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ABSTRACT
Motivation: DNA microarrays have recently been used for
the purpose of monitoring expression levels of thousands
of genes simultaneously and identifying those genes that
are differentially expressed. The probability that a false
identification (type I error) is committed can increase
sharply when the number of tested genes gets large.
Correlation between the test statistics attributed to gene
co-regulation and dependency in the measurement errors
of the gene expression levels further complicates the
problem. In this paper we address this very large multi-
plicity problem by adopting the false discovery rate (FDR)
controlling approach. In order to address the dependency
problem, we present three resampling-based FDR con-
trolling procedures, that account for the test statistics
distribution, and compare their performance to that of the
naı̈ve application of the linear step-up procedure in Ben-
jamini and Hochberg (1995). The procedures are studied
using simulated microarray data, and their performance is
examined relative to their ease of implementation.
Results: Comparative simulation analysis shows that all
four FDR controlling procedures control the FDR at the
desired level, and retain substantially more power then
the family-wise error rate controlling procedures. In terms
of power, using resampling of the marginal distribution of
each test statistics substantially improves the performance
over the naı̈ve one. The highest power is achieved,
at the expense of a more sophisticated algorithm, by
the resampling-based procedures that resample the joint
distribution of the test statistics and estimate the level of
FDR control.
Availability: An R program that adjusts p-values using
FDR controlling procedures is freely available over the
Internet at www.math.tau.ac.il/∼ybenja.
Contact: anatr@post.tau.ac.il

∗To whom correspondence should be addressed.

INTRODUCTION
Gene expression analysis across various biological condi-
tions, cell cycle states, tissues and subjects may help iden-
tify differentially expressed genes. This type of informa-
tion is a valuable pinpoint in the investigation of biologi-
cal processes and functional disorders. cDNA microarrays
have been recently used for monitoring expression levels
of thousands of genes simultaneously. See Brown and Bot-
stein (1999) for an overview.

The statistical significance of the differential ex-
pressions may be tested using replicated experiments.
Considering a microarray data analyzed by testing each
gene, multiple testing is an immediate concern. When
many hypotheses are tested, the probability that a type I
error is committed increases sharply with the number of
hypotheses. This problem of multiplicity is not unique to
microarray technology, yet its magnitude here, where a
single experiment may involve many thousands of genes,
dramatically intensifies the problem.

In microarray experiments, mRNA is extracted out of
specific animals and tissues under biological conditions
that are functionally associated with the mechanism
examined. Consequently, the genes tend to subgroup
into highly correlated expression levels for reasons such
as co-regulations. One of the sources of dependencies
in microarray data, particularly in studies of cancer,
is co-regulation based on genomic locations and gene
expression biases based on the effects of aneuploidy.
Furthermore, gene expression measurement errors may
be dependent due to factors related to the RNA source,
the normalization process and the pooled variability
estimation. Multiple testing of such data will produce
correlated test statistics. Thus, it is essential to account for
the dependency structure between the test statistics.

The number of comparisons of gene expression level
studied in a single article has been growing (literarily)
at an exponential rate since the beginning of the 1990’s,
and by 1997, it has reached 4000 genes. While numerous
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methods were available for controlling the family-wise
type I error rate (FWE), which is the probability of
committing even one error in the family of hypotheses,
attention to the multiplicity problem in gene expression
analysis has been virtually null until very recently.

Dudoit et al. (2002) is one of the first studies to
recognize the importance of the multiplicity problem as
one of the key statistical issues arising in microarray data
analysis. The Westfall and Young step-down algorithm,
herein WY (Westfall and Young, 1989), a permutation-
based procedure, is used to adjust for multiplicity by
controlling the FWE, without assuming t distribution of
the test statistics of each gene’s differential expression.

While in some cases FWE control is needed, the
multiplicity problem in microarray data does not require
a protection against even a single type I error, so that the
severe loss of power involved in such protection is not
justified. Instead, it may be more appropriate to emphasize
the proportion of errors among the identified differentially
expressed genes. The expectation of this proportion is the
false discovery rate (FDR) of Benjamini and Hochberg
(1995). Controlling this FDR criterion in the simultaneous
testing of gene expression is the focus of this paper, since
it admits more powerful procedures.

A couple of studies have already contemplated the
use of the FDR controlling approach in microarray
analysis. Tusher et al. (2001) applies a significance
analysis algorithm to examine UV-damaged DNA. The
transcriptional response of human cells to ionizing radia-
tion was measured by microarrays. A two-stage p-value
adjustment is applied. The estimated FDR is computed
using permutations of the data, allowing the possibility of
dependent tests. Therefore, as pointed out by the authors,
it seems plausible that this estimated FDR approximates
the strongly controlled FDR when any subset of null
hypotheses is true. However, the authors noted that due
to the limited number of possible distinct permutations,
the number of distinct values that the p-value can take is
limited. Consequently, the FDR estimate turns out to be
too ‘granular’, so that either zero or 300 significant genes
are identified, depending on how the p-value was defined.
A similar result was obtained using the adaptation to
dependent tests suggested by Benjamini and Yekutieli
(2001b).

Dudoit et al. (2002) consider using the linear step-up
FDR controlling procedure, herein BH (Benjamini and
Hochberg, 1995), since it is less conservative than the WY
procedure, but rules it out as it was known at the time of
the study that the procedure required independence of the
test statistics.

Additional work concerning the multiplicity issue in
microarray data via FDR control is currently under
progress by several groups. Sabatti et al. (2002) argues in
favor of FDR control in microarray data analysis based on

the general results obtained by Abramovich et al. (2000).
These results suggest the optimality of FDR thresholding
for estimating a sparse vector of means by its adaptation
to the degree of sparsity. Efron et al. (2001) and Storey
(2001) discuss a Bayesian interpretation of the FDR within
the context of microarray data. A-posteriori probabilities
of effect for individual genes are estimated, offering local
FDR analysis.

Recent advances in FDR methodology offer improved
ways of incorporating FDR control in gene expression
analysis. The results of Benjamini and Yekutieli (2001b)
extended the scope of applicability of the BH procedure
to dependency situations, and Yekutieli and Benjamini
(1999) introduced resampling-based procedures that
control the FDR under dependency. We modify and adapt
these advances to the setting of gene expression analysis,
considering four procedures and studying their properties.

The first procedure considered is the BH as applied
to the p-values corresponding to the t tests. The second
uses the same BH, as applied to the marginal p-values
estimated by resampling and then pooling the resampling
distributions over genes. The two other procedures are
based on estimating the joint distribution of the p-
values and the FDR at a given potential threshold using
resampling. They differ by the way this distribution is
summarized, that is by the local FDR estimator used. We
study these procedures using simulation, while adhering
to the structure of the original data analyzed in Dudoit et
al. (2002). We first find that all four procedures control the
FDR at the desired level. All four are also more powerful
than their FWE counterparts. We then compare their gain
in power, since not all four are equally easy to implement.

METHODS
The false discovery rate criterion
The common approach in simultaneous testing is to
construct a procedure that controls the FWE. Benjamini
and Hochberg (1995) offer another measure for the erro-
neous rejection of a number of true null hypotheses, the
FDR. The FDR is the expected proportion of erroneously
rejected null hypotheses among the rejected ones. When
some of the tested hypotheses are in fact false, FDR
control is less strict then FWE control, and thus FDR
controlling procedures are potentially more powerful.
While some situations require FWE control, such as when
the result of rejecting hypotheses yields an action (e.g. a
drug is approved), in other cases FDR control is sufficient.
The analysis of gene expression data is such a case, as its
purpose is to extract genes that are potential candidates for
further investigation. Several erroneous rejections will not
distort the conclusions at this stage of the investigation,
as long as their proportion is small. Such errors do incur
economical cost in that pursuing them at later stages
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will result in loss of time and money. Controlling the
probability of at least one such rejection appears to be
over-conservative and will result in reduced experimental
efficiency due to unnecessary loss of power. Controlling
the FDR instead allows control of the proportion of effort
invested in vain, on the average, at the next stage of the
investigation.

We define FDR as follows. Consider a family of m
simultaneously tested null hypotheses of which m0 are
true. For each hypothesis Hi a test statistic is calculated
along with the corresponding p-value Pi . Let R denote
the number of hypotheses rejected by a procedure, V the
number of true null hypotheses erroneously rejected, and S
the number of false hypotheses rejected. Now let Q denote
V/R when R > 0 and 0 otherwise. Then the FDR is
defined as

FDR = E(Q).

As shown in Benjamini and Hochberg (1995), the FDR
of a multiple comparison procedure is always smaller than
or equal to the FWE, where equality holds if all null
hypotheses are true. Thus control of the FDR implies
control of the FWE when all hypotheses are true. In the
context of gene expression analysis, this result means that
if in reality no genes are differentially expressed and the
FDR is controlled at some level q, then the probability of
erroneously detecting any differentially expressed genes is
less than or equal to q.

The linear step-up procedure (BH)
This procedure makes use of the ordered p-values P(1) �
. . . � P(m). Denote the corresponding null hypotheses
H(1), . . . , H(m). For a desired FDR level q, the ordered
p-value P(i) is compared to the critical value q · i/m. Let
k = max{i : P(i) � q · i/m}. Then reject H(1), . . . , H(k),
if such a k exists.

Benjamini and Hochberg (1995) show that when the test
statistics are independent, this procedure controls the FDR
at the level q. Actually, the FDR is controlled at level
F DR � q · m0/m � q.

Benjamini and Yekutieli (2001b) further show that
F DR � q · m0/m for positively dependent test statistics
as well. The technical condition under which the control
holds is that of positive regression dependency on each test
statistic corresponding the true null hypotheses (as defined
there). In particular, the condition is satisfied by positively
correlated normally distributed one-sided test statistics,
and their studentized t-tests. The studentized form applies
to the cDNA microarray data structure as a result of the
tendency of the measurement errors of gene expressions
to be positively correlated, due to common latent factors
involved. When no real differential expression exists, these
are the main sources of variability. Furthermore, since up-
regulation and down-regulation are about equally likely to

occur, the property of FDR control can be extended to two-
sided tests (Yekutieli, 2002).

For more general cases, in which the positive depen-
dency conditions do not apply, Benjamini and Yekutieli
(2001b) prove that replacing q with q/

∑m
i=1

1
i in the lin-

ear step-up procedure will provide control of the FDR.
However, this modification may be too conservative for
the microarray problem. In fact, the simulation study pre-
sented in this paper further supports our claim that work-
ing with q already controls the FDR.

The adaptive procedures
Since the BH procedure controls the FDR at a level too
low by a factor of m0/m, it is natural to try to estimate m0
and use q∗ = q m

m0
instead of q to gain more power.

Estimating m0 from a set of p-values goes back to
Schweder and Spjøvtoll (1982). Hochberg and Benjamini
(1990) formulize their approach and synthesize a proce-
dure that controls the FWE (see Turkheimer et al. (2001)
for further progress). Benjamini and Hochberg (2000)
suggest the adaptive procedure that combines the estima-
tion of m0 with the BH procedure. Storey (2001) suggests
similar versions to estimate m0, which are implemented
in SAM (Storey and Tibshirani, 2003). Benjamini et al.
(2001) suggest a similarly motivated two-stage procedure
with proven FDR controlling properties.

Adaptive methods offer better performance only by
utilizing the difference between m0/m and 1. If the
difference is small, i.e. when the potential proportion of
differentially expressed genes is small, they offer little
advantage in power while their properties are not well
established. As more specific genes are pre-selected to
the microarray experiments, such that the proportion of
differentially expressed genes is not small, m0/m gets
smaller, and the adaptive procedures will offer a more
detectable advantage.

Multiplicity adjusted p-values
The results of a multiple testing procedure can be reported
as multiplicity adjusted p-values. As with the regular
p-value, each adjusted p-value is compared to the de-
sired significance level, and if smaller, the hypothesis is
rejected. Therefore, the way adjusted p-values are used
and interpreted remains conveniently familiar, regardless
of the adjustment procedure complexity.

For an FWE controlling procedure, the adjusted p-
value of an individual hypothesis is the lowest level for
which FW E � α. For instance, for the Bonferroni
procedure, the adjusted p-value is simply Pi ·m. For
Holm’s procedure, where we set k to be the smallest i
that satisfies P(i) > α

m+1−i , and reject all hypothesis
H(i), i = 1, . . . , k − 1, the adjusted p-value can be
calculated as P Holm

( j) = max1�i� j {P(i) · (m + 1 − i)}.
For an FDR controlling procedure, the adjusted p-value
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of an individual hypothesis is the lowest level of FDR for
which the hypothesis is first included in the set of rejected
hypotheses. Thus the adjusted p-value of P( j) using the
BH procedure, is P B H

( j) = min j�i {P(i) · m
i }.

Resampling FDR adjustments
For data containing high inter-correlations, generally de-
signed multiple comparisons may be over-conservative in
specific dependency structures. Resampling-based multi-
ple testing procedures, introduced by Westfall and Young
(1989), utilize the empirical dependency structure of the
data to construct more powerful FWE controlling proce-
dures.

In p-value resampling, the data is repeatedly resampled
under the complete null hypotheses, and a vector of
resample-based p-values is computed. The underlying
assumption is that the joint distribution of p-values corre-
sponding to the true null hypotheses, which is generated
through the p-value resampling scheme, represents the
real joint distribution under the null hypothesis. Thus, for
each value of p, the number of resampling-based p-values
less than p, denoted by V ∗(p), is an estimated upper
bound to the expected number of p-values corresponding
to true null hypotheses less than p.

The WY procedure estimates the FWE by

FW Eest(p) = #(V ∗(p) > 0)

N
,

where N is the number of resampling iterations. Then H0i
is rejected if FW Eest (pi ) � α.

Yekutieli and Benjamini (1999) follow a similar path to
achieve FDR p-value adjustments, but, unlike the FWE,
the FDR is also a function of the number of false null
hypotheses rejected. Therefore, for each value of p, they
first conservatively estimate the number of false null
hypotheses less than p, denoted by ŝ(p), and then estimate
the FDR adjustment by

FDRest(p) = EV ∗(p)

V ∗(p)

V ∗(p) + ŝ(p)
.

Two estimation methods are suggested differing by their
strictness level. The FDR local estimator is conservative
on the mean, and the FDR upper limit bounds the FDR
with probability 95%.

The two above methods use resampling to estimate
the joint distribution of the p-values. A third alternative
uses the BH procedure to control the FDR, but rather
than using the raw p-values, it estimates the p-values by
resampling from the marginal distribution and collapsing
over all hypotheses in the following way, assuming
exchangeability of the marginal distributions: For the kth
gene, with an observed test statistics tk , the estimated p-

value is

Pest
k = 1

I

I∑
i=1

[
1

N
#

(∣∣∣t · j
i

∣∣∣ � |tk |
)]

We next use the estimated p-values in the BH procedure
to easily obtain the BH point estimate for the kth gene:

P B H
(k) = min

k�i

Pest
(i) · m

i

All above FDR adjustments can now be used to test
the null hypotheses at some arbitrary value q. But rather
than adhering to q , all p-value adjustments can be
plotted simultaneously as a function of any monotone
transformation of p (for example, the test statistic). Such
a plot, suggested by Yekutieli and Benjamini (1999) and
by Storey (2001), allows the researcher to decide on a
meaningful rejection region while being warned of the
overall type I error in terms of the FDR.

RESULTS
The data
We analyzed a cDNA microarray dataset used in Dudoit et
al. (2002), that is publicly available on the web. The data
consists of gene expression measurements of 6359 genes
from a study of lipid metabolism in mice (Callow et al.,
2000). The goal of the experiment was to identify genes
with altered expression in the livers of mice with very
low HDL cholesterol levels compared to inbred control
mice. The treatment group consisted of eight mice with
the apolipoprotein AI knockout (this gene is known to play
a pivotal rule in HDL metabolism) and the control group
consisted of eight ‘normal’ C57B1/6 mice.

Results of multiple testing on the original data
We applied the normalization described in the pa-
per through lowess smoothing of the log intensity
ratio log2(Red/Green) versus the mean log intensity
log2

√
(Red · Green). We first examined the p-values ob-

tained directly from the ‘raw’ t-statistics with 14 degrees
of freedom. Ignoring multiplicity, the actual number of
raw p-values larger than 0.05 is 568 (out of 6359). On the
other extreme, the Bonferroni adjustment points to eight
rejections.

Applying the FDR controlling BH procedure on the raw
p-values, we came up with the same eight genes identified
as differentially expressed in the original analysis. This is
not surprising. First, recall that a subgroup of genes was
identified by the FWE controlling procedure in the original
analysis through distinguishingly low p-values. The FWE
adjusted p-values of that subgroup were all below 0.01
while the rest were all above 0.6. Second, we anticipate
that the actual distribution of the test statistics is not quite
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Fig. 1. FDR and FWE adjusted p-values — original data.

the same t-distribution underlying the derivation of the p-
values.

We estimated the distribution of the t-statistics over
1000 resampling iterations. Adjusted p-values were
calculated using the Westfall and Young algorithm, the
two local FDR estimators of Yekutieli and Benjamini
(1999), namely the resampling-based point estimator and
the resampling-based 1–0.05 upper limit, and the BH
point estimator. Figure 1 is a plot of the adjusted p-values
versus the test statistics. The ten highest absolute t-values
(except the largest one, 20.6, which is too far to the right)
are marked on the plot. As seen, the FDR local estimators
and the BH point estimator consistently produce much
lower adjusted p-values then those produced by WY
algorithm. The WY adjusted p-values decrease more
slowly than the FDR adjusted p-values. As implied by
the plot, at the 0.05 significance level, we may still reject
the same eight hypotheses by all procedures. Increasing
the FDR level to 0.1 allows rejection of only one more
hypothesis. Using the WY algorithm leaves us the initial
eight genes.

The FDR controlled and FWE controlled results for this
experiment are very close, both being very different from
the unadjusted results. This should come as no surprise
since the most significant eight genes are separated from
the others, as discussed earlier. In fact, it is reassuring that
the reduced conservativeness of FDR controlling proce-
dures does not trigger discovery of artifacts. In other cases
typical of microarray data, where there is no clear distinc-
tion between differentially expressed genes and similarly

expressed ones, we would expect to find that controlling
the FDR allows the identification of more genes than con-
trolling the FWE. We thus proceed to comparatively ex-
amine the performance of the multiple testing procedures
under controlled occurrence of differential expression.

A comparative simulation study
Simulated data configuration We fixed the number of
differentially expressed genes to 70, roughly 1% of the
total number of genes in the experiment. Differential
expression was generated using the weak lp-ball model
described in Abramovich et al. (2000), by which a sparse
signal pattern was generated:

r · n1/p · i−1/p, i = 1, . . . , n

where p is the decay rate parameter, r is the decay function
maximum and n is the number of values. We used p =
0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.

For each one of the 70 genes with the top differential ex-
pression measurement, the mean difference was subtracted
from the group with the greater mean, thereby removing
potential differences not attributed to noise. This modified
data set served as the raw data for our simulation, where
on each simulation repetition, the experiment and control
groups were shuffled. No shuffling of the genes was per-
formed, so that the original dependency structure was pre-
served. Next, we added the simulated sparse differential
expression values to 70 randomly selected genes, thereby
getting a single repetition in the simulation. We then ap-
plied the multiple testing procedures described earlier on
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each repetition, this time with 100 resampling iterations.
We repeated the simulation 400 times, calculating the av-
erage FDR and power over the repetitions.

Simulation study results Figure 2 presents the mean
curves of the adjusted p-values versus the test statistics,
for decay rate parameter 2 and FDR level below 0.25. The
maximal standard error of the estimated FDR was below
0.003. The plot also includes the ‘true FDR’, which is the
proportion of the absolute values of the t-statistics that
exceed a reference point due to chance, out of the total
number of absolute values of the t-statistics that exceed
the same reference point. As seen in the plot, for all FDR
controlling procedures, the adjusted p-values are larger
then the corresponding true FDR, indicating guaranteed
FDR control. This result holds for FDR level smaller
then 0.5. As expected, all FDR controlling procedures
produce FDR adjusted p-values much closer to the true
FDR than the FWE adjusted p-values obtained by the WY
algorithm.

Figure 3 plots the power of the various multiple testing
procedures, for each configuration of effects. Here we
also include Holm’s non-resampling multiple testing
procedure, that controls the FWE. As seen, all FDR
controlling procedures obtain substantially more power
than the FWE controlling procedures. The resampling
point-estimator is the most powerful procedure, with the
other two resampling estimators following very closely
behind, with no consistent advantage of one over the
other. Although the upper-limit resampling estimator
estimates the joint distribution of the test statistics, its
relative conservativeness does not allow increase of power
over the BH resampling estimator, which estimates only
the marginal distribution. The resampling upper-limit
estimator does supply more protection, in that it further
controls the empirical FDR with probability 0.95. The BH
procedure performs relatively well, in spite of it assuming
t distributed test statistics that are either independent or
positively dependent, and not using resampling. Holm’s

procedure, performing the most poorly, reconfirms
the advantage of resampling for FWE control under
dependency.

DISCUSSION
Many researchers tend to dismiss the issue of multiplicity
in microarray data analysis, as well as in similar very large
parallel experiments that are becoming technologically
feasible bioinformatical tools. They rely on the argument
that these experiments merely serve for screening and their
purpose is to supply the researcher with an initial pool of
candidates. Therefore, statistical considerations that limit
the power to generate candidate hypotheses should not be
taken at this stage.

This argument is acceptable in the sense that protection
is not needed against even a single type I error, so that
the severe loss of power involved in such protection is
not justified. However, the proportion of errors in the
pool of candidates is of great economical significance
since follow-up studies are costly, and thus avoiding
multiplicity control is costly. Indeed, the FDR criterion is
economically interpretable; when considering a potential
threshold, the adjusted FDR gives the proportion of the
investment that is about to be wasted on false leads. Thus
the choice of the FDR level q is an economical one. It is for
these reasons that multiplicity should be controlled when
testing differently expressed genes in microarray analysis,
and that it is best done using the FDR criterion.

Controlling the FDR at the screening stage of the
research carries a benefit for the next research stages,
as shown by Benjamini and Yekutieli (2001a). Consider
a study with R1 significant results, while controlling
the FDR at level q1. A follow-up study is conducted
on the pool identified in the first stage, and a level α

FWE controlling procedure is applied. It has been shown
that the FWE of the combined two-stage study is αq1.
Alternatively, if a level q2 FDR controlling procedure is
used in the second stage, the combined two-stage FDR is
shown to satisfy E(V2/R2) � q1q2. Either way, the initial
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chosen level, q1, can be allowed to be quite high. For ex-
ample, assume that in a microarray experiment 100 genes
were identified using an FDR controlling procedure with
q = 0.2. Next, using Bonferroni with α 0.25 at the second
stage, that is, assessing individual significance by com-
paring to 0.25/100, controls the FWE at the level of 0.05.

The FDR approach for identifying differentially ex-
pressed genes has been considered and discussed by
Dudoit et al. (2002), Sabatti et al. (2002), Efron et al.
(2001), Storey (2001), Storey and Tibshirani (2001, 2003),
and Tusher et al. (2001). In some of these discussions
FDR controlling procedures have been avoided by the
researchers due to the rudimentary state of their devel-
opment with regard to correlated test statistics. Recent
theoretical developments have extended the scope of
application of existing procedures and offered new ones.
In this paper we described and illustrated four procedures
that were shown to control the FDR at the desired level
(less than 0.5). All FDR controlling procedures retain
higher power than FWE controlling procedures, and are
therefore highly useful for the discovery of differential
genetic expression. The choice among the four is a matter
of buying more power and better properties at the expense
of more complicated computations.

It should be emphasized that a substantial increase in
power is already gained when the p-values are estimated
by resampling, and then used in the BH procedure.
Shuffling the control and experiment groups created
permutations adhering the original dependency structure
among the genes. Collapsing the distributions of the
test statistics for the genes to a single distribution, and

using it to estimate the p-value at each gene, overcomes
the discrete nature of the permutation distribution of
a test statistics based on few observations, a problem
described by Tusher et al. (2001). This procedure can
be implemented in any statistical software that enables
resampling. Still, the researcher may be better off using
the more powerful resampling point estimate of Yekutieli
and Benjamini (1999). A sample R program is available on
http://www.math.tau.ac.il/∼ybenja. The resampling upper
limit estimator offers both FDR control (which holds on
the average) and a control on the empirical FDR level (up
to probability 1 − q). Thus one gives up (very little) in
terms of power relative to the resampling point estimator,
gaining further assurance on the actual proportion of false
discoveries.

It is not quite clear how the dependency structure affects
the performance of multiple testing procedures. Measure-
ment error of microarray data tends to be positively de-
pendent, and simple FDR controlling procedures such as
the BH copes with such dependency. A co-regulation de-
pendency may be a result of biological variability of the
co-regulation and need not be positive. However, this is es-
sentially the dependency between the ‘typical’ parameters
when situations investigated vary. A possible model may
separate this variability into a common co-regulation com-
ponent and an individual one, in addition to the measure-
ment error, and only the last two components affect the
applicability of the simple procedures. An experiment in-
quiring the relationship between the different components
and assessing their relative importance may therefore be
highly informative.
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Characterization of the dependency structure attributed
to the above common co-regulation is one of the main re-
search targets of microarray experiments. Its study is es-
pecially challenging due to the high complexity of bio-
logical functional pathways. Noise introduced by the non-
differentially expressed genes may obscure this structure.
Pre-selection of genes that pass an initial FDR testing at
moderate q, may largely suppress this noise, thereby im-
proving more specific analyses such as clustering and clas-
sification. Here FDR screening essentially serves as an ini-
tial dimension reduction technique.
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