
BIOINFORMATICS MSc

PROBABILITY AND STATISTICS

SPLUS EXERCISE SHEET 3

1. STATISTICAL HYPOTHESIS TESTING CALCULATIONS

SPLUS is a package with many of the standard tests (Z-test, T-Test, Chi-squared test etc) For
example, the function t.test allows a one sample or two sample test to be computed, and the pull-down
menus Statistics -> Compare samples can be used to automate testing procedures. However,
the tests can be carried out by construction of the test statistic, critical values and p-values etc from
first principles. For example to test the hypothesis H0 that µ = 10 against a two-sided alternative
hypothesis assuming that σ2 = 22 for a generated sample.of size n = 20, type

>mu <- 10

>sigma <- 2

>c <- 10

>n <- 20

>x <- rnorm(n,mu,sigma)

>z <- (mean(x)-c)/sqrt(sigma^2/n)

>z

which computes the test statistic z, and then

>qnorm(0.025)

>qnorm(0.975)

>pvalue <- pnorm(-abs(z))+1-pnorm(abs(z))

>pvalue

that computes the critical values and p-value. Recall that, in SPLUS the q- in functions look up the
quantiles (i.e. ordinates) that give a specified probability value in the cdf (and hence are used to find
critical values), and the p- functions give the probability values for a given quantile (and hence can be
used to find p-values).

EXERCISES : For appropriately simulated data sets; think about how to carry out

• a one-tailed one sample Z-test

• a one sample T-test

• a one sample test on σ2

• a two sample Z-test

• a two sample T-test where σ21 = σ22 = σ2 is unknown

• a two sample F-test of σ21 = σ22

In each case, think about how the calculation would work for different values of significance level
α in both one-and two-sided hypothesis tests. For the two sample t-test, the “pooled” estimate of
variance is used in the formula for the test statistic, that is, we need for two samples x and y

s2P =
(nX − 1)s2X + (nY − 1)s2Y

nX + nY − 2

1



and then use the test statistic t defined by

t =
x̄− ȳ

sP

√
1

nX
+

1

nY

so to compute t

>nx <- 10

>ny <- 15

>x <- rnorm(nx,10,1)

>y <- rnorm(ny,10,1)

>sx <- var(x)

>sy <- var(y)

>sp <- ((nx-1)*sx+(ny-1)*sy)/(nx+ny-2)

>t <- (mean(x)-mean(y))/sqrt(sp*(1/nx+1/ny))

This code simulates the two random vectors x and y of lengths nX and nY ; in practice, for real data,
we will form the tw vectors by typing or reading in the data

>x <- c(43.2,44.3,22.3,31.4,56.6)

>nx <- length(x)

>y <- c(34.7,43.5,65.3,11.3,29.4,19.0,39.6)

>ny <- length(y)

2. HYPOTHESIS TESTING FOR GENE EXPRESSION DATA

The (zipped) data set ALLDATA and the associated paper golub.pdf can be downloaded from

http://stats.ma.ic.ac.uk/~das01/BioinformaticsMSc/Alldata.zip

http://stats.ma.ic.ac.uk/~das01/BioinformaticsMSc/golub.pdf

The data set contains, in two worksheets, relative gene expression measurements for 7130 genes, and
for 72 samples from two different tumour types AML and ALL. We wish to discover whether any genes
are differentially expressed in one type compared with the other. Use the importData command from
the command line to import the two worksheets; if the unzipped file is placed in c:\Temp\, then the
command will be

>all.data <- importData(‘‘c:\\Temp\\Alldata.xls’’,type=‘‘EXCEL’’,pageNumber=1)

>aml.data <- importData(‘‘c:\\Temp\\Alldata.xls’’,type=‘‘EXCEL’’,pageNumber=2)

You could also use the File -> Import Data pull down menu to import the data into SPLUS . Note:
take care with the importing. Import each sheet separately into two data sets ALL and AML say, by
using the Options tab to specify which of the two worksheets is being imported. Take care also to
name the new data sets differently on the Data Specs tab.

EXERCISES

(i) Use the two sample hypothesis testing techniques above to test whether there is any evidence of
differential expression in any of the genes.
(ii) Explore the different possibilities for testing these hypothesis that there is no differential expression
by using the three different tests on the Statistics -> Compare Samples -> Two Samples pull
down. To find out about the new tests, use the help facility on the dialog box.

2



3. GOODNESS OF FIT TESTS FOR SEQUENCE COMPARISON

To compare the composition of two nucleotide sequences using a hypothesis test, either using a
chi-squared statistic or a likelihood ratio statistic; for the table

Nucleotide
A C G T Total

Sequence 1 n11 n12 n13 n14 n1.
Sequence 2 n21 n22 n23 n24 n2.

Total n.1 n.2 n.3 n.4 n

if we wish to test the hypothesis H0 that the two sequences have the same (marginal) nucleotide
probabilities, pA = p1, pC = p2, pG = p3 and pT = p4 we first compute the estimates of these nucleotide
probabilities (using maximum likelihood estimation) under the assumption that H0 is true;

p̂1 =
n.1

n
p̂2 =

n.2

n
p̂3 =

n.3

n
p̂4 =

n.4

n

and then compute the expected or fitted values if H0 is true are given by

n̂ij = ni.p̂j =
ni.n.j

n
i = 1, 2, j = 1, 2, 3, 4.

Two test statistics that are used are the Chi-squared and Likelihood Ratio (LR) statistics:

χ2 =
2∑

i=1

4∑

j=1

(nij − n̂ij)
2

n̂ij
LR = 2

2∑

i=1

4∑

j=1

nij log
nij

n̂ij

Both of these statistics have an approximate Chi-squared distribution χ2(r−1)(c−1) = χ23 distribution,
again given that H0 is true. Typically, a significance level of α = 0.05 is used for this test, and the
critical value in a one-tailed test of the hypothesis is at the 0.95 point of this distribution, that is, at
7.81. To perform the calculation, first we produce two simulated DNA sequences with all nucleotide
frequencies equal to 0.25.

>n1 <- 2000

>n2 <- 2500

>n <- n1+n2

>sequence1 <- sample(c(1:4),n1,prob=c(0.25,0.25,0.25,0.25),rep=T)

>sequence2 <- sample(c(1:4),n2,prob=c(0.25,0.25,0.25,0.25),rep=T)

The sample command

>sample(v,n,prob=p,rep=T)

produces a random sample from the elements of the vector v, We now have two simulated biological
sequences that are essentially very similar. The sequences can be examined by using the print and
table commands

>table(sequence1)

>sequence1

>table(sequence2)

>sequence2

It should appear that the nucleotide frequencies are roughly in proportion. We now proceed to carry
out the tests.

3



>obs.table <- matrix(0,nrow=2,ncol=4)

>fit.table <- matrix(0,nrow=2,ncol=4)

>obs.table[1,] <- table(sequence1)

>obs.table[2,] <- table(sequence2)

>chi.stat <- 0

>lr.stat <- 0

>for(i in 1:2){

+ for(j in 1:4){

+ fit.table[i,j] <- sum(obs.table[i,])*sum(obs.table[,j])/n

+ chi.stat <- chi.stat + ((obs.table[i,j]-fit.table[i,j])^2)/fit.table[i,j]

+ lr.stat <- lr.stat + 2*obs.table[i,j]*log(obs.table[i,j]/fit.table[i,j])

+ }}

>chi.stat

>lr.stat

EXERCISE Repeat for different sample lengths, and also by changing the probability vectors in lines
4 and 5, and attempt to get a significant result.

4. SIMULATION-BASED HYPOTHESIS TESTING FOR SEQUENCE ALIGNMENT

We have seen in Exercise 2 how to compute p-values for “run-test” statistics - statistics measuring
the longest run of matches in two aligned sequences - by simulating i.i.d. Geometric(θ) random variables
and studying the distribution of the maximum in the sample. We can repeat the exercises in experiments
concerned with matching or aligning sequences. We first using a Binomial (N, pMATCH) model under
H0 for the number of matches in two sequences of length n:

>n <- 5000

>pmatch <- 0.25

>sequence1 <- sample(c(1:4),n,prob=c(0.25,0.25,0.25,0.25),rep=T)

>sequence2 <- sample(c(1:4),n,prob=c(0.25,0.25,0.25,0.25),rep=T)

>b <- length(sequence1[sequence1 == sequence2])

>pvalue <- pbinom(b,n,pmatch)

EXERCISE Repeat for different sample lengths, and also by changing the probability vectors in lines
3 and 4, in order to get a significant result. To allow for the possibility of mismatches in a sequence
alignment, in a run-test situation, the Negative Binomial probability sampling model needs to be used.
In fact Monte Carlo simulation is the only way that a p−value may be computed. The calculation may
be achieved as follows, similarly to those methods used in Exercise 3. Here we allow k = 3 mismatches,
with p = 0.25

>n <- 5000

>k <- 3

>p <- 0.25

>nits <- 100000

>xmax_rep(0,nits)

>for(i in 1:nits){

+ x <- rnbinom(n,k,p)

+ xmax[i] <- max(x)+k

+ }

>hist(xmax)

4



The histogram produced essentially contains the frequencies with which the maximum run length is
equal to a specified value. In line 7, the value k is added to the maximum value due to the way that
the Negative Binomial samples are simulated by SPLUS.

EXERCISES (i) Repeat for different sample lengths, and also by changing the probability vectors in
lines 3 and 4, in order to get a significant result

(ii) An even more accurate p−value can be obtained from repeated simulation of pairs of sequences,
with the maximum run lengths being computed by trawling through the sequences looking for runs of
consecutive matches allowing up to k mismatches. Repeated simulation of pairs and sequences can be
achieved fairly easily

>nits <- 10

>n <- 100000

>match.count_rep(0,nits)

>for(i in 1:nits){

+ pmatch <- 0.25

+ sequence1 <- sample(c(1:4),n,prob=c(0.25,0.25,0.25,0.25),rep=T)

+ sequence2 <- sample(c(1:4),n,prob=c(0.25,0.25,0.25,0.25),rep=T)

+ match <- length(sequence1[sequence1 == sequence2])

+ match.count[i] <- sum(match)

+ }

>match.count

which reports successive numbers of matches overall. However, computation of the maximal run lengths
(with mismatches) for each generated match sequence is not straightforward. Can you construct some
code to do this ?

5


