Both  and  might
contain time-dependent effects, but we will ignore this complication
for the moment. The baseline hazard may contain other parameters

; these are also ignored. If  contains an intercept term (implicit in
the proportional hazards model), we can constrain  to have mean 0.

We can treat the random effects as unobserved data and apply the
EM algorithm. The “x” of the formal EM argument is the entire
observed data (time, status, covariates) plus the frailties, and “y” is the
data without the frailties. The full log-likelihood, had we observed ,
is
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Here  for censored observations, and 1 for events.  is an n

by p matrix, and  is an n by q matrix.

This model setup is similar in notation to random effects models in
linear regression. Another notation, more common in the survival
literature, is to define  as the frailty parameter for each
subject. Then

subject  being a member of the th family.The imposed constraint is
usually  rather than .

The most popular choice for the random distribution is the gamma
frailty model, where  is from a Gamma distribution with mean 1

and variance . Then the marginal likelihood , after
integrating out the frailty, is

where  is the numerical value returned as the partial likelihood by
a standard Cox model for the given values of  and ,  having
been entered as an offset term. This result applies only to the simple
frailty problem where each subject  is a member of exactly one
family , with one random effect per family. Then  is the number

of events in the family, and  where  is the
expected number of events for the family, using the final model.
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There is an interesting connection between frailty models and
penalized likelihoods. In particular, let the penalty function for a
constrained solution be the log-gamma density

with  as the variance of the random effect and with 
defined as in the frailty model. The first and second derivatives are

 and , respectively.

Surprisingly, for any fixed value of , the EM algorithm and this
constrained minimization have the same solution. This connection
between the two methods has several interesting consequences:

• Since penalized likelihood methods are well understood
numerically, this leads to more stable computational methods.
(The EM algorithm is slow, and the proper variance estimate
is uncertain.) In particular, the penalized likelihood methods
fit nicely into the new coxph function.

• There is a connection to the “degrees of freedom” for a fit.

• It suggests a heuristic approach for other frailty distributions
and/or frailty terms, for example, nested models, for which
the EM algorithm is not tenable.

Fitting a Cox 
Model With 
Frailty

To add a frailty term to the Cox model, use the frailty function
within the call to coxph. For example, consider the  rats data set,
which contains information on the effect of treatment for survival for
150 female rats, where the rats come from 50 litters.  The data set has
three rats per litter, one of which received a potentially tumorigenic
treatment. Forty rats developed a tumor during follow-up. We use the
Breslow approximation for tied times, to match other analyses of this
same data in the literature:

> rfit <- coxph(Surv(time, status) ~ rx + frailty(litter),
+ rats, method="breslow")
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> rfit

Call:
coxph(formula = Surv(time, status) ~ rx + frailty(

litter), data = rats, method = "breslow")

                 coef se(coef)   se2 Chisq   DF     p 
             rx 0.906 0.323    0.319  7.88  1.0 0.005
frailty(litter)                      16.89 13.8 0.250

Iterations: 6 outer, 20 Newton-Raphson
     Variance of random effect= 0.474   EM likelihood =
 -181.1 
Degrees of freedom for terms=  1.0 13.9 
Likelihood ratio test=36.3  on 14.83 df, p=0.00145  
    n=150 

> rfit0 <- coxph(Surv(time, status) ~ rx, rats,
+ method="breslow")
> rfit0

Call:
coxph(formula = Surv(time, status) ~ rx, data = rats, 

method = "breslow")

    coef exp(coef) se(coef)    z      p 
rx 0.898      2.46    0.317 2.83 0.0047

Likelihood ratio test=7.87  on 1 df, p=0.00503  n= 150 

> rfit1 <- coxph(Surv(time, status) ~ rx + frailty(litter,
+ theta=1), rats, method="breslow")
> rfit1

Call:
coxph(formula = Surv(time, status) ~ rx + frailty(litter,

theta = 1), data = rats, method = 
"breslow")

                           coef se(coef)   se2 Chisq 
                       rx 0.918 0.327    0.321  7.85
frailty(litter, theta = 1                      27.25
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                            DF      p 
                       rx  1.0 0.0051
frailty(litter, theta = 1 22.7 0.2300

Iterations: 1 outer, 5 Newton-Raphson
     Variance of random effect= 1    EM likelihood = -181.5 
Degrees of freedom for terms=  1.0 22.7 
Likelihood ratio test=50.7  on 23.67 df, p=0.001  n= 150 

The main thing to notice about these results is how little the treatment
coefficient is changed by the inclusion of a random effect term. This is
likely a consequence of the balanced model; each litter received both
active and control treatments.

For a fixed value of the frailty, the iteration is nearly as efficient as for
a normal Cox model, which usually requires 3–4 iterations. The
generalized fit required six guesses to maximize the profile likelihood,
and about three internal iterations per  value.

The “likelihood ratio test” is always the difference in partial likelihood
between the initial and final fit, ignoring penalty terms and
corrections. The default for the initial fit is , which is a fit
with no covariates or random effect.

The solution using a Gaussian frailty is not much different:

> rfit2 <- coxph(Surv(time, status) ~ rx + frailty(litter,
+ dist="gauss"), data=rats)
> rfit2

Call:
coxph(formula = Surv(time, status) ~ rx + frailty(litter,

dist = "gauss"), data = rats)

                           coef se(coef)   se2 Chisq 
                       rx 0.913 0.323    0.319  8.01
frailty(litter, dist = "g                      15.57
                            DF      p 
                       rx  1.0 0.0046
frailty(litter, dist = "g 11.9 0.2100

ν

β ω,( ) 0=
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Iterations: 6 outer, 16 Newton-Raphson
     Variance of random effect= 0.412 
Degrees of freedom for terms=  1.0 11.9 
Likelihood ratio test=35.3  on 12.87 df, p=0.000712  n= 150
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ADDITIONAL TECHNICAL DETAILS

The remaining subsections provide additional details on
computations and options available for fitting proportional hazards
models, including:

• The handling of ties

• The effect of ties on the definitions of residuals

• Tests for proportional hazards

• Robust variance estimation

• The handling of case weights

• Details about the computations of coxph

Computations 
for Tied 
Deaths

For untied data, the terms in the partial likelihood (Equation (10.1))
look like

where r1, r2, …, rn are the subject risk scores. Assume that the real
data are continuous, but the recorded data have tied death times. For
example, several subjects might die on the first day of their hospital
stay but they do not all perish at the same moment. For a simple
example, assume 5 subjects, ordered by time of death or censoring,
are in a study and the first two die at the same recorded time. If the
time data had been more precise, then the first two terms in the
likelihood would be either

or

.
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Notice that the numerators remain constant, but the denominators do
not. The question is how do you approximate the correct term for the
likelihood?

The Breslow approximation is the most commonly used because it is
the easiest to program. It simply uses the complete sum,
r1 + r2 + r3 + r4 + r5, for both denominators. Clearly, if the
proportion of ties is large this will deflate the partial likelihood.

The Efron approximation uses .5r1 + .5r2 + r3 + r4 + r5 as the second
denominator, based on the idea that r1 and r2 each have a 50%
chance of appearing in the “true” second term. If there were 4 tied
deaths, then the ratios for r1 to r4 would be 1, 3/4, 1/2, and 1/4 in each
of the four denominator terms, respectively. Though it is not widely
used, the Efron approximation is only slightly more difficult to
program than the Breslow version. In particular, since the down-
weighting is independent of any case weights and thus of b, the form
of the derivatives of the likelihood is unchanged.

An alternate approach attempts an “exact” computation. The exact
partial likelihood, comes from viewing the data as genuinely discrete.

The denominator in this case is  if there are two subjects tied,

 if there are three subjects tied, etc.

When using the coxph function to fit proportional hazards models,
you can specify any of the above three methods for handling ties. The
default is the Efron approximation (method = "efron"). The other
two may be specified by setting method = "breslow" or
method = "exact". Note that when there are no ties, all three
methods produce the same likelihood function.

Effect of Ties 
on Residual 
Definitions

The Efron approximation induces changes in the residuals’
definitions. In particular, the Cox score statistic is still

r ir ji j≠∑
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but the definition of  has changed if there are tied deaths at time

s. If there are d deaths at s, then there are d different values of  used

at the time point. The Schoenfeld residuals use , the average of
these d values, in the computation. The martingale and score

residuals require a new definition of . If there are d tied deaths at
time t, we again assume that in the exact (but unknown) untied data
there are events and corresponding jumps in the cumulative hazard at
t ± ε1 < … < t ± εd. Then each of the tied subjects will in expectation
experience all of the first hazard increment, but only (d-1)/d of the
second, (d-2)/d of the next, and etc. If we equate observed to expected
hazard at each of the d deaths, then the total increment in hazard at
the time point is the sum of the denominators of the weighted means.
Returning to our earlier example of 5 subjects of which 1 and 2 have
tied deaths:

For the null model where ri = 1 for all i, this agrees with the
suggestion of Nelson (1969) to use 1/5+1/4 rather than 2/5 as the
increment to the cumulative hazard. The formula for the score
residuals is demonstrated using, again, our previous example with
five subjects the first two being tied. For subject one the residual at
time one is the sum a + b where

and

This product does not neatly collapse into  but is easy to
compute. The connection between residuals and the exact partial
likelihood is not as precise and are thus not implemented. If residuals
are requested after a Cox fit with method = "exact" the Breslow
formulae are used.

Z s( )

Z

Z

Λ̂

Λ̂ t( )d
1

r1 r2 r3 r4 r5+ + + +
-------------------------------------------------- 1

r1 2⁄ r2 2⁄ r3 r4 r5+ + + +
----------------------------------------------------------------+=

a Z1
r1Z1 r 2Z2 … r 5Z5+ + +

r1 r2 … r 5+ + +
---------------------------------------------------------– 

  dN1

2
---------

r1

r1 r2 … r5+ + +
---------------------------------------– 

 =

b Z1
r1Z1 2⁄ r2Z2 2⁄ … r 5Z5+ + +

r1 2⁄ r2 2⁄ … r5+ + +
------------------------------------------------------------------------– 

  dN1

2
---------

r1 2⁄
r 1 2⁄ r2 2⁄ … r 5+ + +
-----------------------------------------------------– 

 =

Z1 Z–( ) M̂d
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Tests for 
Proportional 
Hazards

The key ideas of this section are taken from Grambsch and Therneau
(1994). Most of the common alternatives to the hypothesis test of
proportional hazards can be cast in terms of a time-varying coefficient
model. That is, we assume that

.

(If Zj is a 0/1 covariate such as treatment, this formulation is
completely general in that it encompasses all alternatives to
proportional hazards.) The proportional hazards assumption is then a
test for β(t) = β, which is a test for zero slope in the appropriate plot of

 on t. Let i index subjects, j index variables, and k index the death
times. Then let sk be the Schoenfeld residual and Vk be the
contribution to the information matrix (Equation (10.4)) at time tk.
Define the rescaled Schoenfeld residual as

.

The main results are:

• , so that a smoothed plot of s* versus time

gives a direct estimate of .

• Many of the common tests for proportional hazards are linear
tests for zero slope, applied to the plot of s* versus g(t) for
some function g. In particular, the Z:PH test popularized in
the SAS PHGLM procedure corresponds to g(t) = rank of the
death time. The test of Lin (1991) corresponds to g(t) = K(t),
where K is the Kaplan-Meier.

• Confidence bands, tests for individual variables, and a global
test are available, and all have the fairly standard “linear
models” form.

• The estimates and tests are affected very little if the individual
variance estimates Vk are replaced by their global average

. Calculations then require only the

Schoenfeld residuals and the standard Cox variance estimate
.

λ t Z;( ) λ0 t( )eβ1 t( )Z1 β2 t( )Z2 …+ +=

β̂ t( )

s∗
k β̂ skVk

1–+=

E s∗k( ) β tk( )=

β̂ t( )

V Vk d⁄∑ I d⁄= =

I 1–
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For the global test, let g(t) be the desired transformation of time and
gk = g(tk) be the value of g at the kth death time. Then

is asymptotically χ2 on p degrees of freedom, where

.

Because the sk sum to zero, a little algebra shows that the above
expression is invariant if gk is replaced by gk - c for any constant c.
Subtraction of a mean will, however, result in less computer round-off

error. A further simplification occurs by using , leading to

For a given covariate j, the diagnostic plot will have on the

vertical axis and gk on the horizontal. The variance matrix of  is
Σj = (A - cJ) + cI, where A is a d x d diagonal matrix whose kth

diagonal element is , , J is a d x d matrix of ones and I is
the identity matrix. The constant cI reflects the uncertainty in s* due

to the  term. If only the shape of β(t) is of interest (for example, is it
linear or sigmoid) the c could be dropped. If absolute values are
important (for example, β(t) = 0 for t > 2 years), it should be retained.
For smooths that are linear operators, such as splines or the loess

function, the final smooth is  for some matrix H. Then  is
asymptotically normal with mean 0 and variance . Standard

(10.10)

T gksk∑( )′D 1– gksk∑( )=

D gk
2Vk gkVk∑( ) Vk∑( ) 1–

gkVk∑( )′–∑=

V

T gk g–( )sk∑[ ]′ I 1–d

gk g–( )2∑
---------------------------- gk g–( )sk∑[ ]=

s∗
kj

s∗
kj

Vk jj,
1– c Ijj

1–=

β̂

ŝ∗ Hs∗= ŝ∗

HΣjH ′
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errors are computed using ordinary linear model methods. If Vk is

replaced with , then Sj simplifies to . With the same
substitution, the component-wise test for linear association is

The cox.zph function uses Equation (10.10) as a global test of
proportional hazards, and Equation (10.11) to test individual
covariates. The plot method for cox.zph uses a natural spline
smoother. Confidence bands for the smooth are based on the full

covariance matrix, with  replacing Vk.

Though the simulations in Grambsch and Therneau (1993) did not

uncover any situations where the simpler formulae based on  are
less reliable, such cases could arise. The substitution trades a possible
increase in bias for a substantial reduction in the variance of the
individual Vk. It is likely to be unwise in those cases where the
variance of the covariates, within the risk sets, differs substantially
between different risk sets. Two examples come to mind. The first
would be a stratified Cox model, where the strata represent different
populations. In a multi-center clinical trial, for instance, inner city,
Veterans Administration, and suburban hospitals often service quite

disparate populations. In this case a separate average  should be
formed for each strata. A second example is where the covariate mix
changes markedly over time, perhaps because of aggressive censoring
of certain patient types. These cases have not been addressed directly
in the software. However, coxph.detail returns all of the Vk
matrices, which can then be used to construct specialized tests for
such situations.

Clearly, no one scaling function g(t) will be optimal for all situations.
The cox.zph function directly supports four common choices:
identity, log, rank, and 1 – Kaplan-Meier. By default, it will use the
last of these, based on the following rationale. Since the test for
proportional hazards is essentially a test for significant regression of

(10.11)

V I jj
1– d 1+( )I J–( )

tj
gk g–( )yk∑

I jj
1– gk g–( )d 2∑

---------------------------------------=

V

V

V
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the scaled residual modeled linearly in the gk, we would expect this
test to be adversely effected if there are outliers in the gk. We would
also like the test to be at most mildly affected by the censoring pattern
of the data. The Kaplan-Meier transform appears to satisfy both of
these criteria.

Robust 
Variance 
Estimation

The following technical discussion of robust variance estimation for
Cox models leads to a rather simple implementation conceptually.
The basic idea is to compute an approximate matrix of changes in
estimated coefficients, L, resulting from leaving out each observation
one at a time. The robust estimate of variance is then .  relates
to other variance estimators as follows:

•  is equivalent to the “working independence” estimate in
generalized estimating equations models.

•  is an approximate jackknife estimate of variance.

•  is equivalent to the Wei, Lin, and Weissfeld (1989)
variance estimate for a Cox model.

•  is a robust sandwich estimate as discussed in Huber (1967).

If the observations are grouped and correlated within groups, the
above idea works if entire groups (rather than individual
observations) are left out for computing the approximate jackknife
variance estimate. This case corresponds to Cox models with a
counting process formulation and multiple observations per subject.
The resulting estimator of variance is called the grouped jackknife
estimator.

The Sandwich 
Estimator

The following discussion describes the general sandwich estimator, a
modification of the sandwich estimator for grouped data, and
implementation for Cox models. Robust variance calculations are
based on the sandwich estimate

L′L L′L

L′L

L′L

L′L

L′L

V ABA′=
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where  is the usual information matrix, and B is a “correction
term.” The genesis of this formula can be found in Huber (1967), who
discusses the behavior of any solution to an estimating equation

.

Of particular interest is the case of a maximum likelihood estimate
based on distribution f (so that ), when in fact the
data are observations from distribution g. Then, under appropriate

conditions,  is asymptotically normal with mean β and covariance

, where

and B is the covariance matrix for . Under most

situations the derivative can be moved inside the expectation, and A
will be the inverse of the usual information matrix. This formula was
rediscovered by White (1980, 1982) and is also known in the
econometric literature as White’s method. Under the common case of
maximum likelihood estimation we have

A 1– I=

φ xi β̂,( )
i 1=

n

∑ 0=

φ f( ) β∂⁄log∂=

β̂
V ABA′=

A
EΦ β( )∂

β∂-------------------- 
  1–

=

Φ φ xi β,( )∑=

φ xi β̂,( )
i 1=

n

∑
f xi( )log∂
β∂----------------------

i 1=

n

∑=

ui β( ).
i 1=

n

∑
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By interchanging the order of the expectation and the derivative, 
is the expected value of the information matrix, which will be
estimated by the observed information I. Since ,

where ui(β) is assumed to be a row vector. If the observations are
independent, then the ui will also be independent and the cross terms
in Equation (10.12) will be zero. A natural estimator of B is

where U is the matrix of score residuals, the ith row of U equals .
The column sums of U are the efficient score vector Φ.

As a simple example consider generalized linear models. McCullagh
and Nelder (1989) maintain that overdispersion “is the norm in
practice and nominal dispersion the exception.” To account for
overdispersion they recommend inflating the nominal covariance

matrix of the regression coefficients  by a factor

,

where Vi is the nominal variance. Smith and Heitjan (to appear) show
that AB may be regarded as a multivariate version of this variance
adjustment factor, and that c and AB may be interpreted as the
average ratio of actual variance  to nominal variance Vi. By

(10.12)

A 1–

E ui β( )[ ] 0=

B var Φ( ) E Φ2( )= =

E u'i β( )ui β( )[ ]
i 1=

n

∑ E u'i β( )ui β( )[ ]
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n
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U′U,=

ui β̂( )

A X′WX( ) 1–=

c
yi µi–( )2

Vi
---------------------- n p–( )⁄

i 1=

n

∑=

yi µi–( )2
314



Additional Technical Details
premultiplying by AB, each element of the nominal variance-
covariance matrix A is adjusted differentially for departures from
nominal dispersion.

Modified 
Sandwich 
Estimator

When the observations are not independent, the estimator B must be

adjusted accordingly. The “natural” choice  is not available of

course, since  by definition. However, a reasonable
estimate is available when the correlation is confined to subgroups. In
particular, assume that the data comes from clustered sampling with
j = 1, 2, …, k clusters, where there may be correlation within clusters
but observations from different clusters are independent. Using
Equation (10.12), the cross-product terms between clusters can be
eliminated, and the resulting equation rearranged as

,

where  is the sum of ui over all subjects in the jth cluster. This leads
to the modified sandwich estimator

where the collapsed score matrix  is obtained by replacement of
each cluster of rows in U by the sum of those rows. If the total number
of clusters is small, then this estimate will be sharply biased towards
zero, and some other estimate must be considered. In fact, rank(V) < k,
where k is the number of clusters. Asymptotic results for the modified
sandwich estimator require that the number of clusters tend to
infinity.

Implementation 
for Cox Models

Application of these results to the Cox model proceeds by defining a
weighted Cox partial likelihood and letting

,

ui∑( )2

Φ β̂( ) 0=

var Φ( ) ũ β( )′ũ β( )
j 1=

k

∑=

ũj

V A Ũ′Ũ( )A=

Ũ

ui β( ) U∂
wi∂-------- 

 
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where w is the vector of weights. This approach is used by Cain and
Lange to define a leverage or influence measure for Cox regression.
In particular, they derive the leverage matrix

,

where Lij is the approximate change in  when observation i is
removed from the data set. Their estimate can be recognized as a
form of the infinitesimal jackknife (see, for example, the discussion in
Efron (1982) for the linear models case).

The connection to the jackknife is quite general. For any model stated
as an estimating equation, the Newton-Raphson iteration has step

,

the column sums of the matrix . At the solution  the
iteration’s step size is, by definition, zero. Consider the following
approximation to the jackknife:

1. Treat the information matrix I as fixed.

2. Remove observation i.

3. Beginning at the full data solution , do one Newton-
Raphson iteration.

This is equivalent to removing one row from L, and using the new

column sum as the increment. Since the column sums of 

are zero, the increment must be . That is, the rows of L are
an approximation to the jackknife, and the sandwich estimate of
variance  is an approximation to the jackknife estimate of
variance. Lin and Wei (1989) show the applicability of Huber’s work
to the partial likelihood, and derive the ordinary Huber sandwich

estimate , the approximate jackknife. When
the data are correlated, the appropriate form of the jackknife is to
leave out an entire subject at time, rather than one observation, that is,
the grouped jackknife. To approximate this, we leave out groups of

rows from L, leading to  as the approximation to the jackknife.

L UI 1–=

β̂ j

β∆ 1' UI 1–( )=

L UI 1–= β̂

β̂

L β̂( ) 0=

β∆ Li .–=

L′L

V I 1– U ′U( )I 1– L′L= =

L̃′L̃
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Examples Lee, Wei, and Amato (1992) consider highly stratified data sets which
arise from inter-observation correlation. As an example they use
paired eye data on visual loss due to diabetic retinopathy, where
photocoagulation was randomly assigned to one eye of each patient.
There are n/2 = 1742 clusters (patients) with 2 observations per
cluster. Treating each pair of eyes as a cluster, they derive the

modified sandwich estimate , where  is derived from L in
the following way. L will have one row, or observation, per eye.
Because of possible correlation, we want to reduce this to a leverage

matrix  with one row per individual. The leverage (or row) for an
individual is simply the sum of the rows for each of their eyes. (A
subject, if any, with only one eye would retain that row of leverage
data unchanged). The resulting estimator is shown to be much more
efficient than analysis stratified by cluster. A second example given in
Lee, Wei, and Amato concerns a litter-matched experiment. In this
case the number of rats per litter may vary.

Wei, Lin, and Weissfeld (1989) consider multivariate survival times.
An example is the measurement of both time to progression of
disease and time to death for a group of cancer patients. The data set
again contains 2n observations, time and status variables, subject id,
and covariates. It also contains an indicator variable etype to
distinguish the event type, progression vs. survival. The suggested
model is stratified on event type, and includes all strata x covariate
interaction terms. One way to do this with coxph is

> fit2 <- coxph(Surv(time,status) ~ (rx + size + number)*
+ strata(etype))
> Ltilde <- residuals(fit2, type=’dfbeta’,
+ collapse=subject.id)
> newvar <- t(Ltilde)

The per subject leverage matrix  is newvar. An alternate way to do
this is

> fit2a <- coxph(Surv(time,status) ~ (rx + size + number)*
+ strata(etype) + cluster(id))

V L̃′L̃= L̃

L̃

L′˜ L̃
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The cluster argument asserts that subjects with the same value of id
may be correlated. The data for fitting the above two models is not
built into S-PLUS. However, similar computations can be performed
using the bladder data frame for comparison. Two ways of
producing the robust variance estimate follow:

> bladder2 <- bladder[bladder$start< bladder$stop, ]
> afit <- coxph(Surv(start, stop, event) ~ rx + size +
+ number + cluster(id), data=bladder2)
> sqrt(diag(afitvar))

[1] 0.24151999 0.05690736 0.07228107

Now doing it an alternate way:

> bfit <- coxph(Surv(start, stop, event) ~ rx + size +
+ number, data = bladder2)
> db <- resid(bfit, type="dfbeta", collapse = bladder2$id)
> sqrt(diag(t(db)

[1] 0.24876453 0.05842243 0.07421445

Using the grouped jackknife approach, as suggested here, rather than
separate fits for each event type has some practical advantages:

• It is easier to program, particularly when the number of
events per subject is large.

• Other models can be encompassed, in particular one need not
include all of the strata x covariate interaction terms.

• There need not be the same number of events for each
subject. The method for building up a joint variance matrix
requires that all of the score residual matrices be of the same
dimension, which is not the case if information on one of the
failure types was not collected for some subjects.
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Weighted Cox 
Models

A Cox model that includes case weights has been suggested by
Binder (1992) in the context of survey data. If wi are the weights, then
the modified score statistic is

The individual terms ui are still  but the weighted mean 
is changed in the obvious way to include both the risk weights r and
the external weights w. The information matrix can be written as

, where δi is the censoring variable and vi is a weighted

covariance matrix. The definition of vi changes in the obvious way
from Equation (10.4). If all of the weights are integers, then for the
Breslow approximation this reduces to ordinary case weights, that is,
the solution is identical to what you obtain by replicating each
observation wi times. With the Efron approximation or the exact
partial likelihood approximation replication of a subject results in a
correction for ties. The coxph function allows general case weights.
Residuals from the fit are such that the sum of weighted residuals is
zero, and the returned values from the coxph.detail function are
the individual terms ui and vi, so that U and I are weighted sums. The

sandwich estimator of variance has  as its central term, where W

is the diagonal matrix of weights. The estimate of  and the sandwich
estimate of its variance are unchanged if each wi is replace by cwi for
any c > 0. Multiplying weights by c will not change the robust se
reported by printing a coxph fit, but will decrease the se(coef)
reported by a factor of sqrt(c).

For either of the Breslow or the Efron approximations, the extra
programming to handle weights is modest. For the Breslow method
the logic behind the addition is straightforward, and corresponds to

(10.13)U β( ) wiui β( )
i 1=

n

∑=

Zi t( ) Z t( )– Z

I δi∑ wivi=

L′WL

β̂
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Chapter 10  The Cox Proportional Hazards Model
the derivation given above. For tied data and the Efron
approximation, the formula is based on extending the basic idea of
the approximation,

to include the weights, as necessary. Returning to the simple example
of the section Computations for Tied Deaths, the second term of the
partial likelihood is either

or

.

To compute the Efron approximation, separately replace the
numerator with .5(w1r1 + w2r2) and the denominator with
.5w1r1 + .5w2r2 + w3r3 + w4r4 + w5r5.

An exciting use of weights is presented in Pugh, et al. (1993), for
inference with missing covariate data. Let πi be the probability that
none of the covariates for subject i is missing, and pi be an indicator
function which is 0 if any of the covariates actually is NA, so that
E(pi) = πi. The usual strategy is to compute the Cox model fit over
only the complete cases, that is, those with pi = 1. If information is not

missing at random, this can lead to serious bias in the estimate of .
A weighted analysis with weights of pi/πi will correct for this
imbalance. There is an obvious connection between this idea and
survey sampling. Both reweight cases from underrepresented groups.

In practice πi will be unknown, and the authors suggest estimating it
using a logistic regression with pi as the dependent variable. The
covariates for the logistic regression may be some subset of the Cox
model covariates (those without missing information), as well as

E f r1 r2 …, ,( )( ) f≈ E r1( ) E r2( ) …, ,( )

w1r1

w1r1 w3r3 w4r4 w5r5+ + +
------------------------------------------------------------------ 

 

w2r2

w2r2 w3r3 w4r4 w5r5+ + +
------------------------------------------------------------------ 
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β̂
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others. In an example, the authors use a logistic model with follow-up
time and status as the predictors. Let T be the matrix of score
residuals from the logistic model, that is,

,

where α are the coefficients of the fitted logistic regression. Then the

estimated variance matrix for  is the sandwich estimator ,
where

.

This is equivalent to first replacing each row of U with the residuals
from a regression of U on T, and then forming the product . Note
that if the logistic regression is completely uninformative
( ), this reduces to the ordinary sandwich estimate.

Computations The coxph function is used to fit Cox proportional hazards models.
The input data is assumed to consist of observations or rows of data,
each of which contains the covariate values Z, a status indicator
variable (1 = event, 0 = censored), an optional stratum indicator
variable (referenced by the strata function), along with the time
interval (start, stop] over which this information applies. This means
that each row is treated as a separate subject whose Yi variable is 1
(one) on the interval (start, stop] and 0 (zero) otherwise. and that the
risk set at time t only uses the applicable rows of the data.

The code for coxph does not specifically accommodate time-
dependent covariates, time-dependent strata, multiple events, or any
of the other special features mentioned. Consequently, it is your
responsibility to construct an appropriate data set. This strategy leads to a
fitting program that is simpler, shorter, easier to debug, and more
computationally efficient than one with multiple specific options. A
significantly more important benefit is that the flexibility inherent in
building the proper data set allows analyses not originally
considered—left truncation is a case in point.

The more common way to deal with time-dependent Cox models is
to do a computation for each death time. For example, BMDP and
SAS PHREG do this. One advantage of this over the algorithm

Tij αj∂
∂

pi πi α( ) 1 pi–( ) 1 πi α( )–( )log+log[ ]=

β̂ I 1– BI 1–

B U′U U′T[ ] T′T[ ] 1– T′U[ ]–=

U ′U

π̂ i constant=
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Chapter 10  The Cox Proportional Hazards Model
implemented in coxph is the ability to code continuously varying time-
dependent covariates. The coxph function only accommodates step
functions. However, this does not appear to be a deficiency in
practice. For the common case of repeated measurements on each
subject, the data for coxph are quite easy to set up since they
correspond to the original measurements of one line of data per visit.

The coxph function typically runs much faster when there are
stratification variables in the model. When strata are introduced,
coxph spends less time locating the current risk set because it only
looks within the stratum it is estimating.

If the start time is omitted, it is assumed to be zero for all cases. In this
case the algorithm is equivalent to the standard Cox model.
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Chapter 11  Parametric Regression in Survival Models
INTRODUCTION

In contrast to the non-parametric (and semi-parametric) survival
curve estimates of Kaplan-Meier, Fleming-Harrington, and Cox,
among others, this chapter presents a parametric formulation to the
estimation problem.  Assume that the survival time  satisfies

, where  follows some given distribution and 
is a given transformation. (For example, if  is the identity function
and  is Gaussian, this corresponds to ordinary linear regression.)
The usual choice for  is , which corresponds to an accelerated
failure time (AFT) model. Using the log transform, if  is the

cumulative hazard function for , the cumulative hazard function for
subject  is , that is, the time scale for the subject is
accelerated by a constant factor. 

The development and use of parametric survival models actually
predates that of the non-parametric methods, although non-
parametric methods now dominate in fields of study where the
primary concern is to assess the risk of failure and its relation to
covariates (for example, the effect of treatment arm on breast cancer
recurrence), parametric methods are still vitally important in
situations where extrapolation of results is necessary to predict failure
rates under different conditions than those in the original study.  A
typical question addressed by non-parametric methodology is ‘‘How
much does the risk of dying decrease if a new treatment is given to a
lung cancer patient.’’  A typical question addressed by the parametric
methodology in an accelerated testing setting is ‘‘What proportion of
heaters will fail when run at 1100° F for 2 years’’ even though the
original study ran heaters at temperatures ranging from 1520° to 1710°
for only four months.

In a manufacturing setting, studies of failure rates for new products
cannot typically be done under normal operating conditions because
they take too long to complete.  Consequently, accelerated tests are
conducted, exposing the product to more severe stresses than normal
so that failures occur and then extrapolation is used to estimate failure
rates under normal operating conditions. (The Kaplan-Meier and Cox
models do not extrapolate past the last observation.) If the data are

y

t y( ) Xβ σW+= W t

t

W

t y( )log
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Introduction
reasonably well modeled by one of the parametric distributions,
parametric models provide information for assessing properties of the
baseline hazard function which the non-parametric models don’t. 

To perform parametric regression in S-PLUS, you use the survReg
function. The survReg function is similar to the survreg function
available in earlier versions of S-PLUS, but has some new and
modified arguments. The survreg function is still available, but is
now deprecated.

As a simple example, consider the  lung cancer data set included in
S-PLUS. We can fit a Weibull model to this data using survReg as
follows:

> options(na.action=na.exclude)
> lung.survReg <- survReg(Surv(time,status) ~ age + sex +
     ph.karno, data=lung, dist=”weibull”)
> lung.survReg
Call:
survReg(formula = Surv(time, status) ~ age + sex +
     ph.karno, data = lung, dist = "weibull")

Coefficients:
 (Intercept)          age       sex    ph.karno 
    5.326344 -0.008910282 0.3701786 0.009263843

Scale= 0.7551354 

Loglik(model)= -1138.7   Loglik(intercept only)= -1147.5
Chisq= 17.59 on 3 degrees of freedom, p= 0.00053 

n=227 (1 observations deleted due to missing values)
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Chapter 11  Parametric Regression in Survival Models
STRATA

In a Cox model, the strata statement is used to allow separate
baseline hazards for subgroups of the data, while retaining common
coefficients for the other covariates across groups. For parametric
models, the statement allows for a separate scale parameter for each
subgroup, but again keeping the other coefficients common across
groups. For instance, assume that separate “baseline” hazards are
desired for mailes and females in the lung cancer data set. If we think
of the intercept and scale as the baseline shape, an appropriate model
can be fit as follows:

> lung.sfit <- survReg(Surv(time, status) ~ sex + age +
     ph.karno + strata(sex), data=lung,
     na.action=na.exclude)
> lung.sfit
Call:
survReg(formula = Surv(time, status) ~ sex + age + ph.karno 
+ strata(sex), data = lung, 

na.action = na.exclude)

Coefficients:
 (Intercept)       sex          age   ph.karno 
    5.059089 0.3566277 -0.006808082 0.01094966

Scale:
     sex=1     sex=2 
 0.8165161 0.6222807

Loglik(model)= -1136.7   Loglik(intercept only)= -1146.2
Chisq= 18.95 on 3 degrees of freedom, p= 0.00028 

n=227 (1 observations deleted due to missing values)

The intercept-only model used for the likelihood ratio test has 3
degrees of freedom, corresponding to the intercept and two scales, as
compared to the 6 degrees of freedom for the full model.
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This is quite different from the effect of strata in censorReg; there
it acts as a “by” statement and causes a totally separate model to be fit
to each gender. The same fit (but not as nice a printout) can be
obtained from survReg by adding an explicit interaction to the
formula:

> survReg(Surv(time, status) ~ sex + (age +
       ph.karno)*strata(sex), data=lung)
329



Chapter 11  Parametric Regression in Survival Models
SPECIFYING A DISTRIBUTION

The survReg fitting routine is quite general, and can accept any
distribution that spans the real line for  and any monotone
transformation of . The following distributions are included by
default:

• exponential 

• extreme    

• Gaussian

• logistic

• Rayleigh

• t          

• Weibull     

• log Gaussian

• log logistic

W

y
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Residuals
RESIDUALS

The residuals method for parametric survival objects can return
any of several types of residuals. This section describes the available
types and discusses their strengths and weaknesses.

Response Response residuals for other models such as lm or glm are defined as
, where  is the observed data value. For censored data, some

modifications had to be made. If the observation is exact,  is the
observed value. If the observation is left- or right-censored, then the
censoring value is used for . (One could argue that the returned
residuals in this case should be marked as left- or right-censored, but
this has not been done.) For an interval-censored observation,  is
chosen as the MLE from  a fit with , that is, chosen so that the
observed interval has the largest possible probability. For a symmetric
distribution such as Gaussian or logistic this will be the center of the
interval, but is somewhat more complicated for a non-symmetric one
such as the extreme value. 

Response residuals are the default type:

> resid(lung.survReg)
         1        2        3         4        5 
 -48.57054 80.95766 593.7474 -202.5602 442.3329
        6         7         8         9        10 
 777.2215 -140.0104 -38.37526 -137.2232 -164.7835
        11       12       13        14       15 
 -206.0581 203.9896 186.3892 -233.2154 190.9419
        16       17       18        19        20 
 -199.9997 245.5643 437.0149 -395.4849 -324.5602
...

Deviance Deviance residuals are response residuals transformed to the log-
likelihood scale:

y ŷ– y

y

y

y

n 1=

di sign r i( ) LL yi ŷ0 σ;,( ) LL yi ηi σ;,( )–=
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Chapter 11  Parametric Regression in Survival Models
Here,  is the unconstrained MLE for a fit with , that is, only

the observation in question, but  fixed at its value from the overall

fit. This leads to  and  for right- and left-censored
observations, respectively, and the first term under the square root is
zero. 

The advantages of the deviance residuals for plotting and outlier
detection are nicely detailed in McCullagh and Nelder. However,
unlike GLM models, deviance residuals for interval-censored data are
not free of the scale parameter. This means that if there are interval-
censored data values and you fit two models, say, A and B, then the
sum of the squared deviance residuals for model A minus the sum for
model B does not equal the difference in log-likelihoods. This is one
reason that the current survReg function does not inherit from class
glm: glm models use the deviance as the main summary statistic.

Deviance residuals are obtained by specifying type="deviance" in
the call to resid:

> resid(lung.survReg, type="deviance")
          1         2        3          4        5 
 -0.1889512 0.2711838 2.543388 -0.7786656 1.086197
        6          7          8          9         10 
 3.643226 -0.4560836 -0.1308644 -0.5838006 -0.7929039
        11        12        13       14        15 
 -0.895371 0.5395109 0.4189815 -1.46457 0.5978532
         16        17       18        19        20 
 -0.9683285 0.7638346 1.614463 -1.862741 -1.533163
 ...

dfbeta The dfbeta residuals are a matrix with one row per subject and one
column per parameter. The ith row gives the approximate change in
the parameter vector resulting from observation i, that is, the change

in  when observation i is added to a fit based on all observations but
the ith. The dfbetas residuals scale each column of the dfbeta
matrix by the standard error of the respective parameter.

To obtain the dfbeta residuals, use type="dfbeta" in the call to
resid, and to obtain the dfbetas residuals, use type="dfbetas":

ŷ0 n 1=

σ

ŷ0 ∞–=  ∞+

β̂
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> resid(lung.survReg, type="dfbeta")
       (Intercept)            age            sex 
  1  0.01511630872 -1.133792e-004  0.00002623577
  2 -0.00696784585  1.451185e-004 -0.00325004547
  3  0.06865167740 -1.420568e-003 -0.01938509704
  4 -0.01038268752  2.135163e-004  0.00380158171
  5 -0.03436155488 -7.371198e-005 -0.01080367964
  6  0.24197961727  2.394794e-003 -0.02658673104
  ...
          ph.karno     Log(scale) 
  1 -1.065334e-004 -0.00355606713
  2  4.546980e-005 -0.00364612597
  3  7.566163e-004  0.01453486059
  4 -1.338031e-004 -0.00178635419
  5  7.467109e-004  0.00219801001
  6 -4.089797e-003  0.02732249126
  ...
> resid(lung.survReg, type="dfbetas")
              [,1]          [,2]          [,3] 
  1  0.02280083554 -0.0159498488  0.0002050366
  2 -0.01051002003  0.0204148405 -0.0253996072
  3  0.10355144468 -0.1998413454 -0.1514975268
  4 -0.01566083063  0.0300368545  0.0297099481
  5 -0.05182959519 -0.0103695863 -0.0844324247
  6  0.36499237744  0.3368926650 -0.2077794085
  ...
             [,4]          [,5] 
  1 -0.0238667512 -0.0576293685
  2  0.0101866266 -0.0590888556
  3  0.1695052040  0.2355509068
  4 -0.0299759836 -0.0289495277
  5  0.1672860906  0.0356207923
  6 -0.9162397824  0.4427863310

Working The Newton-Raphson iteration used to solve the model can be
viewed as an iteratively reweighted least-squares problem with a
dependent variable of “current prediction  correction.” The
working residual is the correction term. You can obtain the working
residuals by specifying type="working" in the call to resid.

  –
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Chapter 11  Parametric Regression in Survival Models
Likelihood 
Displacement

Escobar and Meeker define a matrix of likelihood displacement
residuals for the accelerated failure time model. The full residual
information is a square matrix  with dimension the number of
perturbations considered. Three examples are developed in detail, all
with dimension , the number of observations: the likelihood
displacement residuals for a perturbation in the case weight for
observation  (ldcase), a perturbation in the response value
(ldresp), or a perturbation in the shape (ldshape).

Case weight perturbations measure the overall effect on the
parameter vector of dropping a case. Let  be the variance matrix of
the model, and  the  by  matrix with elements ,

where  is the likelihood contribution of the ith observation. Then

. The residuals function with type="ldcase" returns
the diagonal values of the matrix.  equals the dfbeta residuals.

Response perturbations correspond to a change of one  unit in one
of the response values. For a Gaussian linear model, the equivalent
computation yields the diagonal elements of the hat matrix.

Shape perturbations measure the effect of a change in the log of the
scale parameter by 1 unit.

The matrix residual type returns the raw values that can be used to
compute these and other LD influence measures. The result is an

 matrix, containing columns for the following quantities:
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PREDICTED VALUES

The predict method for survReg objects allows several types of
predictions. They fall into three groups: the linear predictor and
predicted response, terms, and predicted quantiles.

Linear 
Predictor and 
Predicted 
Response

The linear predictor is , where  is the covariate vector for

subject i and  is the final parameter estimate. The standard error of

the linear predictor is , where  is the variance matrix for .
You obtain the linear predictions by using predict with the
argument type=”lp”:

> predict(lung.survReg, type="lp")
  [1] 5.870907 5.924369 6.031292 6.022382 6.088290
  [6] 5.500354 6.109271 5.989901 5.872746 5.801464
 [11] 5.929744 6.109271 6.294548 5.717736 5.929744
 [16] 5.840641 5.906548 5.598367 6.123556 6.022382
 [21] 5.840641 6.556481 5.899477 6.013472 5.888728
  ...

The predicted response is identical to the linear predictor for fits to
the untransformed distributions, that is, the extreme-value, logistic,
and Gaussian. For transformed distributions such as the Weibull, for
which  is from the extreme-value distribution, the linear
predictor is on the transformed scale and the response is on the
original scale of the data, for example,  for the Weibull. The

standard error of the transformed response is the standard error of 
times the first derivative of the inverse transform. 

The predicted response is the default prediction; you can ask for it
explicitly by specifying type=”response”:

> predict(lung.survReg)
  [1] 354.5705 374.0423 416.2526 412.5602 440.6671
  [6] 244.7785 450.0104 399.3753 355.2232 330.7835
 [11] 376.0581 450.0104 541.6108 304.2154 376.0581
 [16] 343.9997 367.4357 269.9851 456.4849 412.5602
 [21] 343.9997 703.7910 364.8467 408.9005 360.9458
  ...

η i x'i β̂= xi

β̂

x'iVxi V β̂

y( )log

ηi( )exp

ηi
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Chapter 11  Parametric Regression in Survival Models
Terms Predictions of type terms are useful for examination of terms in the
model that expand into multiple dummy variables, such as factors
and P-splines. The result is a matrix with one column for each of the
terms in the model, along with an optional matrix of standard errors.
Here is an example using p-splines on the stanford2 data set:

> fit <- survReg(Surv(time,status) ~ pspline(age, df=3) +
+      t5, data=stanford2, dist="lognormal",
+      na.action=na.exclude)
> tt<-predict(fit, type="terms", se.fit=T)
> yy <- cbind(tt$fit[,1], tt$fit[,1] - 1.96*tt$se.fit[,1],
+      tt$fit[,1]+1.96*tt$se.fit[,1])
> matplot(stanford2$age, yy, type="l", lty=c(1,2,2))
> plot(stanford2$age, stanford2$time, log="y", xlab="Age",
+      ylab="Days", ylim=c(.1,10000))
> matlines(stanford2$age, exp(yy+attr(tt$fit, "constant")),
+      lty=c(1,2,2))

The second plot,  puts the fit onto the scale of the data, and thus is
similar to figure 1 in Escobar and Meeker. Their plot is for a quadratic
fit to age, without the T5 mismatch score in the model.

Figure 11.1:  Plot of P-spline fit with error bands.
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Quantiles If predicted quantiles are desired, the set of probability of values p
must also be given to the predict function. A matrix of n rows by p
columns is returned, whose th element is the th quantile of the
predicted survival distribution, based on the covariates of subject i.
This can be written as  where  is the th quantile of the

parent distribution. The variance of the quantile estimate is then 
where  is the variance matrix of  and .

In computing confidence bands for the quantiles, it may be preferable
to add standard errors on the untransformed scale. You can do this
using the "uquantile" prediction type. For example, consider the
motor reliability data of Kalbfleisch and Prentice. We first fit the
standard quantile confidence intervals:

> fit <- survReg(Surv(time, status) ~ temp, data=motor)
> q1 <- predict(fit, data.frame(temp=130), type="quantile",
+      p=c(.1,.5,.9), se.fit=T)
> ci1 <- cbind(q1$fit, q1$fit -1.96*q1$se.fit,
+      q1$fit+1.96*q1$se.fit)

Figure 11.2:  Plot of P-spline fit with scale of the data.
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Chapter 11  Parametric Regression in Survival Models
> dimnames(ci1) <- list(c(.1,.5,.9), c("Estimate", 
+     "Lower ci", "Upper ci"))
> round(ci1)
    Estimate Lower ci Upper ci 
0.1    15935     9057    22812
0.5    29914    17395    42433
0.9    44687    22731    66643

Next we fit the standard errors on the untransformed scale:

> q2 <- predict(fit,data.frame(temp=130), type="uquantile",
+      p=c(.1,.5,.9), se.fit=T)
> ci2 <- cbind(q2$fit, q2$fit -1.96*q2$se.fit,
+      q2$fit+1.96*q2$se.fit)
> ci2 <- exp(ci2)
> dimnames(ci2) <- list(c(.1,.5,.9), c("Estimate", 
+      "Lower ci", "Upper ci"))
> round(ci2)
    Estimate Lower ci Upper ci 
0.1    15935    10349    24535
0.5    29914    19684    45459
0.9    44687    27340    73041

Using the default Weibull method, the data are fit on the  scale.
The confidence bands obtained by the second method are
asymmetric and may be more reasonable. They are also guaranteed
to be positive.

The following example reproduces figure 1 of Escobar and Meeker:

> plot(stanford2$age, stanford2$time, log="y",
+      xlab="Age", ylab="Days", ylim=c(.01, 10^6), 
+      xlim=c(1,65))
> fit <- survReg(Surv(time, status) ~ age + age^2, 
+      data=stanford2, dist="lognormal")
> qq <- predict(fit, newdata=list(age=1:65),
+      type="quantile", p=c(.1, .5, .9))
> matlines(1:65, qq, lty=c(1,2,2))

Note that the percentile bands on this figure are really quite a
different object than the confidence bands on the spline fit. The latter
reflect the uncertainty of the fitted estimate and are related to the
standard error. The quantile bands reflect the predicted distribution

y( )log
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of a subject at each given age (assuming no error in the quadratic
estimate of the mean), and are related to the standard deviation of the
population.

Figure 11.3:  Predicted 10th, 50th, and 90th survival quantiles for subjects at given 
age.
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Chapter 11  Parametric Regression in Survival Models
FITTING THE MODEL

With some care, parametric survival can be formulated as an
iteratively reweighted least squares (IRLS) problem used in
Generalized Linear Models (GLM) of McCullagh and Nelder (1990).
A detailed description of this setup for general maximum likelihood
computation is found in Green (1984). 

Let  be the response vector, and  be the vector of covariates for
the ith observation.  Assume that

for some distribution , where  may be censored and  is a
differentiable transformation function.

Then the likelihood for  is

where exact, right, left, and interval refer to uncensored, right-censored,
left-censored, and interval-censored observations, respectively, and

 is the lower endpoint of a censoring interval. Then the log
likelihood is defined as 
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Fitting the Model
Derivatives of the log likelihood with respect to the regression
parameters are 

where  is the vector of linear predictors.

Thus if we treat  as fixed, then iteration is equivalent to IRLS with
weights of  and adjusted dependent variable of . The
Newton-Raphson step defines an update δ by

where  is the diagonal matrix formed from , and  is the vector
. The current estimate  satisfies , so that the new estimate

 will have

At the solution to the iteration we might expect that ; and a

weighted regression with  replacing  gives, in general, good
starting estimates for the iteration. (For an interval-censored
observation we use the center of the interval as .) If all the
observations are uncensored, this reduces to using the linear
regression of  on  as a starting estimate:  so , thus

 and (all of the supported densities have a
mode at .
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Chapter 11  Parametric Regression in Survival Models
This clever starting estimate is introduced in McCullagh and Nelder,
and works extremely well in that context: convergence often occurs
in 3–4 iterations. It does not work quite so well here, since a “good” fit
to a right-censored observation might have . Secondly, the other
coefficients are not independent of , and  often appears to be the
most touchy variable in the iteration.

Most often, the parametric survival functions are used with ,
which corresponds to the set of accelerated failure time models. The
transform can be applied implicitly or explicitly; the following two fits
give identical coefficients:

> fit1 <- survReg(Surv(futime, fustat) ~ age + rx,
     data=ovarian, dist="weibull")
> fit2 <- survReg(Surv(log(futime), fustat) ~ age + rx,
     data=ovarian, dist="extreme")

The log-likelihoods for the two fits differ by a constant, that is, the
sum of  for the uncensored observations, and certain
predicted values and residuals will be on the  versus  scale.

η y»

σ σ

y( )log

y( )logd( ) dy( )⁄
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Fitting the Model
Derivatives of 
the Log 
Likelihood

This section is very similar to the appendix of Escobar and Meeker,
differing only in the use of  rather than  as the natural
parameter. Let  and  denote the density and cumulative
distribution functions, respectively, of one of the parametric survival
distributions.  Using Equation (11.2) for defining , we have

To obtain the derivatives for , set the upper endpoint  to  in the

equations for .  To obtain the equations for , left-censored data,

set the lower endpoint to .
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The internal iteration is done in terms of ; this avoids the
boundary condition at zero, and helps the iteration speed
considerably for some test cases. By the chain rule:

At the solution , so the variance matrix for  is a simple
scale change of the returned matrix for .
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Distributions
DISTRIBUTIONS

The presentation of the distributions contained in this section are
similar to that in Nelson (1982). Derivatives of the terms in the log
likelihood, Equation (11.2), are presented following the details for
each distribution.  

For each distribution the standardized variable, , is defined by
Equation (11.1) where  is the linear predictor and  is the
scale parameter.  The details for each distribution are written in terms
of the  standardized variable, .

Gaussian This is, perhaps, the most frequently used distribution in applied
statistics.  It is more commonly known as the normal distribution. The
continual calls to  may make it slow on censored data, however.
The standardized variable, , has mean 0 (zero)  and variance 1 (one).
The standard normal distribution is then defined by 

The derivatives of the terms in the log likelihood are given by 

For uncensored data, the ‘‘standard’’ GLM results are obtained by
substituting  into Equations (11.2) through (11.6).  The first

derivative vector is equal to  where  is a scaled residual,
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the update step  is independent of the estimate of , and the
maximum likelihood estimate of  is the sum of squared residuals.
None of these hold so neatly for right censored data.

Least Extreme 
Value

If  has a Weibull distribution, then  is distributed according to
the least extreme value distribution. Fits on the latter scale are
numerically preferable because they remove the range restriction on

. A Weibull distribution with the scale constrained to be 1 (one)
gives an exponential model.

The standardized variable, , defined by Equation (11.1) has mean

0.5722 and variance . Let , then the standard least
extreme value distribution is  defined as

The derivatives for the terms in the log likelihood, Equation (11.2),
are given by:

The mode of the distribution is at  with . For an
exact observation the deviance term has . For interval-censored

data where the interval is of length , most mass is covered
if the interval has a lower endpoint of

,

so that the resulting log-likelihood is
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Logistic This distribution is very close to the Gaussian except in the extreme
tails, but it is far easier work with. All the computations are closed
form. However, some data sets may contain survival times close to
zero, leading to differences in fit between the lognormal and log-
logistic choices. (In such cases the rationality of a Gaussian fit may
also be in question). The standardized variable, , defined by

Equation (11.1), has mean 0 (zero) and variance .  Again, let

. Then the standard logistic distribution is defined by

The derivatives for the terms in the log likelihood, Equation (11.2),
are given by:

The distribution is symmetric about 0, so for an exact observation the
contribution to the deviance term is .  For an interval-
censored observation with span  the contribution is
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Other 
Distributions

Some other population hazards can be fit into this location-scale
framework, while others cannot.

We can see that an extreme value distribution on  is
equivalent to a Weibull hazard on , with .

The Makeham hazard seems to fit human mortality experience
beyond infancy quite well, where  is a constant mortality which is
independent of the health of the subject (accidents, homicide, etc.)
and the second term models the Gompertz assumption that “the
average exhaustion of a man’s power to avoid death is such that at the
end of equal infinitely small intervals of time he has lost equal
portions of his remaining power to oppose destruction which he had
at the commencement of these intervals.” For older ages,  is a
negligible portion of the death rate and the Gompertz model holds.

The next two statements follow from the form of the hazards in the
table:

• The Weibull distribution with , ( ) is the same
as a Rayleigh distribution with . It is not, however, the
most general form of a Rayleigh.

• The extreme value and Gompertz distributions have the same
hazard function, with  and .

Distribution Hazard

Weibull

Extreme value

Rayleigh

Gompertz

Makeham
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On first glance, it appears that the Gompertz can be fit with an
identity link function combined with the extreme value distribution,
but this ignores a boundary restriction. If  is the extreme
value distribution with parameters  and , the definition of the
Gompertz density is

where  is the constant necessary so that 
integrates to 1. If  is far from 1, the correction term will be
minimal and survReg should give a reasonable fit to Gompertz data.
If not, the distribution cannot be made to easily conform to the
general fitting scheme of the function. The censorReg function,
however, can fit the data, using the truncation argument to specify
that each observation is restricted to .

The Makeham distribution falls into the gamma family (equation 2.3
of Kalbfleisch and Prentice) but with the same range restriction
problem.
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η σ
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A FINAL EXAMPLE

The capacitor data frame contains data from a simulated life testing
of capacitors from Meeker. The capacitor data frame is close
enough to the data modeled in Nelson (1990), page 302, that it works
as a verification data set. The variables in capacitor are:

days: time to failure

event: indicator of failure (1) or censoring (0)

voltage: voltage at which the test was run

A summary of this data frame follows:

> summary(capacitor)

       days            event          voltage
 Min.   :  0.68   Min.   :0.000   Min.   :20.00
 1st Qu.: 73.87   1st Qu.:0.000   1st Qu.:26.00
 Median :300.00   Median :0.000   Median :26.00
 Mean   :205.20   Mean   :0.432   Mean   :26.72
 3rd Qu.:300.00   3rd Qu.:1.000   3rd Qu.:29.00
 Max.   :300.00   Max.   :1.000   Max.   :32.00

You fit a Weibull model to the capacitor data as follows:

> capac.fit1 <- survReg(Surv(days, event) ~ voltage,
+ data = capacitor)

You don’t have to specify the distribution in this case because
survReg defaults to dist = "weibull".

Printing the resulting fit produces the following display: 

> capac.fit1

Call:
survReg(formula = Surv(days, event) ~ voltage,
     data = capacitor)

Coefficients:
 (Intercept)    voltage
    24.13993 -0.6403297

Scale= 1.203916
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Loglik(model)= -316.5   Loglik(intercept only)= -372.8
Chisq= 112.61 on 1 degrees of freedom, p= 0

n= 125

The summary of the fit object is shown below:

> summary(capac.fit1)

Call:
survReg(formula = Surv(days, event) ~ voltage, data = 
capacitor)
              Value Std. Error     z         p
(Intercept)  24.140     2.4493  9.86 6.48e-023
    voltage  -0.640     0.0811 -7.89 2.93e-015
 Log(scale)   0.186     0.1113  1.67 9.54e-002

Scale= 1.2

Weibull distribution
Loglik(model)= -316.5   Loglik(intercept only)= -372.8

Chisq= 112.61 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n= 125

Correlation of Coefficients:
           (Intercept) voltage
   voltage -0.998
Log(scale)  0.560      -0.559

Voltage is clearly quite significant in the model. McCullagh and
Nelder discuss the utility of deviance residual plots in assessing the fit
of a model. The following code constructs the plot of  deviance
residuals versus the logged fitted values displayed in  Figure 11.4.

> plot(log(fitted(capac.fit1)), resid(capac.fit1,
+ type="deviance"))
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The example in Nelson (1990), page 302, displays a Weibull model
with  the logged scale parameter, , modeled as a linear

function of . We fit and display a partial summary of this
second model as follows:

> capac.fit2 <- survReg(Surv(days, event) ~ log(voltage),
+ data = capacitor)
> summary(capac.fit2)

Call:
survReg(formula = Surv(days, event) ~ log(voltage), data = 
capacitor)
               Value Std. Error     z         p
 (Intercept)  67.945      8.151  8.34 7.71e-017
log(voltage) -18.546      2.396 -7.74 9.81e-015
  Log(scale)   0.191      0.111  1.71 8.67e-002

Scale= 1.21

Weibull distribution
Loglik(model)= -316.4   Loglik(intercept only)= -372.8

Chisq= 112.71 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 6

Figure 11.4:  Deviance residuals versus fitted values for a model of capacitor failure 
times versus voltage.
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A Final Example
n= 125

Correlation of Coefficients:
             (Intercept) log(voltage)
log(voltage) -1.000
  Log(scale)  0.543      -0.542
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Chapter 12  Life Testing
INTRODUCTION

Parametric regression models for censored data are used in a variety
of contexts ranging from manufacturing to studies of environmental
contaminants. Because of their frequent use for modeling failure time
or survival data they are often referred to as parametric survival
models. In this context they are used throughout engineering to
discover reasons why engineered products fail. They are called
accelerated failure time models or accelerated testing models when the
product is tested under more extreme conditions than normal to
accelerate its failure time. Most product engineering can’t wait long
enough to observe ample failures for fitting models under normal
operating conditions. The results obtained under extreme conditions
are related to the results that would be obtained when the product is
subject to normal wear. Thus, for example, capacitors may be
operated under higher temperatures and voltages than normal to
increase their likelihood of failure. The resulting fitted model is used
to extrapolate failure rates back to normal operating conditions.
Similar use is made of these failure time distributions in the context of
survival analysis where living organisms rather than engineered
products are the primary interest.

In the context of environmental studies, the measures of interest may
be chemical contaminant levels rather than failure times but these
data are frequently censored or obtained from truncated distributions.
Censored and/or truncated data regression methodology applies
equally well in these cases but, of course, the values of interest have
nothing to do with survival.

Model selection is a major concern when using censored regression
models. As in other model fitting activities, the distributional
assumptions that are made must be appropriate for the data collected,
and the model must also reasonably account for variation in the
independent variables. Consequently, visual comparisons of the
predicted (from the model) distribution of the response with
nonparametric estimates of the distribution is an important activity
when fitting models. To obtain the most appropriate model, usually a
number of models with different failure distributions and/or
dependence relationships with the independent variables will be
fitted and compared. Visual comparison and statistical tests are then
used to determine the most appropriate model.
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Introduction
Given that a model has been obtained, the results may be
extrapolated to new values for the independent variables, and
inference procedures may be used to obtain interval estimates for
failure probabilities or quantiles of the response. In doing this, the
usual precautions apply: one should not try to extrapolate model
information too far beyond the values collected in the data.
Moreover, because the interval estimate procedures are asymptotic,
the confidence levels should be treated as approximate, especially in
small samples.

In this chapter we discuss a set of functions for the analysis of
censored and/or truncated data or, more specifically, for the analysis
of accelerated failure time and survival data. These functions are
based upon estimation code originally developed by Meeker and
Duke (1981) and refined subsequently by W.Q. Meeker (personal
communication). This estimation code has been modified slightly for
inclusion in the S-PLUS product. The S-PLUS code which calls the
underlying estimation routines borrows from work done by both
W.Q. Meeker and Terry Therneau. Taken as a whole, these functions
allow you to easily specify and fit censored data models and to graph
and compare the fitted models with appropriate nonparametric
estimates of these models. You can also easily make inferences
regarding the model parameters, predicted failure probabilities, and
quantiles. We begin by briefly discussing the nonparametric estimates
and how they may be computed. This brief introduction is followed
by a complete discussion of the model fitting software for censored
data with emphasis on accelerated failure time models. We then
discuss the “ANOVA” function, which can be used to compare one or
more fitted models, and we describe the various visualizations that
can be performed once a model has been fit. In the final sections of
this chapter, we discuss the estimation of quantiles and failure
probabilities at various points for selected values of the independent
variables.

Previous versions of S-PLUS used the functions survfit, survreg,
coxph, and Surv to fit survival models. The censorReg function
discussed here supersedes the survreg function available in previous
versions of S-PLUS, providing more extensive parametric survival
capabilities. The censor function is a new function for use in
formulas which specifies censoring codes in a more general way than
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does the Surv function. The kaplanMeier function is a companion
function to survfit, providing Kaplan-Meier estimates for survival
models specified by the censor function as in censorReg.

For further reading on analyzing accelerated test data see Nelson
(1990) or Meeker and Escobar (1998).
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The Generalized Kaplan-Meier Estimate
THE GENERALIZED KAPLAN-MEIER ESTIMATE

The Kaplan-Meier estimator produces nonparametric estimates of
failure probability distributions for a single sample of data that
contains the exact time of failure, or contains data that is right censored.
A right censored observation is one in which the failure time is only
known to be greater than the time it was, for some reason, removed
(censored) from the study or experiment. Because we consider data that
may be left censored or observed in a interval and/or grouped as
well, we use a generalization of the Kaplan-Meier estimate originally
developed by Turnbull (1974, 1976).

Specifying 
Interval 
Censored Data

Consider the following (artificial) table of failure times:

Table 12.1:  Failure time format.

unit failure upper censor censor codes

1 7 NA right 0

2 4 NA exact 1

3 5 NA exact 1

4 9 NA right 0

5 3 NA left 2

6 2 9 interval 3

7 7 12 interval 3

8 4 NA exact 1

9 11 NA right 0
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First we define what we mean by the censoring types. Let 
be a random censoring interval and let T be the failure time, and
suppose that C and T are independent (less strict assumptions are
possible; see, for example, Andersen, et al., 1993). Then an
observation is an exact failure if the failure time T is observed so that

. The observation is right censored if the censoring time L is
observed so that . The observation is interval censored if all that is
known is that . Finally, the observation is left censored if all
that is known is that , that is, that the observation is interval
censored with a lower censoring time of zero.

In S-PLUS, a censoring code indicates the type of censoring. Censoring
codes are handled quite generally allowing you to specify a set of
values for each type of censoring. The default codes are: 0 if the
observation is right-censored, 1 if an exact failure, 2 if a left censored
observation, and 3 if an interval censored observation. To specify a
censored distribution dependent variable, you must give both the time
of failure (or censoring) and, except in exact failure (or complete)
data, the censoring code. The S-PLUS function, censor, is used to
specify the dependent variable. For the data in Table 12.1, you must
tell the censor function the data type. Here the correct specification
is (after attaching a data frame with the data in Table 12.1):

> censor(failure, upper, censor.codes)

[1]  7+    4     5     9+    3-   [ 2,  9] [ 7, 12]
[8]  4       11+

When three arguments are specified to censor, the default censoring
type is “interval.” To show the generality of the censor function, an
alternate way of specifying the censor codes is by using the “censor”
column and stating explicitly what the codes are for each of right, left,
event, and interval.

> cens <- censor(failure, upper, Censor, event = “exact”,
+ right = "right", left = "left", interval = "interval")

[1]  7+    4     5     9+    3-   [ 2,  9] [ 7, 12]
[8]  4       11+

While this is more lengthy in this case, it is far more general allowing
the user to specify a vector of codes for each of the four censoring
types, event, right, left, and interval.

C L U( , )=

T L<
T L>

L T≤ U<
0 T U<≤
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It is always a good idea to display the output from the censor function
to verify that you are correctly specifying the censoring information.
This is especially important because it is common practice to reverse
the censoring codes for failure and right censoring, and these values
must be correctly specified if the analysis results are to be meaningful.
An additional check you can do is to examine the censor codes map
as follows:

> censorCodesMap(cens)

   event: exact ==> 1
   right: right ==> 2
    left: left ==> 3
interval: interval ==> 4

The internal codes 1, 2, 3, and 4 are used by the estimation routine.

One other specification to censor allows you to use it with other
routines that require internal codes of 1 (event), 0 (right), 2 (left), and
3 (interval), that is, coxph, survreg and survfit. Setting the
outCodes argument to "0-3" results in the internal codes those
routines require:

> cens <- censor(failure, upper, Censor, right = "right",
+ left = "left", event = "exact", interval = "interval",
+ outCodes = "0-3")
> censorCodesMap(cens)

   event: exact ==> 1
   right: right ==> 0
    left: left ==> 2
interval: interval ==> 3

The outCodes argument to censor allows you to generate the
equivalent of the output from Surv so you can pass it to those functions
which require an object of class "Surv". A simple example shows the
idea. You can fit a model using coxph with the following call to
censor:

> coxph(censor(time, status, outCodes= "0-3") ~ age + sex,
+ data = lung)
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When you specify outCodes = "0-3", not only are the output codes
set accordingly but the return value of censor inherits from "Surv",
which is required by coxph. You can also go the other way, from
Surv to censor, by selecting each column of a "Surv" object to pass
to censor.

Computing 
Kaplan-Meier 
Estimates

The kaplanMeier function is used to compute Kaplan-Meier
estimates and Turnbull’s generalization of the Kaplan-Meier
estimates. It generalizes survfit by allowing left and interval
censored data, and it uses the same formula specification as the
censorReg function discussed later in this chapter. For the data in
Table 12.1, the S-PLUS statements are:

> kaplanMeier(censor(failure, upper, censor.codes) ~ 1,
+ data = int.data)

This results in output

Number Observed: 9
Number Censored: 6
Confidence Type: identity
            Survival Std.Err 95% LCL 95% UCL
(-Inf,   2]    1.000   0.000   1.000   1.000
(   3,   4]    0.861   0.127   0.646   1.000
(   4,   5]    0.583   0.173   0.386   0.781
(   5,   7]    0.444   0.166   0.300   0.589
(   9,  11]    0.444   0.166   0.300   0.589
(  12, Inf)    0.000   0.000   0.000   0.000

In the output, each row begins with a label indicating the observation
interval. The time interval is followed by the survival estimate, the
standard error for the estimate and approximate confidence intervals
for the estimate.

The kaplanMeier model computed above estimates the survival
curve for a single sample. If independent variables were available in
the sample, the values of all the independent variables must be
identical if the results from kaplanMeier are to be meaningful. If an
independent variable is used on the right side of the formula it is
treated as a stratification variable and separate survival curves are
estimated for each value of the independent variable(s).
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Consider the capacitor2 data set distributed with S-PLUS. This data
set contains four variables:

• days gives the time of failure or censoring.

• event gives the censoring code (1 is a failure at time days,
while 0 is right censoring at time days).

• weights gives the number of observations represented by
that row.

• voltage gives the voltage at which the capacitor was tested
(there are four distinct voltages in the data set).

To analyze the failure date without regard to the test voltage, the
statement

> kaplanMeier(censor(days, event)~1, weights = weights,
+ data=capacitor2)

would be used. However, this would ignore the different test voltages.
An alternate analysis computes a nonparametric estimate of the
failure time for each voltage. This is done with the statement

> km.cap <- kaplanMeier(censor(days, event) ~voltage,
+ weights = weights, data=capacitor2)

with result

voltage=20
Number Observed: 25
Number Censored: 25
[1] Not enough failures available to fit a nonparametric 
censored data model

voltage=26
Number Observed: 50
Number Censored: 39
Confidence Type: identity
                 Survival Std.Err 95% LCL 95% UCL
(  -Inf,  12.95]     1.00   0.000   1.000   1.000
( 12.95,  28.41]     0.98   0.020   0.942   1.000
( 28.41,  63.10]     0.96   0.028   0.908   1.000
( 63.10, 136.33]     0.94   0.034   0.878   1.000
(136.33, 139.37]     0.92   0.038   0.851   0.989
(139.37, 179.02]     0.90   0.042   0.825   0.975
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(179.02, 187.80]     0.88   0.046   0.801   0.959
(187.80, 201.28]     0.86   0.049   0.777   0.943
(201.28, 214.28]     0.84   0.052   0.755   0.925

.

.

.

For voltage = 20, there are not enough observations in the sample
to compute estimates. For voltage = 26, voltage = 29, and
voltage = 32, estimates are computed and displayed in separate
tables.

The Kaplan-Meier estimates of failure probabilities can also be used
to compute nonparametric estimates of the quantiles. For example,
the statements

> qkaplanMeier(km.cap, p = seq(.1, to = .9, by = .1))

produce the result

$"voltage=20":
[1] NA

$"voltage=26":
    0.1    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 139.37 271.73 Inf Inf Inf Inf Inf Inf Inf

$"voltage=29":
   0.1   0.2   0.3    0.4   0.5    0.6 0.7 0.8 0.9
 45.85 55.73 91.81 108.62 164.2 257.88 Inf Inf Inf

$"voltage=32":
  0.1  0.2  0.3   0.4   0.5   0.6  0.7   0.8   0.9
 2.81 5.45 6.26 11.51 15.16 20.86 65.9 94.08 149.2

for the quantiles. Notice that because no failures were observed
beyond 300 days, survival drops to 0.0 in the final intervals for 26 and
29 volts, resulting in quantile estimates that are infinite. The true
value is, of course, finite, but is not estimable from this data.
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Plotting 
Kaplan Meier 
Survival Curves

The plot method for the kaplanMeier function produces a plot of the
estimated survival curves with optional confidence bands. For
example, you can plot the fit, km.cap, from the previous section:

> plot(km.cap)

To add confidence intervals to the curves, specify a logical vector to
the conf.int argument as follows:

> plot(km.cap, conf.int = c(T, T, T))

Figure 12.1 displays the resulting plot.

The conf.int argument allows you to specify confidence intervals
for each curve independently so you can turn some on and some off.
Confidence intervals are automatically added when only one survival
curve is plotted, as for a nonstratified fit. When more than one curve
is plotted with confidence intervals, the line type for the confidence
interval automatically matches that of the survival curve.

Figure 12.1:  Plot of km.cap.
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Additional arguments to plot.kaplanMeier allow you to specify the
color of the survival curves (with color-matching confidence
intervals), the line type and line width of the curves (and confidence
intervals, if specified), x-axis and y-axis labels, and other arguments to
the plot function, such as xlim for specifying x-axis limits and main
for specifying a main title for the plot.

You can also use plot.kaplanMeier as a low-level graphics function
for adding survival curves to an existing plot. This requires, of course,
that the axis limits be set appropriately so that warning messages are
not generated when the added curves and/or their confidence
intervals extend beyond the range of the plot region. An example
uses the built-in data set lung. Do a stratified fit on institution, the
inst column, and then plot two curves from the fit and overlay a
third, as follows:

> kap.lung <- kaplanMeier(censor(time, status) ~ inst,
+ data = lung, na.action = na.omit)
> plot.kaplanMeier(kap.lung$fits[c(1, 5)])
> plot.kaplanMeier(kap.lung$fits[9], conf.int = T, lty = 4,
+ add = T)

Note that the plot.kaplanMeier function is called explicitly here
because once fits are subscripted out of the fit object they lose their
class designation. Also note that the above example is for pedagogy
only. It could more easily be accomplished by doing the plots in a
single call to plot.kaplanMeier, as follows:

> plot.kaplanMeier(kap.lung$fits[c(1,5,9)],
+ conf.int = c(F, F, T)

Figure 12.2 shows the result of this latter call.
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Figure 12.2:  Plot of kap.lung.
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PARAMETRIC SURVIVAL MODELS

Parametric, rather than nonparametric, estimates of the failure
distributions can also be easily computed. All estimates are computed
by the censorReg function. Like kaplanMeier, censorReg can
handle interval and other censoring. In addition, the censorReg
function can handle three general families of failure distributions with
logged and unlogged versions, truncated data, offsets, a “threshold”
parameter, fixed coefficients, and much more.

An Example 
Model

As the simplest possible example, use the defaults for most arguments
in a censorReg model with no covariates. Possible S-PLUS statements
for the capacitor data are:

> censorReg(censor(days,event) ~ 1, weights = weights,
+ data=capacitor2)

with resulting display

Call:
censorReg(formula = censor(days, event) ~ 1, data = 
capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept)
    6.704817

Dispersion (scale) = 1.821207
Log-likelihood: -372.7664

Observations: 125 Total; 71 Censored
Parameters Estimated: 2

As with the kaplanMeier function, the response is specified by the
censor function. Because the model formula contains no covariates,
a parametric model is fit for a single sample of observations. In this
case, the parametric family defaults to the Weibull distribution.

In the output the location parameter for the Weibull distribution is
estimated as 6.704, and the scale parameter is estimated as 1.82.
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As with other S-PLUS model fitting functions, the summary function
can be used to obtain a more detailed summary of the fit. Following is
the result of calling summary on the fit object:

Call:
censorReg(formula = censor(days, event) ~ 1, data = 
capacitor2, weights = weights)

Distribution:  Weibull

Standardized Residuals:
             Min   Max
Uncensored 0.020 0.553
  Censored 0.577 0.577

Coefficients:
            Est. Std.Err. 95% LCL 95% UCL z-value   p-value
(Intercept)  6.7    0.296    6.12    7.29    22.6 3.01e-113
Extreme value distribution: Dispersion (scale) = 1.821207
Observations: 125 Total; 71 Censored
-2*Log-Likelihood: 746

Specifying the 
Parametric 
Family

The parametric distribution family is specified by inputting one of the
10 distributions that are supported by censorReg. These are
displayed in Table 12.2. The distribution argument to censorReg
is the quoted string in the first column, along with the character string
that is supplied to censorReg as the distribution argument.

Table 12.2:  Distributions supported by censorReg.

censorReg Argument Distribution

“weibull” Weibull

“extreme” smallest extreme value

“lognormal” log-normal or log-gaussian

“normal” normal or gaussian
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The following discussion describes the internal specification of the
parametric distribution families as they are viewed by the estimation
routines. The general user need not be concerned with this aspect of
the family specification. It is included here for the user who wants or
needs access to the internal routines.

Internally the distributions are defined by two quantities (following
the development of standard textbooks on parametric survival
analysis), the distribution of the random variable and the link
function. Let g (•) denote the link function, and let

be the random variable for failure time y. Here σ is the scale factor, x
is a vector of covariates (in the simplest model , the intercept
term), and β is a vector of coefficients. The term χβ specifies the
“location” of the estimates. Two link functions g (•) are possible:

,

the “identity” link, and

,

“loglogistic” log-logistic

“logistic” logistic

“logexponential” log-exponential

“exponential” exponential; same as extreme with
sigma = 1

"lograyleigh” log-Rayleigh

Table 12.2:  Distributions supported by censorReg. (Continued)

censorReg Argument Distribution

z
g y( ) xβ–

σ---------------------=

x 1=

g x( ) x=

g x( ) xlog=
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Parametric Survival Models
the “log” link. Three distributions for z are available. These are the
“logistic”

,

the “normal” or “gaussian” distribution

,

and the “smallest extreme value” distribution

.

When the log link is used with a fixed value of , the smallest
extreme value distribution becomes an exponential distribution. If

, this becomes the Rayleigh distribution. As indicated above,
when the smallest extreme value distribution is used with the log-link,
the distribution can be made equivalent to the (two-parameter)
Weibull distribution in which

Here,  is the “shape” parameter.

Typically failure times are positive since failure at a negative time is
not usually meaningful. However, when the identity link function is
used, it is possible to input negative values for the survival times into
censorReg. For example, a gaussian distribution takes values over
the entire real line.

To fit a “gaussian” model to the capacitor2 data, you type

> censorReg(censor(days,event) ~ 1, data=capacitor2,
+ distribution=”gaussian”)

The hazard rate is the instantaneous rate of failure. This can be
computed simply as the first derivative of the failure density with
respect to time. Different distributions result in different hazard rates,

f z( ) exp z–( )
1 exp z–( )+( )2

------------------------------------=

f z( )
1
2π

----------exp 1
2
---z2–=

f z( ) exp z exp z( )–( )=

σ 1=

σ 0.5=

f z( )
1

σexp xβ( )
-----------------------

z
exp xβ( )
------------------- 

 
1
σ
--- 1–

exp x
exp xβ( )
------------------- 

  1 σ/
– 

 =

θ 1
σ
---=
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and thus in different models. Much time in model building can be
spent in deciding upon the correct model that should be used. The
plotting functions discussed below can help in making this decision.

Accounting for 
Covariates

In the censorReg models above, we considered only a single sample
of observations from the same distribution. Typically, a survival
model also includes covariate(s) to describe the distribution.
Accelerated failure time models, for example, include covariates
occurring in designed experiments in which the covariate is held
fixed at a specified value for some observations, and the time to
failure for these observations is observed. For example, in the
capacitor data, four values of the covariate voltage were used:
voltage = 20, voltage = 26, voltage = 29, and
voltage = 32. Suppose we assume that the location parameter
varies linearly with the covariate, for example, that

for intercept α0. Here, x is voltage. This model may be fitted using the
S-PLUS statements

> censorReg(censor(days, event) ~ voltage,
+ weights = weights, data=capacitor2)

with resulting output:

Call:
censorReg(formula = censor(days, event) ~ voltage, data = 
capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept)    voltage
    24.14083 -0.6403586

Dispersion (scale) = 1.203945
Log-likelihood: -316.4589

Observations: 125 Total; 71 Censored
Parameters Estimated: 3

z
g y( ) α0– α1x–

σ-------------------------------------=
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In the above model, the location parameter is obtained by
“regression” on voltage. This requires a linear relationship of the
hazard rate on voltage. Assuming that the relationship is not linear, a
more general model fits

In this model, i indexes the different voltages, and the location
parameter is allowed to vary in an arbitrary manner with voltage.
Fitting this model is accomplished simply as

> censorReg(censor(days, event) ~ factor(voltage),
+ weights = weights, data=capacitor2)

Alternatively, supposing that the scale parameters are different for
different values of the covariate, a model

can be fit using the S-PLUS statements

> censorReg(censor(days, event) ~ strata(voltage),
+ weights = weights,  data=capacitor2)

In all but the last case, an object of class “censorReg” is produced. In
the last example when the strata function is used to create a stratified
fit, an object of class "censorRegList" is produced. This object
contains a list of class "censorReg" objects.

The anova function is used to compare the models described above.
This is discussed in more detail below.

z
g y( ) α0– αi–

σ---------------------------------=

z
g y( ) α0– αi–

σi
---------------------------------=
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Truncation 
Distributions

Aside from the distributions above, it is also possible to specify a
different truncation distribution for each observation. Consider the
following table of failure times.

In truncated data, the item being tested is not observed over the
entire positive axis. Instead, observation of the item is made over a
known interval that is a subset of the time period in which the
observation could fail. Thus, if there is left truncation, the items under
test may be manufactured, used for a time, and then placed on test.
Although the time to failure is scored as the time since manufacture,
items that fail prior to being placed on test are not scored. Let 
be the time of manufacture, and suppose that testing is not begun
until . Then if  is the cumulative distribution of the failure
time when observation starts at time zero, then the cumulative
distribution of the truncated failure times is given by

Table 12.3:  Truncated data.

unit failure upper censor censor.code tlower tupper trunc codes

1 7 NA right 0 3 NA 2

2 4 NA exact 1 0 NA 1

3 5 NA exact 1 0 NA 1

4 9 NA right 0 3 NA 2

5 4 NA left 2 9 NA 0

6 5 9 interval 3 3 20 3

7 7 12 interval 3 3 20 3

8 4 NA exact 1 0 NA 1

9 11 NA right 0 3 NA 2

t 0=

t θ= F θ( )

F t θ( ) F t( )
1 F θ( )–
-------------------=
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Similarly, in right truncation, observation of failure or censoring is
only made until  so that observations that fail or are censored
after time θ cannot be observed (or are thrown out). Finally, in
interval truncation, observation is made over a fixed interval ,
and observations that fail or are censored outside of the interval are
not considered.

Truncation distributions can easily be fit using the censorReg
function. For example, to obtain a “gaussian” fit to the data above,
one would use:

> tmp <- censorReg(censor(failure, upper, cens) ~ 1,
+ data=table4, truncation = censor(tlower, tupper,
+ tcode), distribution = "lognormal")

which results in output:

Call:
censorReg(censor(failure, upper, cens) ~ 1, data = table4, 
truncation = censor(tlower, tupper, trunc.codes), 
distribution = "lognormal")
Distribution: Lognormal

Coefficients:
 (Intercept)
    1.920974

Dispersion (scale) = 0.9211897
Log-likelihood: -12.49965

Observations: 9 Total; 6 Censored
Parameters Estimated: 2

Because the log-likelihood is more complex (numerically) when
truncation distributions are used, it is important to verify
convergence. Here, convergence is verified by the near zero values of
the first derivatives of the log-likelihood. The above model was
temporarily saved in tmp, so we can extract the derivatives as follows:

> tmp$first.deriv

    (Intercept)          scale
 -6.594777e-010 -4.993228e-009

t θ=

θ1 θ2,( )
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Threshold 
Parameter

Truncation distributions modify the fitted distribution by considering
failure in a smaller region of the positive real line. A distribution with
a threshold parameter also modifies the failure distribution, but in a
slightly different way. The idea of the threshold parameter is that test
items cannot fail for a period of time after testing begins. Thus,
although testing begins at time zero, no tested item will fail for some
fixed period g after time zero. Thus, the failure distribution is given
by . The net effect of the threshold parameter is to
shift the failure distribution to the right by a fixed amount.

Maximum likelihood estimation of γ is not easily accomplished.
There is some discussion of this in Meeker and Escobar (1998, pp.
224-231). You can either compute the value of γ yourself and enter it
as input to the censorReg function, or censorReg can be asked to
estimate γ in two different ways. The first is to simply decrease the
smallest value by 10%. The second works only for log distributions
and computes a value for γ which optimally linearizes a qqplot of the
Kaplan-Meier estimate of survival and the (censored) observations.
By default, . Once computed, γ is carried along with the
censorReg object for further computations and information.

For the example in the table above we can set the threshold parameter
to equal two as follows:

> censorReg(censor(failure, upper, cens) ~ 1,
+ data = table4, truncation = censor(tlower, tupper,
+ tcode), distribution = "lognormal", threshold = 2)

This yields output:

Call:
censorReg(formula = censor(failure, upper, censor.codes) ~ 
1, data = table4, truncation = censor(tlower, tupper, 
trunc.codes), distribution = "lognormal", threshold = 2)

Distribution: Lognormal

Coefficients:
 (Intercept)
    1.664897

Dispersion (scale) = 1.38711
Log-likelihood: -12.23809

F t γ( ) F t γ–( )=

γ 0=
376



Parametric Survival Models
Observations: 9 Total; 6 Censored
Parameters Estimated: 2
Threshold Parameter: 2

Notice that the coefficient estimates have dramatically changed.

Offsets Offsets are also used to change the distribution of the failure time
variable. Let ω denote the offset and let y denote the failure time.
When offsets are used, the transformed failure time becomes

where the offset ω is a known and fixed value.

A typical use of offsets is in likelihood ratio tests. Suppose that

 optimizes the likelihood when covariates  and  are

included in the model. Then a likelihood ratio test of  is

obtained by setting  and comparing the optimized value of

the likelihood of a model  with the optimized likelihood for

model .

We illustrate using the capacitor2 failure data discussed above.
When “voltage” is included in the model the output is:

Call:
censorReg(formula = censor(days, event) ~ voltage, data = 
capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept)    voltage
    24.14083 -0.6403586

Dispersion (scale) = 1.203945
Log-likelihood: -316.4589

Observations: 125 Total; 71 Censored
Parameters Estimated: 3

z
g y( ) ω– xβ–

σ--------------------------------=

x1β̂1 x2β̂2+ x1 x2

H0:β̂1 κ=

ω x1κ=

ω x2β̂2+

x1β̂1 x2β̂2+
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A likelihood ratio test that the voltage coefficient is fixed at -0.5 is
obtained by fitting a second model with offset specified to fix the
parameter estimate of voltage.

> censorReg(censor(days, event) ~ offset(-0.5*voltage),
+ weights = weights, data=capacitor2)

which yields output

Call:
censorReg(formula = censor(days, event) ~ offset(-0.5 * 
voltage), data = capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept)
    19.94567
Dispersion (scale) = 1.090527
Log-likelihood: -1129.826

Observations: 125 Total; 71 Censored
Parameters Estimated: 2
Offset has been specified

Computing the likelihood ratio test from the above two fits by hand
we get

LRT = -2*(-1129.8 + 316.5) = 1626.6

which is compared with a chi-squared distribution with one degree of
freedom. Clearly, this is a significant result.

Fixing 
Parameters

It is also possible to simply fix parameters in the model. Most often
this will be the scale parameter, but it is possible to fix any parameter.
For example, in the capacitor example we may fix the voltage
coefficient to be -0.5 using

> censorReg(censor(days, event) ~ voltage, data=capacitor2,
+ weights = weights, fixed=list(voltage=-0.5))
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which produces the following result:

Distribution: Weibull

Coefficients:
 (Intercept)
    19.94567

Dispersion (scale) = 1.090527
Log-likelihood: -1129.826

Observations: 125 Total; 71 Censored
Parameters Estimated: 2

Comparing this with the results in which offset is set, we see that the
effect of fixing voltage to be -0.5 is the same as specifying the offset as
-0.5*voltage.
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COMPARING PARAMETRIC SURVIVAL MODELS

The anova function is used to compare models. If a single object is
input to anova, then one term at a time is added to the model starting
from the smallest possible model (usually the intercept-only model)
until the model contained in the object is obtained. As an example,
consider the following model:

> fit <- censorReg(censor(days, event) ~ voltage +
+ voltage^2, weights = weights, data = capacitor2)

Applying the anova function to fit as follows

> anova(fit, test = "Chi")

produces

Likelihood Ratio Test Table

Weibull model

Response: censor(days, event)

Terms added sequentially (first to last)
             N.Params -2*LogLik Df      LRT   Pr(Chi)
        NULL        2  745.5327
     voltage        3  632.9178  1 112.6149 0.0000000
I(voltage^2)        4  632.8494  1   0.0684 0.7937407

It is suggested by the display that the location parameter of the
distribution depends on voltage only linearly. The quadratic term is
unimportant. We’ll verify this with other models and graphically
below.

When two or more class censorReg or class censorRegList objects
are input into the anova function, the models are compared with
likelihood ratio tests. Suppose we are interested in testing whether the
model for the capacitor data should be

z
g y( ) xβ–

σ
---------------------=
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where x is voltage. More general models (in the sense of having more
parameters) are

for voltage i, or

These three models plus an intercept-only model can be generated in
S-PLUS using the following statements:

> fit0 <- censorReg(censor(days,event) ~ 1,
+ weights = weights, data=capacitor2)
> fit1 <- censorReg(censor(days,event) ~ voltage,
+ weights = weights, data=capacitor2)
> fit2 <- censorReg(censor(days, event) ~ factor(voltage),
+ weights = weights, data=capacitor2)
> fit3 <- censorReg(censor(days, event) ~ strata(voltage),
+ weights = weights, data=capacitor2)

The models are then compared using the anova function as follows:

>anova(fit0, fit1, fit2, fit3,test=”Chisq”)

which yields the display:

Likelihood Ratio Test(s)

Response: censor(days, event)

     Terms N.Params -2*LogLik      Test Df     LRT  Pr(Chi)
1         1       2   745.53
2      voltage    3   632.92  + voltage  1 112.615  0.0000
3 factor(voltage) 5   632.37    2 vs. 3  2   0.547  0.7605
4 strata(voltage) 6   630.40    3 vs. 4  1   1.973  0.1601

The evidence is now quite strong that we can’t do any better than the
model which relates the location parameter of the distribution to a
linear regression (single parameter) model in voltage. We can verify
this by looking at graphics

z
g y( ) αi–

σ
--------------------=

z
g y( ) αi–

σi
--------------------=
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PLOTS FOR PARAMETRIC SURVIVAL MODELS

The plot method for objects of class censorReg generates four to six
plots depending on the type of fit. You can generate all possible plots
for a censorReg fit object by simply using the plot function as
follows:

> plot(fit1)

The first three plots resulting from the above call are equivalent to
those produced for fit objects of class lm or glm so they won’t be
discussed further here.

The last four are different and are presented in Figure 12.3 through
Figure 12.6.

Figure 12.3 displays a probability plot of the standardized residuals.
The standardization of the residuals is described in Meeker and
Escobar (1998) and referred to by them as “censored Cox-Snell”

Figure 12.3:  Probability plot of standardized residuals with maximum likelihood 
estimate.

� �
 � �� � 
� � �� 
 ��

 ���

 �


 ��

 ��

 ��

 


 �

 �

 �

 !

 "

 "#

 """

������� �	
�������
 ��
�
���� ���

$��	� ������	� ������ % &�
'��������

(
�
��

�
��

$
��

�
�
�
��
��
��

�

382



Plots for Parametric Survival Models
residuals. A maximum likelihood estimate of a null model (intercept
only) is displayed in the plot along with the residuals for diagnostic
purposes.

Figure 12.4 displays a probability plot of the fitted model along with
the noncensored observations. Each line and each set of points
corresponds to the fit and noncensored observations for a different
value of the covariate. This plot gives a good assessment of the fit.
However, it is currently only available for single covariate models.
The censorReg function is not constrained to single covariates, but
this plotting function is. You can access this function directly by
calling probplot. See the help file for probplot.censorReg for
more details.

Figure 12.4:  Probability plot of the fit with maximum likelihood estimates.
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Chapter 12  Life Testing
Figure 12.5 displays what engineers refer to as a stress plot. It plots the
noncensored observations and equi-probability lines for the predictor
variable (the stressor) verus failure times. It is quite clear from the
graph that as voltage (stress) decreases, failure times increase. This
plot is also constrained to single covariate regression models. For
more details, see the help file for stressplot.censorReg.

The final diagnostic plot, also for a fit with a single covariate, is
displayed in Figure 12.6. This is the same plot as Figure 12.4 but
repeated for six distributions. The distributions are the weibull, the
lognormal and loglogistic coupled with their nonlogged counterparts.
This plot is provided primarily for distribution assessment. It’s quite
clear from Figure 12.6 that a nonlogged distribution does not fit the
data well. Exactly which logged distribution fits best is not so clear.
For more information on this plot function see the help file for
probplot6.censorReg.

Figure 12.5:  Stress plot of the fit.
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Plots for Parametric Survival Models
As mentioned above, the three plotting functions
probplot.censorReg, stressplot.censorReg, and
probplot6.censorReg are called by the plot method for a
censorReg object. These functions, however, were designed to be
called directly and provide more capabilities than are available
through the general plot method. One primary example of this is the
method argument to each of these plotting functions which allows the
plotted points to be computed based upon some alternative model.
This argument defaults to the "KM", or Kaplan-Meier, estimates, but
four other sets of estimates are possible. These are:

1. The "one" or null (intercept only) model, in which case

for location parameter µ.

Figure 12.6:  Six-distribution plot of the fit.

� � �� �� ���
������

�����

�����

����

���

���

��

��

��

��	



��


�


���
��

�������

������� ����
� �� ��� ��� ��� ��� ���

���	�
�

������� ����

� � �� �� ���

������

�����

����
���

��

��
��
��

��

��	
����
����



��


�


���
��

���
�	
��

������� ����
� �� ��� ��� ��� ��� ���


�	
��

������� ����

� � �� �� ���
������

�����

����

���

���

��

��

�	

���

���

���	

�����



��


�


���
��

�����������

������� ����
� �� ��� ��� ��� ��� ���

��������

������� ����

z
g y( ) µ–

σ
-------------------=
385



Chapter 12  Life Testing
2. The "regression" model, which allows

for covariate x.

3. The "factor" model, which uses

for covariate values i to compute separate locations for each
value of the covariate, and

4. "separate" model, which is the most general single-variable
parametric model that allows separate location and scale
parameter estimates for each value of the covariate.

For our example, comparing the regression fit with the more general
"separate" fit in the probability plot is accomplished using the
statement

> probplot(fit1, method=”separate”, add.legend=T,
+ legend.loc = “auto”)

which results in the plot shown in Figure 12.7.

z
g y( ) xβ–

σ
---------------------=

z
g y( ) αi–

σ
--------------------=

z
g y( ) αi–

σi
--------------------=
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Plots for Parametric Survival Models
The plotted points in Figure 12.7 are obtained from the “separate”
model and show some deviation from the “regression” model.
However this is not statistically significant as we saw previously when
we compared the models using a likelihood ratio test. You can also
add confidence intervals to the plot for each maximum likelihood
estimate to get a feel for the variability of the estimated distribution(s).

Figure 12.7:  Probability plot for comparing models.
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Chapter 12  Life Testing
COMPUTING PROBABILITIES AND QUANTILES

The predict method for censorReg objects computes predictions
from a fitted model on either probability or response scales at
designated quantiles or probabilities, respectively, for specified
covariate values. For example, suppose you want to estimate the time
to 10%, 50%, and 90% failure from our regression model for the
capacitor2 data for values of voltage at 16, 20, and 24. The the call
to the predict function is

> predict(fit1, newdata = data.frame(voltage =
+ c(16, 20, 24)))

with resulting display:

$"voltage=16":
      Estimate  Std.Err   95% LCL    95% UCL
0.1   72097.22 1.028782   9598.82   541525.8
0.5  696503.03 1.133190  75570.05  6419427.9
0.9 2955616.38 1.217862 271644.96 32158403.5

$"voltage=20":
      Estimate   Std.Err   95% LCL    95% UCL
0.1   5565.468 0.7211182  1354.206   22872.76
0.5  53765.809 0.8136006 10913.602  264877.00
0.9 228155.656 0.8986737 39199.343 1327956.02

$"voltage=24":
      Estimate   Std.Err   95% LCL   95% UCL
0.1   429.6203 0.4384364  181.9228  1014.571
0.5  4150.3943 0.5003670 1556.5971 11066.302
0.9 17612.2327 0.5853507 5591.9462 55470.980

Operating the capacitor at 16 volts increases its life span by about 170
times compared to operating at 24 volts. The probability values
(proportion failed) are 0.1, 0.5, and 0.9 by default when calling the
predict function. That can be modified by specifying the p
argument. For example to compute the 10%, 20%, and 30% failure
times you would enter

> predict(fit1, p = c(.1,.2,.3),
+ newdata = data.frame(voltage = c(16, 20, 24)))
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Computing Probabilities and Quantiles
Alternatively, to predict proportion failed or failure rates for given
quantiles of the failure time distribution, you specify
type = “probability” as an argument to predict. Let’s compute
the failure rates for the same set of voltage values at 1000, 2000, and
3000 days.

> predict(fit1, q = c(1000, 2000, 3000), type = "prob",
+ newdata = data.frame(voltage = c(16, 20, 24)))

$"voltage=16":
        Estimate   Std.Err      95% LCL    95% UCL
1000 0.003011831 0.7981976 0.0006315958 0.01423447
2000 0.005350046 0.7977207 0.0011250641 0.02504342
3000 0.007484339 0.7997419 0.0015703341 0.03489259

$"voltage=20":
       Estimate   Std.Err     95% LCL    95% UCL
1000 0.02500204 0.5845648 0.008088394 0.07462304
2000 0.04403085 0.5949867 0.014147239 0.12879193
3000 0.06111373 0.6058481 0.019466567 0.17587955

$"voltage=24":
      Estimate   Std.Err    95% LCL   95% UCL
1000 0.1914712 0.4138868 0.09520448 0.3476748
2000 0.3147595 0.4679518 0.15510243 0.5347458
3000 0.4110080 0.5191918 0.20142736 0.6587655

The difference is again dramatic when comparing 16 and 24 volts.
After 1000 days you expect only about 3 out of 1000 capacitors to fail
when operated at 16 volts compared to 19 out of 100 when operated
at 24 volts.

Additional arguments to predict allow you to specify the confidence
level (referred to as coverage by the function) of the confidence
intervals and whether or not you want to print the standard errors and
confidence intervals.
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Chapter 13  Expected Survival
INTRODUCTION

This chapter describes several methods for estimating expected
survival curves. Typically expected curves are used for comparison
with another study. Sometimes the results of an earlier study are
compared with a later one to assess, for example, improvement in
treatment. Expected survival curves can be computed from tables of
hazards rates or from a previously computed Cox model.

The methodology described in this chapter includes the computation
of individual and cohort expected survival curves. Individual expected
curves are typically used to compute tests to compare the observed
survival with that expected (for example, the one-sample log-rank
test) for a matched (for example, on age, sex, and year of entry)
control population. Cohort expected curves are useful for graphical
comparisons, sample size computations, and forecasting.

Three methods are available for computing cohort expected survival
curves: the Ederer or “exact” method, Hakulinen’s method, and the
conditional estimate. In the Cox model literature, these have been
called the “direct-adjusted,” “Bonsel,” and “expected survival” curves.
Each method generates a matched control for each subject in the
study and then computes the expected survival for the matched
controls. The difference between the methods lies in the assumptions
made when computing the expected survival. The basic assumptions
of each and a brief description of its utility follows:

• Ederer: Assumes complete follow-up, that is, no censoring. Each
control is followed until death. This is most appropriate when
doing forecasting, sample size calculations or other
predictions of the “future” where censoring is not an issue.

• Hakulinen: Assumes maximal potential follow-up. Each control
is followed until death or censoring of its matched case. Useful
for graphical comparison with the study population.

• Conditional: Has the same assumptions and is asymptotically
equivalent to Hakulinen’s method.

The implementation of expected survival curve estimation allows
adding your own table of hazard rates or computing expected
survival based on a previous Cox model. Additionally, the notion of
person years of follow-up time is discussed as an example.
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Individual Expected Survival
INDIVIDUAL EXPECTED SURVIVAL

Let  and  be the derived hazard and cumulative hazard
functions, respectively, for subject i, starting at their time of entry to
the study. Then  is the subject’s expected survival
function.

Some authors use the product form  where the q
are yearly probabilities of death, and yet others an equation similar to
actuarial survival estimates. Numerically it makes little difference
which form is chosen, and the S functions use the hazard based
formulation for its convenience.

The survival tables published by the Department of the Census
contain one year survival probabilities by age and sex, optionally
subgrouped as well by race and geographic region. The entry for age
21 in 1950 is the probability that a subject who turns 21 during 1950
will live to his or her 22nd birthday. The tables stored in S contain the
daily hazard rate λ rather than the probability of survival p

for convenience. If a, s, and y are subscripts into the age by sex by
calendar year table of rates, then the cumulative hazard for a given
subject is simply the sequential sum of

. That is, the patient progresses
through the rate table on a diagonal line whose starting point is (date
of entry, age at entry, sex); see Berry (1983) for a nice graphical
illustration.

λ i t( ) Λ i t( )

Si t( ) exp Λi t( )–( )=

S 1 Π 1 qk–( )–=

p exp 365.25 λ×–( )=

λasy number of days in state a s y, ,( )×
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Chapter 13  Expected Survival
COHORT EXPECTED SURVIVAL

The expected survival curve for a cohort of n subjects is an “average”
of the n individual survival curves for the subjects. There are 3 main
methods for combining these; for some data sets they can give
substantially different results. Let Se be the expected survival for the
cohort as a whole, and Si, λi be the individual survival and hazard
functions. All three methods can be written as

and differ only in the weight function wi.

The cohort curve should be distinguished from the individual curve
for an average subject. For example, assume we had a cohort of
grandfathers and their grandsons, the grandfathers average 70 years
and the grandsons average 10 year of age. The cohort curve, which is
an estimate of the curve we would expect from long term follow-up of
these subjects, is considerably different than the curve for the
“average” subject with mean age of 40 years.

The Exact 
Method

A weight function of wi(t) = Si(t) corresponds to the exact method. This
is the oldest and most commonly used technique, and is described in
Ederer, Axtel and Cutler (1961). An equivalent expression for the
estimate is

The exact method corresponds to selecting a population matched
control for each subject in the study, and then computing the
expected survival of this cohort assuming complete follow-up. The exact

(13.1)Se t( ) exp
λ i s( )wi s( )∑

wi s( )∑
-------------------------------- sd

0

t∫–
 
 
 
 

=

(13.2)Se t( ) 1 n⁄( ) Si t( )∑=
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Cohort Expected Survival
method is most appropriate when doing forecasting, sample size
calculations or other predictions of the “future” where censoring is
not an issue.

A common use of the expected survival curve is to plot it along with
the Kaplan-Meier estimate of the sample in order to assess the relative
survival of the study group. When used in this way, several authors
have shown that the exact method can be misleading if censoring is
not independent of age and sex (or whatever the matching factors are
for the referent population). Indeed, independence is often not the
case. For example, in a long study it is not uncommon to allow older
patients to enroll only after the initial phase. A severe example of this
is demonstrated in Verheul, et al. (1993), concerning aortic valve
replacement over a 20 year period. The proportion of patients over
70 years of age was 1% in the first ten years, and 27% in the second
ten years. Assume that analysis of the data took place immediately at
the end of the study period. Then the Kaplan-Meier curve for the
later years of follow-up time will be too flat, since it is computed only
over the early enrollees, who are younger on the average. The Ederer
or exact curve will not reflect this bias, and makes the treatment look
better than it is. The exact expected survival curve forms a reference
line, in reality, for what the Kaplan-Meier will be when follow-up is
complete, rather than for what the Kaplan-Meier is now.

Hakulinen’s 
Method

In Hakulinen’s method (1982, 1985), each study subject is again
paired with a fictional referent from the cohort population, but this
referent is now treated as though he/she were followed in the same
way as the study patients. Each referent thus has a maximum potential
follow-up; that is, they will become censored at the analysis date. Let
ci(t) be a censoring indicator which is 1 during the period of potential
follow-up and 0 thereafter; the weight function for the Hakulinen or
cohort method is wi(t) = Si(t)ci(t).

If the study subject is censored then the referent would presumably
be censored at the same time, but if the study subject dies the
censoring time for his/her matched referent will be the time at which
the study subject would have been censored. For observational studies or
clinical trials where censoring is induced by the analysis date this
should be straightforward, but determination of the potential follow-
up could be a problem if there are large numbers lost to follow-up.
(However, as pointed out long ago by Berkeson, if a large number of
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Chapter 13  Expected Survival
subjects are lost to follow-up then any conclusion is subject to doubt.
Did patients stop responding to follow-up letters at random because
they were cured or because they were at death’s door?)

In practice, the program will be invoked using the actual follow-up
time for those patients who are censored and the maximum potential
follow-up for those who have died. By the maximum potential follow-
up we mean the difference between enrollment date and the average
last contact date; for example, if patients are contacted every 3
months on average and the study was closed six months ago this date
would be 7.5 months ago. It may be true that the (hypothetical)
matched control for a case who died 30 years ago would have little
actual chance of such long follow-up, but this is not really important.
Almost all of the numerical difference between the Ederer and
Hakulinen estimates results from censoring those patients who most
recently entered the study. For these recent patients, presumably,
enough is known about the operation of the study to give a rational
estimate of potential follow-up.

The Hakulinen formula can be expressed in a product form

where pi(t,s) is the conditional probability of surviving from time t to

time t + s, which is . The formula is technically
correct only over time intervals (t, t + s) for which ci is constant for all
i; that is, censoring only at the ends of the interval.

The 
Conditional 
Method

The conditional estimate is advocated by Verheul (1993), and was also
suggested as a computation simplification of the exact method by
Ederer and Heise (1977). For this estimate the weight function wi(t) is
defined to be 1 while the subject is alive and at risk and 0 otherwise. It
is clearly related to Hakulinen’s method, since E(wi(t)) = Si(t)ci(t).
Most authors present the estimator in the product-limit form

, where d and n are the numerator and denominator
terms within the integral of Equation (13.1). One disadvantage of the

(13.3)Se t s+( ) Se t( )
pi t s,( )Si t( )ci t( )∑

Si t( )ci t( )∑
----------------------------------------------×=

exp Λi t( ) Λi t s+( )–( )

Π 1 d t( ) n t( )⁄–[ ]
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Cohort Expected Survival
product-limit form is that the value of the estimate at time t depends
on the number of intervals into which the time axis has been divided,
for this reason we use the integral form (Equation (13.1)) directly.

One advantage of the conditional estimate, shared with Hakulinen’s
method, is that it remains consistent when the censoring pattern
differs between age-sex strata. A problem with the conditional
estimator is that it has a much larger variance than either the exact or
Hakulinen estimate. In fact, the variance of these latter two can
usually be assumed to be zero, at least in comparison to the variance
of the Kaplan-Meier of the sample. Rate tables are normally based on
a very large sample size so the individual λi are very precise, and the
censoring indicators ci are based on the study design rather than on
patient outcomes. The conditional estimate Sc(t), however, depends
on the actual death times and wi is a random variable.

The main use of the conditional estimate is when making conditional
statements about survival. For example, in studies of surgical
intervention such as hip replacement, the observed and expected
survival curves often initially diverge due to surgical mortality, and
then appear to become parallel. It is tempting to say that survival
beyond hospital discharge is equivalent to expected. This is a conditional
probability statement, and it should not be made unless a conditional
estimate is used.

A hypothetical example may make this clearer. For simplicity assume
no censoring. Suppose we have studies of two diseases, and that their
age distributions at entry are identical. Disease A kills 10% of the
subjects in the first month, independent of age or sex, and thereafter
has no effect. Disease B also kills 10% of its subjects in the first month,
but predominately affects the old. After the first month it exerts a
continuing though much smaller force of mortality, still biased toward
the older ages. With proper choice of the age effect, studies A and B
will have almost identical survival curves; as the patients in B are
always younger, on average, than those in A. Two different questions
can be asked under the guise of “expected survival”:

• What is the overall effect of the disease? In this sense both A
and B have the same effect, in that the 5 year survival
probability for a diseased group is x% below that of a matched
population cohort. The Hakulinen estimate would be
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preferred because of its lower variance. It estimates the curve
we “would have gotten” if the study had included a control
group.

• What is the ongoing effect of the disease? Detection of the
differential effects of A and B after the first month requires the
conditional estimator. We can look at the slopes of the curves
to judge if they have become parallel.

The actual curve generated by the conditional estimator remains
difficult to interpret, however. The difficulty lies in the fact that the
control subject is removed from the calculation whenever his/her
matching case dies. In general, Hakulinen’s cohort estimate is
probably best. If there is a question about delayed effects, as in the
above example, there would be an apparent flattening of the Kaplan-
Meier curves after the first month. Then one can plot a new curve
using only those patients who survived at least one month.
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Approximations
APPROXIMATIONS

The Hakulinen cohort estimate (Equation (13.3)) is “Kaplan-Meier
like” in that it is a product of conditional probabilities and that the
time axis is partitioned according to the observed death and
censoring times. Both the exact and conditional estimators can be
written in this way as well. They are unlike a KM calculation,
however, in that the ingredients of each conditional estimate are the n
distinct individual survival probabilities at that time point rather than
just a count of the number at risk. For a large data set this requirement
for O(n) temporary variables can be a problem. An approximation is
to use longer intervals, and allow subjects to contribute partial
information to each interval. For instance, in Equation (13.3) replace

the 0/1 weight ci(t) by , which is the proportion of time

that subject i was uncensored during the interval (t, t + s). If those
with fractional weights form a minority of those at risk during the
interval the approximation should be reliable. (More formally, if the
sum of their weights is a minority of the total sum of weights). By
Jensen’s inequality the approximation will always be biased upwards,
but it is very small. For the Stanford heart transplant data used in the
examples an exact 5 year estimate using the cohort method is
0.94728, an approximate cohort computation using only the half year
intervals yields 0.94841. The exact estimate is unchanged under
repartitioning of the time axis.

ci u( ) u s⁄d
t
t s+∫
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TESTING

All of the above discussion has been geared towards a plot of
 which attempts to capture the proportion of

patients who will have died by t. When comparing observed to
expected survival for testing purposes, an appropriate test is the one-

sample log-rank test (Harrington and Fleming (1982)) (O - E)2/E,
where O is the observed number of deaths and

is the expected number of deaths, given the observation time of each
subject. This follows Mantel’s concept of “exposure to death” (Mantel
(1966)), and is the expected number of deaths during this exposure.
Notice how this differs from the expected number of deaths nSe(t) in
the matched cohort at time t. In particular, E can be greater than n.
Equation (13.4) is referred to as the person-years estimate of the
expected number of deaths. The log-rank test is usually more
powerful than one based on comparing the observed survival at time
t to Se(t); the former is a comparison of the entire observed curve to
the expected, and the latter is a test for difference at one point in time.

Tests at a particular time point, though less powerful, will be
appropriate if some fixed time is of particular interest, such as 5 year
survival. In this case the test should be based on the cohort estimate.
The H0 of the test is, “Is survival different that what a control-group’s
survival would have been?” A pointwise test based on the exact
estimate may well be invalid if there is censoring. A pointwise test
based on the conditional estimate has two problems. The first is that

(13.4)

Se t( ) exp Λe t( )–( )=

E ei
i 1=

n

∑=

λ i s( )Yi s( )∫
i 1=

n

∑=
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Testing
an appropriate variance is difficult to construct. The second, and
more serious one, is that it is unclear exactly what alternative is being
tested against.

Hartz, Giefer and Hoffman (1983) argue strongly for the pointwise
tests based on a expected survival estimate equivalent to Equation
(13.3), and claim that such a test is both more powerful and more
logical than the person-years approach. Subsequent letters to the
editor (Hartz, Giefer, and Hoffmann (1984, 1985)) challenged these
views, and it appears that the person-years method is preferred.

Berry (1983) provides an excellent overview of the person-years
method. Let the ei be the expected number of events for each subject,
treating them as an n = 1 Poisson process. We have

where ti is the observed survival or censoring time for a subjects. This
quantity ei is the total amount of hazard that would have been
experienced by the population-matched referent subject, over the
time interval that subject i was actually under observation. If we treat
ei as though it were the follow-up time, this corrects for the
background mortality by, in effect, mapping each subject onto a time
scale where the baseline hazard is 1.

Tests can now be based on a Poisson model, using δi as the response
variable (1 = dead, 0 = censored), and ei as the time of observation (an
offset of log ei). The intercept term of the model estimates the overall
difference in hazard between the study subjects and the expected
population. An intercept-only model is equivalent to the one sample
log-rank test. Covariates in the model estimate the effect of a
predictor on excess mortality, whereas an ordinary Poisson or Cox
model would estimate its effect on total mortality.

ei Yi s( )λi s( ) sd
0

∞∫=

Λi ti( )=
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Chapter 13  Expected Survival
Andersen and Væth (1989) consider both multiplicative and additive
models for excess risk. Let  be the actual hazard function for the
individual at risk and λi be, as before, that for his/her matched control
from the population. The multiplicative hazard model is

.

If β(t) were constant, then

is an estimate of the standard mortality ratio or SMR, which is identical
to exp(intercept) in the Poisson model used by Berry (assuming a
log link). Their estimate over time is based on a modified Nelson
hazard estimate

,

which estimates the integral of β(t). If the SMR is constant then a plot

of  versus t should be a straight line through the origin.

For the additive hazard model

the integral A(t) of α is estimated as

,

the difference between the Kaplan-Meier and the conditional
estimator, when plotted on log scale. Under the hypothesis of a

constant additive risk, a plot of  versus t should approximate a
line through the origin.

λ∗i

λ∗i t( ) β t( )λi t( )=

β̂0

Ni∑
ei∑

------------≡

B̂′ t( )
Ni s( )d∑

Yi s( )λ i s( )∑
-------------------------------- sd

0

t∫=

B̂′ t( )

λ∗i t( ) α t( ) λi t( )+=

SKM t( ) Sc t( )⁄[ ]log

Â t( )
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Computing Expected Survival Curves
COMPUTING EXPECTED SURVIVAL CURVES

The function used to compute expected survival curves is survexp.
Besides taking the typical arguments of a model fitting function,
survexp also takes the following arguments:

• times: Vector of follow-up times at which the resulting
survival curve is evaluated. If absent, the result will be
reported for each unique value of the vector of follow-up
times supplied in the formula.

• cohort: Logical value: if FALSE, each subject is treated as a
subgroup of size 1. The default is TRUE.

• conditional: Logical value: if TRUE, the follow-up times
supplied in the formula are death times and conditional
expected survival is computed. If FALSE, the follow-up times
are potential censoring times. If follow-up times are missing in
the formula, this argument is ignored.

• ratetable: Table of event rates, such as survexp.uswhite
or a fitted Cox model.

Table 13.1 summarizes the argument settings used to compute
expected survival curves by the various methods. The real-life
examples of the following section show the use of the various
argument settings to obtain the different estimates of expected
survival.

Table 13.1:  Summary of arguments settings for invoking the various methods of estimating expected survival.

Method conditional = F cohort = T Follow-up times

Individual survival Not used F Yes

Cohort survival:

Ederer

Hakulinen

Conditional

F

F

T

T

T

T

No

Yes

Yes
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EXAMPLES

The examples of this section show how the methods discussed earlier
in this chapter are implemented in S-PLUS. In addition to computing
various expected survival curves an example of a closely related
topic, person years of follow-up, is provided. The person-years
example uses a function called pyears, and the expected survival
examples use the survexp function.

All of the examples use a data frame, hearta, computed from heart
as follows:

> hearta <- by(heart, heart$id,
+ function(x)x[x$stop == max(x$stop), ])
> hearta <- do.call("rbind",hearta)

Because the transplanted patients are represented by two rows in the
heart data frame, you first need to extract only those rows that
correspond to death or censoring. Do this by selecting all rows for
which stop is a maximum for each patient and then use rbind to put
them back together into the data frame called hearta. Once this is
done, stop contains only the total follow-up times for each patient.
Note that this depends on each patient having a start time of 0 (zero).

Computing 
Expected 
Survival From 
National 
Hazard Rate 
Tables

The computation of expected survival curves requires either a table of
hazard rates or a fitted Cox model to act as a hazard rate table.
Several rate tables are built into S-PLUS. There are tables for the U.S.
population, Minnesota, Florida, and Arizona. U.S. and state rate
tables contain the expected hazard rate for a subject, stratified by age,
sex, calendar year, and optionally by race.

You can add new rate tables for other areas if you wish. Created rate
tables have no restrictions on the number or names of the
stratification variables. See the help file for survexp.us for details.

Warning

When using a rate table, it is important that all time variables be in the same units as were used
for the table—for the U.S. tables, this is hazard/day, so time must be in days. (Year is an
exception; see the examples below.) All time variables must also have the same start date.
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Examples
The following example computes the conditional expected survival
curves for the two surgery groups in the heart transplant study. A rate
table array is not provided (no ratetable argument is supplied), so
the default table, survexp.us, is used.

> expsurv <- survexp(stop ~ surgery +
+ ratetable(age = (age + 48) * 365.25,
+ sex = "male", year = year + 1967.75),
+ data = hearta, conditional = T)

The formula contains follow-up times, stop, a grouping variable,
surgery, which causes the output to contain two curves, and a
special function, ratetable. The ratetable function matches the
data frame’s variables to the corresponding dimensions of the rate
table. The order of the arguments to the ratetable function is not
important. The necessary key words age, sex, and year are
contained in the "dimid" attribute of the rate table providing the
hazard rates, survexp.us. The hearta data frame does not contain a
sex variable so sex is set, conservatively, to "male". Setting values
such as this must be done by providing an integer subscript or a
match to one of the "dimnames".

This example produces a cohort survival curve which is almost
always plotted along with the observed (Kaplan-Meier) survival of the
data for visual comparison. For this example, you can plot the
survival curves together as follows:

> plot(survfit(Surv(stop, event) ~ surgery,
+ data = hearta), lty = 2:3)
> lines(expsurv, lty=2:3)
> legend(750, .9, c("No Prior Surgery","Prior Surgery"),
+ lty = 2:3)

Figure 13.1 displays the resulting plot.
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There are three different methods for calculating the cohort curve,
which are discussed in more detail in the section Cohort Expected
Survival. They are the conditional method shown above, which uses
the actual death or censoring time, the method of Hakulinen, which
instead uses the potential follow-up time of each subject, and the
uncensored population method of Ederer, Axtel, and Cutler, which
requires no response variable.

Individual 
Expected 
Survival 
Probabilities

Formal tests of observed versus expected survival are usually based
not on the cohort curve directly but on the individual expected
survival probabilities for each subject. These probabilities are always
based on the actual death/censoring time:

> surv.prob <- survexp(stop ~ ratetable(age =
+ (age + 48) * 365.25, sex = ’male’, year =
+ year * 365.25), data = hearta, cohort = F)
> # convert from survival to hazard
> newtime <- -log(surv.prob)

Figure 13.1:  Comparison of the heart transplant study population stratified 
according to prior surgery to a matched cohort from a national survival rate table.
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> summary(glm(stop ~ offset(log(newtime)),
+ family=poisson, data = hearta))

Call: glm(formula = stop ~ offset(log(newtime)), family = 
poisson, data = hearta)
Deviance Residuals:
      Min       1Q     Median       3Q      Max
 -34.0455 -3.60184 -0.5740423 4.342719 39.94973

Coefficients:
               Value  Std. Error  t value
(Intercept) 10.77885 0.005593555 1927.013
        .
        .
        .

When cohort = F, the survexp function returns a vector of survival
probabilities, one per subject. The negative log of the survival
probability can be treated as an “adjusted time” for the subject for the
purposes of modeling. The one-sample log-rank test for equivalence
of the observed survival to the expected survival is the test for
intercept equal to 0 (zero) in the Poisson regression model shown. A
test for treatment difference, adjusted for any age-sex differences
between the two arms, is obtained by adding a treatment variable to
the model.

Computing 
Person Years

Expected survival is closely related to a standard method in
epidemiology called person years, which consists of counting the total
amount of follow-up time contributed by the subjects within any of
several strata. Person-years analysis is accomplished in S-PLUS with
the pyears function. The main complication in computing person
years is that a subject may contribute to several different cells of the
output array during his/her follow-up. For example, if the desired
output table were treatment group by age in years, a subject with 4
years of observation would contribute to five different cells of the
table (four cells if she entered the study exactly on her birthdate). This
example counts up years of observation for the Stanford heart
patients by age group and surgical status.
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Using the hearta data frame computed above, the person-years table
is produced as follows:

> pyears(stop/365.25 ~ tcut(age+48, c(0,50,60,70,100)) +
+ surgery, data = hearta, scale = 1)

$call:
pyears(formula = stop/365.25 ~ tcut(age + 48, 
c(0,50,60,70,100)) + surgery, data = hearta, scale = 1)

$pyears:
                      0         1
 0+ thru  50 44.9253936 18.960986
50+ thru  60 16.7501711  6.093087
60+ thru  70  0.7556468  0.000000
70+ thru 100  0.0000000  0.000000

$n:
              0  1
 0+ thru  50 56 13
50+ thru  60 33  6
60+ thru  70  3  0
70+ thru 100  0  0

$offtable:
[1] 0

The scale argument is provided because pyears defaults to input
times in days and output times in years (scale = 365.25). A 48 is
added to age to relocate it back to its original scale. For surgery, a 0
(zero) corresponds to no prior surgery and a 1 (one) corresponds to
prior surgery. See the help file for heart for more detail.

The tcut function has the same arguments as cut, but also indicates
that the category is time based. If you use cut in the formula above,
the final table would be based only on each subject’s age at entry.
With tcut, a subject who entered at age 58.5 and had 4 years of
follow-up would contribute 1.5 years to the 50-60 category and 2.5
years to the 60-70 category. A consequence of this is that the age and
stop variables must be in the same units for the calculation to
proceed correctly. In this case both should be in years given the
cutpoints that were chosen. The surgery variable is treated as a factor,
exactly as it is treated by survfit.
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The output of pyears is a list of arrays containing the total amount of
time contributed to each cell and the number of subjects who
contributed some fraction of time to each cell. The offtable
component that is returned is the number of person years of exposure
in the cohort that is not part of any cell in the pyears component.
This is often useful as an error check. If there is a mismatch of units
between two variables, nearly all the person years may be in
offtable.

If the response variable is a "Surv" object, then the output also
contains an array with the observed number of events for each cell. If
a rate table is supplied, the output contains an array with the expected
number of events in each cell. These can be used to compute
observed and expected rates, along with confidence intervals.

Using a Cox 
Model as a 
Rate Table

Many times a study group will be compared to a historical control. If
the comparison is to be adjusted for differences in certain covariates,
it is usually based on a Cox model fit to the historical data. The
methods used in this example are parallel to the previous examples
using national rate tables (for example, survexp.us), but in this
example, a prior Cox model acts as the “rate table” for survexp.

Individual survival curves can be obtained using survfit, as
described in Chapter 10, The Cox Proportional Hazards Model.
Extending that example

> s1 <- survfit(ov.fit1, newdata = data.frame(age = 35))

gives the expected curve for a 35 year old subject, and

> s2 <- survfit(ov.fit1, newdat = ovarian)

gives a matrix of 26 survival curves, one for each subject in the
ovarian data set.

The Ederer estimate is the average of the 26 survival curves in s2 and
can be obtained as follows:

> s3 <- survexp(~ ratetable(age = age), data = ovarian,
+ ratetable = ov.fit1)
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In the Cox model literature, the Ederer estimate had been called the
direct adjusted survival curve. Thomsen, Keiding, and Altman (1991)
point out the importance of the Ederer estimate and the difference
between the Ederer estimate, average survival, and the individual
survival of a subject with the average age.

The equivalent of Hakulinen’s estimate has been labeled as the Bonsel
estimator. For studies with a short accrual, it will usually not differ
from the Ederer method. Thomsen, et al. (1991) also discuss the
conditional estimator, but conclude that the final curve is “hard to
interpret.”
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CREATING RATE TABLES

You can create your own rate tables to use in place of those provided
in S-PLUS. Table 13.2–Table 13.5 show yearly death rates per 100,000
subjects based on their smoking status. 

Table 13.2:  Death rates for former male light smokers (1–20 cigarettes per day).

Duration of abstinence (years)

Age
Never 
Smoked

Current 
Smokers <<<< 1 1–2 3–5 6–10 11–15 ≥≥≥≥ 16

45–49 186.0 439.2 234.4 365.8 159.6 216.9 167.4 159.5

50–54 255.6 702.7 544.7 431.0 454.8 349.7 214.0 250.4

55–59 448.9 1132.4 945.2 728.8 729.4 590.2 447.3 436.6

60–64 733.7 1981.1 1177.7 1589.2 1316.5 1266.9 875.6 703.0

65–69 1119.4 3003.0 2244.9 3380.3 2374.9 1820.2 1669.1 1159.2

70–74 2070.5 4697.5 4255.3 5083.0 4485.0 3888.7 3184.3 2194.9

75–79 3675.3 7340.6 5882.4 6597.2 7707.5 4945.1 5618.0 4128.9
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Assume the eight data columns are stored in a file. A rate table is
created using the following S-PLUS code: 

temp <- matrix(scan("data.smoke"), ncol=8, byrow=T)/100000
smoke.rate <- c(rep(temp[,1], 6), rep(temp[,2], 6), 
     temp[,3:8])
attributes(smoke.rate) <- list(
     dim=c(7,2,2,6,3),
     dimnames=list(c("45-49", "50-54", "55-59", "60-64",
          "65-69", "70-74", "75-79"),
          c("1-20", "21+"),
          c("Male", "Female"),
          c("<1", "1-2", "3-5", "6-10", "11-15", ">=16"),
          c("Never", "Current", "Former")),
     dimid=c("age", "amount", "sex", "duration", "status"),
     factor=c(0,1,1,0,1),
     cutpoints=list(c(45,50,55,60,65,70,75), NULL, NULL,
          c(0,1,3,6,11,16), NULL),
     class="ratetable"
     )

Table 13.3:  Death rates for former male heavy smokers (more than 21 cigarettes per day).

Duration of abstinence (years)

Age
Never 
Smoked

Current 
Smokers <<<< 1 1–2 3–5 6–10 11–15 ≥≥≥≥ 16

45–49 186.0 610.0 497.5 251.7 417.5 122.6 198.3 193.4

50–54 255.6 915.6 482.8 500.7 488.9 402.9 393.9 354.3

55–59 448.9 1391.0 1757.1 953.5 1025.8 744.0 668.5 537.8

60–64 733.7 2393.4 1578.4 1847.2 1790.1 1220.7 1100.0 993.3

65–69 1119.4 3497.9 2301.8 3776.6 2081.0 2766.4 2268.1 1230.7

70–74 2070.5 5861.3 3174.6 2974.0 3712.9 3988.8 3268.6 2468.9

75–79 3675.3 6250.0 4000.0 4424.8 7329.8 6383.0 7666.1 5048.1
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is.ratetable(smoke.rate)

Table 13.4:  Death rates for former female light smokers (1–20 cigarettes per day).

Duration of abstinence (years)

Age
Never 
Smoked

Current 
Smokers <<<< 1 1–2 3–5 6–10 11–15 ≥≥≥≥ 16

45–49 125.7 225.6 433.9 212.0 107.2 135.9 91.0

50–54 177.3 353.8 116.8 92.1 289.5 200.9 121.3 172.1

55–59 244.8 542.8 287.4 259.5 375.9 165.8 202.2 247.2

60–64 397.7 858.0 1016.3 365.0 650.9 470.8 570.6 319.7

65–69 692.1 1496.2 1108.0 1348.5 1263.2 864.8 586.6 618.0

70–74 1160.0 2084.8 645.2 1483.1 1250.0 1126.3 1070.5 1272.1

75–79 2070.8 3319.5 2580.6 2590.7 3960.4 1666.7 1861.5

Table 13.5:  Death rates for former female heavy smokers (more than 21 cigarettes per day).

Duration of abstinence (years)

Age
Never 
Smoked

Current 
Smokers <<<< 1 1–2 3–5 6–10 11–15 ≥≥≥≥ 16

45–49 125.7 277.9 266.7 102.7 178.6 224.7 142.1 138.8

50–54 177.3 517.9 138.7 466.8 270.1 190.2 116.8 83.0
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The smoking data cross-classifies subjects by five characteristics: age
group, sex, status (never, current, or former smoker), the number of
cigarettes consumed per day, and, for the prior smokers, the duration
of abstinence. In the S-PLUS implementation, a rate table is an array
with added attributes, and thus must be rectangular. In order to cast
the above data into a single array, the rates for never and current
smokers needed to be replicated across all six levels of the duration.
We do this by first creating the smoke.rate vector. The array of rates
is then saddled with a list of descriptive attributes. The dim and
dimnames attributes are as they would be for an array, and give its
shape and printing labels, respectively. The dimid attribute is the list
of keywords that will be recognized by the ratetable function,
when this table is later used with the survexp or pyears function.
For the U.S. total table, for instance, the keywords are "age", "sex",
and "year".  These keywords must be in the same order as the array
dimensions (as found in the dimid attribute). The factor attribute
identifies each dimension as fixed or varying with time. For a subject
with fifteen years of follow-up, for example, the sex category remains
fixed but the age and duration of abstinence continue to change.;
more than one of the age groups must be referenced to compute the
subject’s total hazard. For each dimension that is not a factor, the
starting value for each of the rows of the array must be specified so
that the routine can change rows at the appropriate time. This
information is specified in the cutpoints attribute. The cutpoints are

55–59 244.8 823.5 473.6 602.0 361.0 454.5 412.2 182.1

60–64 397.7 1302.9 1114.8 862.1 699.6 541.7 373.1 356.4

65–69 692.1 1934.9 2319.6 1250.0 1688.0 828.7 797.9 581.5

70–74 1160.0 2827.0 4635.8 2517.2 1687.3 2848.7 1621.2 1363.4

75–79 2070.8 4273.1 2409.6 5769.2 3125.0 2987.7 2803.7 2195.4

Table 13.5:  Death rates for former female heavy smokers (more than 21 cigarettes per day). (Continued)

Duration of abstinence (years)

Age
Never 
Smoked

Current 
Smokers <<<< 1 1–2 3–5 6–10 11–15 ≥≥≥≥ 16
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null for a factor dimension. Because the cutpoints must be self-
consistent, you should check them for any rate tables you create. The
function is.ratetable does this for you automatically.

As an example, we apply our smoke.rate rate table to the hearta
data, assuming that all of the subjects were current heavy smokers
(after all, they do have heart disease):

ptime <- hearta$stop/365.24
exp4 <- survexp(ptime ~ ratetable(age=(age/365.24), status=
     "Current", amount="21+", duration="<1", sex="Male"),
     data=hearta, ratetable=smoke.rate, conditional=F,
     scale=1)

This example illustrates some important points. First, since we are
using the current smoker category, duration is unimportant, so any
value can be specified. Second, note that we must rescale age. The
smoke.rate table contains rates per year, while the U.S. tables
contain rates per day. It is crucial that all of the time variables (age,
duration, etc.) be scaled to the same units, or the results may not be
even remotely correct. The U.S. rate tables were created using days as
the basic unit since year of entry is normally a Julian date; for the
smoking data, years seemed more natural.

An optional portion of a rate table, not illustrated in the example
above, is a summary attribute. This is a user-written function which is
passed a matrix and returns a character string. The matrix must have
one column per dimension of the rate table, in the order of the dimid
attribute, and must be preprocessed to remove illegal values. To see
an example of a summary function, use the following command:

attr(survexp.us, "summary")

In this summary function, the returned character string lists the range
of ages and calendar years in the output of survexp, and is listed as
part of the printed output. This printout is the only good way to catch
errors in the time units. For example, if the string contained “age
ranges from .13 to .26 years,” it is a reasonable guess that age was
given in years when it should have been stated in days.
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Chapter 14  Quality Control Charts
INTRODUCTION

S-PLUS provides several functions for doing quality control charts.
Table 14.1 lists the type of basic charts available. Both Shewhart charts
and cusum charts are available for each basic chart type, except for
the R chart for which a cusum chart has not been implemented. Ryan
(1989) provides a good discussion of the use and utility of both
Shewhart and cusum charts

In addition to the basic chart types listed in Table 14.1, several
extensions to Shewhart charts allow charting non-grouped, one-at-a-
time data.  These extensions typically use standard deviation

Table 14.1:  Types of basic quality control charts available in S-PLUS.

Type Statistic Charted Chart Description

xbar mean means of a continuous process variable

s standard deviation standard deviations of a continuous
variable

R range ranges of a continuous variable

np count number of nonconforming units

p proportion proportion of nonconforming units

c count number of nonconforming units

u count number of nonconforming units for
variable unit sizes
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estimates based on moving or sliding intervals of data values to
improve the power of the resulting chart. The extensions are listed in
Table 14.2.

Table 14.2:  Types of extended Shewhart control charts available in S-PLUS.

Type Statistic Charted Chart Description

ma moving average moving means of a continuous process
variable

ms moving standard
deviation

moving standard deviations of a
continuous variable

mR moving range moving ranges of a continuous variable

ewma moving average exponentially weighted moving average
of a continuous process variable
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CONTROL CHART OBJECTS

Quality control charts are produced in two steps:

1. Create a "qcc" object from process data known to be
gathered when the process was in a state of control.

2. Create a chart of new data using the "qcc" object of step 1 as
the reference data.

You can think of the "qcc" object as containing the data necessary to
calibrate the control chart. It contains information on the type of chart
being plotted and the process center and variability which are
necessary to compute the control limits.

The qcc function produces an object of class "qcc". Its only required
arguments are data (grouped appropriately) and the type of chart. A
simple example follows:

> set.seed(15)
> qcdata <- matrix(10 + rnorm(100), ncol = 5)
> qccobj <- qcc(qcdata, type = "xbar")

A print method summarizes the "qcc" object.

> qccobj

xbar based on qcdata

Summary of Group Statistics:
  Min. 1st Qu. Median  Mean 3rd Qu.  Max.
 9.163   9.655  10.14 10.09   10.51 11.31

 Group Sample Size:  5
 Number of Groups:  20
 Center of Group Statistics:  10.09016
 Standard Deviation:  1.022341

Each row in the matrix represents a group. If you have unequal group
sizes you have to put the data in a list with one component for each
group.
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The arguments to qcc are:

• data: The control data in the form of a vector, matrix, data
frame, or list.

• type: A character string or function specifying group statistics
to compute.

• std.dev: A numeric vector or function for specifying the
within-group standard deviation(s).

• sizes: A numeric vector specifying the sample sizes
associated with each group.

• labels: A character vector of labels for each group.

You can pass functions to the type and std.dev arguments to extend
the built-in capabilities of qcc. The function that is used by default to
compute the group summary statistics and the center of the group
summary statistics is named stats.type, where type corresponds to
the value of the type argument. For example, the default summary
statistics and center for an xbar chart are computed by stats.xbar.
Similarly, the default function that computes the standard deviation
for an xbar chart is sd.xbar. When type is given as a function,
std.dev must also be given (usually as a function as well, though not
necessarily).

An example of a function that computes the summary statistics and
the center as medians follows:

> stats.med

function(data, sizes)
{
        if(is.list(data)) {
                statistics <- sapply(data, median)
                center <- median(unlist(data))
        }
        else {
                statistics <- apply(data, 1, median)
                center <- median(data)
        }
        list(statistics = statistics, center = center)
}
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The stats.med function depends on data being given as a matrix or
list. The qcc function insures this by coercing a vector to a matrix.
You can create other functions for computing the summary statistics
and center of the process by using stats.xbar as a template as was
done in creating stats.med.

As example of a function that computes the standard deviation based
upon the median absolute deviation (mad) is sd.med. The sd.xbar
function was used as a template for sd.med.

> sd.med

function(data, sizes)
{
  if(is.list(data))
    std.dev.within <- sapply(data, mad)
  else {
    std.dev.within <- apply(data, 1, mad)
    if(dim(data)[2] == 1)
      warning("MAD computation based on group sizes of 1")
  }
  if(length(sizes) == 1)
    sizes <- rep(sizes, length = length(std.dev.within))
  sum(sizes * std.dev.within)/sum(sizes)
}

You can now compute a "qcc" object with the center estimated as the
median and the standard deviation estimated from mad as follows:

> qccobj.med <- qcc(qcdata, type = "med")
> qccobj.med

med based on qcdata

Summary of Group Statistics:
  Min. 1st Qu. Median  Mean 3rd Qu.  Max.
 8.782   9.599  10.06 9.989   10.52 11.16

 Group Sample Size:  5
 Number of Groups:  20
 Center of Group Statistics:  10.14026
 Standard Deviation:  0.8418576
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If the functions are not named with the proper prefixes (stats. and
sd., respectively), you have to pass the function names to the type
and std.dev arguments. For example if the two functions are named
st.med and sd.mad, respectively, you would have to type:

> qccobj.med <- qcc(qcdata,type=st.med,std.dev=sd.mad)

To chart the control data and any ongoing process data, you can
produce Shewhart or cusum charts with the S-PLUS functions
shewhart or cusum, respectively. Typically, Shewhart charts are used
for detecting large shifts in a process (two to three sigma shifts),
whereas cusum charts are used to detect smaller shifts in a process
(one-half to one sigma shifts).
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SHEWHART CHARTS

You can produce a Shewhart chart of the data in qcdata which is
preserved as a "qcc" object in qccobj by using the shewhart
function. For example:

> shewhart(qccobj)

Figure 14.1 displays the resulting chart.

Figure 14.1:  Shewhart chart of the data in qccobj.
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The text at the bottom of the chart displays pertinent statistics. The
target value is taken as the center of the group summary statistics
unless given as a separate argument. The Number beyond limits
indicates the number of points beyond the control limits, and Number
violating runs indicates how many points violate the runs
criterion which is, by default, five or more consecutive points on one
side of the center. You can change the run length by passing an
additional argument to the shewhart function.

> shewhart(qccobj, run.length = 8)

By default, the shewhart function computes the control limits based
on the center and std.dev components of qccobj. Both of these
can be overridden, however, by providing additional arguments in
the call to shewhart. The arguments to shewhart are as follows:

• object: An object of class "qcc" which provides information
on the type of group summary statistics to plot and the within-
group standard deviation necessary for computing the control
limits.

• newdata: Vector, matrix, data frame, or list to be charted.

• type: A character string or function specifying the group
summary statistics to compute.

• limits: A numeric vector or matrix or a function specifying
the control limits.

• target: A numeric value specifying the center of the process
if other than the center component of object.

• std.dev: A numeric value specifying the overall within-
group standard deviation.

• sizes: Vector of the number of observations or number of
units examined in each group of newdata.

• labels: Character vector of labels for each group in
newdata.

• label.limits: A character vector of length two with labels
for the control limits.

• confidence.level: A numeric value between 0 and 1
specifying the confidence level of the computed probability
limits.
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• nsigmas: A numeric value specifying one-half the width of
the control limits in the number of standard errors of the
group summary statistics. If given, confidence.level is
ignored.

• add.stats: A logical value indicating whether statistics
should be listed at the bottom of the chart.

• chart.all: A logical value indicating whether the
statistics component of object should be plotted along
with the new.statistics component of object if present
and the summary statistics of newdata if given.

• ylim.min: A numeric vector of values to be included in the
computation of the approximate y-axis limits for the control
chart.

• rules: A function of rules to apply to the chart.

• highlight: A list of plotting parameters to be used for
highlighting the points violating rules.

• ...: Additional arguments to rules.

See the shewhart help file for more detailed descriptions of the
arguments listed above.

By default, the control limits produced by shewhart are probability
limits for all the charts except the u chart. Probability limits are
centered in probability about the estimate of the center of the
distribution of the summary statistics or the target value if provided.
If you want sigma limits, specify them through the nsigmas
argument. In this case, the control limits are placed at the center plus
or minus nsigmas times the standard errors of the group summary
statistics. For u charts only sigma limits are implemented. If the
sample sizes vary, the standard errors will vary, and a step function
will be plotted for each control limit.

The newdata function argument allows you to chart new data with a
reference "qcc" object provided as the object argument. As an
example, let’s add one-half to the last six rows of qcdata and call it
newdata.

> newdata <- qcdata
> newdata[15:20,] <- newdata[15:20,] + 1/2
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You produce the Shewhart chart of newdata as follows:

> qccobj.shew <- shewhart(qccobj, newdata,
+ labels=paste("Lot", 1:20, sep = ""))

The labels argument is not necessary but is added to show the
printing of labels on the chart and for greater clarity in later
paragraphs.

Printing the invisible return value of shewhart shows a summary of
qccobj as well as newdata.

> qccobj.shew

xbar based on qcdata

Summary of Statistics in qcdata.
  Min. 1st Qu. Median  Mean 3rd Qu.  Max.
 9.163   9.655  10.14 10.09   10.51 11.31

 Group Sample Size:  5
 Number of Groups:  20
 Center of Statistics:  10.09016
 Standard Deviation:  1.022341

Summary of New Data Statistics in newdata.
  Min. 1st Qu. Median  Mean 3rd Qu.  Max.
 9.163   9.762  10.14 10.24   10.84 11.49

 Group Sample Size:  5
 Number of Groups:  20

 Target Value: 10.09016

 Control Limits:
      LCL     UCL
 8.585714 11.5946
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Figure 14.2 displays the chart for newdata. If you want to see
newdata displayed alongside the original calibration data ask
shewhart to chart it all. Having saved the "shewhart" object,
qccobj.shew, you can chart it directly.

> shewhart(qccobj.shew, chart.all = T)

Figure 14.2:  Shewhart chart of newdata using qccobj as the reference data 
plotting only the new data.
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Figure 14.3 shows the resulting Shewhart chart with both old and new
data. The vertical dashed line separates the in-control calibration data
from the ongoing process data.

To do an s chart of the same data, you would type:

> shewhart(qcc(qcdata, "s"), newdata)

The type argument allows you to specify a different kind of summary
statistic for newdata than what is in the reference data in object. For
example, qccobj.med computed in the section Control Chart
Objects contains robust estimates of location and scale for the
reference data qcdata. You wouldn’t, however, typically want to
estimate the location of the ongoing process robustly, since extreme

Figure 14.3:  Shewhart chart of newdata using qccobj as the reference data 
plotting new and old data.
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values are what you are looking for. In this case you can compute the
control limits based on the robust estimates and then compute the
group summary statistics of the ongoing process by specifying the
usual type for the data you are using. Thus you could chart newdata
with control limits based on the robust estimates of location and scale
as follows:

> shewhart(qccobj.med, newdata, type = "xbar")

If you want to compute the summary statistics for newdata in the
same way you did for the reference data, you don’t have to specify
type. Thus,

> shewhart(qccobj.med, newdata, limits = limits.xbar)

would continue to estimate the group summary statistics with
stats.med, that is, robustly. The limits argument must be provided
when using a summary statistics function, as specified by type, other
than one of the built-in ones, or a function must be available with
name produced by paste("limits.", type, sep = "").

Since limits.xbar simply uses the center and std.dev
components of object to compute the control limits based on having
normally distributed data, it is reasonable although not exactly
correct to use limits.xbar here. Ideally, you would write a
limits.med function to compute the control limits in this case. For
more information on the way the control limits are computed by
shewhart, see the help file for "shewhart.limits". You can use the
limits.xbar as a template for writing your own limits function.

The shewhart function returns an object that contains all the
information necessary to redo the chart. It contains all the
components of object, the "qcc" object, plus the following
additional components:

• new.statistics: A vector of group summary statistics for
newdata.

• new.sizes: Vector of group sample sizes for newdata.

• target: The target argument if specified.

• cntrl.limits: The control limits.

• newdata.name: A character string containing the name of the
input data passed as the argument to newdata.
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When you are tracking a process, you can repeatedly capture the
return value from shewhart, passing it as the new object argument
to a subsequent call to shewhart, and providing even newer data as
the newdata argument. The shewhart function will incorporate the
newest data into the new.statistics component of object and
chart all the new data. The function calls might look something like
the following:

> qccobj.shew.1 <- shewhart(qccobj, newdata.1)
> qccobj.shew.2 <- shewhart(qccobj.shew.1, newdata.2)

Other arguments to shewhart, listed above, allow you to specify a
target value for the process, sample sizes, the confidence level of the
probability limits, and a rules function for applying to the chart. By
specifying sample sizes, you can supply a vector of group summary
statistics instead of the entire data matrix. In this case, however, you
must also specify the within-group standard deviations.

A rules function refers to a way of examining the plotted summary
statistics to see if there are patterns suggesting a shift in the process.
For example, five or more successive points on one side of the center
may indicate a shift in the process. The function runs.target is
provided for checking for runs in a process and beyond.limits is
provided for locating points beyond the control limits. Look at the
help files of these functions for more detail. By default, shewhart
applies both runs.target and beyond.limits, through a wrapper
function called shewhart.rules, to a chart by highlighting violating
points. The default is to highlight the points in the same way,
regardless of which rule is violated. If you want to highlight them
differently, give a list of lists of par parameters to the highlight
argument.

> shewhart(qccobj.shew, highlight=list(list(pch=1,col=2),
+ list(pch=2, col=3)))

Any of the three rules functions provided can be applied directly to
the return object of the shewhart function to produce a list of
violating points. For example,

> shewhart.rules(qccobj.shew)
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[[1]]:
  o  q
 15 17
attr([[1]], "label"):
[1] "beyond limits"

[[2]]:
  s  t
 19 20
attr([[2]], "label"):
[1] "violating runs"

The value returned is a list with a component for each rule containing
the indices of the violators appropriately labeled.

To add labeling information to a chart you can use the identify
function. There is an identify method for objects of class
"shewhart". You proceed by charting the object with no statistics
and then applying identify to the chart.

> shewhart(qccobj.shew, add.stats = F)
> identify(qccobj.shew)

[1] 19

Figure 14.4 displays the resulting chart with the 19th observation
labeled.
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Applying rules such as runs.target usually makes a Shewhart chart
more sensitive to small shifts off the center. However, such rules are
typically ad hoc. A better way to detect small shifts is through the use
of cusum charts.

Figure 14.4:  Shewhart chart of the new data in qccobj.shew with the 19th 
observation labeled.
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CUSUM CHARTS

Cusum charts display how the group summary statistics deviate above
or below the process center or target value relative to the standard
errors of the summary statistics. In essence, a cusum chart
accumulates z-scores of deviations above (below) the center and
charts them. Consequently, the points plotted are not the original data
but cumulative sums of deviations in standard errors from the center.

For an xbar chart, the upper, SUi, and lower, SLi, cumulative sums are
defined as follows:

where

is the z-score for the ith group centered about the center of the group

summary statistics denoted here as . The lower cumulative sums
are charted as -SLi. Cusum charting in S-PLUS follows a decision
interval scheme discussed in detail by Ryan (1989) and Wetherill and
Brown (1991).

The k in Equation (14.1) and Equation (14.2) is called the reference
value and corresponds to the amount that the absolute z-score must
exceed the target before the either cumulative sum increases.

The cusum chart in S-PLUS is really a composite of two charts; a chart
of the upper cumulative sums and a chart of negative the lower
cumulative sums. The two sums, typically charted separately in
standard quality control text books, are plotted on the same graph by
the cusum function in S-PLUS.

(14.1)

(14.2)

SUi max 0 zi k–( ) SUi 1–+,{ }=

SLi max 0 zi– k–( ) SLi 1–+,{ }=

zi
xi x

=
–
σxi

----------------=

x
=
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For our simulated data sets you can do a cusum chart of the original
data as follows:

> cusum(qccobj)

To see the new data charted, request it in addition to specifying the
reference data in qccobj. You can also plot both old and new data by
specifying chart.all = T. For example:

> cusum(qccobj, newdata, chart.all = T)

Figure 14.5:  Cusum chart of newdata using qccobj as the reference data 
plotting both old and new data.
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Figure 14.5 displays the cusum chart for both old and new data.
Comparing Figure 14.5 with the Shewhart chart displayed in Figure
14.2 reveals how dramatically cusum charts signal a detectable shift in
the process. In newdata, the last six observations were shifted up one
standard deviation of the population which is about two standard
errors of the summary statistics.

Various arguments to cusum control different aspects of the cusum
chart. A summary of the arguments to cusum are:

• object: An object of class "qcc" which provides information
on the type of group summary statistics to compute and the
within group standard deviation necessary for computing the
z-scores.

• newdata: Vector, matrix, data frame, or list to be charted.

• type: A character string or function specifying group statistics
to compute.

• z.scores: Optional function to be used to compute the
z-scores. This argument is required if type is not one of
"xbar", "s", "R", "p", "np", "u", or "c", or if there does not
exist a function with name produced by paste("zs.",
type, sep = "").

• decision.int: A numeric value in number of standard
errors of the summary statistics at which the cumulative sum
signals out of control.

• se.shift: The amount of shift to detect in the process
measured in standard errors of the summary statistics.

• target: A numeric value specifying the center of the process
if other than the center component of object.

• std.dev: A numeric value specifying the overall within
group standard deviation.

• sizes: A numeric vector specifying the sample sizes
associated with each group of newdata.

• labels: Character vector of labels to associate with each
group of newdata.

• label.bounds: A character vector of length two with labels
for the decision interval boundaries.
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• headstart: A numeric value in standard errors of the group
summary statistics at which to start the cumulative sums when
reset = TRUE.

• reset: A logical value indicating whether the cumulative
sums should be reset after an out-of-control signal.

• add.stats: A logical value indicating whether statistics
should be listed at the bottom of the chart.

• chart.all: A logical value indicating whether the cusums of
the statistics component of object should be charted
along with the cusums of the new.statistics component of
object if present and the cusums of the summary statistics of
newdata if given.

• ylim.min: A numeric vector of values to be included in the
computation of the approximate y-axis limits for the control
chart.

• check.cl: A logical value indicating whether the summary
statistics beyond the control limits of the Shewhart chart
should be highlighted on the chart in addition to the decision
boundary violations of the cumulative sums of the summary
statistics.

• highlight: A list of plotting parameters to be used for
highlighting the points outside the decision boundaries or
beyond the Shewhart control limits.

The type argument is the same as that specified for the shewhart
function. If type is one of "xbar", "s", "R", "p", "np", "u", or "c"
there are built in functions for computing the group summary
statistics and the z-scores. If type is not one of these, then you either
need to produce two functions with names produced by
paste("stats.", type, sep = "") and paste("zs.", type,
sep = "") or pass functions to the type and z.scores arguments in
the call to cusum.

The type and z.scores arguments are useful when charting is based
on nonstandard summary statistics. Going back to the example where
the estimate of the center of the process is based on the median and
the standard deviation is based on the mad (median absolute
deviation) estimator, you can generate cusum charts in several
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different ways. If the type component of qccobj.med is equal to
"med", and you have defined the functions stats.med and zs.med,
you can simply type

> cusum(qccobj.med, newdata)

If you haven’t defined appropriately functions or if you want to use
some function other than the one that would be found automatically,
you have to specify their names explicitly in the call to cusum. For
example, to do a cusum chart of the group means of newdata with
center and standard deviation based on the median and mad,
respectively, use the built in functions by specifying type = "xbar".
Not only will stats.xbar be used to compute the summary statistics,
but the z-score function associated with xbar charts, zs.xbar, will be
used as well.

> cusum(qccobj.med, newdata, type = "xbar")

The se.shift argument is twice the reference value, k, in Equation
(14.1) and Equation (14.2). This corresponds roughly to the sensitivity
of the cusum chart in terms of detecting shifts in standard errors of the
summary statistics. Setting se.shift = 1 (the default) corresponds
to a cusum chart being sensitive to one standard error shifts and is
equivalent to setting k = 1/2 in Equation (14.1) and Equation (14.2).

Usually when an out-of-control signal is generated by a large (in
absolute value) cumulative sum, a search is conducted and a cause is
assigned and removed if possible to correct the process. In this case,
the cumulative sums are reset and monitoring continues. By resetting
the sums to something other than zero (called a headstart), you can
produce a fast initial response (FIR) cusum. This is useful for quickly
detecting a process that hasn’t been fully corrected. When
reset = TRUE the cusums will be reset to headstart each time a
cumulative sum exceeds one of the decision boundaries.

One additional improvement to cusum charts results from checking
for a large deviation from the target value of a single group summary
statistic. A group summary statistic greater than three standard errors
from the target is equivalent to that summary statistic being outside
three-sigma Shewhart control limits. When check.cl = TRUE,
summary statistics violating Shewhart control limits are flagged as
well as large cumulative sums. If object is of class "shewhart", it
will have a cntrl.limits component which will be used to check
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for violating summary statistics. Otherwise, three-sigma Shewhart
control limits, centered about target, are computed to check for
violating summary statistics.
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EXTENSIONS TO SHEWHART CHARTS

You produce Shewhart charts based on one-at-a-time data in the same
way you produce basic Shewhart charts with the addition of two
optional arguments. First create a qcc object based on “in control”
process data and then create a control chart for new data using the
qcc object as the reference data for computing control limits. For
“moving” charts, standard deviation estimates are based on a moving
interval within which the standard deviation is estimated. These
estimates may be based on the range of values or the standard
deviation of values within a given interval. Additional arguments to
qcc are 

• sigma.span: number of data values used in each
computation of sigma. This can be any integer bigger than 1
and less than or equal to the length of the data. The default is
2.

• moving.sigma: method used to compute the standard
deviation. Must be one of “range” or “s”.

In addition to the above optional arguments the type argument may
be one of the four options listed in Table 14.2, “ma”, “ms”, “mR”,
and “ewma”. As a example, convert the qcdata matrix to a vector
and generate a moving average chart with a moving window of three
observations as follows:

> mqcdata <- as.vector(qcdata)
> shewhart(qcc(mqcdata, type = “ma”, sigma.span = 3))

You produce charts for moving standard deviations or moving ranges
in the same way as for moving averages. For exponentially weighted
moving average charts, specify the type argument as “ewma” and a
weight argument, wt, in the closed interval [.1, .5]. The default for wt is
0.25. What is plotted is the sequence

ki = wtXi + (1-wt)ki-1

where the Xi are group means or one-at-a-time data values. The wt
argument corresponds to the amount of weight put on the current
value in the above expression. For more details see the help files for
stats.type and sd.type where type is one of the chart types and/or
see the references suggested at the end of this chapter. 
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PROCESS CAPABILITY

Process capability computations quantify the ability of a process to
maintain is end product within the (specification) limits required by
engineering. That is capability compares the requirements of product
engineering with the reality of the process. You compute process
capability with the capability function using an optional qcc object
to define the process. The two values are computed by capability
are defined as follows:

where USL is the upper specification limit, LSL is the lower
specification limit,  is the process center and  is the process
standard deviation.  is referred to in some texts as the
allowable range. 

The arguments to capability are:

• qccobj:   an object resulting from a call to the qcc function.

• allowable.range: the range between the upper and lower
specification limit.

• limits: a vector of length two providing upper and lower
specification limits.

• center:   the process center.

• std.dev:   the process standard deviation.

• nsigmas: the number of sigmas used to compute control
limits.

To compute Cp you may provide a qcc object and the allowable
range. If limits is not specified Cpk will be set equal to Cp. The
center and std.dev arguments allow setting these values different
from the qcc object. For example, to compute process capability for
the mqcdata, do the following:

Cp
USL LSL–

6σ
----------------------------=

Cpk min USL µ–
6σ

---------------------
µ LSL–

6σ
--------------------,

 
 
 

=

µ σ
USL LSL–
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> capability(qcc(mqcdata, type = "ma", sigma.span = 3),
+ allowable.range = 6, limits = c(8,14))

       cp       cpk
 0.927223 0.6443803

If you know the process parameters but don’t have a qcc object in
hand, you can still compute process capability by inputting the
capability parameters directly as follows:

> capability(allowable.range = 6, limits = c(8,14),
+ std.dev = 1.09, center = 10.08)

        cp       cpk
 0.9174312 0.6360856
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PROCESS MONITORING

In many manufacturing situations processes are monitored in real
time by production engineers and product managers. You can use
S-PLUS for real-time monitoring with a few simple functions.
Examples are presented below of two functions, monitor and
get.process, which you can use to monitor a process data file and
update a control chart as data comes in.

The basic idea is the following:

1. Create a file for accumulating the process data; call it Process.

2. Track the growth of Process with get.process and
monitor, updating the control chart only when new data has
been added to the file.

Suppose a typical line of the data file looks like the following:

Lot1  9.496215  8.718396  11.470395  9.671888  11.328800

Also, suppose you want to accumulate the data in a matrix. Then you
could write the data-reading function, get.process, as follows:

> get.process

function(file, skip = 0)
{
  data <- scan(file, what = list(names = "",0,0,0,0,0),
                 skip = skip)
  nm <- data$names
  data <- cbind(data[[2]],data[[3]],data[[4]],data[[5]],
                 data[[6]])
  dimnames(data) <- list(nm, NULL)
  data
}

The configuration of the data fields are built into the get.process
function. The first field is a character label and the remaining five
fields are numeric data. The skip argument is added so that
previously read data can be skipped when it is time to update the
chart.
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The monitor function keeps track of which data have already been
read and updates the chart. An example of what monitor might look
like is the following:

> monitor

function(file, qc.object, sleep.time = 5)
{
# define a subfunction
   file.length <- function(file)
   as.numeric(unix(paste("wc",

file, "| awk '{print $1}'")))
#
#
   old.length <- file.length(file)
   new.data <- get.process(file)
#
# put up initial chart
#
   qcc.shew <- shewhart(qc.object, new.data,

add.stats = F)
   cat("to quit type CNTRL-C\n")
   repeat {
      new.length <- file.length(file)
      if(new.length > old.length) {
#
# new data have come in, we need to update the plot
#
         new.data <- get.process(file, skip = old.length)
         old.length <- new.length
         qcc.shew <- shewhart(qcc.shew, new.data,

add.stats = F)
      }
      unix(paste("sleep", sleep.time))
   }
}

The statistics on the bottom of the chart have been turned off so that a
number of charts can be efficiently placed within a single figure. The
monitor function makes use of the fact that shewhart updates its
return object so that all you need to scan each time is the data that has
just been added to the file.
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Suppose now that qcdata, defined in the section Control Chart
Objects, is coming in one row (corresponding to one lot) at a time.
Start the monitoring by putting the first lot in the file Process and
then running monitor as follows:

> monitor("Process", qccobj)

to quit type CNTRL-C

S-PLUS now monitors Process for a change in size. When one is
detected, the new data is read in and the chart is updated. Figure 14.6
displays the results of 19 updates.
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Figure 14.6:  A series of Shewhart charts of the data resulting from running monitor on a growing process 
data file.
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Chapter 15  Mathematical Computing in S-PLUS
INTRODUCTION

S-PLUS was designed for data analysis, so it is rich in quantitative
methods. Many of these methods, while designed for particular data
analysis tasks, have been implemented as general mathematical tools.
These tools can be applied to a wide variety of numerical
applications. This chapter is a brief survey of mathematical
computing in S-PLUS.

In this chapter, we assume a basic familiarity with the operation of the
command line. For the most part, however, this chapter is self-
contained and can be read independently of the other chapters in this
manual.
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Arithmetic Operations
ARITHMETIC OPERATIONS

You perform basic arithmetic in S-PLUS as you would with a
calculator, using the operators +, -, *, and /:

> 2 + 2

[1] 4

> 9 - 3

[1] 6

> 3 * 8

[1] 24

> 17 / 4

[1] 4.25

Use the operator ^ for exponentiation, including root extraction:

> 3 ^ 2

[1] 9

> 7 ^ (1 / 3)

[1] 1.912931

Operators have their usual precedence (powers, multiplication/
division, addition/subtraction), and parentheses can be used (as in the
previous example) to group calculations. Two other operators provide
integer quotients and remainders. The integer divide operator, %/%,
returns the integer quotient q and the modulo operator, %%, returns
the remainder r of two numbers y and x, so that y = qx + r:

> 24.5 %/% 3.2

[1] 7

> 24.5 %% 3.2

[1] 2.1
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> 7 * 3.2 + 2.1

[1] 24.5

The abs function returns the absolute value of a number:

> abs(-4.5)

[1] 4.5

The greatest-integer function   is obtained using floor:

> floor(2.3)

[1] 2

Similarly, the “next integer”  is obtained using ceiling:

> ceiling(2.3)

[1] 3

A vector in S-PLUS is an ordered set of values. Simple numeric vectors
can be created with the c function or the sequence operator (:):

> x <- c(3,1,7)
> x

[1] 3 1 7

> w <- 1:6
> w

[1] 1 2 3 4 5 6

A matrix, in S-PLUS, is simply a vector with a specified number of
rows and columns, that is, an ordered set of data in a rectangular
array. You can create matrices with the matrix command:

> A <- matrix(c(19,8,11,2,18,17,15,19,10),nrow=3)

     [,1] [,2] [,3]
[1,]   19    2   15
[2,]    8   18   19
[3,]   11   17   10

x

x

454



Arithmetic Operations
You can also build matrices from existing vectors using rbind (which
assigns vectors to the rows of the matrix) or cbind (which assigns
vectors to the columns of the matrix):

> m <- c(14,13,10)
> n <- c(10,11,15)
> o <- c(19,3,15)
> B <- cbind(m,n,o)
> B

      m  n  o
[1,] 14 10 19
[2,] 13 11  3
[3,] 10 15 15

Most calculations on vectors or matrices are carried out element by
element, so, for example, if X = {xij} and Y = {yij}, we have
X*Y = {xijyij}. Multiplying A times B with the standard * operator
yields the following:

> A*B

     [,1] [,2] [,3]
[1,]  266   20  285
[2,]  104  198   57
[3,]  198  255  150

For matrices, these element by element operations require that the
matrices have the same dimension; that is, the same number of rows
and the same number of columns, so that the matrices are conformable
for addition. For vectors, if one vector is shorter than the other, the
shorter vector is repeated cyclically to match the length of the longer
vector:

> x + w

[1]  4  3 10  7  6 13
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Mathematical operations on combinations of vectors and matrices are
permitted, but may have unexpected results. For example, suppose
you define the matrix E as follows:

> E <- matrix(1:4,nrow=2)

Dividing by the previously defined vectors x and w yields the
following results:

> E/w

[1] 1.0000000 1.0000000 1.0000000 1.0000000 0.2000000
[6] 0.3333333
Warning messages:
  Length of longer object is not a multiple of the
 length of the shorter object in: E/w

> E/x

          [,1]      [,2]
[1,] 0.3333333 0.4285714
[2,] 2.0000000 1.3333333
Warning messages:
  Length of longer object is not a multiple of the
  length of the shorter object in: E/x

S-PLUS returns an object with the attributes of the longer object in the
calculation. Since length(E) < length(w), E/w returned an object
matching the attributes of w, namely a vector of length 6. On the other
hand, since length(E) > length(x), E/x returned an object
matching the attributes of E, namely, a matrix of length 4 with
dim = c(2,2).

To perform matrix multiplication, use the matrix multiplication operator
%*%

> A %*% B

     [,1] [,2] [,3]
[1,]  562  437  592
[2,]  688  563  491
[3,]  555  447  410

The two matrices must be conformable for multiplication, that is, the
number of columns of A must be the same as the number of rows of B.
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Using the matrix multiplication operator on two equal length vectors
yields the vector dot product:

> z <- c(1,0,3,4,8)
> y <- c(2,9,3,2,7)
> z %*% y

     [,1]
[1,]   75
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COMPLEX ARITHMETIC

In addition to the ordinary operators described in the section
Arithmetic Operations, five special operators are provided for
manipulating complex numbers.

Re and Im are used to extract the real and imaginary parts,
respectively, from a complex number. Mod and Arg return the modulus
and argument for the polar representation of the complex number.
Conj returns the complex conjugate of the complex number.

When you graph a vector of complex numbers with plot, the real
parts are graphed along the x-axis and the imaginary parts are
graphed along the y-axis.
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ELEMENTARY FUNCTIONS

The elementary functions included in S-PLUS are listed in Table 15.1.

Each function acts element-by-element on its argument:

> J

     [,1] [,2] [,3] [,4]
[1,]   12   15    6   10
[2,]    2    9    2    7
[3,]   19   14   11   19

Table 15.1:  Elementary Functions in S-PLUS.

Name Operation

sqrt Square root

abs Absolute value

sin, cos, tan Trigonometric functions (radians)

asin, acos, atan Inverse trigonometric functions (radians)

sinh, cosh, tanh Hyperbolic trigonometric functions
(radians)

asinh, acosh, atanh Inverse hyperbolic trigonometric functions
(radians)

exp, log Exponential and natural logarithm

log10 Common logarithm

gamma, lgamma Gamma function and its natural logarithm
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> sqrt(J)

         [,1]     [,2]     [,3]     [,4]
[1,] 3.464102 3.872983 2.449490 3.162278
[2,] 1.414214 3.000000 1.414214 2.645751
[3,] 4.358899 3.741657 3.316625 4.358899

> tan(J)

           [,1]       [,2]         [,3]      [,4]
[1,] -0.6358599 -0.8559934   -0.2910062 0.6483608
[2,] -2.1850399 -0.4523157   -2.1850399 0.8714480
[3,]  0.1515895  7.2446066 -225.9508465 0.1515895

You can use log to compute logarithms of any base with the optional
argument base=. For example, to compute log27:

> log(7,base=2)

[1] 2.807355
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VECTOR AND MATRIX COMPUTATIONS

The p-norm of a vector x of length n is defined as:

for . To obtain the p-norm of a vector in S-PLUS, use the
vecnorm function (by default, p = 2):

> vecnorm(1:2)

[1] 2.236068

> ( sum( (1:2) ^ 2) ) ^ (1/2)

[1] 2.236068

The vecnorm function works with both real and complex vectors:

> vecnorm(1+2i)

[1] 2.236068

You can specify the type of norm desired with the p argument.
Possible values include real numbers greater than or equal to 1, Inf,
and the character strings "euclidean" or "maximum":

> vecnorm(1:2, p = 1)

[1] 3

> vecnorm(1:2, p = "maximum")

[1] 2

> vecnorm(1:2, p = Inf)

[1] 2

x1
p x2

p … xn
p

+ + +[ ]
1 p⁄

p 1≥
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To obtain the transpose of a matrix, use the t function:

> J

     [,1] [,2] [,3] [,4]
[1,]   12   15    6   10
[2,]    2    9    2    7
[3,]   19   14   11   19

> t(J)

     [,1] [,2] [,3]
[1,]   12    2   19
[2,]   15    9   14
[3,]    6    2   11
[4,]   10    7   19

You can obtain the diagonal of a matrix with the diag function:

> diag(J)

[1] 12 9 11

You can also use diag to construct diagonal matrices:

> x <- c(3,1,7)
> diag(x)

     [,1] [,2] [,3]
[1,]    3    0    0
[2,]    0    1    0
[3,]    0    0    7

To obtain the trace of a square matrix, use sum with diag, as follows:

> sum(diag(A))

[1] 47

For another approach to vector and matrix computations, see also
Chapter 16, The Object-Oriented Matrix Library.
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Identity 
Matrices

To generate identity matrices in S-PLUS, use diag with an integer
argument representing the rank n as follows:

> diag(n)

For example, the rank 4 identity matrix is created as follows:

> diag(4)

     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1

Determinants There is no built-in S-PLUS function to calculate determinants.
However, the following one-line function can be used to calculate
determinants for real-valued matrices:

> det <- function(x) prod(eigen(x)$values))

(The eigen function is discussed in the section Eigenvalues and
Eigenvectors.)

Kronecker 
Products

A Kronecker product of two matrices  and  is the matrix

To calculate a Kronecker product in S-PLUS, use the kronecker
function:

> N <- matrix(5:8,nrow=2)
> O <- matrix(4:1,nrow=2)
> kronecker(N,O)

     [,1] [,2] [,3] [,4]
[1,]   20   10   28   14
[2,]   15    5   21    7
[3,]   24   12   32   16
[4,]   18    6   24    8

Ap q× Bm n×

a11B … a1qB

A A
ap1B … apqB
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You can generalize kronecker to other operations besides
multiplication by changing the operator with the fun argument:

> kronecker(N,O,fun="+")

     [,1] [,2] [,3] [,4]
[1,]    9    7   11    9
[2,]    8    6   10    8
[3,]   10    8   12   10
[4,]    9    7   11    9
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SOLVING SYSTEMS OF LINEAR EQUATIONS

S-PLUS provides several methods for solving systems of linear
equations such as the following:

This system of equations can be expressed as the matrix equation
Ax = y, where A is the matrix of coefficients, x is the (column) vector of
unknowns (a,b,c), and y is the column vector of known values (9,5,14).
The solve function takes the square matrix of coefficients and the
vector of known values as arguments and returns the solution vector:

> solve(A,c(9,5,14))

[1]  0.9914429  0.6161109 -0.7379758

You can also use solve to obtain the inverse of a matrix:

> solve(A)

            [,1]         [,2]        [,3]
[1,]  0.04219534 -0.069341989  0.06845677
[2,] -0.03806433 -0.007376807  0.07111242
[3,]  0.01829448  0.088816760 -0.09619357

If the matrix is singular, solve returns an error message:

> S <- matrix(c(9,3,3,3,1,1,2,4,7),ncol=3,byrow=T)
> solve(S)

Error in solve.qr(a): apparently singular matrix
Dumped

If the matrix of coefficients is upper triangular, you can use
backsolve to solve the system of equations:

> U

     [,1] [,2] [,3]
[1,]    3    1    4
[2,]    0    1    5
[3,]    0    0    9

19a 2b 15c+ + 9=

8a 18b 19c+ + 5=

11a 17b 10c+ + 14=
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> backsolve(U,c(9,5,14))

[1]  1.851852 -2.777778  1.555556

Sections on Choleski decomposition, QR decomposition, and the
singular value decomposition follow. Information on using the Matrix
library for matrix decompositions can be found in the section Matrix
Decompositions on page 507.

Choleski 
Decomposition

For symmetric, positive-definite matrices, the Choleski decomposition

factors the matrix X uniquely in the form X = RTR, where R is upper
triangular. You can use the Choleski decomposition to generate upper
triangular matrices for use with backsolve. S-PLUS now has two
functions for performing Choleski decomposition: chol and
choleski. The chol function is most useful for obtaining new
matrices, since it returns simply the upper triangular matrix R. The
choleski function returns a list with the R matrix as one of its
components.

For more information on the Choleski decomposition, see the chol
help file and Chapter 8 of the LINPACK User’s Guide by Dongarra, et
al.

QR 
Decomposition

The QR decomposition expresses an n x p matrix X as the product of an
n x n orthogonal matrix Q and an n x p upper triangular matrix R.
The QR decomposition is the foundation for solve and lsfit, the
(nonrobust) least-squares fit function.

To obtain a representation of the QR decomposition, use the qr
function. The value returned by qr is a list representing the QR
numerical decomposition. The first component of the list is an n x p
matrix in which the upper triangle, including the diagonal, is the R
matrix and the entries under the diagonal contain most of a compact
representation of Q. To obtain R and Q explicitly from this numerical
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representation, use the functions qr.R and qr.Q, respectively.
Another function, qr.X, reconstructs the original n x p matrix X from
the numerical decomposition:

> qr(A)

$qr:
           [,1]       [,2]       [,3]
[1,] -5.9160798 -4.9018947 -7.9444500
[2,]  0.5070926  2.2296701  3.6136032
[3,]  0.8451543  0.7681395 -0.9097177

$qraux:
[1] 1.169031 1.640282 0.000000

$rank:
[1] 3
$pivot:
[1] 1 2 3

> qr.Q(qr(A))

           [,1]        [,2]       [,3]
[1,] -0.1690309  0.97387888 -0.1516196
[2,] -0.5070926 -0.21784133 -0.8339078
[3,] -0.8451543 -0.06407098  0.5306686

> qr.R(qr(A))

         [,1]      [,2]       [,3]
[1,] -5.91608 -4.901895 -7.9444500
[2,]  0.00000  2.229670  3.6136032
[3,]  0.00000  0.000000 -0.9097177

> qr.X(qr(A))

     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    3    2    4
[3,]    5    4    6
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The following functions use the return value from qr to perform
additional calculations:

• qr.coef: Returns the coefficients obtained by a least-squares
fit of response data y to the X matrix on which qr was used.

• qr.fitted: Returns the fitted values obtained by a least-
squares fit of response data y to the X matrix on which qr was
used.

• qr.resid: Returns the residuals obtained by a least-squares
fit of response data y to the X matrix on which qr was used.

• qr.qy: Returns the results of the matrix multiplication
Q %*% y, where Q is the order-nrow(X) orthogonal
transformation represented by qr and y is the response data.

• qr.qty: Returns the results of the matrix multiplication
t(Q) %*% y, where Q is the order-nrow(X) orthogonal
transformation represented by qr and y is the response data.

For more details on the QR decomposition, see the help files for qr,
qr.coef, and qr.Q and Chapter 9 of the LINPACK User’s Guide by
Dongarra, et al.

The Singular 
Value 
Decomposition

The singular value decomposition takes an n x p matrix X and
decomposes it into two orthogonal matrices and a diagonal matrix.
The elements of the diagonal matrix are the singular values of X. The

squares of the singular values of X are the eigenvalues of XTX.

To obtain the singular value decomposition in S-PLUS, use the svd
function, which returns a list in which the first component is the
vector of singular values, the second component is the orthogonal
matrix V, and the third component is the orthogonal matrix U:

> svd(A)

$d:
[1] 40.000114 14.687207  5.768609

$v:
           [,1]       [,2]       [,3]
[1,] -0.5280363  0.6449356  0.5524814
[2,] -0.5533835 -0.7547957  0.3522074
[3,] -0.6441618  0.1197558 -0.7554563
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$u:
           [,1]       [,2]        [,3]
[1,] -0.5200456  0.8538399 -0.02258456
[2,] -0.6606048 -0.4188323 -0.62304157
[3,] -0.5414369 -0.3090905  0.78186261

The singular value decomposition can be used as a numerically stable
way to perform many operations that are used in multivariate
statistics. One such operation is estimating the rank of a matrix X.

For more information on the singular value decomposition, see the
svd help file and Chapter 10 of the LINPACK User’s Guide by
Dongarra, et al.
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EIGENVALUES AND EIGENVECTORS

If A is a square matrix and Ax = λx, where λ is a scalar and x is a
vector, then λ is an eigenvalue of A and x is an eigenvector of A.

The S-PLUS function eigen returns both the eigenvalues and the
eigenvectors associated with them:

> eigen(A)

$values:
[1]  39.581985  13.677784  -6.259769

$vectors:
          [,1]       [,2]       [,3]
[1,] 0.6224278  0.8664541  0.3124109
[2,] 0.8793762 -0.6095730  0.3450415
[3,] 0.7368032 -0.2261540 -0.5721007

For more information on the eigen function, see the eigen help file.
See also the section The Eigen Decomposition, in Chapter 16, The
Object-Oriented Matrix Library.
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Integrals, Differences, and Derivatives
INTEGRALS, DIFFERENCES, AND DERIVATIVES

Use the integrate function to compute the integral of a real-valued
function over a given interval. The integrate function returns a list,
of which the first two components are the integral and the absolute
error:

> integrate(sin, 0, pi)[1:2]

$integral:
[1] 2

$abs.error:
[1] 2.220446e-14

>  (-cos(pi)) -  -cos(0)

[1] 2

Like many of the S-PLUS mathematical functions, integrate is most
commonly used inside other function definitions. The following
“wrapper” function provides a convenient command-line interface,
and returns a single numeric value:

> integral <- function(f, lower, upper, ...) {
+        results <- integrate(f, lower, upper, ...)
+        if(results$message != "normal termination")
+                results$message
+        else results$integral
+ }

Use the diff function to obtain the nth difference of lag k for a set of
data x. The default for both k and n is 1. The data may be in the form
of a vector, time series, or matrix:

> y <- (1:10)^2
> diff(y)

[1]  3  5  7  9 11 13 15 17 19
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> diff(corn.rain)

1891:  3.3 -3.0 -1.2 -1.9  5.7  0.5 -2.9  0.0  0.0  0.7
1901: -3.0  8.4 -2.1 -3.5 -0.6  1.5  2.1 -1.5 -0.1 -2.7
1911: -1.6  3.3 -4.1  2.6  7.0 -7.2  0.1 -0.7  0.8  2.1
1921:  0.5 -4.1  2.7  3.2 -2.6  0.3 -1.2

Differences on matrices are performed on each column separately:

> K

     [,1] [,2]
[1,]   12   10
[2,]    2   16
[3,]   13    7
[4,]    5    1

> diff(K)

     [,1] [,2]
[1,]  -10    6
[2,]   11   -9
[3,]   -8   -6

You can use diff to write a function for approximating the derivative
of a data set:

> numdiff <- function(y, x = seq(along = y))
+ diff(y)/diff(x)

To perform symbolic differentiation, use the D function. (AT&T
suggests the deriv function, but deriv is most useful for providing
derivatives to other S-PLUS functions. The D function is more useful
for obtaining an isolated derivative.)

> D(expression(3*x^2),"x")

3 * (2 * x)

> D(expression(exp(x^2)),"x")

exp(x^2) * (2 * x)

> D(expression(log(y)),"y")

1/y
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INTERPOLATION AND APPROXIMATION

S-PLUS has a variety of functions for interpolation and approximation,
most of them developed to aid in fitting curves and lines to data.
However, they are sufficiently general to have wide application in
mathematical settings.

Linear 
Interpolation

To find interpolated values in S-PLUS, use the approx function. You
provide a vector of x values and a vector of associated y values, and
(optionally) a vector of x values at which you want interpolated
values. S-PLUS returns a list of x values and the associated y values:

> approx(1:10,(1:10)^2,xout=c(2.5,3.5))

$x:
[1] 2.5 3.5

$y:
[1]  6.5 12.5

A more specialized interpolation function, interp, can be used to
generate input for the three-dimensional plotting functions image,
contour, and persp. The interp function interpolates the value of
the z variable onto an evenly spaced grid of the x and y variables:

> x <- cos(seq(-pi,pi,len=9))
> y <- sin(seq(-pi,pi,len=9))
> z <- x + y
> slanted.disk <- interp(x,y,z)
> persp(slanted.disk)
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The resulting plot is shown in Figure 15.1.

Convex Hull To obtain the convex hull of a planar set of points, use the chull
function, which returns the indices of the points belonging to the hull:

> chull(corn.rain)

 [1]  1  2 13 26 35 37 38 33 24  5

The peel option allows you to peel off the convex hull, take the
convex hull of the remaining points, peel off that hull, and so on, until
either all points are assigned to a hull or a user-specified limit is
reached:

> chull(corn.rain,peel=T)

$depth:
 [1] 1 1 2 2 1 2 2 3 4 5 4 2 1 2 6 5 5 3 4 4 3 2 5 1 4 1 3
[28] 4 2 3 3 2 1 3 1 2 1 1

Figure 15.1:  A perspective plot created using interp.
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$hull:
 [1]  1  2 13 26 35 37 38 33 24  5  4  3  6  7 14 32 36 29
[19] 22 12 21  8 18 31 34 30 27  9 11 19 20 28 25 10 17 23
[37] 16 15

$count:
[1] 10 10  7  6  4  1

The depth component specifies which hull each point belongs to; 1 is
the outermost hull. The hull component gives the indices of the
points belonging to each hull. The first count[1] points belong to the
outermost hull, the next count[2] points belong to the next hull, and
so on.

Cubic Spline 
Approximation

Splines approximate a function with a set of polynomials defined on
subintervals. A cubic spline is a collection of polynomials of degree
less than or equal to 3 such that the second derivatives agree at the
“knots;” that is, the spline has a continuous second derivative.

When interpolating a number of points, a spline can be a much better
solution than a polynomial interpolation, since the polynomial can
oscillate wildly in order to hit all of the points (polynomials fit the
data globally while splines fit the data locally).

Use the spline function to obtain a cubic spline approximation:

> x <- 1:5
> y <- c(5,-5,0,-5,5)
> spline(x,y)

$x:
 [1] 1.000000 1.333333 1.666667 2.000000 2.333333 2.666667
 [7] 3.000000 3.333333 3.666667 4.000000 4.333333 4.666667

$y:
 [1]  5.0000000  0.1851852 -3.5185184 -5.0000000 -3.7037036
 [6] -1.2962964  0.0000000 -1.2962964 -3.7037036 -5.0000000
[11] -3.5185184  0.1851852

The spline function is primarily used for graphing, so by default it
returns approximately three times as many output points as input
points. For more details, see the spline help file.
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Step Functions The S-PLUS function stepfun creates a step function from either two
vectors or a list with components named x and y. You can specify
whether the step function is left or right continuous—the default is left.

> x <- seq(1,15,length=5)
> y <- x^2
> stepfun(x,y)

$x:
[1]  1.0  4.5  4.5  8.0  8.0 11.5 11.5 15.0 15.0

$y:
[1]   1.00   1.00  20.25  20.25  64.00  64.00 132.25 132.25
[9] 225.00

> plot(stepfun(x,y),type="l")

The resulting plot is shown in Figure 15.2.

Figure 15.2:  A (left-continuous) step function.
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THE FAST FOURIER TRANSFORM

S-PLUS has several functions useful for signal processing, including
the fast Fourier transform and its inverse and several types of filters:
convolution, recursive, and low-pass. For a complete description of
filters in S-PLUS, see the section Linear Filters on page 179.

The function fft calculates the unnormalized discrete Fourier
transform of the input data, which can be any numeric or complex
vector or array, including time series. The output is of mode
complex.

> fft(1:10)

 [1]  55+ 0.000000i  -5+15.388418i  -5+ 6.881910i
 [4]  -5+ 3.632713i  -5+ 1.624598i  -5+ 0.000000i
 [7]  -5- 1.624598i  -5- 3.632713i  -5- 6.881910i
[10]  -5-15.388418i

If the input data is an array (for example, a matrix), fft returns the
multi-dimensional unnormalized discrete Fourier transform of the
array—a complex array with the same shape as the input data.
Therefore, using fft on a multivariate time series does not compute
the time transform.

> fft(A)

                 [,1]             [,2]             [,3]
[1,]  119.0+0.000000i  -2.5+ 6.062178i  -2.5- 6.062178i
[2,]   -5.5-6.062178i  23.0+20.784610i  11.0- 6.928203i
[3,]   -5.5+6.062178i  11.0+ 6.928203i  23.0-20.784610i

To compute the inverse transform, use fft with the argument
inverse = TRUE.

> cuberoot.1 <- (cos(2*pi/3) + sin(2*pi/3)*1i)^(0:2)
> cuberoot.1

[1]  1.0+0.0000000i -0.5+0.8660254i -0.5-0.8660254i

> fft(cuberoot.1,inverse=T)

[1] 0.000000e+00+3.330669e-16i 2.220446e-16+3.142072e-16i
[3] 3.000000e+00-6.472741e-16i
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PROBABILITY AND RANDOM NUMBERS

S-PLUS has many functions for performing probability calculations,
including random number generation, in any of the most common
distributions. Each of these functions has a name beginning with one
of the following four one-letter codes indicating the type of function:

• r: Random number generator. Requires argument specifying
sample size, plus any required distribution parameters.

• p: Probability function. Requires a vector of quantiles, plus
any required distribution parameters.

• d: Density function. Requires a vector of quantiles, plus any
required distribution parameters.

• q: Quantile function. Requires a vector of probabilities, plus
any required distribution parameters.

The function code is concatenated with a code representing the
desired distribution to form the function name. For example, the
probability that a value from a standard normal distribution is less
than x is calculated with the expression pnorm(x). Table 15.2 lists the
distributions currently supported by S-PLUS, along with the codes
used to identify them.

For example, to compute the .95 quantile from a chi-square
distribution with 5 degrees of freedom, use the following expression:

> qchisq(.95,5)

[1] 11.0705

The result says that 95% of numbers drawn from the given chi-square
distribution will be less than 11.0705.

To generate 25 random numbers from a uniform distribution between
-5 and 5, use runif as follows:

> runif(25,-5,5)

 [1] -1.03983 -0.11714 -2.41342  2.01498  0.48760
 [6]  1.55474 -3.83878 -4.04518 -2.39230 -0.47260
[11] -1.16530 -3.42732 -2.09373  2.24609  3.70265
[16]  3.67131  4.37430 -3.06433 -2.34121 -1.28586
[21] -0.91553  2.18947  2.12163 -2.04341 -2.87031
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PRIMES AND FACTORS

S-PLUS can be useful in many number-theoretic computations, as we
have already seen with the %% and %/% operators. You can define
simple functions to list prime numbers and perform factorization;
although they will not set computational records, you may find them
useful.

Table 15.2:  Probability distributions in S-PLUS.

Code Distribution
Required 
Parameters

Optional 
Parameters Defaults

beta beta shape1, shape2

binom binomial size, prob

cauchy Cauchy location, scale 0, 1

chisq chi-square df

exp exponential rate 1

f F df1, df2

gamma Gamma shape

geom geometric prob

hyper hypergeometric m, n, k

lnorm log-normal mean, sd exp(.5),
exp(1)*(exp(1)-1)

logis logistic location, scale 0, 1

nbinom Negative binomial size, prob
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The primes function returns all prime numbers less than or equal to
a given n, where by default n = 100:

> primes <- function(n = 100) {
+        n <- as.integer(abs(n))
+        if(n < 2)
+                return(integer(0))
+        p <- 2:n
+        smallp <- integer(0)    # the sieve
+        repeat {
+                i <- p[1]
+                smallp <- c(smallp, i)
+                p <- p[p %% i != 0]
+                if(i > sqrt(n))
+                        break
+        }
+        c(smallp, p)
+ }

norm normal mean, sd 0, 1

pois Poisson lambda

stab stable index skewness 0

t Student’s t df

unif uniform min,max 0,1

weibul
l

Weibull shape

wilcox Wilcoxon rank sum m, n

Table 15.2:  Probability distributions in S-PLUS. (Continued)

Code Distribution
Required 
Parameters

Optional 
Parameters Defaults
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> primes(75)

 [1]  2  3  5  7 11 13 17 19 23 29 31 37 41 43 47 53 59 61
[19] 67 71 73

The factors function returns the prime factors of an integer n:

> factors <- function(n) {
+        n <- as.integer(abs(n))
+        if(!exists(".Primes") || max(.Primes) < sqrt(n))
+                assign(".Primes", primes(as.integer(1.3 *
+                        sqrt(n))), where = 1)
+        pfactors <- integer(0)
+        while(n > 1) {
+                new.factors <- .Primes[n %% .Primes == 0]
+                if(length(new.factors) == 0)
+                        new.factors <- n
+                n <- as.integer(n/(prod(new.factors)))
+                pfactors <- c(pfactors, new.factors)
+        }
+        sort(pfactors)
+ }
> factors(3012)

[1]   2   2   3 251
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A NOTE ON COMPUTATIONAL ACCURACY

S-PLUS performs its computations in double precision, unless
specifically written as integer or single precision. Computed values
are accurate to approximately 14 decimal places. However, computed
values can provide no more significant digits than the data they are
computed from.

The exact limits on computations in S-PLUS are determined by the
parameters of machine arithmetic stored in the S-PLUS object
.Machine. The object .Machine is a list with various numeric
components whose names are made up of the characters single. or
double. followed by the name of a particular parameter of machine
arithmetic. For example, single.digits is the number of base
single.base digits in the floating point representation of a single-
precision number. In addition, the component integer.max is the
largest integer.

See the .Machine help file for more information.
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Chapter 16  The Object-Oriented Matrix Library
INTRODUCTION

The Matrix library in S-PLUS provides a consistent, efficient, and fully
object-oriented set of matrix operations and functions that reflect the
traditional linear algebraic viewpoint. The functions are based on the
LAPACK library of numerical Fortran routines. See the LAPACK
User’s Guide (1994) for details. The library includes constructor
functions for a new Matrix class and numerous subclasses, and
methods for many common matrix computations, including basic
matrix arithmetic, decompositions, and solutions to systems of linear
equations.
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ATTACHING THE MATRIX LIBRARY

To use the Matrix library, you must first attach it using the library
function:

> library(Matrix)

You can view the full list of Matrix functions with the following
command:

> objects(grep("Matrix", search()))

 [1] "%*%.Matrix"                 ".First.lib"
 [3] ".laenv"                     "Arg.Identity"
 [5] "Arg.Matrix"                 "ColOrthogonal.test"
 [7] "ColOrthonormal.test"        "ColPermutation"
 [9] "Diagonal"                   "Diagonal.test"
[11] "Hermitian.test"             "Identity"
[13] "Identity.test"              "Im.Diagonal"
[15] "Im.Identity"                "Im.Matrix"
[17] "LowerTriangular.test"       "Matrix"
 . . .
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BASIC MATRIX OPERATIONS

Working with objects of the new Matrix class is, in most simple cases,
exactly like working with traditional S-PLUS matrices. However,
throughout the chapter, we will use the word Matrix, with its initial
capital, whenever we refer specifically to objects of this new class. A
lower-case “m” indicates traditional S-PLUS matrices.

To construct a Matrix, use the Matrix function (which has the same
arguments as the old matrix function):

> Matrix(1:12, nrow=3, ncol=4)

     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
attr(, "class"):
[1] "Matrix"

By default, Matrices are filled in “by column.” To fill the Matrix by
rows, use the argument byrow = T:

> Matrix(1:12, nrow=3, ncol=4, byrow=T)

     [,1] [,2] [,3] [,4]
[1,]    1    2    3    4
[2,]    5    6    7    8
[3,]    9   10   11   12
attr(, "class"):
[1] "Matrix"

You can add row and column names by providing a list with two
components (one of length nrow and one of length ncol) to the
dimnames argument:

> Matrix(1:12, nrow=3, ncol=4, dimnames=list(
+ c("Row 1", "Row 2", "Row 3"),
+ c("Col 1", "Col 2", "Col 3", "Col 4")))

      Col 1 Col 2 Col 3 Col 4
Row 1     1     4     7    10
Row 2     2     5     8    11
Row 3     3     6     9    12
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attr(, "class"):
[1] "Matrix"

As with any S-PLUS expression, the returned value can be stored as an
S-PLUS object:

> A <- Matrix(c(19,8,11,2,18,17,15,19,10), nrow=3)
> B <- Matrix(c(14,13,10,10,11,15,19,3,15), nrow=3)

Matrix 
Arithmetic

Two Matrices with the same dimension—that is, the same number of
rows and the same number of columns—are said to be conformable for
addition. Such Matrices can be combined using the normal arithmetic
operators +, -, *, and /; these operators act element-by-element, so that
for X = {xij} and Y = {yij}, X*Y = {xijyij}. Thus, multiplying A times B
with the standard * operator yields the following:

> A*B

     [,1] [,2] [,3]
[1,]  266   20  285
[2,]  104  198   57
[3,]  110  255  150
attr(, "class"):
[1] "Matrix"

If you attempt to add a vector to a Matrix, you may be surprised by
the results. In standard S-PLUS, if you operate on two objects with
different lengths, S-PLUS returns an object with the attributes of the
longer object. Thus, if you add a 3 x 3 matrix and a length 4 vector,
you get a 3 x 3 matrix, and the length 4 vector is replicated to be the
same length as the matrix before the addition is performed:

> matrix(1:9, ncol=3) + 1:4

Warning

If you create Matrices and other objects from linear algebra using the Matrix library, you must
always attach the Matrix library before working with those objects. Otherwise, you may
encounter potentially confusing error messages. Also, do not expect classed Matrices to be
suitable inputs for all functions which expect matrix inputs.
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     [,1] [,2] [,3]
[1,]    2    8   10
[2,]    4    6   12
[3,]    6    8   10
Warning messages:
  Length of longer object is not a multiple of the length
    of the shorter object in: matrix(1:9, ncol = 3) + 1:4

The same calculation is illegal with Matrices:

> Matrix(1:9, ncol=3) + 1:4

Error in e1 + e2: Dimension attributes do not match
Dumped

However, if the vector you want to add is sweep-conformable with your
matrix—that is, if it is the same length as the number of rows or
columns of your matrix—the operation can proceed:

>  Matrix(1:9, ncol=3) + 1:3

     [,1] [,2] [,3]
[1,]    2    5    8
[2,]    4    7   10
[3,]    6    9   12
attr(, "class"):
[1] "Matrix"

>  Matrix(1:9, ncol=3) + t(1:3)

     [,1] [,2] [,3]
[1,]    2    6   10
[2,]    3    7   11
[3,]    4    8   12
attr(, "class"):
[1] "Matrix"

The first example above shows a column sweep operation, in which the
column vector 1:3 is added to each column of the Matrix in turn.
The second example shows a row sweep operation, in which the row
vector 1:3 is added to each row of the Matrix in turn.
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You can obtain the same results using the sweep function, but the
basic operators are usually more convenient:

> sweep(Matrix(1:9, ncol=3), 2, 1:3, "+")

     [,1] [,2] [,3]
[1,]    2    6   10
[2,]    3    7   11
[3,]    4    8   12
attr(, "class"):
[1] "Matrix"

> sweep(Matrix(1:9, ncol=3),1, 1:3, "+")

     [,1] [,2] [,3]
[1,]    2    5    8
[2,]    4    7   10
[3,]    6    9   12
attr(, "class"):
[1] "Matrix"

Matrix multiplication requires that two Matrices X and Y be conformable
for multiplication; that is, that the number of columns of X equal the
number of rows of Y. Thus, if X is an m x n Matrix and Y is an n x p
Matrix, the Matrix product XY is defined, but the Matrix product YX
is not:

> X <- Matrix(rnorm(12), ncol=3)
> Y <- Matrix(rnorm(15), nrow=3)
> X %*% Y

           [,1]       [,2]       [,3]      [,4]       [,5]
[1,] -2.2592886  0.7046133  0.4268365  2.783703 -1.2639460
[2,]  0.5056705 -0.4573891  1.6069626  2.997998 -0.6174152
[3,]  0.4616003 -2.6992292 -2.6528110 -2.682271 -0.6169322
[4,] -2.5606158  2.2183770  0.4736680  1.556856 -0.3746409
attr(, "class"):
[1] "Matrix"

> Y %*% X

Error in "%*%.default"(x, y): Number of columns of x
   should be the same as number of rows of y
Dumped
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For square Matrices A and B of the same dimension, both products
are defined, but are not equal, in general:

> A %*% B

     [,1] [,2] [,3]
[1,]  442  437  592
[2,]  536  563  491
[3,]  475  447  410
attr(, "class"):
[1] "Matrix"

> B %*% A

     [,1] [,2] [,3]
[1,]  555  531  590
[2,]  368  275  434
[3,]  475  545  585
attr(, "class"):
[1] "Matrix"

One significant difference between the Matrix library and standard
S-PLUS is in the behavior of matrix multiplication involving a vector.
In standard S-PLUS, we have the following behavior when multiplying
a matrix by a vector on the left:

> 1:3 %*% matrix(rnorm(9), ncol=3)

         [,1]     [,2]      [,3]
[1,] 10.88121 3.174175 -8.284594

The vector 1:3 is treated as a three-column row vector for purposes
of the multiplication, and so the multiplication proceeds.

If we try the same multiplication with a Matrix, we get an error:

> 1:3 %*% Matrix(rnorm(9), ncol=3)

Error in "%*%.default"(1:3, Matrix(rnorm(9), ncol ..:
        Number of columns of x should be the same
        as number of rows of y
Dumped
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The error occurs because the Matrix library consistently treats S-PLUS
vectors as column vectors. To obtain a row vector, you must take the
transpose of a column vector. Thus, we can obtain the desired
product as follows:

> t(1:3) %*% Matrix(rnorm(9), ncol=3)

         [,1]     [,2]      [,3]
[1,] 5.231949 0.546737 -8.637152
attr(, "class"):
[1] "Matrix"

Subscripting 
Matrices

For the most part, you subscript Matrices just as you would standard
matrices; use a subscript of the form [i, j], where i indexes the rows
and j indexes the columns:

> A[1,2]

     [,1]
[1,]    2
attr(, "class"):
[1] "Matrix"

The difference from standard matrix subscripting is obvious from the
output; the return value is a Matrix, even if the result could be
simplified by dropping the dim attribute.

> A[1,]

     [,1] [,2] [,3]
[1,]   19    2   15
attr(, "class"):
[1] "Matrix"

> A[,2]

     [,1]
[1,]    2
[2,]   18
[3,]   17
attr(, "class"):
[1] "Matrix"
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In standard S-PLUS, each of these subscripting examples would, by
default, return a vector with no matrix character whatsoever. The
matrix character could be retained by using the drop = F argument.
In Matrix subscripting, drop = F is the default, and drop = T is not
allowed:

> A[,2, drop=T]

Error in "[.Matrix"(x, , 2, drop = drop):
        drop = T not allowed
Dumped

If both subscripts are omitted, the entire Matrix is returned:

> A[]

     [,1] [,2] [,3]
[1,]   19    2   15
[2,]    8   18   19
[3,]   11   17   10
attr(, "class"):
[1] "Matrix"

Standard S-PLUS matrix subscripting allows arbitrary numeric and
complex subscripts; fractional subscripts are truncated to integer,
while complex subscripts have their imaginary parts ignored and
fractional real parts truncated to integer. The Matrix library forbids
such noninteger subscripts:

> A[c(1.74, 2.26),]

Error in "[.Matrix"(A, c(1.74, 2.26),  ):
        non-integer numeric row subscript
Dumped

> A[,c(1.74, 2.26)]

Error in "[.Matrix"(A,  , c(1.74, 2.26)):
        non-integer numeric column subscript
Dumped

> A[1+2.3i,]

Error in "[.Matrix"(A, 1+2.3i,  ): row subscript must have 
numeric, logical or character mode
Dumped
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Character string subscripts for Matrices work much the same as the
standard matrix operations:

> dimnames(A) <- list(c("Sun","Mon","Tue"),
+ c("Apr","May", "Jun"))
> A[,"Apr"]

    Apr
Sun  19
Mon   8
Tue  11
attr(, "class"):
[1] "Matrix"

> A["Mon",]

    Apr May Jun
Mon   8  18  19
attr(, "class"):
[1] "Matrix"

Logical subscripts must either be vectors of length nrow or ncol,
selecting rows or columns, respectively, of a matrix of the same
dimension as the original Matrix or a vector with the same length as
the original Matrix:

> A[c(T,F,T),]

    Apr May Jun
Sun  19   2  15
Tue  11  17  10
attr(, "class"):
[1] "Matrix"

> A[c(T,F),]

Error in "[.Matrix"(A, c(T, F),  ): logical row subscript
        length must equal matrix row dimension
Dumped
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> A[, c(F,T,T)]

    May Jun
Sun   2  15
Mon  18  19
Tue  17  10
attr(, "class"):
[1] "Matrix"

> A[A > 10]

[1] 19 11 18 17 15 19

> A[sample(c(T,F), size=9, replace=T)]

[1]  8 11  2 18 17 19 10

Standard S-PLUS matrix subscripting permits short logical subscripts,
which are then replicated to the appropriate length. This replication is
often confusing, and in algebraic applications usually not desired. The
Matrix library expressly forbids such short subscripts, as the second
row subscript example above demonstrates.

The Matrix library does support the irregular subscripting performed
by a two column matrix, in which each row represents the row and
column of a value to be extracted. In standard S-PLUS, the extraction
matrix must consist of numeric values, but for Matrices, a character
matrix using the dimnames of the Matrix is acceptable:

> nummat <- Matrix(c(1,1,2,2,3,3), ncol=2, byrow=T)
> A[nummat]

[1] 19 18 10

> submat <- Matrix(c("Sun", "Apr", "Mon", "May",
+ "Tue", "Jun"), ncol=2, byrow=T)
> A[submat]

[1] 19 18 10

> statemat <- Matrix(c("California", "Murder",
+ "Wyoming", "Frost"), ncol=2, byrow=T)
> state.x77[statemat]

 California Wyoming Murder Frost
         NA      NA     NA    NA
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> as.Matrix(state.x77)[statemat]

[1]  10.3 173.0

Creating 
Specialized 
Matrices

In addition to the general "Matrix" class, the Matrix library supports
a variety of subclasses for Matrices with specialized structures, such as
identity and diagonal Matrices, upper and lower triangular Matrices,
and Hermitian and orthogonal Matrices. Constructor functions exist
for identity and diagonal Matrices, but in most cases you build these
specialized Matrices in two steps—first, construct the Matrix using the
Matrix function, then assign its class using the Matrix.class
function. Matrix.class performs a variety of tests on the Matrix to
determine its specialized structure, and returns an appropriate vector
of subclasses.

Creating Identity 
Matrices

Make an identity Matrix of any (square) dimension with the
Identity function. Identity matrices formed in this way are stored as
a single number, the length of the diagonal:

> Id.4 <- Identity(4)
> Id.4

[1] 4
attr(, "class"):
[1] "Identity" "Matrix"

Use the unpack function to display the Matrix in “natural” form:

> unpack(Id.4)

     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1
attr(, "class"):
[1] "UnitLowerTriangular" "UnitUpperTriangular"
[3] "Lower Triangular"    "Upper Triangular"
[5] "Hermitian"           "Orthonormal"
[7] "Matrix"

Note that the “unpacked” form of the identity Matrix no longer
inherits from class "Identity", although it belongs to several other
subclasses.
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Creating Diagonal 
Matrices

Diagonal Matrices can be created and stored as the vector of diagonal
values using the Diagonal function:

> D4 <- Diagonal(1:4)
> D4

[1] 1 2 3 4
attr(, "class"):
[1] "Diagonal" "Matrix"

> unpack(D4)

     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    2    0    0
[3,]    0    0    3    0
[4,]    0    0    0    4
attr(, "class"):
[1] "LowerTriangular" "UpperTriangular" "Hermitian"
[4] "RowOrthogonal"   "ColOrthogonal"   "Matrix"

As with identity Matrices, unpacking a diagonal Matrix causes the
Matrix to lose its inheritance from the "Diagonal" class, but gain
inheritance from several other classes.

You can also create rectangular diagonal Matrices by specifying the
dimensions desired. One of these dimensions must match the length
of the vector of values:

> D5 <- Diagonal(1:4, c(5,4))
> unpack(D5)

     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    2    0    0
[3,]    0    0    3    0
[4,]    0    0    0    4
[5,]    0    0    0    0
attr(, "class"):
[1] "RowOrthogonal" "ColOrthogonal" "Matrix"

> D6 <- Diagonal(1:4, c(4,6))
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> unpack(D6)

     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    0    0    0    0    0
[2,]    0    2    0    0    0    0
[3,]    0    0    3    0    0    0
[4,]    0    0    0    4    0    0
attr(, "class"):
[1] "RowOrthogonal" "ColOrthogonal" "Matrix"

You can, of course, use Identity and Diagonal matrices without
unpacking them:

> xx <- Matrix(1:16, nrow=4)
> xx %*% D4

     [,1] [,2] [,3] [,4]
[1,]    1   10   27   52
[2,]    2   12   30   56
[3,]    3   14   33   60
[4,]    4   16   36   64
attr(, "class"):
[1] "Matrix"

Creating 
Symmetric and 
Hermitian 
Matrices

A matrix is Hermitian if and only if each element aij is equal to the
complex conjugate of the element aji; that is, if the Matrix is equal to
its conjugate transpose.

> my.Herm<-Matrix( c(1, 2+3i, 3-4i, 2-3i, 3,
+ 4-2i, 3+4i, 4+2i, 2), nrow=3)
> my.Herm

     [,1] [,2] [,3]
[1,] 1+0i 2-3i 3+4i
[2,] 2+3i 3+0i 4+2i
[3,] 3-4i 4-2i 2+0i
attr(, "class"):
[1] "Matrix"
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There is no constructor function for Hermitian matrices. Instead, use
the function Matrix.class to assign the appropriate subclasses to a
Matrix. Matrix.class tests its argument and returns a vector of
subclasses to which the Matrix belongs:

> Matrix.class(my.Herm)

[1] "Hermitian" "Matrix"

> class(my.Herm) <- Matrix.class(my.Herm)

All symmetric real matrices are Hermitian:

> Sym <- Matrix( c(4, -3, 5, -3, 2, 1, 5, 1, -6), nrow=3)
> class(Sym) <- Matrix.class(Sym)
> Sym

     [,1] [,2] [,3]
[1,]    4   -3    5
[2,]   -3    2    1
[3,]    5    1   -6
attr(, "class"):
[1] "Hermitian" "Matrix"

In the rest of this chapter, we will use the term “Hermitian” whenever
we mean a complex Hermitian or real symmetric matrix.

Creating 
Orthonormal 
Matrices

An orthonormal Matrix is a Matrix that has the following two
properties:

1. The transpose of the Matrix is equal to its inverse.

2. All rows and columns are unit vectors (have norm 1 for vector
2-norm).

Orthonormal Matrices are easy to generate in S-PLUS using the qr
function, which performs the QR decomposition of a matrix into an
orthonormal matrix Q and an upper triangular (or trapezoidal) matrix
R. See the section The QR Decomposition on page 520 for complete
details.

Creating 
Triangular 
Matrices

A triangular Matrix is one in which all entries are zero either below
(upper triangular) or above (lower triangular) the diagonal. You can
easily convert any S-PLUS Matrix into a triangular Matrix, simply by
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“zeroing out” the appropriate entries. For example, to convert our
Matrix A into lower triangular form, we can replace the upper
diagonal entries with 0’s as follows:

> A.tri <- A
> A.tri[row(A.tri)< col(A.tri)] <- 0
> class(A.tri) <- Matrix.class(A.tri)
> A.tri

    Apr May Jun
Sun  19   0   0
Mon   8  18   0
Tue  11  17  10
attr(, "class"):
[1] "LowerTriangular" "Matrix"

Further, once you’ve created a lower (upper) triangular Matrix, its
transpose is an upper (lower) triangular Matrix.

Creating 
Permutation 
Matrices

A permutation Matrix is an identity Matrix with one or more rows or
columns permuted. For example, the following Matrix is an identity
Matrix with the first and third rows permuted:

     [,1] [,2] [,3] [,4]
[1,]    0    0    1    0
[2,]    0    1    0    0
[3,]    1    0    0    0
[4,]    0    0    0    1
attr(, "class"):
[1] "Orthonormal" "Matrix"

The Matrix library contains two functions for generating permutation
Matrices: RowPermutation generates row permutations, while
ColPermutation generates column permutations. Both functions
take a single argument, a permutation of the integers 1 to n. Thus, the
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Matrix above can be generated using either of the two functions as
follows:

> unpack(RowPermutation(c(3,2,1,4)))

     [,1] [,2] [,3] [,4]
[1,]    0    0    1    0
[2,]    0    1    0    0
[3,]    1    0    0    0
[4,]    0    0    0    1
attr(, "class"):
[1] "Orthonormal" "Matrix"

> unpack(ColPermutation(c(3,2,1,4)))

     [,1] [,2] [,3] [,4]
[1,]    0    0    1    0
[2,]    0    1    0    0
[3,]    1    0    0    0
[4,]    0    0    0    1

attr(, "class"):
[1] "Orthonormal" "Matrix"

The compact form returned by the two functions does differ,
however:

> RowPermutation(c(3,2,1,4))

[1] 3 2 1 4
attr(, "class"):
[1] "RowPermutation" "Matrix"

> ColPermutation(c(3,2,1,4))

[1] 3 2 1 4
attr(, "class"):
[1] "ColPermutation" "Matrix"
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Matrix Norms A Matrix norm is a measure of the size of a Matrix (or, more
accurately, a measure of distance in the space of Matrices). There are
several commonly used Matrix norms:

•  Frobenius norm:

•  p-norms:

where |x|p is the vector p-norm. Three p-norms (1, 2, and ∞)
are widely used, and can be computed in S-PLUS. They can be
characterized as follows:

• p = 1: The maximum sum of magnitudes of elements in
each column of the Matrix.

• p = ∞: The maximum sum of magnitudes of elements in
each row/ of the Matrix.

• p = 1: The largest singular value of the Matrix

•  Maximum-modulus norm:

You calculate Matrix norms using the Matrix library’s norm function.
For the 1-norm, ∞-norm, Frobenius norm, and maximum-modulus

A F aij
2
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n

∑
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m
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A p sup
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Ax p

x p
-------------=

A 1 max
1 j n≤ ≤

aij
i 1=

m

∑=

A ∞ max
1 i m≤ ≤

aij
j 1=

n

∑=
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norm, you call norm by specifying the Matrix and the type of norm
(maximum-modulus is the default):

> norm(A)

[1] 19

> norm(A, type="Frobenius")

[1] 43

> norm(A, type="1")

[1] 44

> norm(A, type="Inf")

[1] 45

Only the first letter of the type string is needed (or used):

> norm(A, "F")

[1] 43

To compute the 2-norm, you must first compute the singular value
decomposition (SVD) or the eigen decomposition (for Hermitian
matrices):

> norm(svd(A, vectors=F))

[1] 40.00011

See the section The Singular Value Decomposition on page 507 for
details on the SVD and the svd function; see the section The Eigen
Decomposition on page 517 for details on the eigen decomposition
and the eigen function.

Condition 
Estimates

For a square Matrix A, the condition number κ(A) is defined as follows:

For singular A, κ(A) = ∞. The exact value of the condition number is
norm-dependent. The condition number can be thought of as a
measure of the closeness of a square Matrix to singularity. It falls in
the range [1,∞), where the value ∞ implies singularity. Matrices with
large condition numbers are said to be ill-conditioned. Because the

κ A( ) A A 1–=
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reciprocal of the condition number is a bounded quantity, falling in
the interval [0,1], S-PLUS computes the reciprocal, rather than the
condition number itself. In most cases, the computed result is an
estimate of the reciprocal condition number rather than a direct
computation; the estimate is in any case at least as large as the actual
condition number.

To obtain the reciprocal condition estimate for a Matrix, use the
rcond function. By default, rcond gives the one-norm condition
estimate, although the infinity norm is also available:

> rcond(A)

[1] 0.1125994

> rcond(A, one.norm=F)

[1] 0.0707946

As with Matrix norms, 2-norm condition numbers can be obtained by
first taking the singular value decomposition of the Matrix (or the
eigenvalue decomposition of a Hermitian Matrix):

> rcond(svd(A))

[1] 0.1442148

For a rectangular matrix, the notion of condition number can be
defined by replacing the inverse of the matrix in the original
definition with the pseudo-inverse, which is the unique minimal (in
Frobenius norm) solution to the following problem:

For rectangular matrices, the reciprocal condition estimate is based
on the QR decomposition (see the section The Eigen Decomposition
on page 517 for a complete description of the QR decomposition):

> rect.Mat <- Matrix(sample(-9:9, size=12, replace=T),
+ nrow=4, ncol=3)

min
X Rn m×∈

AX Im–
F
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> rect.Mat

     [,1] [,2] [,3]
[1,]    2   -2    2
[2,]    3    6    0
[3,]    3   -5    5
[4,]   -6   -4    5
attr(, "class"):
[1] "Matrix"

> rcond(rect.Mat)

[1] 0.2722501

> rcond(rect.Mat, one.norm=F)

[1] 0.2123998

Determinants The determinant of a 1 x 1 Matrix A = (a11) is simply a11. For an n x n

Matrix, the determinant is defined in terms of the determinants of
(n - 1) 3 (n - 1) Matrices, as follows. If 

where A1j is the (n - 1) x (n - 1) Matrix obtained by deleting the first
row and jth column of A. See Golub and Van Loan (1989) for further
details.

Determinants in S-PLUS are computed using the det function, which
returns the determinant as a list containing by default the logarithm of
the modulus of the determinant and the sign of the determinant. The
argument logarithm = F tells S-PLUS to return the modulus of the
determinant instead of its logarithm:

> det(A)

$modulus:
[1] 8.12829
attr($modulus, "logarithm"):
[1] T

A Rn n×∈

det A( ) 1–( )j 1+
a1 jdet A1 j( )

j 1=

n

∑=
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$sign:
[1] -1

> det(A, log=F)

$modulus:
[1] 3389
attr($modulus, "logarithm"):
[1] F

$sign:
[1] -1

Special methods for various types of Matrices, such as QR and SVD
decompositions, take advantage of computational efficiencies. In
some cases, however, sign information is lost:

> det(svd(A))

$modulus:
[1] 8.12829
attr($modulus, "logarithm"):
[1] T
$sign:
[1] NA

> det(eigen(A))

$modulus:
[1] 8.12829
attr($modulus, "logarithm"):
[1] T

$sign:
[1] -1

> det(qr(A))

$modulus:
[1] 8.12829
attr($modulus, "logarithm"):
[1] T
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$sign:
[1] NA

The following function, numdet, always returns a number (numeric or
complex):

> numdet

function(det){
        if(attributes(det$modulus)$logarithm)
                val <- exp(det$modulus)
        else val <- det$modulus
        if(!is.na(det$sign))
                val <- val * det$sign
        else warning("Sign information not available")
        val
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MATRIX DECOMPOSITIONS

Standard S-PLUS has long had a variety of matrix decomposition
functions; these are used internally by the various S-PLUS regression
functions, and have wide applicability. The Matrix library includes
additional decomposition functions, with many specific methods
designed to take advantage of specialized Matrix structures. The
following decompositions are available in the Matrix library:

• Singular value decomposition

• LU decomposition and the closely related symmetric indefinite
decomposition

• Eigen decomposition

• QR decomposition

• Schur decomposition

The Choleski decomposition is available in standard S-PLUS but is not
part of the Matrix library. However, for Matrices which satisfy the
requirements for the Choleski decomposition, the symmetric
indefinite decomposition provides all the components necessary to
compute the Choleski decomposition explicitly. See the section The
Hermitian Indefinite Decomposition on page 513 for details.

This section describes the available decompositions and the functions
for computing them in the Matrix library.

The Singular 
Value 
Decomposition

For any real m x n matrix A, there exist orthogonal matrices U and V
and a diagonal matrix Σ so that

The p = min(m,n) diagonal elements  are called
the singular values of A. The both the 2-norm and the Frobenius norm
can be characterized readily in terms of the singular values:

UTAV Σ=

σ1 σ2 … σp 0≥ ≥ ≥ ≥

A F σi
2

i 1=

p

∑= A 2 σ1=
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To obtain the singular value decomposition, use the svd function:

> svd(A)

$values:
[1] 40.000114 14.687207  5.768609

$vectors:
$vectors$left:
           [,1]       [,2]        [,3]
[1,] -0.5200456  0.8538399 -0.02258456
[2,] -0.6606048 -0.4188323 -0.62304157
[3,] -0.5414369 -0.3090905  0.78186261
attr($vectors$left, "class"):
[1] "Orthonormal" "Matrix"

$vectors$right:
           [,1]       [,2]       [,3]
[1,] -0.5280363  0.6449356  0.5524814
[2,] -0.5533835 -0.7547957  0.3522074
[3,] -0.6441618  0.1197558 -0.7554563
attr($vectors$right, "class"):
[1] "Orthonormal" "Matrix"

attr(, "class"):
[1] "svd.Matrix" "decomp"

other attributes:
[1] "call"       "complex"    "dimensions"
[4] "dimlabels"  "workspace"

The svd function returns a list with two components, values and
vectors; the vectors component is also a list with two components,
left containing the orthogonal Matrix U, right containing the
orthogonal Matrix V. You can verify the decomposition as follows:

> A.svd <- svd(A)
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> round(t(A.svd$vectors$left) %*% A %*%
+ A.svd$vectors$right, digits=3)

     [,1]   [,2]   [,3]
[1,]   40  0.000  0.000
[2,]    0 14.687  0.000
[3,]    0  0.000  5.769
attr(, "class"):
[1] "Matrix"

> round(A.svd$values, digits=3)

[1] 40.000 14.687  5.769

Once you obtain the SVD, you can easily obtain the 2-norm and the
2-norm reciprocal condition number for the original Matrix.

> norm(A.svd)

[1] 40.00011

> rcond(A.svd)

[1] 0.1442148

The SVD also provides for efficient calculation of the determinant,
although sign information is lost:

> det(A.svd)

$modulus:
[1] 8.12829
attr($modulus, "logarithm"):
[1] T

$sign:
[1] NA

The number of positive singular values also gives a useful measure of
the rank of the Matrix:

> Matrix.rank <- function(Matrix){
+ length(svd(Matrix)$values)}
> Matrix.rank(A)

[1] 3
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> Matrix.rank(rect.Mat)

[1] 3

The LU 
Decomposition

If X is a square matrix, then there is a row permutation P, a lower
triangular matrix L with 1’s on its diagonal, and an upper triangular
matrix U such that

For rectangular matrices, a similar decomposition exists, except that
either L or U is trapezoidal, depending on whether the matrix has
more or less rows than columns. This decomposition is called the LU
decomposition.

To obtain the LU decomposition, use the lu function:

> lu(A)

$factors:
           Apr        May       Jun
Sun 19.0000000  2.0000000  15.00000
Mon  0.4210526 17.1578947  12.68421
Tue  0.5789474  0.9233129 -10.39571

$pivot:
[1] 1 2 3

attr(, "class"):
[1] "lu.Matrix" "decomp"

other attributes:
[1] "call"      "dimlabels" "norm"

The lu function returns a list with two components, factors and
pivot. The factors component is a compact representation of both
L and U, taking advantage of the fact that L is known to have 1’s along
its diagonal. The pivot component is the row permutation P,
expressed as a numeric vector.

PX LU=
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To obtain L, U, and P explicitly, use the expand function:

> expand(lu(A))

$l:
          Apr       May Jun
Sun 1.0000000 0.0000000   0
Mon 0.4210526 1.0000000   0
Tue 0.5789474 0.9233129   1
attr($l, "class"):
[1] "UnitLowerTriangular" "LowerTriangular"     "Matrix"

$u:
    Apr      May       Jun
Sun  19  2.00000  15.00000
Mon   0 17.15789  12.68421
Tue   0  0.00000 -10.39571
attr($u, "class"):
[1] "UpperTriangular" "Matrix"

$permutation:
[1] 3
attr($permutation, "class"):
[1] "Identity" "Matrix"

attr(, "class"):
[1] "expand.lu.Matrix"

If you want to multiply one of the factors by some other Matrix, but
don’t need the remainder of the decomposition, use the facmul
function to perform the multiplication. For example, to multiply the
factor "L" by the original Matrix A, use facmul as follows:

> facmul(lu(A), "L", y=A)

        [,1]     [,2]     [,3]
[1,] 19.0000  2.00000 15.00000
[2,] 16.0000 18.84211 25.31579
[3,] 29.3865 34.77753 36.22716
attr(, "class"):
[1] "Matrix"
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Using facmul without the y argument gives a convenient method for
extracting a single factor:

> facmul(lu(A), "L")

          Apr       May Jun
Sun 1.0000000 0.0000000   0
Mon 0.4210526 1.0000000   0
Tue 0.5789474 0.9233129   1
attr(, "class"):
[1] "UnitLowerTriangular" "LowerTriangular"     "Matrix"

> facmul(lu(A), "U")

    Apr      May       Jun
Sun  19  2.00000  15.00000
Mon   0 17.15789  12.68421
Tue   0  0.00000 -10.39571
attr(, "class"):
[1] "UpperTriangular" "Matrix"

> facmul(lu(A), "P")

[1] 3
attr(, "class"):
[1] "Identity" "Matrix"

By default, lu computes the 1-norm and ∞-norm of the Matrix, and
stores these as attributes:

> attributes(lu(A))$norm

 one infinity
  44       45

These norms should be computed if solve will eventually be applied
to the factorization with condition estimation. The infinity norm is
needed for solves involving the underlying matrix, and the one norm
is needed for solves involving its transpose. One or both of the norms
can be omitted from the computation by specifying appropriate
logical values in the norm.comp argument to lu:

> lu.A <-  lu(A, norm.comp=c(F,T))
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> attributes(lu.A)$norm

 infinity
       45

The Hermitian 
Indefinite 
Decomposition

If X is a Hermitian matrix, then there is a permutation P, a triangular
matrix T with diagonal elements all equal to one, and a Hermitian
block diagonal matrix B with either 1 x 1 or 2 x 2 blocks, such that

This is called the Hermitian Indefinite Decomposition. If X is positive
(semi-) definite, the blocks are 1 x 1, real, and positive (nonnegative),
in which case the decomposition reduces essentially to the Choleski
decomposition.

To obtain the Hermitian Indefinite Decomposition, use the lu
function:

> lu(my.Herm, lower=F)

$factors:
            [,1]                  [,2]                  [,3]
[1,] 4.130435+0i 0.6956522-0.6956522i -0.4347826+0.6521739i
[2,] 2.000000+3i 1.0000000+0.0000000i  3.0000000+4.0000000i
[3,] 3.000000-4i 4.0000000-2.0000000i  2.0000000+0.0000000i
attr($factors, "uplo"):
[1] "U"
$pivot:
[1]  1 -1 -1

attr(, "class"):
[1] "lu.Hermitian" "decomp"

other attributes:
[1] "call"      "norm"      "workspace"

PXPT TBTH=
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You can obtain the explicit matrices P, T, and B using expand or
facmul as before for L and U:

> expand(lu(my.Herm, lower=F))

$triangular:
     [,1]                 [,2]                  [,3]
[1,] 1+0i 0.6956522-0.6956522i -0.4347826+0.6521739i
[2,] 0+0i 1.0000000+0.0000000i  0.0000000+0.0000000i
[3,] 0+0i 0.0000000+0.0000000i  1.0000000+0.0000000i
attr($triangular, "class"):
[1] "UnitUpperTriangular" "UpperTriangular"     "Matrix"

other attributes:
[1] "uplo"

$block.diagonal:
            [,1] [,2] [,3]
[1,] 4.130435+0i 0+0i 0+0i
[2,] 0.000000+0i 1+0i 3+4i
[3,] 0.000000+0i 3-4i 2+0i
attr($block.diagonal, "class"):
[1] "Hermitian" "Matrix"

other attributes:
[1] "uplo"

$permutation:
[1] 2 1 3
attr($permutation, "class"):
[1] "RowPermutation" "Matrix"

attr(, "class"):
[1] "expand.lu.Hermitian"

> facmul(lu(my.Herm), "P")

[1] 2 1 3
attr(, "class"):
[1] "RowPermutation" "Matrix"
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> facmul(lu(my.Herm), "T")

                     [,1]                  [,2] [,3]
[1,] 1.0000000+0.0000000i  0.0000000+0.0000000i 0+0i
[2,] 0.0000000+0.0000000i  1.0000000+0.0000000i 0+0i
[3,] 0.6956522-0.6956522i -0.4347826+0.6521739i 1+0i
attr(, "class"):
[1] "UnitLowerTriangular" "LowerTriangular"     "Matrix"

other attributes:
[1] "uplo"

> facmul(lu(my.Herm), "B")

     [,1] [,2]        [,3]
[1,] 1+0i 3+4i 0.000000+0i
[2,] 3-4i 2+0i 0.000000+0i
[3,] 0+0i 0+0i 4.130435+0i
attr(, "class"):
[1] "Hermitian" "Matrix"

other attributes:
[1] "uplo"

In the positive definite case, B is diagonal, P is the identity matrix,
and the indefinite Hermitian decomposition reduces (via the

transformation ) to the Choleski decomposition, which
decomposes X into the product of an upper triangular matrix G and

its conjugate transpose X = GG
H:

> posdef  <- Matrix(sample(-1:1, size=9, replace=T),
+ nrow=3, ncol=3)
> posdef <- posdef %*% t(posdef)
> class(posdef) <- Matrix.class(posdef)
> posdef

    [,1] [,2] [,3]
[1,]    3    2    0
[2,]    2    2    1
[3,]    0    1    2
attr(, "class"):
[1] "Hermitian" "Matrix"

G T B=
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> posdef.g <- facmul(lu(posdef), "T") %*%
+ sqrt(facmul(lu(posdef), "B"))
> posdef.g %*% t(posdef.g)

     [,1] [,2] [,3]
[1,]    3    2    0
[2,]    2    2    1
[3,]    0    1    2
attr(, "class"):
[1] "Matrix"

You can use lu and facmul to define a Choleski function to take the
Choleski decomposition directly:

> Choleski

function(x)
{
        if(!inherits(x, "Matrix"))
                x <- as.Matrix(x)
        class(x) <- Matrix.class(x)
        if(!inherits(x, "Hermitian"))
                stop("x must be a Hermitian matrix")
        val <- facmul(lu(x, lower=F), "T") %*%
                      sqrt(facmul(lu(x, lower=F), "B"))
        class(val) <- Matrix.class(val)
        val
}

We can try it out on our simple positive definite matrix:

> posdef

     [,1] [,2] [,3]
[1,]    3    2    0
[2,]    2    2    1
[3,]    0    1    2
attr(, "class"):
[1] "Hermitian" "Matrix"
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> Choleski(posdef) %*% t(Choleski(posdef))

     [,1] [,2] [,3]
[1,]    3    2    0
[2,]    2    2    1
[3,]    0    1    2
attr(, "class"):
[1] "Matrix"

The Eigen 
Decomposition

For any n x n Matrix X, there are scalar values λi and vectors vi and ui,
i = 1, …, n, for which

The λi are called the eigenvalues of X, while the vectors vi and ui are
called, respectively, the right and left eigenvectors of X. To compute
eigenvalues and eigenvectors in S-PLUS, use the eigen function:

> eigen(A)

$values:
[1]  39.581985  13.677784  -6.259769

$vectors:
$vectors$left:
          [,1]        [,2]       [,3]
[1,] 0.5499003  0.78919610 -0.1781937
[2,] 0.5476794 -0.61095405 -0.5547945
[3,] 0.6306005  0.06248726  0.8126808
attr($vectors$left, "class"):
[1] "Matrix"

$vectors$right:
          [,1]       [,2]       [,3]
[1,] 0.4768760  0.7998527 -0.4235897
[2,] 0.6737382 -0.5627172 -0.4678325
[3,] 0.5645052 -0.2087703  0.7756961
attr($vectors$right, "class"):
[1] "Matrix"

attr(, "class"):
[1] "eigen.Matrix" "decomp"

Xvi λ iviu
H
i X λiu

H
i==
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other attributes:
[1] "call" "dimlabels" "one.norm" "workspace"

If X has any complex eigenvalues, some of its eigenvectors come in
conjugate pairs; in this case the vectors component contains the real
and imaginary parts of the eigenvectors. To extract the true
eigenvectors, you need to use the expand function:

> eigen(B)

$values:
[1] 36.755743+0.00000i  1.622129+6.49027i  1.622129-
6.49027i

$vectors:
$vectors$left:
           [,1]       [,2]       [,3]
[1,] -0.5805813 -0.4189235 -0.3008385
[2,] -0.5661857 -0.2525614  0.4955897
[3,] -0.5851146  0.6516156  0.0000000
attr($vectors$left, "class"):
[1] "Matrix"

$vectors$right:
           [,1]       [,2]       [,3]
[1,] -0.6836358 -0.4208512  0.4218487
[2,] -0.4149883  0.6514816  0.0000000
[3,] -0.6003556 -0.2128151 -0.4185803
attr($vectors$right, "class"):
[1] "Matrix"

attr(, "class"):
[1] "eigen.Matrix" "decomp"

other attributes:
[1] "call"      "one.norm"  "workspace"

> expand(eigen(B))

$values:
[1] 36.755743+0.00000i  1.622129+6.49027i  1.622129-6.49027i
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$vectors:
$vectors$left:
              [,1]                  [,2]                  [,3]
[1,] -0.5805813+0i -0.4189235-0.3008385i -0.4189235+0.3008385i
[2,] -0.5661857+0i -0.2525614+0.4955897i -0.2525614-0.4955897i
[3,] -0.5851146+0i  0.6516156+0.0000000i  0.6516156+0.0000000i
attr($vectors$left, "class"):
[1] "Matrix"

$vectors$right:
              [,1]                  [,2]                  [,3]
[1,] -0.6836358+0i -0.4208512+0.4218487i -0.4208512-0.4218487i
[2,] -0.4149883+0i  0.6514816+0.0000000i  0.6514816+0.0000000i
[3,] -0.6003556+0i -0.2128151-0.4185803i -0.2128151+0.4185803i
attr($vectors$right, "class"):
[1] "Matrix"

attr(, "class"):
[1] "expand.eigen.Matrix" "decomp"

other attributes:
[1] "call"      "one.norm"  "workspace"

When X is Hermitian, the left and right eigenvectors are the same,
and can be written as the columns of a unitary matrix Z. Taking

Λ = diag(λ1, …, λn), we have X = ZΛZ
H.

> eigen(my.Herm)

$values:
[1] -5.550724  1.745483  9.805241

$vectors:
                       [,1]                  [,2]                 [,3]
[1,]  0.1678486+0.60792927i -0.3575879+0.4547576i 0.4516168+0.2522251i
[2,]  0.4638801-0.05615832i  0.1054296-0.6459414i 0.3834491+0.4541725i
[3,] -0.6196050+0.00000000i  0.4867964+0.0000000i 0.6157263+0.0000000i

attr($vectors, "class"):
[1] "Orthonormal" "Matrix"

attr(, "class"):
[1] "eigen.Hermitian" "decomp"

other attributes:
[1] "call"      "uplo"      "workspace"
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The eigen decomposition can sometimes be simplified by balancing
the Matrix before computing the decomposition. There are two
operations that may be performed during balancing: row and column
permutations to make the Matrix more nearly upper triangular, and
diagonal scaling to make the rows and columns more nearly equal in
norm. You can specify neither, one, or both of the balancing
operations, using the balance argument to eigen. The default is no
balancing; the following call to eigen uses permutation balancing:

> eigen(A, balance=c(T,F))

See Golub and Van Loan (1989) and the LAPACK User’s Manual
(1994) for further details on balancing.

The QR 
Decomposition

If X is an m x n matrix, then there is an m x m unitary matrix Q and an
upper triangular matrix R such that

This is called the QR decomposition.

To obtain the QR decomposition in S-PLUS, use the qr function:

> qr(rect.Mat)

$factors:
$factors[[1]]:

           [,1]       [,2]       [,3]
[1,] -7.6157731 -3.0200480  1.4443708
[2,]  0.3119874 -8.4781667  5.2650452
[3,]  0.3119874 -0.3755841 -4.9186474
[4,] -0.6239748 -0.2375377  0.5264209

$factors[[2]]:
[1] 1.262613 1.670164 1.566025
$pivot:
NULL

attr(, "class"):
[1] "qr.Matrix" "decomp"

X Q R S

0 0
=
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other attributes:
[1] "call"      "workspace"

As with the LU decomposition, the explicit factors Q and R can be
computed using the expand and facmul functions:

> expand(qr(rect.Mat))

$q:
           [,1]       [,2]       [,3]        [,4]
[1,] -0.2626129  0.3294466 -0.1310846  0.89739413
[2,] -0.3939193 -0.5673803 -0.7230135 -0.01259501
[3,] -0.3939193  0.7300700 -0.3507293 -0.43452768
[4,]  0.7878386  0.1911604 -0.5805663  0.07557003

attr($q, "class"):
[1] "Matrix"

$r:
          [,1]      [,2]      [,3]
[1,] -7.615773 -3.020048  1.444371
[2,]  0.000000 -8.478167  5.265045
[3,]  0.000000  0.000000 -4.918647
[4,]  0.000000  0.000000  0.000000

attr($r, "class"):
[1] "Matrix"

$permutation:
[1] 3

attr($permutation, "class"):
[1] "Identity" "Matrix"

attr(, "class"):
[1] "expand.qr.Matrix"
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> facmul(qr(rect.Mat), "R")

          [,1]      [,2]      [,3]
[1,] -7.615773 -3.020048  1.444371
[2,]  0.000000 -8.478167  5.265045
[3,]  0.000000  0.000000 -4.918647
[4,]  0.000000  0.000000  0.000000

attr(, "class"):
[1] "Matrix"

> facmul(qr(rect.Mat), "Q")

           [,1]       [,2]       [,3]        [,4]
[1,] -0.2626129  0.3294466 -0.1310846  0.89739413
[2,] -0.3939193 -0.5673803 -0.7230135 -0.01259501
[3,] -0.3939193  0.7300700 -0.3507293 -0.43452768
[4,]  0.7878386  0.1911604 -0.5805663  0.07557003

attr(, "class"):
[1] "Matrix"

The QR decomposition is a useful source of both orthonormal and
lower triangular Matrices. For example, here we obtain both an
orthonormal Matrix A.q and an upper triangular Matrix A.u from the
expansion of the QR decomposition of A:

> A.qr <- qr(A)
> A.q <- expand(A.qr)$q
> A.u <- expand(A.qr)$r
> A.q

           [,1]       [,2]       [,3]
[1,] -0.8131249  0.5653998 -0.1383870
[2,] -0.3423684 -0.6568151 -0.6718465
[3,] -0.4707565 -0.4989158  0.7276478
attr(, "class"):
[1] "Matrix"
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> A.u

          [,1]      [,2]       [,3]
[1,] -23.36664 -15.79174 -23.409439
[2,]   0.00000 -19.17344  -8.987649
[3,]   0.00000   0.00000  -7.564412
attr(, "class"):
[1] "UpperTriangular" "Matrix"

The Schur 
Decomposition

If X is a square matrix, then there is a unitary matrix Z and a matrix S
such that

If X is real, S is upper quasi-triangular—nearly upper triangular with
either 1 x 1 or 2 x 2 blocks on the diagonal. If X is complex, S is upper
triangular. The eigenvalues of X appear on the diagonal of S; the 2 x 2
diagonal blocks in the real case correspond to the complex conjugate
eigenvalues. This decomposition is called the Schur decomposition. An
important property of the Schur decomposition is that Z can be
chosen so that the eigenvalues of X appear in any order on the
diagonal of S.

To obtain the Schur decomposition, use the schur function:

> schur(A)

$form:
         Apr       May       Jun
Sun 39.58198  3.013294  4.541067
Mon  0.00000 13.677784  5.128232
Tue  0.00000  0.000000 -6.259769
attr($form, "class"):
[1] "UpperTriangular" "Matrix"

$vectors:
          [,1]       [,2]       [,3]
[1,] 0.4768760  0.8607185 -0.1781937
[2,] 0.6737382 -0.4881393 -0.5547945
[3,] 0.5645052 -0.1445122  0.8126808
attr($vectors, "class"):
[1] "Orthonormal" "Matrix"

X ZSZH=
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attr(, "class"):
[1] "schur.Matrix" "decomp"

other attributes:
[1] "call"        "dimlabels"   "eigenvalues" "workspace"

> eigen(A)$values

[1]  39.581985  13.677784  -6.259769

One useful application of the Schur decomposition is in the definition
of Matrix functions. If f(z) is a scalar function defined on the
eigenvalues of a Matrix A, then you can informally define a Matrix
function f(A) by substituting “A” for “z” in the formula defining f,
making suitable allowances between scalar operations and Matrix

operations. For example, if f(z) = z2, we can meaningfully define f(A)
as follows:

where A2 = A x A, with “x” taken to be Matrix multiplication.
Unfortunately, such definitions don’t take you very far

computationally. However, if A = QTQH is the Schur decomposition

of A, then f(A) = Qf(T)QH.

Thus, we only need to be able to calculate Matrix functions for
triangular Matrices. The following S-PLUS function, Matrix.fun,
implements an algorithm from Golub and Van Loan (1989) for doing
precisely that—computing a Matrix function F = f(T), where T is upper
triangular. (A further requirement of the algorithm is that T have
distinct eigenvalues; this implementation does not check for this.)

> Matrix.fun <- function(Tmat, FUN)
+ {
+   Fmat <- Tmat
+   diag(Fmat) <- diag(FUN(Tmat))
+   for(p in 1:(nrow(Tmat) - 1))
+       for(i in 1:(nrow(Tmat) - p)) {
+           j <- i + p
+           s <- Tmat[i, j] * (Fmat[j, j] - Fmat[i, i])
+           if((j - 1) >= (i + 1)) {
+               k <- (i + 1):(j - 1)
+               s <- s + Tmat[i, k] %*% Fmat[k, j] -

f A( ) A2=
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+                        Fmat[i, k] %*% Tmat[k, j]
+               }
+           Fmat[i, j] <- s/(Tmat[j, j] - Tmat[i, i])
+       }
+   Fmat
+ }

As a simple example, compare the Matrix function f(A) = A^2
to simple matrix multiplication:

> small <- Matrix(c(1,0,1,2), ncol=2)
> small %*% small

     [,1] [,2]
[1,]    1    3
[2,]    0    4
attr(, "class"):
[1] "Matrix"

> Matrix.fun(small, function(x)x^2)

     [,1] [,2]
[1,]    1    3
[2,]    0    4
attr(, "class"):
[1] "Matrix"

For more complicated functions, or for matrices with eigenvalues that
are nearly equal, the computations of matrix functions become more
complicated. See Golub and Van Loan (1989) for a fuller description.
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SOLVING SYSTEMS OF LINEAR EQUATIONS

One of the most widespread applications of linear algebra is in
solving systems of equations of the form

A related problem is finding the inverse (or pseudo-inverse) of a
Matrix A. Both problems are solved in S-PLUS using the function
solve, which now has a variety of methods which take advantage of
specific Matrix structures. Most of these methods require A to be of
full rank, although some (singular value and eigen) work with rank-
deficient matrices.

Solving Square 
Linear Systems

Consider the following system of linear equations:

This is the familiar case of n equations in n unknowns, and can easily
be solved by elementary linear algebra. The basic Matrix method for
solve uses the LU decomposition to solve the system and estimate
the condition number:

> A.solve(A, c(9,5,14))

          [,1]
Apr  0.9914429
May  0.6161109
Jun -0.7379758
attr(, "class"):
[1] "Matrix"

other attributes:
[1] "rcond" "call"

> attr(A.solv, "rcond")

[1] 0.09639891

AX B=

19a 2b 15c+ + 9=

8a 18b 19c+ + 5=

11a 17b 10c+ + 14=
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If the coefficient Matrix is upper or lower triangular, special solve
methods exploit this structure:

> my.Upper <- Matrix(c(2,0,0,3,5,0,1,4,6),ncol=3)
> class(my.Upper) <- Matrix.class(my.Upper)
> my.Upper

     [,1] [,2] [,3]
[1,]    2    3    1
[2,]    0    5    4
[3,]    0    0    6
attr(, "class"):
[1] "UpperTriangular" "Matrix"

> solve(my.Upper, c(9,5,14))

           [,1]
[1,]  4.6333333
[2,] -0.8666667
[3,]  2.3333333
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "rcond" "call"

> my.Lower <- t(my.Upper)
> solve(my.Lower, c(9,5,14))

          [,1]
[1,]  4.500000
[2,] -1.700000
[3,]  2.716667
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "rcond" "call"
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Similarly, if the Matrix is symmetric or Hermitian, another solve
method exploits that structure:

> my.sym3

            [,1]       [,2]        [,3]
[1,] -1.32119473  0.7576395  0.06296236
[2,]  0.75763953 -0.4710585  0.52317150
[3,]  0.06296236  0.5231715 -0.62392715
attr(, "class"):
[1] "Hermitian" "Matrix"

> solve(my.sym3, c(9,5,14))

         [,1]
[1,] 22.63464
[2,] 49.57063
[3,] 21.41127
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "rcond"     "workspace" "call"

In some cases, you may find it convenient to work with a matrix in
factored form. You can solve square systems of full rank using either
the LU or QR decomposition:

> A.lu <- lu(A)
> solve(A.lu, c(9,5,14))

          [,1]
Apr  0.9914429
May  0.6161109
Jun -0.7379758
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "rcond" "call"

> A.qr <- qr(A)
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> solve(A.qr, c(9,5,14))

          [,1]
Apr  0.9914429
May  0.6161109
Jun -0.7379758
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "rcond"     "workspace" "call"

In the Hermitian case, lu yields the Hermitian indefinite
decomposition, which can also be used explicitly in solve:

> my.sym3.lu <- lu(my.sym3)
> solve(my.sym3.lu, c(9,5,14))

         [,1]
[1,] 22.63464
[2,] 49.57063
[3,] 21.41127
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "rcond" "call"

Solving Over-
determined 
Systems

In many applications, particularly data acquisition and control
systems, there may be many more observations (equations) than
unknowns. Such a system yields an overdetermined linear system.
For example, consider the following five equations in three
unknowns:

19a 2b 15c+ + 9=

8a 18b 19c+ + 5=

11a 17b 10c+ + 14=

12a 9b 13c+ + 11=

9a 14b 20c+ + 8=
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Such a system has a unique least-squares solution. The
solve.Matrix function computes this solution using the QR
decomposition:

> Aug <- Matrix(c(19,8,11,12,9,2,18,17,9,14,15,19,10,
+ 13,20), ncol=3)
> Aug

     [,1] [,2] [,3]
[1,]   19    2   15
[2,]    8   18   19
[3,]   11   17   10
[4,]   12    9   13
[5,]    9   14   20
attr(, "class"):
[1] "Matrix"

> solve(Aug, c(9,5,14,11,8))

           [,1]
[1,]  0.8430639
[2,]  0.5332060
[3,] -0.4558612
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "workspace" "rcond"     "call"

> attr(.Last.value, "rcond")

[1] 0.1270667

If you are working with the QR form already, a special solve method
takes advantage of the decomposition:

> Aug.qr <- qr(Aug)
> solve(Aug.qr, c(9,5,14,11,8))

           [,1]
[1,]  0.8430639
[2,]  0.5332060
[3,] -0.4558612
attr(, "class"):
[1] "Matrix"
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other attributes:
[1] "rcond"     "workspace" "call"

Solving Under-
determined 
Systems

There may be cases where you have many more variables than
equations; such a system is called underdetermined. An
underdetermined system has an infinite number of solutions;
solve.Matrix finds the unique solution with minimum l2 norm. For
example, consider the following Matrix wide.A:

> wide.A <-Matrix(c(19,8,11,12,9,2,18,17,9,14,15,
+ 19,10,13,20), ncol=5)
> wide.A

     [,1] [,2] [,3] [,4] [,5]
[1,]   19   12   18   14   10
[2,]    8    9   17   15   13
[3,]   11    2    9   19   20
attr(, "class"):
[1] "Matrix"

> solve(wide.A, c(9,5,14))

           [,1]
[1,]  0.5638695
[2,] -0.2266716
[3,] -0.3116442
[4,]  0.2418549
[5,]  0.3230167
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "workspace" "rcond"     "call"

If you are working with the QR decomposition, the solve method
does not compute the minimum l2 solution; it does, however,
compute one basic solution:

> wide.A.qr <- qr(wide.A)
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> solve(wide.A.qr, c(9, 5, 14))

           [,1]
[1,]  0.8356868
[2,] -2.0616175
[3,]  0.9922978
[4,]  0.0000000
[5,]  0.0000000
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "rcond"     "workspace" "call"
Warning messages:
  Imaginary parts of complex data ignored in:
      as.double(if(rows <= k) b else
        rbind(b, matrix(0i, rows - k, l)))

That this is indeed a solution to the original problem can be verified
as follows:

> wide.A %*% .Last.value - c(9,5,14)

              [,1]
[1,] -7.105427e-15
[2,] -1.776357e-15
[3,]  0.000000e+00
attr(, "class"):
[1] "Matrix"

Solving Rank-
Deficient 
Systems

All of the methods described so far in this chapter have applied to
full-rank systems; that is, systems in which the coefficient Matrix is
nonsingular. What about systems in which the coefficient Matrix is
singular or nearly so? The Matrix library includes two solve methods
for rank-deficient systems, both requiring decomposition of the
original Matrix.

The first method uses the singular value decomposition:

> S <- Matrix(c(9,3,3,3,1,1,2,4,7),ncol=3,byrow=T)
> y <- c(9,5,14)
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> solve(S, y)

Error in solve.Matrix(S, y): the matrix
      is exactly singular
Dumped

> x <- solve(svd(S), y, tol=1e-10)

Warning messages:
 singular solve in: solve(svd(S), y, tol=1e-10)

> x

          [,1]
[1,] 0.3140426
[2,] 0.8110638
[3,] 1.4468085
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "rcond" "rank"  "call"

We can see how well this solves the original equation by computing

S
T(Sx - y); it should come close to vanishing.

> t(S) %*% (S %*% x - y)

              [,1]
[1,] -2.842171e-14
[2,] -2.131628e-14
[3,] -3.197442e-14
attr(, "class"):
[1] "Matrix"

If the coefficient Matrix is Hermitian, then the eigenvalue
decomposition can be used as an alternative to the singular value
decomposition to compute a least-squares solution.

> u <- 1:3
> v <- c(8,4,4)
> A <- u %*% t(u) + v %*% t(v)
> class(A) <- Matrix.class(A)
> class(A)

[1] "Hermitian"  "Matrix"
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> solve(A, tol=.Machine$double.eps)

Error in solve.Hermitian(A, tol = .Machine$double...:
      prescribed tolerance exceeds reciprocal
      condition estimate 3.68233175663402e-18
Dumped

> y <- c(9,5,14)
> x <- solve(eigen(A), y, tol=.Machine$double.eps)

Warning messages:
  singular solve in: solve(eigen(A), y,
      tol = .Machine$double.eps)

We can see how well this solves the original equation by computing

A
T(Ax - y); it should come close to vanishing.

> t(A) %*% (A %*% x - y)

              [,1]
[1,] -1.605827e-12
[2,] -9.237056e-13
[3,] -9.876544e-13
attr(, "class"):
[1] "Matrix"

In both the singular value and Hermitian eigen solves, the computed
solution is the minimum l2 norm solution relative to tol.

Finding Matrix 
Inverses and 
Pseudo-
Inverses

For most of the solve methods described in this section, you can
obtain a calculation of the inverse of the coefficient Matrix simply by
omitting the right hand side vector or Matrix. For example, the
inverse of the full-rank Matrix A can be obtained as follows:

> solve(A) # uses solve.Matrix

            Sun          Mon         Tue
Apr  0.04219534 -0.069341989  0.06845677
May -0.03806433 -0.007376807  0.07111242
Jun  0.01829448  0.088816760 -0.09619357
attr(, "class"):
[1] "Matrix"
other attributes:
[1] "workspace" "rcond"     "call"
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> solve(A) %*% A

    Apr           May Jun
Apr   1  4.440892e-16   0
May   0  1.000000e+00   0
Jun   0 -2.220446e-16   1
attr(, "class"):
[1] "Matrix"

The inverses of specialized Matrices are found using the specific
methods for those classes:

> solve(my.Herm) # uses solve.Hermitian

                       [,1]                  [,2]                   [,3]
[1,]  0.14736842+0.0000000i -0.1684211-0.1684211i -0.05263158+0.2105263i
[2,] -0.16842105+0.1684211i  0.2421053+0.0000000i  0.10526316-0.1578947i
[3,] -0.05263158-0.2105263i  0.1052632+0.1578947i  0.10526316+0.0000000i
attr(, "class"):
[1] "Hermitian" "Matrix"
other attributes:
[1] "rcond"     "workspace" "call"

> solve(A.u) # uses solve.UpperTriangular

            [,1]        [,2]        [,3]
[1,] -0.04279605  0.03524793  0.09056031
[2,]  0.00000000 -0.05215548  0.06196848
[3,]  0.00000000  0.00000000 -0.13219799
attr(, "class"):
[1] "UpperTriangular" "Matrix"
other attributes:
[1] "rcond" "call"

For rectangular Matrices, solve with no right hand side produces a
pseudo-inverse, the unique F-norm solution to the problem

> solve(rect.Mat)

            [,1]       [,2]        [,3]        [,4]
[1,]  0.04838342 0.01686479  0.08183540 -0.10118876
[2,] -0.02230793 0.15820783 -0.04182985  0.05075302
[3,]  0.02665054 0.14699438  0.07130605  0.11803373
attr(, "class"):
[1] "Matrix"

min
X Rn m×∈

AX Im–
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other attributes:
[1] "workspace" "rcond"     "call"
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CONTROLLING THE COMPUTATIONS

LAPACK has six machine- and problem-dependent parameters that
you can adjust within S-PLUS to affect the performance of some
functions:

• NB: Optimal block size

• NBMIN: Minimum block size for the block routine

• NX: Crossover point for switching from unblocked to block
routine

• NS: Number of shifts for unsymmetric eigenvalues.

• NXSVD: Used to decide whether to apply QR factorization
before computing singular values

• MAXB: Crossover point for unsymmetric eigenvalues

The LAPACK names are retained for the parameters for consistency
with the LAPACK User’s Guide (1994). See Chapter 3 of that reference,
Performance of LAPACK, for a general discussion of performance
issues in LAPACK, and Chapter 6, Installing LAPACK Routines, for
a discussion of the tuning parameters. The NB, NBMIN, and NX
parameters apply only to machines that allow parallel processing, and
affect block size for distributed memory processing. The other
parameters, which may affect performance on sequential machines as
well as parallel, occur in singular-value, Schur, and non-Hermitian
eigenvalue computations. You can adjust all the LAPACK tuning
parameters using the la.env function; to see the current settings, call
la.env with no arguments:

> la.env()

$NB:
[1] 1
$NBMIN:
[1] -1
$NX:
[1] -1
$NS:
[1] 2
$NXSVD:
[1] 16
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$MAXB:
[1] 50

The la.env function initializes a Fortran common block for use
within LAPACK. Each method that calls LAPACK calls la.env
automatically, and has an argument tune that allows you to pass
different tuning parameters. For example, in calculating a singular
value decomposition, you might want to modify the NXSVD
parameter:

> longmat <- Matrix(rnorm(1600), nrow=200)
> unix.time(svd(longmat))

[1] 0.5166664 0.3666668 3.0000000 0.0000000 0.0000000

> unix.time(svd(longmat, tune=list(NXSVD=30)))

[1] 0.45000076 0.04999924 0.00000000 0.00000000
[5] 0.00000000

Note

unix.time works only in Unix versions of S-PLUS. Often a change in tuning parameters
implies a change in the amount of workspace needed for an LAPACK function to meet that
specification. To accommodate this, a workspace parameter is provided in the relevant S-PLUS
functions. LAPACK does not always provide a direct mapping between tuning parameter
settings and the optimal workspace, but rather gives only the minimum workspace necessary to
obtain the result of that function. The functions usually return the optimal workspace on
completion and that information is included in the attributes of the S-PLUS functions that call
them.
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INTRODUCTION

In statistical analysis, the researcher is usually interested in obtaining
not only a point estimate of a statistic but also an estimate of the
variation in this point estimate, and a confidence interval for the true
value of the parameter. For example, a researcher may calculate not
only a sample mean but also the standard error of the mean and a
confidence interval for the mean.

Traditionally, researchers have relied on the central limit theorem and
normal approximations to obtain standard errors and confidence
intervals. These techniques are valid only if the statistic, or some
known transformation of it, is asymptotically normally distributed.
Hence, if the normality assumption does not hold, then the traditional
methods should not be used to obtain confidence intervals.

A major motivation for the traditional reliance on normal-theory
methods has been computational tractability. Now, with the
availability of modern computing power, researchers need no longer
rely on asymptotic theory to estimate the distribution of a statistic.
Instead, they may use resampling methods which return inferential
results for either normal or nonnormal distributions.

Resampling techniques such as the bootstrap and jackknife provide
estimates of the standard error, confidence intervals, and distributions
for any statistic. In the bootstrap, for example, B new samples, each of
the same size as the observed data, are drawn with replacement from
the observed data. The statistic is calculated for each new set of data,
yielding a bootstrap distribution for the statistic. The fundamental
assumption of bootstrapping is that the observed data are
representative of the underlying population. By resampling
observations from the observed data, the process of sampling
observations from the population is mimicked. For more detailed
descriptions of bootstrapping, see Efron and Tibshirani (1993) and
Shao and Tu (1995).
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S-PLUS includes a suite of functions for bootstrapping and jackknifing
with the following basic capabilities:

• Given a vector, matrix, or data frame, create bootstrap or
jackknife resamples of observations, and use these to calculate
resampling replicates of a specified statistic. The statistic may
be a scalar, vector, or matrix and may be specified as an
S-PLUS function or call.

• Produce informative summaries and plots for a resample
object (resamp) produced by bootstrapping or jackknifing.

• Calculate empirical percentile and BCa confidence limits for
a bootstrap object, and empirical percentiles for a jackknife
object.

• Use jackknife after bootstrap to examine the influence of
observations, and to estimate the standard error of a
functional of the bootstrap distribution for a statistic.

A list of the bootstrapping and jackknifing functions is presented in
Table 17.1.

Table 17.1:  S-PLUS bootstrapping and jackknifing functions.

Function Description

bootstrap Main bootstrap function

jackknife Main jackknife function

summary.bootstrap Summary method for 
bootstrap objects

print.resamp
plot.resamp
qqnorm.resamp
summary.resamp

Methods for resamp objects

limits.emp
limits.bca

Calculate empirical and BCa 
percentiles

jack.after.bootstrap Perform jackknife after bootstrap
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print.jack.after.bootstrap
plot.jack.after.bootstrap

Methods for jackknife after 
bootstrap object

update.bootstrap Add more replicates to a boot 
object

bootstats
jackstats

Called by bootstrap and 
jackknife to calculate 
resampling statistics

samp.boot.mc
samp.boot.bal
samp.permute

Functions to generate resampling 
indices

Table 17.1:  S-PLUS bootstrapping and jackknifing functions. (Continued)

Function Description
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CREATING A RESAMPLE OBJECT

There are two types of resample objects: bootstrap objects and
jackknife objects. The main functions for generating these objects are
bootstrap and jackknife. These functions call the more primitive
functions bootstats and jackstats, which use the replicated
parameter values and other information to calculate the bootstrap or
jackknife statistics, and return an object of the appropriate class.

The Bootstrap In bootstrap resampling, B new samples, each of the same size as the
observed data, are drawn with replacement from the observed data.
The statistic is first calculated using the observed data and then
recalculated using each of the new samples, yielding a bootstrap
distribution. The resulting replicates are used to calculate the
bootstrap estimates of bias, mean, and standard error for the statistic.

Main Arguments The main arguments in bootstrapping are the data (a vector, matrix,
or data frame) and a statistic (returning a scalar, vector, or
matrix). This statistic may be an S-PLUS function or an unevaluated
call (that is, any expression that one might type at the command line).
Additional arguments to statistic may be passed as a list through
args.stat.

The user may specify the number B of resamples to draw. The default
is 1000, which is the recommended minimum for estimating
percentiles. Although a smaller B may be specified, 250 is
recommended as a minimum for estimating standard errors.

Optional 
Arguments

• seed: sets the random number seed. It may be a legal random
number seed, or an integer between 0 and 1000.

• group: specifies a stratifying variable. If specified, then
resampling is performed independently within each stratum.
This argument can be used to bootstrap a two-sample or
multiple-sample statistic. Note that the bootstrap estimates are
not adjusted based on stratifying.

• sampler: generates resampling indices. The default function
samp.boot.mc performs standard Monte Carlo
bootstrapping of observations. The samp.boot.bal function
performs balanced bootstrapping. In some cases, the
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bootstrap function may be used to perform a permutation
test by using samp.permute with an appropriately defined
statistic.

• block.size: controls computational details of the
bootstrapping. By default, this is set to min(B, 100) and the
bootstrapping is performed using one large lapply. If the
sample size n and number B of resamples are large, then this
default may be slower than the alternative of performing a
for loop over smaller blocks of observations. The
block.size argument specifies the size of each block over
which a for is applied. For example, if n=1000 and B=1000,
then it may be preferable to do 10 loops with
block.size=100 rather than a single lapply.

• block.size: controls computational details of the
bootstrapping. For efficiency, the samples are drawn in blocks
of size block.size and lapply is used over each block to
evaluate the statistic. The drawing of blocks is embedded
within a for loop to draw a total of B samples. When n is
small it is most efficient to perform a single lapply so that
block.size=B. When n is large, it is more efficient to use a
smaller block.size. For example, if n=1000 and B=1000,
then it may be preferable to do 10 loops with
block.size=100 rather than a single lapply. By default the
block.size is set to min(100, B).

• assign.frame1: logical flag indicating whether the
resampled data should be assigned to frame 1 before
evaluating the statistic. This may be necessary if the statistic is
reevaluating the call of a model object. If all bootstrap
estimates are identical, try setting assign.frame1=T. Note
that this will slow down the algorithm.

• trace: logical flag indicating whether to print a message
indicating which set of replicates is currently being drawn.

Note

Pressing ESC during the looping interrupts the process and saves the replicates computed so far.
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• save.indices: logical flag indicating whether to save the
matrix of resampling indices. By default, the value of the
random number seed used is saved, and the sampler used is
specified in the call, which is enough information to
reproduce the resampling indices in later analyses. The
matrix of resampling indices may be saved as part of the
object by setting save.indices=T. This matrix has
dimension n x B.

Additional arguments are described in the help file.

Other Functions The bootstrap function calls the bootstats function to calculate
bootstrap statistics. If the user specifies the required information, then
bootstats may be called directly to produce a bootstrap object. The
main caveat is that limits.bca and jack.after.bootstrap will
look at the call component of the object, so the function calling
bootstats should pass along an appropriate call if these functions
are to be used on the resulting object.

Components of 
the Object

A bootstrap object has components call, observed, replicates,
estimate, B, n, dim.obs, group, seed.start, and seed.end. The
observed component contains the observed parameter values
calculated using the original data. The estimate data frame contains
bootstrap estimates of bias, mean, and standard error. The
replicates are the bootstrap replicates of the parameters. The call
component, starting random number seed seed.start, ending
random number seed seed.end, and group are stored for future
reference, as are the number B of replicates and the sample size n. If
statistic returns a matrix, then its dimension is stored as dim.obs
for use in the layout of plots. In many cases, dim.obs and group will
be NULL.

The Jackknife In jackknife resampling, a statistic is calculated for the n possible
samples of size n-1, each with one observation left out. The default
sample size is n-1, but more than one observation may be removed
using the group.size argument (see below). Jackknife estimates of
bias, mean, and standard error are available and are calculated
differently than the equivalent bootstrap statistics.

Arguments The jackknife function takes the arguments data, statistic,
args.stat, and assign.frame1, which have the same meanings as
for bootstrap.
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The seed argument may be used to specify a seed for randomization
done by the statistic, and for random assignment of observations to
groups if group.size is not equal to one. It may be a legal random
number seed, or an integer between 0 and 1000.

The group.size argument may be used to specify the removal of
more than one point in each sample. This argument is useful in partial
jackknifing for calculating the acceleration when forming BCa
percentiles. It forms floor(n/group.size) replicates, each missing
group.size observations. These replicates are treated as a jackknife
sample of size floor(n/group.size).

Other Functions The jackstats function calculates the jackknife statistics.
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METHODS FOR RESAMPLE OBJECTS

Print The print method for a resample object prints out the call, the
number of resamples used, and a table giving the values of the statistic
for the original data and resampling estimates of bias, mean, and
standard error for the statistic.

Summary The summary method for a resample object prints out the same
information as print.resamp, followed by the empirical percentiles
of the replicates. The summary of a bootstrap object also calculates
BCa percentiles. If the statistic is vector-valued, then a correlation
matrix for the components of the vector is also printed. The optional
probs argument specifies probabilities at which the empirical
quantiles are calculated.

Additional arguments useful in limits.bca may be specified with
summary.bootstrap. These arguments include z0, acceleration,
and group.size. By default, a group.size of floor(n/20) is used
in limits.bca for reasons of speed. To do a full jackknifing when
estimating acceleration, specify group.size=1.

Plot The plot method for a resample object produces plots of the
distributions of the statistics. For each statistic, a histogram of the
replicates is displayed with an overlaid smooth density estimate. A
solid vertical line is plotted at the observed parameter value, and a
dashed vertical line at the mean of the replicates.

The distance between the dotted line and the solid line is the
estimated bias. The shape of the distribution may be examined to
assess issues such as skewness of the distribution of the statistic.

The user may specify plot with a bandwidth.func argument to
calculate the bandwidth of the density estimate. By default, the
normal reference density estimate is used. In addition, the user may
specify plot with a nclass.func argument to calculate the number
of classes in the histogram. By default, the Freedman and Diaconis
rule is used. Arguments may also be passed to histogram through
the ellipsis (...).
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Plots are displayed in a grid (grid=T) by default. Use nrow to specify
the number of rows in the grid. If the statistic is a matrix, then by
default the plots will be arranged in the same order as the terms
appear in the matrix.

Normal 
Quantile-
Quantile Plots

The qqnorm method for a resample object produces a plot with the
same layout as in plot.resamp, but with each plot containing a
normal quantile-quantile plot for the relevant statistic. If the argument
lines=T, as is the default, then a qqline is also added to each plot.

This plot is used to assess the normality of the distribution of each
statistic. If the points fall on a straight line, then the empirical
distribution of the replicates is similar to that of a normal random
variate.
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PERCENTILE ESTIMATES

Two types of percentile estimates are supported: empirical
percentiles, and bias-corrected and adjusted (BCa) percentiles. These
are calculated by limits.emp and limits.bca, respectively. The
empirical percentiles are available for bootstrap and jackknife objects,
while BCa percentiles are available only for bootstrap objects. The
empirical percentiles are easy to calculate, but may not be very
accurate unless the sample size is very large. The BCa percentiles
require more computation but are more accurate. For either type of
percentile, using at least 1000 replications is recommended for
accurate estimation.

The probs argument specifies which percentiles are computed.

Empirical 
Percentiles

The empirical percentiles are simply the percentiles of the empirical
distribution of the replicates. Linear interpolation is used if necessary
to obtain the specified percentiles.

BCa Percentiles The BCa method transforms the specified prob values to determine
which percentiles of the empirical distribution most accurately
estimate the percentiles of interest. The percentiles of the empirical
distribution corresponding to these values are then returned.

To estimate the BCa percentiles, the bias correction (denoted z0) and
the acceleration must be calculated. If these values are not specified
(and they usually are not), then the bias correction will be obtained
from the replicates, and the acceleration will be obtained using
jackknifing. Note that rather than doing a complete delete-1 jackknife,
the data are broken into groups of size group.size, and the groups
are jackknifed. If group.size is not specified, then it is calculated as
floor(n/20), which will yield roughly 20 jackknife replicates,
depending on the magnitude of n.

To return the values of z0, acceleration, and the empirical
percentile level for each BCa percentile, set detail=T.
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JACKKNIFE AFTER BOOTSTRAP

Jackknife after bootstrap is a technique for obtaining estimates of the
variation in functionals of a bootstrap distribution, such as the bias or
standard error of a statistic, without performing a second level of
bootstrapping. It also provides information on the influence of each
observation on the functionals. See Efron and Tibshirani (pp. 275-
280) for details on this procedure.

Simulation studies have shown that, in general, jackknife after
bootstrap standard error estimates tend to be too large. A technique
called weighted jackknife after bootstrap may resolve some of these
difficulties. This technique is currently under investigation and has
not yet been implemented.

The Jackknife 
After 
Bootstrap 
Object

The jackknife after bootstrap object has components call,
functional, rel.influence, large.rel.influence,
values.functional, dim.obs, and threshold. The value of the
functional for the bootstrapped parameter replicates, and for the
jackknife after bootstrap estimates of standard errors, is given as the
functional data frame. The value of the functional over the samples
with each point removed is given in values.functional.
Normalized versions of these values are given in rel.influence.
The list large.rel.influence gives the relative influence values
for points with absolute relative influences in excess of tolerance.
The call is the call to jack.after.bootstrap. The dim.obs is the
corresponding component of the bootstrap object. The jackknife
after bootstrap object is of class jack.after.bootstrap.

Print Method The print method for a jack.after.bootstrap object displays the
call, the description of the functional under consideration, the data
frame of functional values and standard errors, and the list of large
relative influences.

Plot Method The plot method for a jack.after.bootstrap object produces a
plot for each parameter, indicating the relative influence of each
observation. Values greater than a specified tolerance (default = 2) are
flagged as being particularly influential.
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EXAMPLES

This section describes three examples. The first is a bootstrap of a
variance and discusses the output and basic plots associated with the
bootstrap object. The second example resamples a correlation
coefficient, and details the application of bootstrap, jackknife after
bootstrap, and jackknife tools. The third example shows how to test
linear regression coefficients using the bootstrap and jackknife after
bootstrap.

Resampling 
the Variance

This example uses data from the swiss.x matrix, which contains
socioeconomic indicators for the provinces of Switzerland in 1888.
More particularly, this example resamples the variance of the
Education variable, the percent of the population whose education is
beyond primary school.

First, Education is separated from the swiss.x matrix.

> Education <- swiss.x[,3]
> Education

 [1] 12  9  5  7 15  7  7  8  7 13  6 12  7 12  5  2  8 28 20
[20]  9 10  3 12  6  1  8  3 10 19  8  2  6  2  6  3  9  3 13
[39] 12 11 13 32  7  7 53 29 29

The bootstrap function is used to draw resamples and construct a
bootstrap object.

> boot.obj1 <- bootstrap(Education, var, B=1000, seed=0)

Forming replications  1  to  100
Forming replications  101  to  200
Forming replications  201  to  300
Forming replications  301  to  400

Note

All examples use B=1000, the number of resamples recommended for accurate estimation of
percentiles. Users who want to replicate the examples might use a lower number of resamples
(say, B=250) to speed up estimation. Note, however, that results will differ slightly from those
shown here.
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Forming replications  401  to  500
Forming replications  501  to  600
Forming replications  601  to  700
Forming replications  701  to  800
Forming replications  801  to  900
Forming replications  901  to  1000

(To prevent the preceding messages from being displayed, set
trace=F.)

Printing the object displays the call used to construct it, the number of
replications used, and summary statistics for the parameter. The
summary statistics are the observed value of the parameter, the mean
of the parameter estimate replicates, and bootstrap estimates of bias
and standard error.

> boot.obj1

Call:
bootstrap(data = Education, statistic = var, B = 1000,
seed = 0)

Number of Replications: 1000

Summary Statistics:
    Observed   Bias  Mean    SE
var    92.46 -3.362 89.09 38.67

A more complete summary of the bootstrap object, obtained via the
summary function, includes empirical and BCa percentiles for the
statistic. The BCa percentiles, for example, show that the 95%
confidence interval for the Education variance has endpoints 45.34
and 221.2.

> summary(boot.obj1)

Call:
bootstrap(data = Education, statistic = var, B = 1000,
seed = 0)

Number of Replications: 1000
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Summary Statistics:
    Observed   Bias  Mean    SE
var    92.46 -3.362 89.09 38.67

Empirical Percentiles:
    2.5%    5%   95% 97.5%
var 32.9 36.17 163.9 177.1

BCa Percentiles:
     2.5%    5%   95% 97.5%
var 45.34 51.44 211.6 221.2

Empirical and BCa percentiles may also be obtained separately using
the limits.emp and limits.bca functions, respectively.

> limits.emp(boot.obj1)

        2.5%       5%      95%    97.5%
var 32.89544 36.16716 163.8941 177.1408

> limits.bca(boot.obj1)

        2.5%      5%      95%    97.5%
var 45.33665 51.4373 211.6284 221.1731

Plotting the bootstrap object provides a histogram of the replicated
variances along with a smooth density estimate (Figure 17.1). The solid
line indicates the observed parameter value, and the dotted line
indicates the mean of the replicates. The difference between these two
values is the bootstrap estimate of bias.
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> plot(boot.obj1)

The histogram in Figure 17.1 shows that the distribution of replicated
variances is highly skewed. A normal quantile-quantile plot can be
used to further assess deviation from the normal distribution. Figure
17.2 suggests that both tails of the distribution of replicated variances
deviate from the normal distribution. Thus there is evidence that
bootstrapping is a better approach than normal-based methods.

> qqnorm(boot.obj1)

Resampling 
the Correlation 
Coefficient

This example uses the law school data from Efron and Tibshirani
(p. 9). Starting with 82 American law schools participating in a study
of admission practices, they constructed a random sample of 15

Figure 17.1:  Histogram of replicated variances.
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schools. Efron and Tibshirani then examined the correlation between
LSAT score and GPA for the 1973 entering classes at these schools
(p. 49).

Traditionally, Fisher’s transformation would be used to transform the
correlation coefficient into a normally distributed variable on which
normal- based inference would be used. This example uses
resampling to obtain inferential quantities instead of employing
Fisher’s transformation.

First, the data are entered into S-PLUS and stored as a data frame.

> school <- 1:15
> lsat <- c(576,635,558,578,666,580,555,661,651,605,653,
+ 575,545,572,594)
> gpa <- c(3.39,3.30,2.81,3.03,3.44,3.07,3.00,3.43,3.36,
+ 3.13,3.12,2.74,2.76,2.88,2.96)
> law.data <- data.frame(School=school,LSAT=lsat,GPA=gpa)

Figure 17.2:  Normal qq-plot of replicated variances.
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Chapter 17  Resampling Techniques: Bootstrap and Jackknife
Next, the bootstrap function is used, and the summary of the
resulting object displayed.

> boot.obj2 <- bootstrap(law.data, cor(LSAT,GPA),
+ B=1000, seed=0, trace=F)
> summary(boot.obj2)

Call:
bootstrap(data = law.data, statistic = cor(LSAT, GPA),
B = 1000, seed = 0, trace = F)

Number of Replications: 1000

Summary Statistics:
      Observed      Bias   Mean     SE
Param   0.7764 -0.008768 0.7676 0.1322

Empirical Percentiles:
        2.5%    5%    95%  97.5%
Param 0.4673 0.523 0.9432 0.9593

BCa Percentiles:
        2.5%    5%    95%  97.5%
Param 0.3443 0.453 0.9255 0.9384

The bootstrap object is plotted to obtain a histogram of the replicated
correlation values along with a smooth density estimate (Figure 17.2).
The distribution is clearly skewed.
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Examples
> plot(boot.obj2)

Another tool available for exploring the bootstrap object is the
jackknife after bootstrap (Efron and Tibshirani, p. 275). This
technique provides standard error estimates for functionals of the
bootstrap distribution, and influence measures for each observation.
By default, the functional is the mean of the distribution. In this case,
the standard error of the functional is the standard error of the mean,
and the influence indicates the influence of each observation on the
mean. Jackknife after bootstrap is commonly used to get standard
error estimates for the bootstrap estimate of standard error.

> jab.obj2 <- jack.after.bootstrap(boot.obj2)
> jab.obj2

Call:
jack.after.bootstrap(boot.obj = boot.obj2, functional = 
mean)

Functional Under Consideration:
mean

Figure 17.3:  Histogram of replicated correlations.
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Chapter 17  Resampling Techniques: Bootstrap and Jackknife
Functional of Bootstrap Distribution of Parameters:
        Func SE.Func
Param 0.7676  0.1432

Observations with Large Influence on Functional:
$Param:
   Param
1 -3.025

Plotting the jack.after.bootstrap object provides an influence
plot similar to a Cook’s distance plot (Figure 17.4). Observations with
absolute relative influence greater than 2 are considered particularly
influential.

> plot(jab.obj2)

The jackknife after bootstrap identifies observation 1 as being
particularly influential. A plot of LSAT versus GPA with this
observation plotted as a circle shows that this point is indeed an
outlying observation (Figure 17.5).

> plot(lsat[-1], gpa[-1], xlab="LSAT", ylab="GPA")
> points(lsat[1], gpa[1], pch=2)

Figure 17.4:  Influence plot for correlation.
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Examples

bootjack.fm  Page 561  Friday, June 4, 1999  2:26 PM
Jackknife summary statistics for the correlation may be obtained also.

> jackknife(law.data,cor(LSAT,GPA))

Call:
jackknife(data = law.data, statistic = cor(LSAT, GPA))

Number of Replications: 15

Summary Statistics:
      Observed      Bias   Mean     SE
Param   0.7764 -0.006473 0.7759 0.1425

Resampling 
Regression 
Coefficients

The last example shows how to test linear regression coefficients, and
uses the bootstrap to obtain standard error estimates and confidence
intervals.

The data are from operation of a plant for the oxidation of ammonia
to nitric acid, measured on 21 consecutive days. See the S-PLUS help
file for stack for details.

Figure 17.5:  LSAT versus GPA.
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Chapter 17  Resampling Techniques: Bootstrap and Jackknife
First, the stack.loss vector and stack.x matrix are combined into
a data frame.

> stack <- data.frame(stack.loss, stack.x)
> names(stack)

[1] "stack.loss" "Air.Flow"   "Water.Temp" "Acid.Conc."

The bootstrap function resamples the vector of linear regression
coefficients from the model of stack.loss regressed on Air.Flow,
Water.Temp, and Acid.Conc.

> boot.obj3 <- bootstrap(stack,
+ coef(lm(stack.loss~Air.Flow+Water.Temp+Acid.Conc.,
+ stack)), B=1000, seed=0, trace=F)
> boot.obj3

Call:
bootstrap(data = stack, statistic = coef(lm(stack.loss ~ 
Air.Flow + Water.Temp + Acid.Conc., stack)), B = 1000,
seed = 0, trace = F)

Number of Replications: 1000

Summary Statistics:
            Observed      Bias     Mean     SE
(Intercept) -39.9197  0.829215 -39.0905 8.8239
   Air.Flow   0.7156  0.004886   0.7205 0.1749
 Water.Temp   1.2953 -0.031415   1.2639 0.4753
 Acid.Conc.  -0.1521 -0.005164  -0.1573 0.1180

The summary for a vector statistic includes the correlation matrix for
the replicate values. Based on the 95% confidence limits, for either
the empirical or the BCa percentiles, all coefficients except the
Acid.Conc. coefficient are significantly different from zero.

> summary(boot.obj3)

Call:
bootstrap(data = stack, statistic = coef(lm(stack.loss ~
Air.Flow + Water.Temp + Acid.Conc., stack)), B = 1000,
seed = 0, trace = F)
Number of Replications: 1000
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Summary Statistics:
            Observed      Bias     Mean     SE
(Intercept) -39.9197  0.829215 -39.0905 8.8239
   Air.Flow   0.7156  0.004886   0.7205 0.1749
 Water.Temp   1.2953 -0.031415   1.2639 0.4753
 Acid.Conc.  -0.1521 -0.005164  -0.1573 0.1180

Empirical Percentiles:
                2.5%       5%      95%     97.5%
(Intercept) -55.4846 -52.7583 -23.4913 -17.84522
   Air.Flow   0.3844   0.4454   1.0136   1.05255
 Water.Temp   0.3913   0.4768   2.0544   2.23920
 Acid.Conc.  -0.4181  -0.3604   0.0209   0.06103

BCa Percentiles:
                2.5%       5%        95%     97.5%
(Intercept) -58.8427 -54.3320 -25.385390 -21.48317
   Air.Flow   0.3197   0.3897   0.987308   1.01691
 Water.Temp   0.4977   0.5811   2.278439   2.46017
 Acid.Conc.  -0.4250  -0.3743   0.008729   0.04447

Correlation of Replicates:
            (Intercept) Air.Flow Water.Temp Acid.Conc.
(Intercept)     1.00000  -0.1376    0.03551    -0.7848
   Air.Flow    -0.13760   1.0000   -0.79387    -0.1096
 Water.Temp     0.03551  -0.7939    1.00000    -0.2007
 Acid.Conc.    -0.78483  -0.1096   -0.20067     1.0000

The plot function provides histograms of the replicated regression
coefficients (Figure 17.6). Skewness is particularly evident in the
Acid.Conc. coefficients.
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Chapter 17  Resampling Techniques: Bootstrap and Jackknife
> plot(boot.obj3)

Next, the jackknife after bootstrap is used to assess the accuracy of the
standard error estimates, and the influence of each observation on
these estimates.

> jab.obj3 <- jack.after.bootstrap(boot.obj3,"SE")
> jab.obj3

Call:
jack.after.bootstrap(boot.obj = boot.obj3, functional = 
"SE")

Functional Under Consideration:
[1] "SE"

Functional of Bootstrap Distribution of Parameters:
              Func SE.Func
(Intercept) 8.8239 3.67775
   Air.Flow 0.1749 0.06149
 Water.Temp 0.4753 0.17850
 Acid.Conc. 0.1180 0.05395

Figure 17.6:  Histograms of replicated regression coefficients.
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Examples
Observations with Large Influence on Functional:

$"(Intercept)":
   (Intercept)
21       2.863

$Air.Flow:
   Air.Flow
21    3.672

$Water.Temp:
   Water.Temp
21      3.214

$Acid.Conc.:
   Acid.Conc.
14     -2.184
21      2.589

The jackknife after bootstrap and the corresponding influence plot
(Figure 17.7) suggest that points 14 and 21 are particularly influential.

> plot(jab.obj3)

Figure 17.7:  Influence plots for regression coefficients.
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Chapter 17  Resampling Techniques: Bootstrap and Jackknife
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Index
INDEX

Symbols
"ts" objects 137
* operator

arithmetic 453
+ operator

arithmetic 453
.Machine list 482
/ operator

arithmetic 453
: operator

sequence 454
^ operator

arithmetic 453

Numerics
90% criterion for selecting principal 

components 16

A
abs function 454, 459
absolute value 454, 459
accelerated failure time models 356
accelerated testing models 356
acf.plot function 146
acf function 158, 174
acf see Autocorrelation function
acm.ave function 204
acm.filt function 204
acm.smo function 204, 213
acos function 459
acosh function 459
addition 453
agglomerative methods 68
agnes function 68, 91, 93, 109
AIC 164, 178

Akaike’s Information Criterion 164
Akaike’s Information Criterion 

(AIC) 174
Akaike’s information criterion (AIC) 

178
algorithms

AIC 178
Akaike’s Information Criterion 

164
ARMA 171
autocorrelation function 154
autocovariance function 154
autoregressive process 160
Burg’s 169
cluster analysis 102
covariance function matrix 157
Cox proportional hazards 

model 253
factor analysis 26
hazard function 230
Levinson-Durbin recursion 163
low-pass filter transfer function 

201
moving average process 155
robust filtering 210
survival curves 230, 235
survival function 230
Yule-Walker equations 161

alternative robust smoothers 213
approx function 473
approximation

cubic splines 475
derivatives 472
linear interpolation 473

ar.gm function 204
ar.yw function 166
Arg function 458
args.stat argument 547
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Index
args.stat function 545
arima.diag function 180, 181
arima.filt function 181
arima.forecast function 180
arima.mle function 178
arima.sim function 181
arima.td function 182
ARIMA coefficients, transforming 

177
ARIMA models 171, 172

autoregressive vs. general 174
diagnostics for and criticism of 

179
estimating the parameters of 

174
filtered values 181
forecasting with 180
fractionally differenced 184
identifying and fitting 174
identifying the model 174
missing values 176
modeling effects of trading days 

182
multiplicative 176
predicted and filtered values for 

181
regression parameters 178
residuals of 179
seasonal 172
simulating fractionally 

differenced 185
simulating processes 181
with regression variables 173

arithmetic 453–457
complex 458–??
vectors and matrices 455

ARMA models 171
ARMA process 174
AR process 163
asin function 459
asinh function 459
assign.frame1 argument 547
assign.frame1 function 546
asymmetric binary variables 73
atan function 459

atanh function 459
Autocorrelation function

lag 149
plot 146
values 149

autocorrelation function 174
algorithm 154
for time series

multivariate 156
lag 156
partial 158, 163
plot 159
residuals of ARIMA models 179

autocovariance
mean squared error of 156
positive semi-definiteness of 156

autocovariance function
algorithm 154
for AR process 161
for time series

multivariate 156
univariate 154

autocovariance sequence 188
autoregression

estimation
via Yule-Walker equations 

166
with Burg’s algorithm 169

generalized M-estimates for 207
multivariate 164
univariate 160

autoregression parameter estimates, 
robust 204

autoregressive (AR) filters 197
autoregressive coefficients 171
autoregressive filters 198
autoregressive integrated moving-

average (ARIMA) models 171, 
172

autoregressive models 161
autoregressive moving-average 

(ARMA) models 171
autoregressive operators 181
autoregressive process 160
568



Index
autoregressive spectrum estimation 
194

average weighted link 103

B
backshift operator 171
backsolve function 465, 466
bandwidth 190
banner 93
B component 547
beta distribution 478
between-cluster dissimilarity 92
bias

minimizing 204
binomial distribution 478
biplot function 22, 39
biplots 22, 23

factor analysis 39
bladder 285
block.size function 546
bootstats function 545
bootstrap function 545
bootstrapping

main arguments to 545
optional arguments to 545

bootstrapping functions 543
bootstrap resampling 545
bounded influence autoregression 

estimates 207
Box-Jenkins airline model 179

C
call function 547
Cattell’s criterion for selecting 

principal components 16
Cauchy distribution 478
cbind function 455
ceiling function 454
censoring 230, 232
censorReg

covariates 372
censorReg function 368
centroid method 103

c function 454
charts

see plots
see plots, quality control charts

chi-square distribution 478
Choleski decomposition 176, 466, 

516
Choleski function

defined 516
choleski function 466
chol function 466
chull function 474
clara function 68, 83, 109
classification trees

manipulating 106
plotting 106

clorder function 106
cluster 286
cluster analysis

algorithms 102
approximate weight of evidence 

(AWE) 105, 106
criteria 104
distance matrices 107
functions listed 106, 107, 108
hierarchical agglomeration 

algorithm 102, 107
robust methods 106

clustering methods
calling the functions 110
summary of functions 111

clustering tree 93
CO2 data set 193
ColPermutation function 499
complete linkage method 92
complete link method 103
complex demodulation 200
complex numbers 458–??

complex conjugate 458
plotting 458
p-norm of vectors 461

computational accuracy 482
condition estimates 502

reciprocal 503
conditioning 175, 178
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Index
condition number 502
condition numbers

obtaining from SVD 509
confidence intervals 180
Conj function 458
contamination process 205
continuous ordinal variables 71
control charts

see quality control charts
convex hull 474
convolution filters 197

examples of 198
Correlation

plotting 146
correlation matrix 13
cos function 459
cosh function 459
counting process

using 277
covariance function matrix 157
covariance matrix 13, 32
Cox model 392

adjusted variable plots 266
algorithm 253
deviance residuals 267
estimated relative risk 260
functional form for predictor 

266
grouped jackknife estimate of 

variance 312
improvement in fit 260
influential points 267
jackknife estimate of variance 

312
likelihood ratio test 256, 260
log likelihood 260
martingale residuals 266
modified sandwich variance 

estimator 315
null model 260
plotting 275
poorly predicted subjects 267
proportional hazards 

assumption 267
relative risk 257

robust estimate of variance 312
robust variance estimation 315
sandwich estimate of variance 

312
sandwich variance estimator 

312
Schoenfeld residuals 267
Wald test 256
zero iterations 266

Cox models
complex 281

Cox proportional hazards model
see Cox model

crosscorrelation function 156
crosscovariance function 156
cross-spectrum 191
cts function 134
cubic splines 475
cumulative hazard 230
cusum charts 436

fast initial response 440
new data 437
sensitivity 440
types of charts 439
xbar charts 436

cusum function
arguments listed 438

cusum function 436
cutoff frequency 201
cutree function 106
cycle function 140

D
daisy function 69, 73, 109
Daniell windows 190
data argument 547
data function 545
data taper 189, 196
dates objects

Julian dates 133
dates objects 131
decomposing matrices

Choleski 466
QR 466
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Index
singular value 468
decompositions

see matrix decompositions
degrees of freedom 190
de-meaning 189
demod function 200
demodulation, complex 200
density function 478
density see also probability density
derivatives

approximating 472
finding 472

determinants 463, 504
modulus 504
sign 504

det function 504
detrending 189
d-fold differencing operator 172
D function 472
diag function 462
Diagonal function 496
diagonal matrices 462

creating 496
diana function 68, 93, 95, 109
differenced series 172
difference equation 160
differences 471
differencing operators 172, 181
diff function 144, 471
digital filter 197
digital filters

see filters
dim.obs component 547
discontinuous intervals of risk 278
discrete Fourier transform (DFT) 

190
discrete ordinal variables 72
discrete time 187
discrete time random walk 160
dissimilarities 70
dissimilarity matrix 69
dist function 107
distributions see probability 

distributions
division 453

divisive methods 68
dot products 457
Dunn’s partition coefficient 87

E
eigen function 470
eigen function 517
eigenvalues 470, 517
eigenvectors 470, 517
end function 131
entropy 169
error covariance matrix 27
errors, Gaussian 153
estimate component 547
event history analysis 218
example functions

Choleski 516
factors 481
primes 480
stats.med 423

examples
bladder cancer study 285
complex Cox models 281
factor analysis of test scores data 

28
lung cancer study 268
ovarian cancer study 255
principal components analysis 

of exam scores 4
principal components analysis 

of states data 10
spectral analysis of sunspots 192
Stanford heart transplant study 

281
expand function 511, 514, 518, 521
expected survival

Bonsel estimator 392
conditional estimate 392
Ederer’s method 392
Hakulinen’s method 392

exp function 459
explanatory variables 173
exponential distribution 478
exponential function 459
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exponents 453

F
facmul function 511, 514, 521
factanal function

choosing rotation 35, 37
maximum likelihood 31
return object 28
valid rotation arguments 37

factanal function 28
factor analysis

algorithm 26
communalities 27, 30
compared with principal 

components analysis 26
correlation matrix 32
covariance matrix 32
estimating the model 28
loadings 26, 30
maximum likelihood estimate 

28, 31
plotting 38, 39
prediction 40
rotations 35
scores 40
simple structure 35
summary of return object 29
uniquenesses 27, 30

factor covariance matrix 27
factor loadings 26, 30

plotting 38
rotated 35

failure time data
analysis of 218

fanny function 68, 86, 88, 109
fast Fourier transform 189, 477
fast Fourier transform (FFT) 190
F distribution 478
fft function 477
filters 205

autoregressive 198
autoregressive (AR) 197
causal 197

cleaners 206
convolution 197

examples of 198
finite-impulse response (FIR) 

197
infinite-impulse response (IIR) 

197
Kalman 176, 177, 180
least squares low-pass 201
linear time-invariant 197
low-pass 200
moving average (MA) 197
non-causal 197
recursive 197, 198
robust 205, 212

finite-impulse response (FIR) filters 
197

first-difference operator 172
floor function 454
Fourier series 187
Fourier transform 187

discrete (DFT) 190
fast 189, 477
fast (FFT) 190
inverse 189, 477

functions
mathematical, listed 459

fuzzy analysis 83

G
gamma distribution 478
gamma function 459
Gaussian errors 153
Gaussian maximum likelihood 175, 

176, 178
generalized M-estimates 207
geometric distribution 478
geostatistical data 117
GM estimates 207
greatest-integer function 454
group.size argument 547, 548
group average method 92
group component 547
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H
hazard function

algorithm 230
cumulative 230

hazard rate 230
hclust function 107
Hermitian matrices 497
hexagonal binning 117–121
hexbin function 117–??
hexbin function 116
hexbin function ??–120
hierarchical algorithms 68
Huber psi-function 208
hyperbolic trigonometric functions 

459
hypergeometric distribution 478

I
identify function

offset argument 120
identify function 120, 434
identifying plotted points 434
Identity function 495
identity matrices 495
identity matrix 463
imaginary numbers 458
Im function 458
infinite-impulse response (IIR) 

filters 197
infinitesimal jackknife 316
innovations process 171, 174
integer divide 453
integrate function 471
integration 471
interp function 473
interpolation

cubic splines 475
linear 473

interval censored data 359
interval-scaled variables 70
inverse Fourier transform 189
inverse hyperbolic trigonometric 

functions 459

inverse trigonometric functions 459
invertibility 177
its function 136

J
jack.after.boot function 547
jackknife function 545
jackknife resampling 547
jackknifing functions 543
jackstats function 545
Julian dates 133

K
Kaiser’s criterion for selecting 

principal components 16, 18
Kalman filter 176, 177, 180
Kaplan-Meier estimate, generalized 

359
kaplanMeier function 365
Kaplan Meier survival curve

plotting 365
Kaplan-Meier survival curve

algorithm 230
kronecker function 463
Kronecker products 463

L
labclust function 106
lag 471
lag.plot function 148
lag function 143
LAPACK

tuning parameters 537
lapply function 546
leakage of power 189, 196
least squares approximation method 

202
least squares low-pass filters 201
Levinson-Durbin recursion 163

vector form 166
lgamma function 459
libraries
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attaching 485
library function 485
limits.bca function 547
linear combinations

standardized 2
linear equations

Choleski decomposition 466
eigenvalues 470
inverting 465
QR decomposition 466–468
singular value decomposition 

468
solving 465–470
solving overdetermined systems 

529
solving rank-deficient systems 

532
solving square linear systems 

526
solving underdetermined 

systems 531
triangular systems 465

linear filters 197
linear interpolation 473
linear prediction modeling 161
loadings function 9, 30
loadings see factor loadings
Loadings see principal component 

loadings
log10 function 459
logarithms 459, 460
log function 459, 460
logistic distribution 478
log-likelihood function, penalized 

version of 178
log-likelihood measure 174
log-normal distribution 478
log rank test 244
long memory time series modeling 

183
low-pass filters 200
low-pass filter transfer function 201
LU

see matrix decompositions
LU decomposition

lu function 510, 513
lung cancer study 268
lynx data set 196

M
map function 120
maps library 120
Markov process 160
mathematics

elementary functions 459
matrices

arithmetic 455
creating 454
determinants 463
diagonal 462
differences on 472
distance 107
identity 463
Kronecker products 463
multiplication 456
trace 462
transpose 462

matrices (classed)
adding vectors 488
arithmetic 487
assigning subclasses 498
compared with standard S-

PLUS matrices 490
creating 486
determinants 504
diagonal matrices 496
Hermitian matrices 497
inverses and pseudo-inverses 

534
matrix decompositions 507, 525
Matrix library needed 487
matrix norms 501
matrix products 489, 490
multiplying a factor by a Matrix 

511
orthonormal matrices 498
reciprocal condition estimate 

503
row and colulmn names 486
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row and column sweeps 488
specialized matrices 495
subscripting 491
systems of linear equations 526
triangular matrices 498
tuning parameters 537, 538
unpacking 495
vectors treated as column 

vectors 491
matrices see also linear equation
Matrix.class function 498
matrix decompositions

Choleski 516
eigen decomposition 517
expanding LU decomposition 

511
Hermitian indefinite 513
LU decomposition 510
QR decomposition 520
Schur decomposition 523
singular value decomposition 

507
types available in Matrix library 

507
Matrix function

byrow argument 486
dimnames<Default ParaA 

Font> argument 486
Matrix function 486
Matrix library

attaching 485
based on LAPACK 484

Matrix library 507
matrix multiplication 489
matrix norms

2-norm 502
Frobenius norm 501
maximum-modulus norm 501
p-norms 501

maximum likelihood estimate
factor analysis 28, 31

mclass function 106
mclust function 106
mclust function 106
mean squared error 156

medoids 77
Meeker, W.Q. 219, 357
missing values 176

effect on computations 225
global action 225
report of action 225
warning 225

model assumptions 153
modeling

linear prediction 161
models

ARIMA 171, 172
forecasting with 180
fractionally differenced 184
identifying and fitting 174
modeling effects of trading 

days 182
predicted and filtered 

values for 181
simulating fractionally 

differenced 185
simulating processes 181
with regression variables 

173
ARMA 171
autoregressive 161
invertibility of 177
missing values 176
seasonal 172
signal plus noise 181
stationarity of 177

Mod function 458
modified sandwich estimator 315
modulo operator 453
modulus

complex numbers 458
mona function 68, 97, 100, 109
moving average (MA) filters 197
moving-average coefficients 171
moving average process 155, 170, 

171
mreloc function 106
multiple events 277
multiplication 453
multiplicative ARIMA models 176
575



Index
N
n component 547
nearest crisp clustering 88
negative binomial distribution 478
Nelson’s cumulative hazard estimate

algorithm 235
nominal variables 72
non-stationary process 160, 172
normal distribution 478
norm function

2-norm 502
specifying type 501

norms
see matrix norms

O
observed component 547
offset argument 120
one-step prediction residuals 179
- operator

arithmetic 453
operators

artithmetic 453
dot product 457
integer divide 453
modulo operator 453
precedence hierarchy 453
sequence 454
vectors and matrices 455, 457

orthonormal matrices
creating 498

outliers 204
additive (AO) 205
general replacement (RO) 204

ovarian cancer study 255
ozone data 120

P
padding 189
pam function 68, 76, 81, 109
parametric family 369
par function 120
par function 120

partial autocorrelation function 163, 
174

partial correlation coefficients 169
partitioning algorithms 68
pclust function 106
periodogram 189

smoothing 190
permutation matrices

creating 499
person years 392
phase 191
plot.hexbin function 118
plot.hexbin function 118
plot.kaplanMeier function 366

as low-level graphics function 
366

plot of hexbin object 118
Plots

autocorrelation plot 149
scatter plot 146, 147

plots
autocorrelation function 159
biplots 22, 23, 39
cusum charts 436
identifying points 434
screeplots 16
shewhart charts 426

plot styles
hexbin objects 119

Plotting
autocorrelation function 149
time series 146, 147, 149

plotting
factor loadings 38
Kaplan Meier survival curve 

365
principal components 22, 23
principal components loadings 

9
p-norm of vectors 461
Poisson distribution 478
polar representation

complex number 458
polynomial equations

finding roots of 170
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polyroot function 170
portmanteau test statistic 180
power leakage 189, 196
power spectrum 190
precedence hierarchy

arithmetic 453
precision

arithmetic operations 482
predicted values 181
predict function

factor analysis 40
principal components 20

prediction error decomposition 174
prediction errors 175, 176
prediction variance 164
prime numbers 480
principal component loadings 3, 8

plotting 9
principal components

calculating 4
summary 7

principal components analysis
90% selection criterion 16
Cattell’s selection criterion 16
compared with factor analysis 

26
correlation matrix 10, 13
covariance matrix 13
ellipsoid covariance estimate 15
excluding components 16
interpreting 8, 9
Kaiser’s selection criterion 16, 

18
loadings 3
plots 16, 22, 23
prediction 20
scaling data 10
scores 20
selection criteria 16
standardized linear 

combinations 2
transformations 2
weighted covariance estimation 

15
principal factor estimate 28

princomp function
return object 6
scaled data 10

princomp function 4
probabilities 388
probability density see density plot, 

density function
probability distributions 478

listed 478
probability functions 478
purely random process 155

Q
qcc function

arguments listed 423
qcc function 422
qcc objects 422
QR decomposition 466–468, 520
qr function 466–468
qr function 520
quakes.bay data 117
quakes.bay data frame 117
quality control charts 420

control data 423
cusum charts 436
group statistics 423
Shewhart charts 426
types listed 420, 421
within-group standard deviation 

423
quantile functions 478
quantiles 388
quasi-Newton optimizer 177

R
random numbers 478
random walk 160
ratio-scaled variables 71
rayplot function 120
rbind function 455
rcond function 503
reciprocal condition estimate 503
recursion 160
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Levinson-Durbin 163
Whittle’s 166

recursive filters 197, 198
reference value (cusum charts) 436
reflection coefficients 163
Re function 458
regression variables 173
relative risk 257, 260
reliability analysis 218
replicates component 547
resample objects 545
resampling techniques 542
robust filters 205, 212
robust methods 153, 204
robust smoothers 204, 205

two-filter 212
rotations

factor analysis 35
oblimin 35
types listed 37
varimax 35

RowPermutation function 499
rts function 127
running averages 190
Ruspini data 75
ruspini data 75

S
samp.boot.bal function 545
samp.boot.mc function 545
samp.permute function 546
sampler function 545
sandwich estimator 312
save.indices function 547
scaling data 10
Scatter plots

lagged 146, 147
Schur decomposition 523
schur function 523
scores

principal components 20
screeplot function 18
screeplots 16

creating 16

seasonal models 172
seed.end component 547
seed.start component 547
seed argument 548
seed function 545
seq function

dates 132
sequence operator 454
shewhart 428
Shewhart charts 426

control limits 427, 428
new data 428
reading 427
run length 427
summary statistic 431
target value 427
violating points 433

shewhart function
arguments listed 427
returned objects 432

shewhart function 426, 431
signal plus noise model 181
signal processing 477
signals

analysis of
frequency methods 153
time domain methods 153

complex demodulation 201
linear filters for 197

convolution 197
least squares low-pass 201
recursive 198

robust methods for 204
alternative robust smoother 

213
generalized M-estimates for 

autoregression 207
robust filtering 210
two-filter robust smoother 

212
spectral analysis of 187

spectrum estimation
autoregressive 194
from periodogram 189

tapering 196
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silhouette plot 77
simple matching coefficient 72
sin function 459
single linkage method 92
singular value decomposition 468
sinh function 459
SLC see standardized linear 

combinations
smoothers

alternative robust 213
cleaners 206
definition of 205
periodogram 190
robust 204, 205

solve function 465
solve function 526
spatial data 117
spec.ar function 195
spec.pgram function 189, 191, 192
spec.plot function 196
spec.taper function 196
spectral analysis

autocovariance sequence 188
cross-spectrum 191
detrending and de-meaning 189
Fourier series 187
padding 189
periodogram 189
phase 191
spectral density 188
spectral density estimate 190
spectral representation 188
spectrum estimation

autoregressive 194
from periodogram 189

squared coherency 191
tapering 189, 196

spectral density 188
spectral density estimate 190
spectrum estimation

autoregressive 194
from periodogram 189

spectrum function 196
spline function 475
splines

cubic 475
split cosine bell taper 196
sqrt function 459
squared coherency 191
stable distribution 478
standard error 164
standardized linear combinations 2
standardized residuals 179
start function 131
state transition matrix 211
stationarity 177
stationary process 160
stationary time series 154
statistic argument 547
statistic function 545
stats.med function

created 423
stats.xbar function

qcc uses 423
step functions 476
stepfun function 476
Student’s t distribution 478
subtraction 453
subtree function 106
summary function

principal components 7
time series 130

summary function 118
survival

cohort expected 394
individual expected 393

survival analysis 356
censored observations 230, 232
correlated observations 286
discontinuous intervals of risk 

278
examples 232, 255, 268
gaussian distribution for 

parametric 345
hazard function 230
IRLS formulation for 

parametric 340
least extreme value distribution 

for parametric 346
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logistic distribution for 
parametric 346

log likelihood for parametric 
340, 341

multiple events 277
other distributions for 

parametric 348
overview 218
parametric distributions 345
parametric regression 326
person years 392
survival curves 230, 253
survival distributions 244, 248
survival function 230
tests 244
time-dependent covariates 277
time-dependent strata 279
using the counting process 277

survival curve
confidence intervals 238
Cox model 253
Cox models 322
Kaplan-Meier estimate 230, 

232, 248
Nelson’s cumulative hazard 235

survival curves 392
survival data 356
survival function

algorithm 230
survival time

mean 242
median 242

SVD
see matrix decompositions

singular value 
decomposition

svd function 508
sweep function 489
symmetric binary variables 72
symmetric matrices, see Hermitian 

matrices

T
tan function 459

tanh function 459
tapering 189, 196

data taper 196
split cosine bell taper 196

tapply function 121
tapply function 120
testscores data set

created 4
testscores data set 28
t function 462
Therneau, Terry 219, 357
time-dependent covariates 277
time-dependent strata 279
time function 139
Time series 126

calendar 134
creating 127, 134, 136
differences 144
ending time 131
extracting times 139
frequency 127, 128
irregular 136
lagged 143
multivariate 127, 137
naming component series 129
plotting 146
sampling cycle 140
starting time 127, 131
subsetting 140, 142
summary 130
time interval 127, 128
tspar attribute 127
types 127
univariate 127
updating 137

time series
analysis of

frequency methods 153
time domain methods 153

autoregression estimation
via Yule-Walker equations 

166
with Burg’s algorithm 169

autoregressive process 160
long memory modeling 183
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multivariate
autocorrelation function in 

156
autocovariance function in 

156
autoregression 164

stationary 154
univariate

ARIMA models 171, 172, 
178

forecasting with 180
fractionally differenced 

184
identifying and fitting 

174
modeling effects of 

trading days 182
predicted and filtered 

values for 181
simulating fractionally 

differenced 185
simulating processes 

181
with regression 

variables 173
ARMA models 171
autocovariance function in 

154
autoregression 160
seasonal models 172

Toeplitz matrix 163
trace argument 546
trading days 182
triangular matrices

creating 498
trigonometric functions 459
ts.intersect function 137
ts.union function 137
tspar attribute

deltat component 127
frequency component 127
start component 127

Tukey’s bisquare psi-function 209

two-filter robust smoothers 212

U
uniform distribution 478
univariate time series 154
unpack function 495

V
variability

minimizing 204
variables of mixed types 73
vecnorm function 461
vectors

arithmetic 455
computing p-norm 461
creating 454
dot product 457

W
Ward’s method 102
Weibull distribution 478
weighted least squares estimate 208
White noise 129
white noise 155, 160, 164, 171
Whittle’s recursion 166
Wilcoxon rank sum distribution 478
Wilcoxon test

Peto-Peto modification 244
window function 142

X
xy2cell function 120

Y
Yule-Walker equations 161

sample-based 162
vector form 164

Yule-Walker estimates 204
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