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Abstract

In this paper we develop a generalized statistical methodology for characterizing

geochronological data, represented by a distribution of single mineral ages. The main

characteristics of such data are the heterogeneity and error associated with its collection.

The former property means that mixture models are often appropriate for their analysis,

in order to identify discrete age components in the overall distribution. We demonstrate

that current methods (e.g. Sambridge and Compston, 1994) for analyzing such problems

are not always suitable due to the restriction of the class of component densities that

may be fitted to the data. This is of importance, when modelling geochronological data,

as it is often the case that skewed and heavy tailed distributions will fit the data well.

We concentrate on developing (Bayesian) mixture models with flexibility in the class

of component densities, using Markov chain Monte Carlo (MCMC) methods to fit the

models. Our method allows us to use any component density to fit the data, as well as

returning a probability distribution for the number of components. Furthermore, rather

than dealing with the observed ages, as in previous approaches, we make the inferences of

components from the ‘true’ ages, i.e. the ages had we been able to observe them without

measurement error. We demonstrate our approach on two data sets: uranium-lead (U-

Pb) zircon ages from the Khorat basin of northern Thailand and the Carrickalinga Head

formation of southern Australia.

KEY WORDS: Bayesian Statistics, Mixture Modelling, Reversible Jump Markov

chain Monte Carlo, Geochronology
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INTRODUCTION

Radiometric dating of individual crystals or grains in rocks is an important procedure

in geology, and the subdiscipline is known as geochronology. It relies on the measurement

of the abundance of a parent isotope (I), and its decay product or daughter isotope (D)

within a mineral or rock. As the decay rate (η) is effectively constant under geological

conditions, the ratio of the daughter to the parent is indicative of the age (x). The ages

are given by the following (generalised) equation

x =
1
η

log
(
1 +

D

I

)
(0.1)

The raw data are typically counts of the number of ions of a given mass (i.e. an

isotope) over a given time. The mean counts are estimated for each isotope and the

ratio (e.g. D/I as in equation (1)) is then calculated. This ratio may then be compared

to a natural sample of a known age, i.e. a calibration standard. There is measurable error

involved in this procedure and it is estimated by using the combination of the unknown

sample and standard sample errors.

One of the most common dating methods is U-Pbdating of the mineral zircon, where

238Udecays to 206Pb, with η = 1.55x10−10 yr−1, and 235Udecays to 207Pb, with η =

9.85x10−10 yr−1. This method is widely used because the two decay schemes have half-

lives similar to the age of the Earth and also is considered relatively robust to geological

perturbations, where the parent or daughter may be preferentially lost or gained from

the zircon during the geological history of the host rock.

In practice, problems can arise due to sample and standard heterogeneity, instru-

mental drift and some gain or loss of Uand/or Pb. However, the uncertainty in the

measurement of the Pbisotopes is dominated by the counting statistics, and typical one

standard deviation measurement errors are 1-3% (Stern and Amelin, 2003). Normally,

many individual zircon grains will be analyzed from one rock sample and the aim is

to identify either the oldest or youngest grains, or to characterize the distribution of

different age components. The former situation is important when ages vary due to

some physical process such as thermally activated diffusion which may cause preferential

loss of either the daughter or parent isotope, leading to anomalously young or old ages,
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respectively. The latter situation, which we concentrate upon in this paper, is particu-

larly useful when dealing with sedimentary rocks, which are derived from the erosion of

pre-existing rocks (known as source rocks), and so may inherit the age signature of the

different source regions, known as detrital ages. The extraction of these detrital ages is a

problem which is suitably dealt with using mixture modelling (see McLachlan and Peel

(2000) for an introduction).

Current statistical methodology for mixture modelling of geochronological data, e.g.

Galbraith and Green (1990), Brandon (1992) and Sambridge and Compston (1994),

focuses on the estimated age xi for sample i = 1, . . . , n and the associated error (εi,

assumed to be constant and known for each datum) described above. A mixture model

is then formulated for the ages, with location-scale component densities. The unknown

age for a component is interpreted as the location parameter (which is the mode for the

densities chosen by Sambridge and Compston (1994)) and the standard error for the

data point nearest the mode as the scale. The main drawback of using the standard

error to construct the mixture density is that to obtain estimates of the modes (for each

component), it has to be independent of the scale parameter. In some cases, densities

which obey this constraint may not fit the data well, even under transformation. A

second problem is that this approach does not provide a formal way to construct a

density estimate for the age distribution. This will mean that it is difficult to assess how

well the mixture has fitted the data. Other approaches for analyzing geochronological

data include graphical methods such as the radial plot (Galbraith (1988) and, loosely

linked to kernal density estimation, probability density plots (e.g. Brandon 1996, Ireland

and others (1998), Sircombe 2004). We consider as tools for initial or exploratory data

analysis, i.e. before any formal inferences are made. However in this context, we also

note the limitations with probability density plots pointed out by Galbraith (1998), which

include the fact that such plots combine measurement error with true age variation and

may mask the underlying signal. It is therefore an important issue to construct new

statistical models for the analysis of geochronological problems.

This article is structured as follows. In the next section we demonstrate that current

methodology for geochronological data is not always appropriate; we use two uranium-
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lead (U-Pb) zircon age data sets. We then present our approach for mixture modelling

as well as the simulation (MCMC) methods needed to perform inference from these

models. In the next two sections we present two detailed examples of how to use our

methodology. Finally we conclude the paper with a discussion.

EXISTING METHODOLOGY

Model

The approach of Sambridge and Compston (1994), following partly from Galbraith

and Green (1990), is as follows. The observed data, or calculated ages, x1, . . . , xn are

assumed independently distributed as

p(xi; εi,θ, k) =
k∑

j=1

wjf(xi;φj , εi) i = 1, . . . , n

where a generic probability mass/density function is denoted by p(·), f(·) is denoted as

the component density, the weights w = (w1, . . . , wk) are such that wj ≥ 0 ∀j = 1, . . . , k,∑k
j=1wj = 1, φj are the component specific parameters (here location parameters),

φ = (φ1, . . . ,φk) and θ = (w,φ).

More specifically, Sambridge and Compston (1994) take f(·) to be (under a slightly

different parameterization) a member of the exponential power family:

f(xi;φj , εi) ∝ exp{−1
2

∣∣xi − φj

εi

∣∣q} q ∈ [1, 2]

that is, q = 2 gives the normal distribution and q = 1 the double exponential distribution

(location φj , scale εi). The latter is often preferred as it is more robust to outliers,

and has higher probability in the tails than the normal distribution. Sambridge and

Compston (1994) seek to find the parameters, θ, which maximise the log likelihood

L(θ, k) = log{
∏n

i=1 p(xi; εi ,θ, k)} for various k. To select the number of components

k they use, for example, a relative misfit criterion based upon the optimized model for

progressively increasing number of components. To see that this approach does not

always perform well, we consider two data sets. Firstly, we describe the data, then

secondly, we analyze them using the approach of Sambridge and Compston (1994).
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Carrickalinga Head Formation

The first data set considers 100 U-Pb ages from the Carrickalinga Head formation,

which is part of the Kanamantoo group in southern Australia. The ages are quoted in

Mega-Annum (Ma), or millions of years. The data are presented in Ireland and others

(1998). Figure 1(a) demonstrates that there are possibly three groups in the data: the

samples aged up to 1000 Ma, the middle six data points (approximately 1500 Ma) and

the rest of the data. This is supported by the histogram in Figure 2(a).

Ireland and others (1998) constructed a kernel density estimate (with normal densi-

ties) with the standard error as the scale parameter and bandwidth as 1 Ma. They in-

ferred that there were two major components, the Delamerian (500-600 Ma) and Grenvil-

lean (1000-1200Ma).

Khorat Basin

The second data set relates to 251 U-Pb zircon ages from the Khorat Plateau basin

in northern Thailand. The data are reported in Carter and Moss (1999), and Carter

and Bristow (2003) who discuss its geological relevance. The main issue was the likely

geological age and original source region of these sediments.

Figure 1(b) illustrates the (fixed) errors that are provided with the data. From

Figure 1(b) it does not appear that the measurement error is too severe, with the error

and variability of error broadly increasing with age. A histogram of the data can be seen

in Figure 2(b), which shows the large number of modes in the estimated data.

Carter and Bristow (2003) broke the data into four subgroups based on the strati-

graphic relationships of the host sediments and applied the method of Sambridge and

Compston (1994) to each group individually, then, using a somewhat ad-hoc procedure,

recombined the data and inferred that there were five mixture components in the data.

Two other components were described as ‘lesser’.

Results using Sambridge and Compston’s Approach

We now apply the method of Sambridge and Compston (1994) and demonstrate some

of the problems that can arise with this approach.
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Normal and Double Exponential Components

For both data sets, we used either normal or double exponential component densities,

and considered an increasing number of components. To select the optimal number of

components we use a formal statistical procedure: the Bayesian information criterion

(BIC) (see McLachlan and Peel (2000)), as opposed to the relative misfit criterion or

detecting the number of components by eye as suggested by Sambridge and Compston

(1994).

The analysis of the Carrickalinga Head formation yielded optimal solutions of 22

and 17 components (maximum number of components taken to be 30) for the normal

and double exponential models respectively. A lower number of components may be se-

lected by choosing a smaller maximum number of components (see Figure 3(a)). This is

problematic, under the BIC criterion, since the optimal solution will often be this max-

imal value; thus, by limiting the maximum number of components to a relatively small

value, in effect we are choosing the number of components a priori, without considering

competing models.

For the Khorat basin, the optimal number of components for the normal model was

found to be 29 and double exponential 22 (allowing a maximum of 30 in both cases). We

note that if we use the number of components for which the BIC flattens off (i.e. when

increasing the number of components does not lead to a significant reduction in BIC,

known as the elbow) the solutions are 18 and 11 components respectively (Figure 3(b)).

The optimal mixture densities for both data sets can be seen in Figure 2. It is clear

that a large number of the components fitted to the data appear to be spurious, i.e. do

not provide any additional explanation of the data. To construct the density estimates

in Figure 2 we took the optimal location parameters and the standard error for the data

point closest to it and then evaluated the density on a grid of 1000 equally spaced points

on [0, 3500]. Since this procedure is unsatisfactory from a statistical point of view, it is

inadvisable to determine the number of components from visual inspection of the density

estimate.

7



Student-t Components

Under the BIC criterion, if the choice of component density is ‘incorrect’, we will

tend to fit too many components (McLachlan and Peel, 2000, p. 209). It is probably

the case that this occurred above, so to test this we use student-t components. The t

density allows heavy tailed behaviour, which is likely to reduce the number of components

fitted to the data. This will occur when there are apparent outliers (as a result of

the measurement process or subtle geological perturbations) as opposed to representing

additional component age modes.

We fitted the student-t model using a trans-dimensional simulated annealing algo-

rithm (Brooks, Friel and King (2003)), essentially the MCMC algorithm described in the

next section. The results can be seen in Figure 4. We used the same method as above

to obtain the density estimate.

For the student-t density we obtain an intuitively more reasonable solution than for

the normal or double exponential model. The optimal values of k were 3 and 6 for the

Carrickalinga and Khorat data sets. However, from Figure 4, it is difficult to ascertain

how well the model fits the data, but it appears that neither model is entirely appropriate

in that some peaks in the histogram are not well represented in the densities.

We feel that the restriction of the component density to those with modes independent

of the scale parameter (i.e. symmetrical), is the reason why these models do not fit well

(i.e. the inability to model skewness). Therefore, we now focus on producing a more

general statistical model.

NEW MIXTURE MODEL FOR GEOCHRONOLOGICAL DATA

Following the remarks made in the previous section, regarding the role of standard

errors in the mixture likelihood, we will model the actual, unknown data y1, . . . , yn as a

mixture. That is, the data we would have recorded had there been no measurement error.

In effect, we are considering the problem as a simple form of image reconstruction (Besag,

1986), where the estimated data provide the degraded image and the error suggests how

close it is to the true image.
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Likelihood Construction

We will use methods similar to those outlined in Richardson and others (2002), that

is:

xi|yi; εi ∼ p(xi|yi; εi)

yi|θ, k ∼
k∑

j=1

wjf(yi;φj).

For simplicity we assume the following conditional independence structure

p(x,y|θ, k; ε) =
n∏

i=1

p(xi|yi; εi)p(yi|θ, k).

We choose xi|yi; εi to be N (yi, ε
2
i ), where N (yi, ε

2
i ) is the normal density, mean yi, stan-

dard deviation εi. We allow the component densities, f(·), to be either normally dis-

tributed or, to provide further flexibility, skew-t distributions (Jones and Faddy, 2003).

In practice, allowing for skewness allows us to consider distributions which may have been

geological disturbed to varying degrees leading to differential loss or gain of the parent

of daughter elements. This will lead to greater dispersion in the data than expected for

a single component age.

We denote a skew-t density as St(µ, λ, ν, ζ), with location µ, inverse scale λ and

skew/tail parameters ν and ζ. The skew-t density is:

f(y;µ, λ, ν, ζ) ∝
{

1 +
λ(y − µ)

(ν + ζ + (λ(y − µ))2)
1
2

}ν+ 1
2
{

1− λ(y − µ)

(ν + ζ + (λ(y − µ))2)
1
2

}ζ+ 1
2

where the normalizing constant is cν,ζ = λ/
(
2ν+ζ−1B(ν, ζ)(ν + ζ)

1
2

)
, y, µ ∈ R, λ, ν, ζ ∈

R+, and B(·, ·) is the beta function. If ν = ζ the density is the symmetric-t density on 2ν

degrees of freedom. When ν > ζ or ν < ζ f is negatively or positively skew respectively.

The density is unimodal with mode

% = µ+
(ν − ζ)

√
ν + ζ

λ
√

2ν + 1
√

2ζ + 1
.

Jones and Faddy (2003) report that high absolute values of skewness are associated

with small values of ν and ζ, as are heavy tails of f . A model with normal or skew-t

components is referred to as normal or skew-t model.
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A Bayesian Model

To formally encode our prior beliefs about the geological problem at hand, we con-

struct a Bayesian model (see Robert (2001) and Appendix A for an introduction). This

requires the specification of prior distributions, which we take to be similar to those

adopted in Richardson and Green (1997).

The priors on the locations and inverse scales are taken to be i.i.d (independently

and identically distributed) for each component j = 1, . . . , k, with µj ∼ N (ξ, κ−1),

λj |β ∼ Ga(α, β). We also assume β ∼ Ga(g, h) and w|k ∼ D(δ). Our notation is

such that Ga(α, β) is the gamma density, shape α, scale β and D(δ) is the symmetric

Dirichlet distribution parameter δ. The prior on k is either a truncated Poisson prior,

p(k) ∝ τk/k!, k = 1, . . . , kmax or uniform on the integers 1, . . . , kmax; See Richardson

and Green (1997) for a detailed discussion of this prior structure.

For the skew-t density we consider two priors on the skew/tail parameters, both

assuming they are i.i.d given k.

Prior I

Firstly, a prior that can be considered weakly informative. We take νj |b ∼ U[a,b], a

to be fixed, b ∼ Ex(ρ, a) and

p(ζj |νj , b) =
1
3
{I(νj = ζj) + I(ζj < νj)U[a,νj ] + I(ζj > νj)U[νj ,b]}

where I(·) is the indicator function, U[a,b] is the uniform distribution on [a, b] and Ex(ρ, a)

is the exponential density parameter ρ, location a.

Prior II

Secondly, νj ∼ Ga(ψ, ω, a) (where Ga(ψ, ω, a) is a gamma distribution with shape ψ

scale ω and location parameter a) and

p(ζj |νj) =
1
3
{I(νj − ζj) + I(ζj < νj)U[a,νj ] + I(ζj > νj)Ex(ρ, νj)}.
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Discussion of Priors for Skew/Tail Parameters

We adopt the above priors from a pragmatic point of view, as they both provide

equal support for symmetric, positively and negatively skew-shaped densities, i.e. they

are all equally probable a priori).

However, given that we may be dealing with a skewed distribution, the first prior does

not favour moderately or severely skewed densities, allowing us to consider the range of

support for the parameters (i.e. heavy or light tailed). This behaviour can be seen in

Figure 5(a). The settings of the hyperparameter are as for the next example, and we

can observe (in Figure 5(a)) the large number of heavy tailed shapes permitted by the

prior.

The second prior is constructed with the intention of favouring heavy tailed, mod-

erately or severely skewed component densities (given the skewness). That is if νj is

assumed to be small, then |νj − ζj | will be similarly small (for large ρ), with most of

the prior probability being focused on this region. Some densities can be seen in Figure

5(b). Here we see the extreme skewness allowed.

We constrain νj and ζj to be bigger than a to avoid fitting components that have

extremely heavy tails (as noted by Jones and Faddy (2003)). It also prevents numerical

errors in the code.

Posterior

The posterior π(θ,y, β, k|x; ε) for the skew-t model under priors I and II are:

π(θ,y, β, k|x; ε) ∝
n∏

i=1

{p(xi|yi; εi)p(yi|θ, k)}
k∏

j=1

{p(µj)p(λj |β)p(νj , ζj |b)} ×

p(w|k)p(β)p(b)p(k)

π(θ,y, β, k|x; ε) ∝
n∏

i=1

{p(xi|yi; εi)p(yi|θ, k)}
k∏

j=1

{p(µj)p(λj |β)p(νj , ζj)} ×

p(w|k)p(β)p(k).
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Simulation details and Markov chain Monte Carlo Inference

We are interested in calculating posterior expectations to estimate, for example, the

posterior probability that k = j, j = 1, . . . , kmax. To approximate the appropriate inte-

grals, we rely upon Monte Carlo integration via reversible jump MCMC (Green, 1995).

We provide a simple introduction to this approach in Appendix B, for comprehensive

details see, for example, Robert and Casella (2004).

The reversible jump sampler for the skew-t model is now described, with obvious

modifications for normal component densities in terms of the prior distributions and

model parameters. We denote a proposed value of x (here a generic random variable)

by x′ and w.p. means ‘with probability’. All updates are standard Metropolis-Hastings

moves, involving either a single parameter or blocks of parameters, unless otherwise

stated.

1. Update y. We update yi individually, in the order of the indices. We use an additive

Cauchy/normal random walk via delayed rejection (Green and Mira, 2001). Here

we make an initial random walk proposal based upon a large variance. If the move

is rejected, make a second random walk proposal with a smaller variance. We

centre both moves at the current state of the chain.

2. Update the locations, µ. This is done in one block (i.e. (µ1, . . . , µk)) via an additive

Cauchy or normal random walk.

3. Update the inverse scale parameters, λ. Again, in one block via a multiplicative

log-normal random walk.

4. Update the weights, w. In one block via an additive normal random walk on the

logit scale.

5. Update β. We use a Gibbs kernel, full conditional Ga(g + kα, h+
∑k

j=1 λj).

6. Update the skew/tail parameters, (ν, ζ). We update (ν1, ζ1, . . . , νk, ζk) in one block

via a Metropolis-Hastings move. For prior I on (νj , ζj), we perform random walks

on log{(νj − a)/(b − νj)} (similarly for ζj) and for prior II on log{νj − a}. If νj
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and ζj are currently equal w.p. υs we propose them to be equal updating via a

Cauchy or normal transformed random walk, or w.p. 1 − υs that they are not

equal, using a normal/Cauchy transformed random walk. Similarly if νj and ζj

are not equal, w.p. υa we propose them not to be equal updating via a Cauchy

or normal transformed random walk, w.p. 1− υa equal and a normal transformed

random walk.

7. Birth/Death of a component. This move largely follows Richardson and Green

(1997). For the birth in state k, selected with probability bk, propose from cur-

rent state (µ,λ,w,ν, ζ, k) to (µ′,λ′,w′, ν ′, ζ′, k + 1) (k = 1, . . . , kmax − 1) by

setting the diffeomorphism (the function and its inverse are differentiable) linking

(µ,λ,w, µ, λ, w, ν, ζ, k) and (µ′,λ′,w′,ν ′, ζ′, k + 1) as the identity for all random

variables other than the weights, for which we set w′ = (w1(1 − w), . . . , wk(1 −

w), w). The extra random variables needed to match dimension (µ, λ, ν, ζ) are

drawn from the prior and w ∼ Be(1, k) where Be(·, ·) is the beta distribution. This

move has acceptance probability min{1, A}, with

A =
p(y|θ′, k + 1)p(k + 1)

p(y|θ, k)p(k)
B(kδ, δ)−1wδ−1(1− w)k(δ−1) (k + 1)!

k!
×

dk+1

(k + 1)bk

(1− w)k−1

Be(w; 1, k)

where p(y|θ, k) =
∏n

i=1 p(yi|θ, k), dk is the probability of proposing to perform a

death move in state k and Be(w; ·, ·) is the beta density evaluated at w. The reverse

death move is achieved by selecting a component with uniform probability to die

and inverting the jump function. The death move is available for k = 2, . . . , kmax.

8. Update b. A normal random walk on the log(m− b) scale, m = maxj{ζj , νj}.

We perform the algorithm in a deterministic sweep in the order 1 to 6 followed by the

random choice of a birth or death. Step 8 is added if prior I on (νj , ζj) is used.

We now demonstrate our methodology on the two data sets we described earlier.

Note that the code is available from the first author on request.
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EXAMPLE I: CARRICKALINGA HEAD FORMATION

Firstly we consider the analysis of the Carrickalinga Head formation data. For illus-

tration we adopt skew-t densities with prior I on (νj , ζj) and a uniform prior on k.

In order to fix ξ, κ and h we define the following. Let R be the range of the data

defined to be R = maxi{xi + 2εi} −mini{xi − 2εi} and M be the midpoint of the data

defined to be M = [maxi{xi + 2εi}+ mini{xi − 2εi}]/2. We take ξ = M,κ = 1/R2, h =

10/R2. We also let α = 2, δ = 1, g = 0.2, kmax = 30 all these settings being consistent

with Richardson and Green (1997). For ρ, we set ρ = 1/10, which states that we prefer

components with heavy tails - i.e. we wish to avoid spurious components introduced by

the light tails inherent in normal distributions. Finally we set a = 0.01, which was not

so small as to introduce numerical errors into our code.

Performance of the Sampler

We ran our MCMC sampler for 200000 sweeps taking the burn in to be 100000

sweeps (see Robert and Casella (2004) for a discussion of convergence issues in MCMC).

The acceptance rates of all fixed dimensional moves were in the range (0.3, 0.6). The

birth/death move was accepted 10% of the time indicating good mixing over k (the

birth/death probabilities were uniform among the moves allowed given the current state

of the chain).

Simple convergence measures can be seen in Figure 6. In Figure 6(a) the occupancy

probabilities can be seen (p(k ≤ j|x; ε)) every 100 sweeps of the algorithm. This quantity

quickly stabilizes, indicating the fast convergence of the algorithm. Figure 6(b) reiterates

the rapid mixing of the algorithm: our sampler is able to visit a large number of potential

models with little difficulty.

Inference

Now that we are satisfied that our MCMC sampler has converged we now seek to

draw inference from our statistical model. This is complicated by the label switching

problem, see Stephens (2000) or Jasra, Holmes and Stephens (2005) for a review and our
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approach is described in detail below. In practice, this is manifested as 2 parameters (e.g.

1 and 2) which might represent age modes, swapping over so component 1 may become

younger than component 2. The parameters associated with these age components also

swap. Thus the identifiability of parameters needs to be considered.

Label Invariant Quantities

We firstly concentrate on inference which is not subject to label switching. To find

the posterior distribution for k, we use the Monte Carlo estimate:

p(k = j|x; ε) ≈ 1
N

N∑
t=1

I(k(t) = j)

where N is the number of MCMC samples taken and k(t) are the (post burn in) sampled

value of k at sweep t.

The posterior distribution for k can be seen in Table 1, column 1. We observe that

the maximal posterior probability is for k = 3; one more component than described by

Ireland and others (1998). We discuss this point later in this section.

To compute a density estimate (denote this p(y|θ, k)) we use:

p(y|θ, k) ≈ 1
N

N∑
t=1

k(t)∑
j=1

w
(t)
j f(y;φ(t)

j )

evaluated over a grid of 1000 equally spaced points on [0, 3500]. The estimate can be seen

in Figure 7(a). It displays the three components represented in the posterior distribution

for k, and is significantly more smooth than the estimate in Figure 2(a). Comparing with

the solution under the (symmetrical) student-t model (Figure 4(a)), we can see that we

have picked out modes in higher density regions (e.g. the mode at 190 Ma in Figure

4(a)).

Label Switching

The label switching problem occurs because the likelihood is invariant to permuta-

tions of the labels of the parameters. If the prior exhibits this property, so will the

posterior distribution. As a consequence, the marginal posterior distribution for the
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component specific parameters, given k, are identical for each component. This phe-

nomenon is demonstrated in Figure 8(a), where we conditioned our MCMC samples

such that k = 3 (our samples were taken post burn in, with a minimum of 5 sample

thinning). In this case it is simple to remove label switching by applying the constraint

%1 < %2 < %3, as shown in Figure 8(b) in which the constraint is applied offline. We

note that this not always appropriate, as these constraints are not always effective in

removing label switching; see Stephens (2000) for example. The estimated modes with

95% credible intervals are: %1 = 556.660, C0.95(%1) = (545.744, 567.590), %2 = 881.543,

C0.95(%2) = (779.013, 982.353) and %3 = 2651.60, C0.95(%3) = (2473.680, 2818.540), where

C0.95(·) denotes the 95% credible interval for a parameter.

If we are interested in classifying the data, i.e. allocating which rock belongs to a

particular component, we can use the classification probabilities:

p(zi = j|x; ε) ≈ 1
Nk∗

N∑
t=1

I(k(t) = k∗)
w

(t)
j f(y(t)

i ;φ(t)
j )∑k

l=1w
(t)
l f(y(t)

i ;φ(t)
l )

(0.2)

where Nk∗ =
∑N

t=1 I(k(t) = k∗), zi is an allocation variable, i.e. zi = j if data point i is in

component j and k∗ is some selected value of k. The probabilities can be seen in Figure

7(b). We see that the model classifies the youngest data as being in component 2 (on

the basis of maximal classification probability), because it is inconsistent with the first

component (mode 556 Ma). That this occurs is of little interest in terms of identifying

age components since Ireland and others (1998) state that this data is due to Pb loss.

However, this does demonstrate that our approach behaves gracefully in such situations,

and potentially may be used to identify such geological perturbations.

Comparison of Results with Inference of Ireland and others (1998)

We now compare our inferences with those in Ireland and others (1998). Ireland

and others (1998) state that there is evidence for two major components, which we

find (component 1, 556 Ma, component 2, 881 Ma), we also find evidence for a third

component, mode 2651 Ma. Using our methodology we have been able to precisely

find an estimate of second mode at 881 Ma (compared to the approximate 1000-1200 Ma

quoted by Ireland and others (1998)). This is potentially of more use to a geologist when
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attempting to find sediment provenance for example. Ireland and others (1998) do not

infer the third component indicated by our results. It may be that, whilst this component

is of statistical importance, it is of little interest to geologists. However, this latter

inference is best made having first recognized the statistically significant components.

Similarly, the inference of various age components (e.g. 881 Ma) needs to be rationalised

with other geological information, although this aspect is beyond the aims of this paper.

Stability with Respect to the Prior

One aspect of particular importance in Bayesian mixture modelling is the sensitivity

of the posterior for the number of components, to changes in the value of prior parameters

(especially for the prior on the component specific parameters; see Jennison (1997) for

example).

Our model is based upon that of Richardson and Green (1997) and the sensitivity

of inferences related to the posterior distribution for k are investigated there. They are

as follows. In the limit as β → ∞, κ → 0, Jennison (1997) notes that the posterior

distribution for k starts to favour one component, which is a form of Lindley’s paradox

(Lindley, 1957) (that is, as we seemingly place less prior information on the parameters,

the prior becomes highly informative for the dimensionality of the model, in that it puts

more posterior weight on models with fewer components). We found similar behaviour

for our model. Therefore we only investigate the sensitivity to changes in ρ; this can be

seen in Table 1.

In Table 1, we can observe that, under a reasonable departure from the default prior,

the posterior inference for the number of components does not change significantly (i.e.

the relative probabilities of models with different numbers of components is the same

for different values of ρ). This is reassuring, as the only part of our prior intended to

be informative is that on (νj , ζj) (in that we prefer heavy tailed densities to take into

account the measurement error in the data) and the posterior for k is fairly robust to

changes in this prior.
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EXAMPLE II: KHORAT BASIN

For our second example we return to the Khorat basin data. We consider analysis

of the data using both normal and skew-t (with prior II) component densities and a

truncated Poisson prior on k. We adopt an informative prior specification, in that we

favour shapes apparent in the data histogram. We do this both for illustration and

because the prior settings (for ν and ζ) in the previous example did not appear to fit

the data well in this example.

We set the prior parameters ξ, κ, α, δ, g, h, kmax as for example I. For the truncated

Poisson prior, we set τ = 5, which gives prior expectation of k to be approximately 5

(i.e. we centre on the result of Carter and Bristow (2003)). The prior parameters for

the skew-t model are as follows. For νj the value of a is 0.05 (set so as to be low as

possible whilst avoiding numerical errors in the code as a tends to zero) and the prior

mean (= ψ/ω + a) and variance (= ψ/ω2) are 0.5 and 5 respectively. To model ζj |νj

we set ρ = 1/
√

5. This prior favours component shapes that are moderately, positively

skewed and extremely negatively skewed - with heavy tails. This specification is chosen

since we found that the weakly informative settings of the previous example, did not

favour components with the extreme skewness apparent in the histogram of the data

(Figure 2(b)). See Figure 5(b), to get an idea of the density shapes favoured by this

choice of prior.

MCMC Sampler Performance

For the normal model, we ran our MCMC sampler for 1 million sweeps and used

the last 250000 samples for inference. That convergence takes longer than the previous

example is to be expected: we have a larger data set with more modes and therefore a

more complex target space.

The skew-t MCMC algorithm was run for 4 million sweeps after a burn in period of

500000 sweeps. We found that such substantial sample numbers were required to ensure

that the sampler not only converged but that mixing was acceptable.
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Inference for k

We now consider the posterior distribution for the number of components under the

normal and skew-t models (Table 2).

In Table 2 we can observe that the normal model favours many more components than

for the skew-t model. We attribute this to the component shapes that can be represented

by the normal density. That is, the normal distribution produces components that are

symmetric and light tailed, which does not appear to be the case in the estimated data

(Figure 2(b)). As a result, the normal mixture requires more components to fit the data,

compared with the skew-t model.

The heavy tails and skewed component densities which we preferred in our prior, for

the skew-t model, has led to a more parsimonious representation of the data than for

the normal model. This illustrates the importance in being able to subjectively specify

heavy tailed, skew behaviour for geochronological data, especially when parsimony is of

interest.

Inference under the Skew-t Model

We conclude this example with some inferences using the skew-t model. We used a

Bayes factor to decide that the skew-t model was preferable to the normal one. To deal

with label switching, we use the method discussed in Appendix C.

We first consider the estimates of the modes and weights (Table 3). In keeping with

the trend of increasing error with age (Figure 1(b)) the width of the credible intervals for

the modes generally increases with the size of estimate (an exception is component 5).

For example, %4 = 165.285, |C0.95(%4)| = 10 Ma (where |C·(·)| is the width of a credible

interval) compared with %3 = 2475.847, |C0.95(%3)| = 78 Ma. Component 5 has the

largest credible interval, since for some sweeps it is a symmetric density, with different

mode to when it is skewed thus increasing the uncertainty of the estimate. In terms

of the weights, component 2 (data around 1800 Ma) have largest contribution which

is supported by the fact that most data points are allocated to this class (under the

maximal classification probability, Figure 9(b)). We note, in comparison to the solution
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using student-t densities in (see figure 4b), our estimates are not too dissimilar. However,

under our approach, we are reasonably satisfied with the fit of our model (i.e. we have

some idea of its validity).

The classification probabilities (Figure 9(b)) show a typical trend, that is, data points

that are similar in age are likely to be clustered together. It is interesting that data points

that are adjacent in terms of age are not allocated to different groups (except at the break

points of course), something which occurred in the previous example. We observe that,

while there is generally a clear allocation of data point to component, at the break points

between classes there is some ambiguity with respect to class membership. One point

of note are the outlying observations at 3100 Ma. These data points do not seem to be

entirely consistent with the component they are allocated to. That is, these data are the

only points which have classification probability larger than 0.1 for more than one class.

Indeed if we observe Figure 2(b) we see that the error associated with these points is

approximately 40 Ma; it may be that they warrant a separate component. While it is

not statistically unreasonable to fit another component, there are relatively few data to

justify this.

DISCUSSION

In this paper we have demonstrated that current statistical methodology for mixture

modelling of geochronological data does not always work well, often fitting an unac-

ceptably large number of components under the BIC criterion. We constructed a new

generalised approach and showed that it provided more reasonable solutions for the ex-

amples considered. The method deals with non-symmetric (unimodal) component den-

sities, which are likely to be an important factor in mixture modelling for geochronology.

Skewness is not be an entirely random phenomenon of geochronological data, but can

arise due to geological perturbations, with an effect such as loss of the daughter isotope,

the significance typically depending on grain size and structure, for example.

While our model may be adopted using likelihood based inference, the unboundedness

of this quantity makes optimization methods difficult to implement (in our experience).

Our approach is best applied in the Bayesian context, where we can explicitly introduce
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prior information into the problem, especially with respect to heavy tailed and skewed

behavior. The priors adopted for the normal model and the skew-t model (prior I) can

be considered as being geared towards exploring heterogeneity (Richardson and Green,

1997) and, other than the influence of Lindley’s paradox, is reasonably robust (with

respect to inference for the number of components) to the prior specification. Prior II

is constructed so that an subjective data analysis may be performed, as for example

II, which implied skewed distributions. In this case we recommend simulating from the

prior to determine the component shapes which are most likely to occur. In terms of

issues specific to Pbisotope data, a referee (KS) suggested that a measure of discordance

such as

(
1−

206Pb/238U
207Pb/206Pb

)
(0.3)

may be used to assess the likely skew in the data, which may arise due to some disturbance

to the isotope ratios, as mentioned above.

Throughout this paper we stated we generally seek to use heavy tailed component

densities. We believe that this is appropriate in cases for which the measurement error

is quite large (as for the examples in this article). When the measurement error is not

too large, the approach of Sambridge and Compston (1994) is likely to perform quite

well. The determination of measurement error in geochronology is somewhat subjective

and beyond the scope of this paper (see Ireland and Williams 2003 for discussion).

In general, the raw data can require corrections for variations in isotope ratios over

time, inherited daughter element (e.g. common Pb), uncertainties in standards and

decay constants. Typically, errors are combined in quadrature (adding the variances)

to produce an estimate of the error on the final age. Overall, experience with our

method with respect to the measurement error shows that inferences can (as expected)

become less exact when the measurement error increases, that is, that credible intervals

can be wider and classification probabilities less discriminated between components.

Clearly, when making inferences as described here, it is important to understand the

measurement error aspect of a data set, which will differ for different analytical methods

(e.g. using 206Pb/238Uand 207Pb/206Pbages). In this paper, we have dealt with making
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inference from the observed data as reported, under the assumption that the data are

collected in an unbiased manner. An issue which we have not explicitly considered is

the number of data (i.e. analyses) required to resolve an age component present in

a given proportion. This is potentially important for studies of sediment provenance

and stratigraphic dating. This aspect has been addressed in recent papers by Vermeesch

(2004) and Andersen (2005), who provide some guidelines for the sampling and reporting

strategies in this context.

We end with a short summary of what our methodology adds to the widely used

approach outlined by Sambridge and Compston (1994). The main advantages are:

(A) Our method is more flexible, since we are able to use any component density to

model the data.

(B) Our method provides a formal way to construct a density estimate of the data.

(C) Our method allows us to explicitly incorporate prior information (e.g. skewness, or

the likely number of components. into the data analysis.

(D) Our method provides a more satisfactory way to interpret model parameters (e.g.

age modes, number of components).

We have demonstrated (A) and (B) in examples I and II. Point (C), may be of more

interest to geologists who have a reasonable idea of what they expect from their data, but

would perhaps find it difficult to specify in practice. Point (D) relates to the fact that all

inferences under Sambridge and Compston’s approach are related to the estimated data

and not the actual data, had we been able to obtain these. This, perhaps, appears only

of interest from a conceptual point of view, but helps to clarify that our approach is a

formal statistical procedure. We feel that the only drawback of using our methodology are

the computational aspects (label switching, prior sensitivity) associated with Bayesian

mixture modelling.
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APPENDIX A: BAYESIAN STATISTICS

This appendix features a short introduction to Bayesian statistics; see Robert (2001)

for a thorough account.

Consider a typical statistical problem where we have observed data x = (x1, . . . , xn)

assumed to be drawn from some probability density p(x|θ), where θ is an unknown real-

valued (vector) parameter (for example the mean rock age). Bayesian statistics treats

θ as a random variable and places a prior density π(θ) upon θ. All inferences on θ are

then via the posterior density π(θ|x):

π(θ|x) ∝ p(x|θ)π(θ)

for example, to estimate θ we may use the posterior mean.

The prior π(θ) encapsulates the beliefs that we have before seeing the data, and the

posterior can be thought of how those beliefs are changed given the data. However, there

is not often substantial information to construct a prior. As a result, we often use a prior

which minimally influences our posterior inferences.

APPENDIX B: MARKOV CHAIN MONTE CARLO

Introduction

In this appendix we briefly describe MCMC. Suppose that we wish to simulate from

a highly complex multivariate probability density π(x), x ∈ E and that conventional

methods are not possible. Then the idea of MCMC is to construct an ergodic Markov

chain with stationary distribution π(·) (Robert and Casella, 2004).

Metropolis-Hastings and the Gibbs Sampler

The Metropolis-Hastings chain is as follows. Suppose that the current state of the

chain is x, and we wish to generate a new state so that in the long run our samples

are drawn from π; this is achieved in the following way. Generate X ′ ∼ q where q is a

proposal density, such that E ⊆
⋃

x∈E q(x, x
′), then accept x′ as the new value of the
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chain with probability min{1, A} where

A =
π(x′)q(x′, x)
π(x)q(x, x′)

.

An easy way to construct a proposal that will be accepted reasonably often is the

random walk move. That is, the additive and multiplicative random walks are (for some

specified σ)

x′ = x+ σu

x′ = xσu

where u ∼ f is a density chosen to ensure the proposal gives full support to the target.

Typically x = (x1, . . . , xk), and it will often be difficult to find proposals over large

dimensional spaces to yield a reasonable acceptance rate. One way to avoid such a

difficulty is blocking the variables.

Suppose we choose any combination of the x1, . . . , xk e.g. x1, . . . , xl and xl+1, . . . , xk,

then a valid way to simulate from π(·) is to generate from the full conditionals π(x1, . . . , xl

|xl+1, . . . , xk) and π(xl+1, . . . , xk|x1, . . . , xl). If we can generate exactly from the full

conditional distributions then this is called the Gibbs sampler, otherwise it is valid to

use Metropolis-Hastings.

Reversible Jump MCMC

Suppose that the support π is of variable dimension, (k is unknown) then none of

the above methods can be used. One solution to this problem is that of reversible jump

MCMC Green (1995).

To move from xk in k dimensional space, propose to move to k+1 dimensional space

in the following way. Generate U ∼ q from some density such that k + dim(u) = k + 1

where dim(u) is the dimension of u. Then set xk+1 = g(xk, u), where g(·) is the jump

function (it has to be invertible and differentiable). We suppose that the probability

of proposing to jump up is rk,k+1(xk) and that the probability of proposing the reverse

move is rk+1,k(xk+1). Then xk+1 is accepted with probability min{1, A}, where

A =
π(xk+1)
π(xk)

rk+1,k(xk+1)
rk,k+1(xk)q(u)

∣∣∣∣∂g(xk, u)
∂(xk, u)

∣∣∣∣.
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The reverse move from xk+1 to xk occurs in the following way. Solve for u and xk from

the jump function, via the inverse of g(·) and accept xk as the new state of the chain

with probability min{1, A−1}.

APPENDIX C: RELABELLING ALGORITHM

We briefly describe our relabelling algorithm, which is based upon the method of

Stephens (2000).

Using a short run of samples, for which no label switching is deemed to have occurred

(which we determine by eye), calculate the empirical classification probabilities r̂ij (as

in equation (2)). Now at sweep t of our MCMC algorithm, given that k(t) = k∗, choose

the permutation of the labelling σt to minimise:

L(R,S) =
n∑

i=1

k∗∑
j=1

s
(t)
ij {σt(θ(t))} log

[s(t)ij {σt(θ(t))}
r̂ij

]
where

s
(t)
ij (θ(t)) =

w
(t)
j f(y(t)

i ;φ(t)
j )∑k∗

l=1w
(t)
l f(y(t)

i ;φ(t)
l )

and R and S represent the n × k∗ matrices (rij) and (sij) respectively. The algorithm

is performed online and the r̂ij are never updated; see Stephens (2000) for discussion of

this method.
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k Distributions for the following values of ρ:

ρ = 1/10 ρ = 1/20 ρ = 1/30 ρ = 1/40 ρ = 1/50

≤ 2 0.000 0.000 0.000 0.000 0.000

3 0.404 0.381 0.381 0.396 0.387

4 0.287 0.272 0.276 0.276 0.275

5 0.156 0.160 0.161 0.157 0.156

6 0.076 0.086 0.089 0.082 0.085

7 0.037 0.047 0.047 0.043 0.046

≥ 8 0.040 0.054 0.046 0.046 0.051

Table 1: Posterior Distribution for the Number of Components using various Skew-t

Models; Carrickalinga Formation.
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k Normal Skew-t

≤ 5 0.000 0.000

6 0.000 0.522

7 0.008 0.351

8 0.092 0.104

9 0.209 0.020

10 0.279 0.003

≥ 11 0.412 0.000

Table 2: Posterior Distribution for the Number of Components using Normal and Skew-

t Models; Khorat Basin.
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Component Mode Weight

1 253.054 (242.975, 263.295) 0.201 (0.147, 0.265)

2 1835.779 (1792.220,1873.010) 0.284 (0.219, 0.354)

3 2476.847 (2438.160, 2516.770) 0.128 (0.081, 0.182)

4 165.285 (160.103, 170.255) 0.110 (0.072, 0.157)

5 804.570 (742.722, 898.306) 0.159 (0.107, 0.218)

6 438.366 (426.888, 451.494) 0.117 (0.074, 0.169)

Table 3: Posterior Estimates of the Modes and Weights with 95% Credible Intervals

under the Skew-t Model; Khorat Basin.
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Figure Captions

Figure 1: Plot of the U-Pb zircon age data analyzed in this paper. Plot (a) is a plot

of the error against ages for the Carrickalinga Head formation. Plot (b) is a plot of the

error against ages for the Khorat basin.

Figure 2: Histogram of the U-Pb zircon age data analyzed in this paper. The data

is overlaid by a density estimate based upon the normal model ( ) and the double

exponential model (−·−) of Sambridge and Compston (1994).

Figure 3: Plot of the BIC values for the U-Pb zircon age data analyzed in this paper.

We used the approach of Sambridge and Compston (1994) to fit the models. ( ) is the

BIC for the normal model and (−·−) for the double exponential model. The arrows

mark the optimal solutions according to the BIC criterion.

Figure 4: Density estimates of the U-Pb zircon age data analyzed in this paper.

We used the approach of Sambridge and Compston (1994) under student-t component

densities.

Figure 5: Skew-t densities with skew/tail parameters drawn from the prior to demon-

strate the potential range of distributions. We show 10 densities plotted on [−125, 75]

with location parameter increasing by 18 from left to right and scale 1, (ν, ζ) drawn from

both priors with specification of the relevant hyperparameters (a, rho, as described for

the 2 examples.

Figure 6: Convergence of MCMC algorithm; Carrickalinga Head Formation. (a) dis-

plays the cumulative occupancy probability (p(k ≤ j|x; ε)): the line at 0.4 is p(k ≤ 3|x; ε).

(b) displays the sampled k. Both (a) and (b) are recorded every 100 sweeps.

Figure 7: Density estimate and classification probabilities; Carrickalinga Head For-

33



mation. For plot (b), the crosses are data points and the lines are the probability that

a data point is in the component, for component 1 ( ), 2 (· · · ) and 3 (−·−).

Figure 8: Sampled modes; Carrickalinga Head Formation. (a) displays the sampled

modes as returned by our MCMC algorithm. (b) are the sampled modes after permuting

the samples by ordering. component 1 - black, 2 - light grey, 3 - dark grey.

Figure 9: Density estimate and classification probabilities under the Skew-t model;

Khorat Basin. The density estimate is for the six component skew-t model.
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