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ABSTRACT

Malaria represents one of the major worldwide challenges to public health. A recent breakthrough

in the study of the disease follows the annotation of the genome of the malaria parasite Plasmodium

falciparum and the mosquito vector 1 Anopheles. Of particular interest is the molecular biology

underlying the immune response system of Anopheles which actively fights against Plasmodium

infection. This paper reports a statistical analysis of gene expression time profiles from mosquitoes

which have been infected with a bacterial agent. Specifically, we introduce a Bayesian model-based

hierarchical clustering algorithm for curve data to investigate mechanisms of regulation in the genes

concerned; that is, we aim to cluster genes having similar expression profiles. Genes displaying

similar, interesting profiles can then be highlighted for further investigation by the experimenter.

We show how our approach reveals structure within the data not captured by other approaches.

One of the most pertinent features of the data is the sample size, which records the expression

levels of 2771 genes at six time points. Additionally, the time points are unequally spaced and

there is expected non-stationary behaviour in the gene profiles. We demonstrate our approach to
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be readily implementable under these conditions, and highlight some crucial computational savings

that can be made in the context of a fully Bayesian analysis.

KEYWORDS: Microarrays, gene expression profiles, Bayesian hierarchical clustering.

1 INTRODUCTION

The objective of this paper is to describe an exploratory statistical analysis of data relating to gene

transcription in the immune response system of Anopheline mosquitoes. The data, illustrated by

a colour ‘heat map’ in Figure 1, were collected using cDNA microarray technology, and represent

the relative gene expression of a large number of genes measured at a small number of time points

within mosquitoes following their infection with the bacterial agent Salmonella typhi.

These data are the expression levels of 2771 genes/sequence tags spotted on a cDNA array,

with probes selected from a constructed cDNA library (see Dimopoulos et al., 2000, for details). Of

these 2771 probes, 356 had known function. The expression profiles in Figure 1 relate to expression

level measurements at T = 6 time points, taken at 1, 4, 8, 12, 18 and 24 hours after infection. The

measurements were taken relative to unchallenged cells, and their rank values have been plotted

in Figure 1 to prevent the scale being dominated by outliers. Further details of the experimental

set-up, and pre-processing of the data, are given in Dimopoulos et al. (2002).

Our goal was to assist the experimental biologists by providing statistical procedures to detect

and highlight structure within the data, by grouping together genes that exhibit similar dynamics.

The aim was to identify groups of genes that appear to be co-regulated, that is, are controlled by

the same biological mechanism, or form part of the same genetic regulatory network. Our task

then was an exercise in statistical cluster analysis of longitudinal data. Pertinent aspects of the

data include the large number of observations and the temporal dependence between observations

in each series. More subtle aspects include the non-stationarity of many of the series and the non-

uniform sampling intervals. These features led us to develop tailored methodology for clustering

time course data using hierarchical Bayesian model-based procedures which we describe in detail

in sections 2-5.

The analysis forms part of a much wider study by researchers in the Centre for Molecular

Microbiology & Infection at Imperial College London who have been at the centre of recent and

important genomic investigations in malaria (Christophides et al., 2002; Zdobnov et al., 2002;

2



Alphey et al., 2002; Carlton et al., 2002; Florens et al., 2002). The mosquito immune response

system, the biological focus of the data in this paper, is of particular interest since it has been

discovered (Dimopoulos et al., 1998, for example) that the mosquito activates immune-responsive

genes during critical transition stages of the parasite life cycle, and so it is thought that such genes

play a crucial role in the development and spread of the disease in the vector and ultimately in

humans. Several indicators of immune response have been used for monitoring temporally and

spatially these defense reactions at the molecular level and have shown clear correlation of immune

responses with the passage of Plasmodium through the vector (Kumar et al., 2003).

Hence, the biologists’ goal is to understand the underlying system biology and through this

the gene pathways and regulatory networks involved. Exploratory statistical tools can help in this

regard. In the next section we provide some background on the task of clustering time series.

Further details on the biological context and on the microarray technology used to generate the

data can be found in Dimopoulos et al. (2002).

1.1 CLUSTER ANALYSIS OF TIME COURSE/LONGITUDINAL DATA

Traditionally, cluster analysis has focused on univariate observations or on multivariate indepen-

dent observations. Under these circumstances, Euclidean distance or correlation based hierarchical

clustering is typically used either on the raw or transformed data. The term hierarchical refers

to the sequential, conditional partitioning of the data from a single group containing all the ob-

servations to a partition where each group contains just one observation. The partitioning can be

constructed in a top down fashion, starting from the global cluster, in which case the procedure

is termed divisive; or more commonly from the bottom up by merging groups together, known as

agglomerative clustering. The hierarchy, usually represented by a tree known as a dendrogram, is

informative in that it provides a visual display of group homogeneity within the data at various

clustering levels.

Standard clustering techniques were not appropriate for our data due to the time dependency

in the observations. Essentially, this converts the clustering problem to one involving the clustering

and analysis of curves rather than random variables, establishing links with functional data analysis

as described in, for example, Ramsay and Silverman (1997).

This led us to develop a Bayesian model-based agglomerative scheme for clustering the data.
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Our approach uses non-linear regression splines to capture the temporal variation within each

cluster. The use of a Bayesian procedure allows us to compute measures of uncertainty for marginal

quantities, such as the number of clusters in our data, and to report posterior probabilities that

are comparable across all models, experiments, and computational methods. The use of non-linear

regression splines allows us to accommodate the non-stationarity in the data as well as the unequal

sampling intervals and yet affords analytic calculation of marginal probabilities. For background

on Bayesian model-based clustering see the excellent reviews of Banfield and Raftery (1993), Fraley

and Raftery (2002) and references therein. Denison et al. (2002) provided an overview of Bayesian

regression splines.

Model-based clustering of gene expression time series data has been recently considered by,

amongst others, Wakefield et al. (2003), Ramoni et al. (2002), Yeung et al. (2001) and Luan and

Li (2003). In addition, extensions of standard Euclidean distance or correlation clustering and

modelling of gene expression have been proposed based on projections of the data after performing

singular value decomposition on the expression matrix to identify the eigenvectors (or eigengenes)

as representative expression profiles (see Hastie et al., 2000; Holter et al., 2001, and references

therein). These methods are not specificlly tailored to time series and as such are invariant to

permutations of the time points; see the discussion below.

Wakefield et al. (2003) perform clustering using a full MCMC Bayesian approach with a basis

function representation for the time series with random effects. The marginal likelihood is not

analytically available under their model, and inference is made on the basis function coefficients.

The size of our data set makes this approach infeasible as the run-time to obtain reasonably accurate

approximations to the marginal likelihood for a full hierarchy would be excessive.

Ramoni et al. (2002) propose a pseudo-Bayesian autoregressive model for the time series with

improper priors on the coefficients. This method is not appropriate in our case for two reasons;

firstly, we do not believe our time series to be stationary processes, and secondly we are interested

in the posterior probability distribution on the number of clusters underlying the data, and in

particular the most probable number of clusters. The use of an improper prior as in Ramoni et al.

(2002) in a fully Bayesian setting would dictate that the most probable number of clusters be one,

regardless of the data. This is a consequence of the Lindley-Bartlett paradox, see the discussion of

Holmes (2002) for example. However, Ramoni et al. (2002) uses a heuristic search strategy with
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a pseudo-Bayesian marginal likelihood criterion and this appears to give useful clusterings for the

data analyzed there; we apply Ramoni’s approach to our data and report the results in section 6.

Yeung et al. (2001) use the Mclust software of Fraley and Raftery (1999) (available at

http://www.stat.washington.edu/fraley/mclust), a generic Bayesian clustering tool, to an-

alyze gene expression profiles. Mclust fits Gaussian process clusters which are optimized against

a BIC criterion. The covariance matrix of the Gaussian process for each cluster is determined via

an eigen-decomposition of the empirical covariance matrix obtained from the data in the cluster. In

contrast we impose a parametric form, a model, for the covariance function which captures our be-

liefs about temporal dependencies in the data. In this respect MCLUST is much more general than

our method which is specifically tailored for time series. An implication of this is that MCLUST

is invariant to permutations of the time points in a series. That is, if we randomly permute the

time points, fit a clustering using MCLUST, and then map the clusters obtained back onto the

original time domain, we obtain the same clustering regardless of the permutation. Our method is

time dependent. The extra structure we impose appears to lead to more cohesive clusters in our

example, as highlighted in section 6. In addition, we use a full Bayesian specification, clustering on

the exact marginal probabilities rather than an approximating measure such as BIC.

Finally and most recently, Luan and Li (2003) report the use of mixed-effect B-splines to cluster

gene expression profiles. This non-hierarchical scheme based on an expectation-minimization algo-

rithm should be contrasted with our fully Bayesian hierarchical approach which explicitly integrates

out the spline base parameter values within each cluster to obtain marginal probabilities for the

cluster memberships in the tree hierarchy.

To summarise, we propose a method for agglomerative clustering of multiple non-stationary time

series using fully probabilistic Bayesian measures of cluster heterogeneity. Moreover, the method

readily accommodates non-uniform sampling intervals and missing values in the series. None of the

current methods described above capture all of these features which are pertinent to our study.

In order to perform model-based clustering we must first define a probability model for ob-

servations within a group. In section 2 we introduce the modelling strategy based on non-linear

modelling of gene expression profiles using time indexed basis function representations, and discuss

Bayesian inference methods. In section 3 we outline the choice of basis functions used here for the

reconstruction of the profiles, whilst noting the modelling and computational constraints imposed
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by the structure of the data. In section 4 we describe prior specification. In section 5 we de-

scribe our Bayesian hierarchical clustering approach based on maximizing the marginal probability,

and demonstrate its implementability. In section 6 we describe the results of our analysis of the

malaria-related expression profile data described above, and compare the output with those from

competing methods. Finally, in section 7, we offer a discussion and point to possible extensions of

the method including full MCMC sampling.

2 MODELLING OF GENE EXPRESSION PROFILES

Model-based clustering requires the specification of a probability distribution for the data residing

within a group. We choose to model the gene expression profiles in a regression context via linear

models and non-linear basis functions. This approach readily accommodates the non-stationarity

and non-uniform sampling aspects of the data (which can be seen most clearly on examination

of the clustered data in Figure 2). We highlight that the use of fixed basis functions with ran-

dom coefficients induces a non-stationary stochastic process model for the underlying variation in

expression for which we can analytically evaluate the marginal likelihood.

Generically, we wish to capture the behaviour of the relative gene expression y as a function of

time t and measurement error. The basis of our modelling strategy is to use models that are able

to capture the characteristic behaviour of expression profiles which we can expect to observe due

to different forms of regulation in the immune response.

2.1 THE REGRESSION APPROACH

It is convenient to use a basis function representation for the time series data in Figure 1. In

particular, adopting a regression framework, we model the expression level for an individual gene

i at time t as

yit = Xi(t)β + εit

where Xi(t) = (Xi1(t), . . . ,Xip(t)) is in general a p-vector of specified basis functions of t, β is

a p-vector of basis coefficient parameters and {εit} is some error process that we shall model as

independent and Gaussian.

In vector representation, for gene i we have for expression levels yi = (yi1, yi2, . . . , yiT )′ at times
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t = (t1, t2, . . . , tT )

yi = Xi(t)β + εi (2.1)

where for our data i = 1, . . . , N = 2771, T = 6. The model is simply a linear regression in a time

dependent base Xi(t). The precise form of design matrix Xi(t) is at the moment left unspecified.

From here on we shall suppress the dependence on t, writing Xi(t) as Xi.

Now consider a partition C of the genes dividing them into C groups of sizes {N1, . . . ,NC}

(
∑C

i=1 Ni = N). Then for the kth set of genes, let the vector y(k) =
(

y
(k)
1

′

. . . y
(k)
Nk

′
)

′

be their

concatenated expression profiles. The key assumption underlying our clustering method will be

that within each set of the partition, the genes follow the regression model (2.1) with a coefficient

vector βk and error variance σ2
k specific to that group. Under the assumption that the random

error terms {εit} form an i.i.d Gaussian sequence with variance σ2
k, the conditional distribution of

the random variable Y (k) is multivariate normal

Y (k)|X(k), βk, σ2
k ∼ N

(

X(k)βk, σ
2
kINkT

)

(2.2)

where now X(k), the design matrix of the group, is of size NkT ×p and INkT is the NkT -dimensional

identity matrix.

The form of Xi (or X(k)) in (2.1) and (2.2) relates to the specific basis function representation

used. The class of suitable basis function models for time series is wide and includes Fourier

representations, splines, wavelets, and radial basis functions. Basis function representations form

some of the most flexible and convenient approaches to nonlinear modelling as, conditional on the

basis functions, the model is simply a linear regression in a non-linear design space. Within the

Bayesian framework we are in a position to be able to make inference about the most suitable basis

representation by comparison of marginal likelihood values for different choice of bases.

The conditional linear structure allows for many of the standard computational and method-

ological techniques surrounding Bayesian linear models to be employed when making inference.

This is an essential feature for our application where the dimensionality of the data is large, and

computationally efficient procedures are required in order to make inference in reasonable time.

For general discussions of basis function representations and the so-called Extended Linear

Model, see, for example, Vidakovic (1999), Schimek (2000), Denison et al. (2002) and Hansen and

Kooperberg (2002).
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2.2 BAYESIAN REGRESSION

In a Bayesian analysis of the model in (2.2) a joint prior distribution is specified for
(

βk, σ2
k

)

. It is

convenient to adopt a conjugate prior specification where

p
(

βk|σ
2
k

)

≡ N
(

m,σ2
kV
)

p
(

σ2
k

)

≡ IGamma
(α

2
,
γ

2

)

(2.3)

m is p×1, V is p×p positive definite and symmetric and all other parameters are scalars. Using this

prior independently for each gene group index k in the partition, standard Bayesian calculations

(see, for example, Denison et al. (2002)) show that conditional on the observed data

p
(

βk|y
(k), σ2

k

)

≡ N
(

m∗

k, σ
2
kV

∗

k

)

p
(

σ2
k|y

(k)
)

≡ IGamma

(

NkT + α

2
,
dk + γ

2

)

(2.4)

where

V ∗

k =
(

X(k)′X(k) + V −1
)

−1
m∗

k =
(

X(k)′X(k) + V −1
)

−1 (

X(k)′y(k) + V −1m
)

dk = y(k)′y(k) + m′V −1m −
(

X(k)′y(k) + V −1m
)

′
(

X(k)′X(k) + V −1
)

−1 (

X(k)′y(k) + V −1m
)

In regression modelling, it is usual to consider a centred parameterization for βk so that m = 0,

giving

m∗

k =
(

X(k)′X(k) + V −1
)

−1
X(k)′y(k)

dk = y(k)′
(

INkT − X(k)
(

X(k)′X(k) + V −1
)

−1
X(k)′

)

y(k) (2.5)

2.3 MARGINAL LIKELIHOOD

The critical quantity in our clustering procedure will be the marginal likelihood or prior predictive

distribution for each cluster k,

p
(

y(k)
)

=

∫ ∫

p
(

y(k)|βk, σ2
k

)

p
(

βk|σ
2
k

)

p
(

σ2
k

)

dβkdσ2
k. (2.6)

The marginal likelihood is an attractive measure of cluster integrity as it explicitly quantifies the

probability that a group of measurements arose from the same underlying stochastic process.

Combining (2.2) and (2.3) gives

p
(

y(k)|σk

)

≡ N
(

0, σ2
k

[

X(k)V X(k)′ + INkT

])

(2.7)
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which, after marginalizing over σk, leads to

p
(

y(k)
)

=

(

1

π

)NkT/2 γα/2Γ

(

NkT + α

2

)

Γ
(α

2

)

|V ∗

k |
1/2

|V |1/2

1

{dk + γ}(NkT+α)/2

= g (NkT, α, γ) |V |−1/2 1
∣

∣

∣
X(k)′X(k) + V −1

∣

∣

∣

1/2
{dk + γ}(NkT+α)/2

(2.8)

where g (NkT, α, γ) |V |−1/2 is a normalizing constant independent of the data. We note here that

the vague prior specification V −1 → 0 in (2.8) leads to p(y(k)) → 0 and impropriety or indetermi-

nacy. This fact prevents a fully non-informative prior specification being used and, as mentioned in

the introduction, can lead to the Lindley-Bartlett paradox when considering models of non-fixed di-

mension; see the discussion of Holmes (2002). For our data analysis, V was chosen to approximately

maximize the marginal likelihood as discussed in section 4.1.

We shall use this marginal likelihood as the potential function of a Bayesian hierarchical clus-

tering procedure that is readily computable for large data samples; within each cluster, the gene

expression profiles will be assumed to have originated from a common Gaussian process, giving rise

to a marginal likelihood for each cluster of the form (2.8).

3 CHOICE OF DESIGN MATRIX AND BASIS FUNCTION

We now consider the design matrix, Xi, for a single gene expression curve yi that appears in (2.1).

This T × p matrix consists of rows of possibly non-linear functions of the time ordinates at which

the expression measurements are taken. That is, for s = 1, . . . , T , the row s denotes the response

of p basis functions g1, . . . , gp at the time point ts,

[g1 (ts) , . . . , gp (ts)] .

For our data analysis, we use a flexible family of basis functions called the truncated power

spline basis, taking the form

g1(ts) = 1 gj(ts) = (ts − tj−1)
q
+, j = 2, . . . , T,

where (·)+ = max{0, ·} and q is a positive integer.

Of particular note are the special cases of q = 1, which gives a continuous piecewise linear model

and q = 3, which is the piecewise cubic regression spline model. Each alternate basis function choice
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induces a different, non-stationary marginal covariance structure on the Gaussian process via (2.7).

The truncated power base is a very flexible form for modelling curves, as seen in Denison et al.

(2002), Chapter 3.

Recall that for our data the expression measurements are taken for all genes at the same time

points. Thus the design matrix for a single gene Xi will not differ between genes and so from now

on will be referred to generically as X.

4 PRIOR MODELLING

4.1 CHOICE OF PRIOR COVARIANCE

Ideally, for a fully Bayesian approach we would like to treat the prior covariance matrix V as

fully unknown and following some multivariate prior distribution. However, this would carry with

it great extra computational burden, so instead we simply assume independence of the {βj} by

letting V be a scalar multiple v of the p-dimensional identity matrix, so V = diag(v). The value of

the multiplier v is then chosen in an empirical Bayes fashion to optimize the marginal likelihood of

the resulting clustering.

To test sensitivity in the prior, we also considered variations of this scheme which introduced

some prior correlation between the {βj}, such as calculating an estimated sample covariance matrix

of the {βj}. When such alternatives were used in the model to analyze our data they gave very

similar results and so these are not included in this paper.

4.2 NUMBER OF CLUSTERS AND CLUSTER SIZES

A Bayesian specification of a clustering regression model also requires a prior model for the clus-

tering C. Assuming exchangeability in the assignment of genes to clusters, it is sufficient to specify

prior distributions for the number of clusters C and the cluster sizes N1, . . . ,NC to satisfy this re-

quirement. We use a default specification placing a uniform prior on C over the range {1, 2, . . . ,N}

and for the sizes of those C clusters, a Multinomial-Dirichlet distribution. This gives

p(C|ξ1, . . . , ξC) =
1

N

Γ

(

C
∑

i=1
ξi

)

C
∏

i=1
Γ (ξi)

C
∏

i=1
Γ (Ni + ξi)

Γ

(

N +
C
∑

i=1
ξi

)
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with uniform settings on the Multinomial-Dirichlet parameters ξ1 = . . . = ξC = 1 leading to

p(C) =
(C − 1)!N1!N2! . . . NC !

N(N + C − 1)!
. (4.1)

Whilst a Multinomial-Dirichlet prior theoretically allows the possibility of empty clusters, this can

be disregarded when we come to present our agglomerative clustering algorithm for maximizing

posterior probability, as it is easily seen that the prior probability (4.1) of a clustering containing

empty components is strictly less than the probability of an identical partition with no empty sets.

5 BAYESIAN HIERARCHICAL CLUSTERING

Hierarchical clustering is a method of organizing a collection of objects into disjoint sets using a

similarity/discrepancy measure or by some overall potential function, such that objects in sets are

more similar to each other than objects across sets. Agglomerative clustering initially places each

of the N items in its own cluster. At the first level, two objects are to be clustered together,

and the pair is selected such that the potential function increases by the largest (best, or least

worst) amount, leaving N − 1 clusters, one with two members, the remaining N − 2 each with

one. At the next level, the optimal configuration of N − 2 clusters is found, by joining two of

the existing clusters. This process continues until a single cluster remains containing all N items.

Most commonly the similarity measure is based on Euclidean distance between data sequences i

and j, ‖yi − yj‖
2 = (yi − yj)

′ (yi − yj). The method we propose forms clusters on the basis of the

covariance structure induced by the underlying stochastic process (or, at least, our Gaussian process

representation of it). So in effect, our hierarchical clustering approach assigns profiles to the same

cluster if they are similar in covariance terms. The potential advantages of ‘covariance clustering’

are evident: it respects the time ordering of the data, and by judicious selection of the design

and prior matrices can lead to biologically appropriate covariance structures being discovered, as

it can be used to incorporate knowledge of the dynamics of the underlying processes involved in

the regulation of expression.

5.1 COMPUTATIONALLY EFFICIENT BAYESIAN CLUSTERING

A principal feature of our data is the dimensionality. This is typical of gene microarray studies,

where the technology enables thousands of gene expression measurements to be taken simultane-
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ously, and in our case, repeatedly at a series of time points. Therefore when constructing statistical

methods to analyze these data, it is crucial to examine the implications of this dimensionality on

the feasibility of implementation.

On the face of it, implementing a fully Bayesian cluster analysis of non-stationary time series

data, without resorting to time-consuming MCMC, appears challenging. However, as shown in

section 2, by modelling the curves using non-linear regression splines we are able to adopt conjugate

priors on the coefficients and thus obtain an analytic expression for the marginal likelihood. We

will see how the choice of covariance matrix induced by our basis function representation leads to

some further important simplifications in the calculation of the marginal likelihoods of each cluster.

In our modelling framework, expression profiles in the same cluster k have the same (unknown)

regression parameters βk and variance parameter σ2
k, and thus, conditional on

(

βk, σ
2
k

)

the data

sequences for clustered data are mutually independent, and the likelihood, posterior and marginal

likelihood can be evaluated as shown in section 2. For example, conditional on
(

βk, σ
2
k

)

the likeli-

hood of the Nk profiles in the kth cluster y(k) is given by (2.2) where now, since in our data the time

points at which the expression profiles are observed are identical, X(k)′ =
[

X ′ X ′ · · · X ′

]

.

This implies

X(k)′X(k) =
(

X ′X + X ′X + . . . + X ′X
)

= NkX
′X

and

X(k)′y(k) =

Nk
∑

i=1

X ′y
(k)
i .

Hence the quantities in (2.5) and thus (2.8) can be presented in simple form. In particular, (2.8)

becomes

p
(

y(k)
)

= g (NkT, α, γ) |V |−1/2 1

|NkX ′X + V −1|1/2 {dk + γ}(NkT+α)/2
. (5.1)

where now

dk =

(

Nk
∑

i=1

y
(k)
i

′

y
(k)
i

)

−

(

Nk
∑

i=1

X ′y
(k)
i

)′

(

NkX
′X + V −1

)

−1

(

Nk
∑

i=1

X ′y
(k)
i

)

Then the marginal posterior probability of a particular clustering of the genes given the data

is given up to proportionality by

π(C,N1, N2, . . . NC |y) = p(C)p(N1,N2, . . . NC)
C
∏

k=1

p
(

y(k)
)

(5.2)
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where the third term on the right hand side is the product of the likelihoods of the expression

profiles for each cluster k given by (5.1).

When two clusters k and l are merged to form y(kl) = (y(k) y(l)), (5.1) becomes

p
(

y(kl)
)

=
g ((Nk + Nl) T, α, γ) |V |−1/2

|(Nk + Nl)X ′X + V −1|1/2 {dkl + γ}((Nk+Nl)T+α)/2
(5.3)

where

dkl =

(

Nk+Nl
∑

i=1

y
(kl)
i

′

y
(kl)
i

)

−

(

Nk+Nl
∑

i=1

X ′y
(kl)
i

)′

(

(Nk + Nl)X
′X + V −1

)

−1

(

Nk+Nl
∑

i=1

X ′y
(kl)
i

)

(5.4)

In terms of computation, clearly the key quantities in (5.3) and (5.4) are

WNk+Nl
= (Nk + Nl)X ′X + V −1 and |WNk+Nl

|.

This leads to considerable simplification in the hierarchical clustering as we can compute the quan-

tities

W−1
n =

(

nX ′X + V −1
)

−1
and |Wn|

off-line for all n ∈ {1, 2, . . . , N}. In addition, for each gene i we can at the start compute

{

y′iyi, X ′yi

}

and then simply take sums over each gene in a cluster to get the required quantities in (5.4).

The procedures above lead to considerable savings in computation time. First, the use of

non-linear regression splines with conjugate priors allows for explicit calculation of the marginal

likelihood for any clustering. Second, the basis function covariance matrix for a cluster of size n is

simply nX ′X. Third, the necessary matrix multiplications and inversions can be calculated off-line

and stored in a look-up table. This makes the analysis of our data feasible, with a final run time

generating the full cluster hierarchy of just over half a minute reported in section 6.

It should be noted that although assuming all profiles are observed at the same set of time

points gives some of the computational savings we have just indicated, this assumption can be

relaxed without losing any of the distributional results and the clustering algorithm proceeds in the

same way. This is not the case for conventional hierarchical clustering which breaks down if there

are different time points or different numbers of time points. This is then a further advantage of

the method we propose as a general method for functional clustering.
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5.2 BAYESIAN HIERARCHICAL CLUSTERING ALGORITHM

The algorithm proceeds as follows:

Step 1: Start with C = N clusters, each cluster containing the expression levels for one gene.

Calculate the marginal posterior unnormalized probability kernel πN in (5.2).

Step 2: For each pair of clusters k, l, letting Nkl· denote the vector of cluster sizes other than

{Nk, Nl}, we calculate the multiplicative increase in marginal posterior that would be gained

by merging the two clusters to obtain an inter-cluster closeness

ckl = clk =
p(Nk + Nl|Nkl·)p(y(kl))

p(Nk,Nl|Nkl·)p(y(k))p(y(l))

=
(N + C − 1)(Nk + Nl)!p(y(kl))

(C − 1)Nk!Nl!p(y(k))p(y(l))
(5.5)

which follows from the prior (4.1) and where p(y(·)) is given by (5.1) or (5.3) (N(N − 1)/2

calculations).

Step 3: For each cluster k, identify the closest other cluster according to the metric (5.5) and

the corresponding maximum closeness value

k′ = arg max
l

ckl, ck = ckk′ .

Step 4: Find the cluster k̂ with largest ck value, and merge with cluster k̂′ to form a new

cluster k̂. Set C = C − 1 and relabel the other remaining clusters accordingly. Calculate the

revised marginal unnormalized posterior kernel value

πC = ck̂k̂′πC+1.

Step 5: For each cluster l 6= k̂, calculate the closeness to cluster k̂, ck̂l (C calculations), and

identify the new nearest cluster k̂′.

Step 6: For each cluster l 6= k̂, update the stored nearest cluster l′; unless the stored cluster

l′ was just merged, we only need to check the value of cl against ck̂l.

Step 7: Repeat Steps 4-6 until C = 1.

14



Step 8: Looking back over the clusterings visited, find the number of clusters C in the

hierarchy maximizing the posterior distribution, arg max
C

πC . This is our optimal clustering.

This algorithm is repeated for a collection of candidate settings of the prior covariance matrix

V = vIp, v ∈ {v1, . . . , vJ} and the maximum reported. For the results presented in section 6 below,

we used 10 candidate points equally spaced on the log scale with v1 = 10−3, v10 = 105.

6 RESULTS

We applied the clustering methodology introduced over the preceding sections to the Anopheles

gene expression data in Figure 1. The piecewise linear model was used (q = 1 in the notation of

section 3) and the spline coefficients β were assumed independent in our choice of prior covariance

matrix V , as this combination gave the maximum marginal probability for this data.

As we had little prior information about the variance parameter σ2, we chose the hyperparam-

eters (α, γ) to both be small (α = γ = 10−2). This ensures an uninformative prior specification, as

can be seen by examination of the marginal likelihood (2.8).

For a comparison we also obtained the output from three other methods applied to the data: Eu-

clidean distance average-link hierarchical clustering, the Bayesian model-based clustering software

Mclust of Fraley and Raftery (1999), and the autoregressive model-based approach of Ramoni

et al. (2002) using the accompanying software CAGED (http://www.genomethods.org/caged).

Of the 2900 genes in the original data set of Dimopoulos et al. (2002), 129 of the expression

profiles had missing data. These have been discarded to enable a fair comparison with the other

methods. However, as noted earlier, the presence of missing data presents no theoretical problems to

our proposed methodology except for some extra computational burden. The complete run on the

reduced data set took 38 seconds on a 2GHz processor PC, using C++ code. The code is freely avail-

able for download from (http://stats.ma.imperial.ac.uk/~naheard/software/splinecluster).

Figure 2 is an image plot of the clustered data under the most probable model visited (which

contains 19 clusters). The left hand side of the figure showing the reordered data should be

compared to Figure 1. To the right are the (ranked) mean profiles for each cluster and finally

a dendrogram indicating the order in which the 19 clusters would merge to a single group under

further agglomerative clustering. Comparing the cluster means on the right hand side gives a visual
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measure of between cluster heterogeneity; while comparing the group means to the raw observations

gives a sense of within cluster homogeneity.

The most probable clustering is shown in further detail in Figure 3. The optimal number

of clusters maximizing the log unnormalized marginal probability (-3,250.9) using our Bayesian

method was 19. Recall that a priori the number of clusters was assumed uniformly distributed

across the range. The top left hand plot of Figure 3 shows the number of clusters versus the log

unnormalized marginal probability. This is generally well behaved, with a clear global maximum.

Particularly to the right of this maximum the decrease of the curve is fairly shallow, suggesting

many other plausible alternative clusterings of different sizes besides the optimum. As ratios of

marginal likelihoods are Bayes factors, qualitative interpretation of the relative plausibility of the

different clusterings is readily available (see Kass and Raftery, 1995).

The remaining plots in Figure 3 are scatter plots of the raw data for each of the individual

clusters under the optimal clustering, along with the cluster mean profiles and bars indicating plus

or minus two posterior standard deviations of the profile from the mean (solid lines).

From examination of Figure 3, several clusters are noteworthy:

Cluster 12 - Slight down regulation for the first hour before steadily increasing throughout

the remaining period. This group highlights genes which are progressively more transcribed

further into the course of infection.

Clusters 13 - Significant initial up-regulation up to the second time point (four hours after

infection) followed by gradual decrease through the time course. This cluster contains a high

proportion of the genes known to be related to the immune-defense system; the dataset has

356 ‘labelled’ genes of known function, of which 23 are related to the immune defense system;

9 of the immune defense genes appear in the 27 labelled genes in this cluster.

Cluster 16 - No significant up or down regulation until halfway through the time course, where

expression is suddenly heavily down regulated before beginning to pick up again at 18 hours.

Cluster 17 - Contains just three genes, all highly down regulated for the whole of the time

course. These patterns could be of significance, or may simply be outliers. Our analysis

cannot distinguish between these two cases without further prior insight, but these genes can

be highlighted for further investigation.
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Additionally, it is perhaps worth noting that our method successfully clustered together some

large groups of genes with almost no change in relative expression over time (particularly cluster

4), suggesting application of the bacterial challenge does not change the regulation of these genes.

This hierarchical clustering provides a qualitative tool to highlight potentially interesting struc-

ture within the data. Prior to our involvement the biologists were using Euclidean based measures

which they found provided little insight. Using our approach, the biologists are able to target those

genes of unknown functionality for further investigation which are grouped alongside labelled genes

known to be involved in immune response.

Figure 4 shows the scatter plots for the clusters obtained from Euclidean hierarchical clustering,

where the number of clusters to be formed was taken to be the optimal number from our Bayesian

method. It is clear that this method fails to capture the same dynamical structure revealed by our

approach. For instance, there do not appear to be any clusters representing no overall change in

expression. Moreover, most of the genes are contained in the three large clusters 10, 11 and 12,

and the latter of these, which is by far the largest containing 85% of the genes, does not exhibit

any real temporal cohesion.

To further compare our approach we analyzed the data using the software packages Mclust

and CAGED described in Yeung et al. (2001) and Ramoni et al. (2002) respectively.

Figure 5 gives the corresponding plot obtained when using the Mclust software, which selected

the most general model (VVV in their notation) with 11 clusters using a BIC criterion. The

expression profiles are visually less cohesive than those shown in Figure 3. This is particularly

apparent in clusters 5, 9 and 10. As with our method, Mclust was successful in picking out a

group of genes showing almost no change in regulation (cluster 2). It is noteworthy that compared

to our optimal clustering, the gene partitions suggested by Euclidean clustering and Mclust have

significantly lower log unnormalized marginal probability under our probability model, -6,423.5 and

-9,309.2 respectively.

When the data was analyzed using the autoregressive method of Ramoni et al. (2002) using the

lagged correlation option of the provided software CAGED, either one or two clusters were fitted for

the different choices of Markovian order. This unintuitive result may be due to the non-stationarity

in some of the expression profiles in our data, or the non-uniform spacing of the sampling times.

To put these results in context, Table 1 shows the distributions of all the genes of known function
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through the 19 clusters from the Bayesian method. These functions have been grouped into classes

such as involvement in immunity (I), oxidation/reduction reactions or expression in mitochondria

(R), or encoding ribosomal proteins or other components of protein metabolism (P); for more

details, see Dimopoulos et al. (2002). Whilst the immune defence genes appear to have clustered

together fairly well, the other functions seem fairly uniformly distributed. This is unsurprising, as it

is the immune defence genes which we would expect to be most stimulated by the bacterial challenge.

Similar tables were prepared for Euclidean clustering and Mclust, and neither had clusters as pure

in immune defence genes as Cluster 13 from our method; overall, the Bayesian clustering method

was the most successful at producing groups with a high density of immunity genes, though both

this method and Mclust were much more successful than Euclidean hierarchical clustering.

7 CONCLUSIONS AND EXTENSIONS

We have demonstrated the utility of Bayesian hierarchical clustering procedures in the construction

of biologically interpretable gene clusters, and have shown the agglomerative hierarchical clustering

method based on covariance clustering can outperform the standard clustering methods currently

used by biologists. We developed the use of non-linear splines to accommodate the key features

in our data; the high dimensionality, the non-stationarity of the profiles and the unequally spaced

sampling time points. This lead us to discover better, more visually cohesive expression profile

clusters than the other standard methods. Computationally, as shown in section 5.1 the method

is readily implementable with the full agglomerative clustering in our real data example, starting

with 2771 genes each in their own cluster and successively combining up to a single global cluster

containing all the genes, taking just over half a minute.

This speed of computation also suggests the possible use of the optimal clustering model as a

good starting point for a full Bayesian Markov chain Monte Carlo (MCMC) model-based clustering

analysis. Our experiences with full MCMC cluster analysis, however, are somewhat mixed; for small

sample sizes, standard MCMC methods work well, similar to the variable dimensional MCMC

analysis of mixture models. But for mixture models in dimensions greater than one, for large

sample sizes, it is rather difficult to construct efficient dimension changing moves in the vast space

of possible clusterings. This remains a significant problem in all such mixture modelling problems.
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Figure 1: Piecewise constant plots of unclustered gene expression profiles for the Salmonella typhi

data set. Brighter red (green) colours correspond to higher (lower) expressions. (Note we use rank

relative expression to avoid saturation due to a few outlying gene expression levels).
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Figure 2: Clustered gene expression profiles from the Salmonella typhi data.
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Figure 3: Plot of marginal likelihood against number of clusters, and the optimal clusters after

Bayesian agglomerative clustering of the Salmonella typhi data.
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Figure 4: Plots of optimal clusters after Euclidean agglomerative clustering of the Salmonella typhi

data.
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Figure 5: Plots of optimal clusters after unconstrained maximum likelihood Gaussian clustering of

the Salmonella typhi data using the Mclust software (Fraley and Raftery, 1998).
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Cluster I R PS P C L S K TR TP O Total

1 3 1 1 0 0 0 3 3 3 2 9 25

2 0 1 0 1 0 0 0 1 0 1 2 6

3 0 1 1 1 0 0 1 0 0 1 1 6

4 1 1 0 1 1 0 0 0 0 0 3 7

5 0 0 1 1 0 1 1 0 2 4 6 16

6 0 0 0 0 0 0 0 0 1 0 1 2

7 2 9 2 9 0 2 5 1 3 2 21 56

8 2 6 1 4 1 0 0 0 1 2 12 29

9 1 2 0 1 0 0 1 1 2 5 9 22

10 1 0 1 0 0 1 0 1 0 2 0 6

11 0 1 0 0 1 0 0 0 0 0 2 4

12 0 2 0 0 0 0 0 0 0 0 1 3

13 9 2 0 0 1 0 2 0 3 2 8 27

14 0 1 0 0 0 0 0 0 1 0 1 3

15 3 0 1 2 1 1 0 1 1 4 9 23

16 0 1 0 0 0 0 1 1 0 2 1 6

17 0 0 0 0 0 1 0 0 0 0 0 1

18 1 9 1 5 5 2 8 1 1 3 12 48

19 0 10 1 17 2 2 7 2 6 2 17 66

Total 23 47 10 42 12 10 29 12 24 32 115 356

Table 1: Distribution of genes of known function for Bayesian clustering. Key: I = Immunity; R =

Redox/Mitoch.; PS = Proteasome syst.; P = Protein metab.; C = Carbohydr. metab.; L = Lipid

metab.; S = Str./Cytosk./Adh.; K = Kinases; TR = Transcription; TP = Transport; O = Other.

27


