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Abstract

In this article we present the methodology of interacting Sequential Monte Carlo

(SMC) samplers. Sequential Monte Carlo samplers (Del Moral et al. 2005a) are

methods for sampling from a sequence of densities on a common measurable space

using Markov chain Monte Carlo (MCMC) (Metropolis et al. 1953; Hastings 1970)

and sequential importance sampling/resampling (SIR) (Doucet et al. 2001; Liu 2001)

methodology. One of the main problems with SMC samplers when simulating from

trans-dimensional, multimodal static targets is that transition kernels do not mix

which leads to low particle diversity. In such situations, sometimes under reason-

able Markov kernels, poor Monte Carlo estimates may be derived. We present an

interacting SMC approach for static inference, where SMC samplers are run in par-

allel on, initially, different regions of the state space and then moved onto the entire

state space. Once the samplers reach a common space the samplers are combined

and allowed to interact. The method is intended to increase the diversity of the

population of samples. We demonstrate that interacting SMC has a Feynman-Kac

(Del Moral 2004) representation and establish convergence results. We show how

the methodology may be used for a trans-dimensional inference problem in Bayesian

mixture modelling and also, using adaptive methods, a mixture modelling problem

in population genetics.
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1 Introduction

One of the most challenging problems in modern statistical computation is that of simu-

lating from multimodal and trans-dimensional target measures. Since the paper of Green

(1995) (reversible jump MCMC), simulation from non-standard distributions which lie

on state spaces of differing dimension is now possible. That is, π is the target probability

measure on measurable space (T, T ) and T = ⋃k∈K{k} × Tk, Tk ⊆ Rk, K ⊆ N. Such

distributions arise quite often in many areas of statistics, for example in Bayesian mix-

ture modelling (Richardson & Green 1997) and non-linear classification and regression

(Denison et al. 2002).

In many applications it is often difficult to construct an appropriate reversible jump

algorithm to correctly traverse the state-space; see for example Jasra et al. (2005a). This

is often because the target density is multimodal and dimension jumping is difficult to

achieve as information in a given dimension may be inadequate to provide a successful

move into a different dimensional space.

A possible solution is to use population-based simulation; see Jasra et al. (2005b)

for a review. This class of simulation method incorporates a collection of samples (often

termed particles or population members) that are run in parallel and allowed to inter-

act. The objective of population-based simulation is to improve the ability to explore

the state-space, when compared to standard stochastic simulation approaches such as

MCMC. One such approach is population-based MCMC (Liang & Wong 2001). A draw-

back is that, as for all MCMC methods, the population kernel needs to be ergodic. For

example, if we wish to use adaptive methods (Andrieu & Robert 2001) it can be difficult

to verify that the stochastic process is indeed ergodic; see Andrieu & Moulines (2003)

for example. Another population-based simulation method, that does not rely on such

properties of the transition kernel, is SMC samplers.

Sequential Monte Carlo methods have become an important tool in the analysis of

sequential inference problems in statistics; see Doucet et al. (2001) and Liu (2001) for

a review. However, it has recently been realized that such methodology may be applied

for static inference problems; see Chopin (2002) and Del Moral & Doucet (2003) for
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example. A particular SMC approach, SMC samplers, are methods designed to simulate

from a set of probability measures {πj : j = 0, . . . , t, πt ≡ π} on common measurable

space (T, T ) using SIR and MCMCmethodology. They provide a flexible way to simulate

from π, where, for the purposes of this article, the sequence π0, . . . , πt−1 approaches π

(in some sense).

A problem for SMC samplers is that of low particle diversity for multimodal, static

targets (see the first example in Section 4). That is, particles may only represent a

single mode of the target. In such situations, even under reasonable Markov kernels

(they are able to sample the space in a reasonable amount of CPU time, but still take a

long time), poor Monte Carlo estimates may be derived. Since the kernels do not move

around the space quickly, many samples may be similar and estimates of expectations of

functionals of interest can be incorrect. In this article we propose a method, which can

be implemented with little extra computational cost (CPU, programming) to standard

SMC methods, that attempts to ensure a diverse population (and hence all of the modes

of the target are represented).

This article is structured as follows. In Section 2 we present a short summary of

SMC samplers and our proposed methodology. In Section 3 we provide some theoretical

analysis, in which we show that interacting SMC has a Feynman-Kac representation.

From this viewpoint, our approach may be interpreted as a Feynman-Kac particle ap-

proximation with a change of approximation measure. We demonstrate, under minimal

conditions, a bound on Lp distances (see Section 1.1 for a definition) for a class of func-

tions of interest; this allows to provide a law of large numbers for Monte Carlo averages.

We give a central limit theorem (CLT) for our particle approximation method; see also

Del Moral & Guionnet (1999), Chopin (2004), Del Moral (2004) and Künsch (2005).

Finally, we establish propagation of chaos properties (Del Moral & Miclo 2001). In Sec-

tion 4 we give an example related to the Bayesian analysis of mixtures with an unknown

number of components. Section 5 features an example related to population genetics;

we combine SMC with adaptive methods which exploit certain features of our approach.

In Section 6 we provide a discussion of our method as well as future work. The proofs

of the results are given in the Appendix.



4

1.1 Notation

Throughout this article we adopt the following notation.

We denote a measurable space (E, E) with the class of probability measures denoted

P(E) and σ−finite measures Mσ(E). We assume that {x} ∈ E , x ∈ E (e.g. the Borel

σ−algebra). Throughout the article we abuse the notation by denoting Radon-Nikodym

derivatives of π ∈ P(E), λ ∈ Mσ(E), π � λ as dπ/dλ (Section 3) or π (all other

Sections). In all Sections other than 3 it is assumed that all probability measures have a

common dominating (σ−finite) measure dx on the appropriate space and (in all Sections)

that the Radon-Nikodym derivatives are bounded and strictly positive. We let dx⊗m :=

dx× · · · × dx (product m times).

We assume all functions h ∈ Bb(E), where Bb(E) is the class of bounded measurable

functions, which, when associated with the supremum norm ||h|| := supx∈E |h(x)| can

be regarded as a Banach space. The Lp distance between two functions f, h ∈ Bb(E) is

defined as Lp(f, h) :=
( ∫
E |f(x) − h(x)|pµ(dx)

)1/p
, p > 1, µ ∈ P(E). The oscillations

of a function f ∈ Bb(E) are taken as osc(f) = sup(x,y)∈E2 |f(x) − f(y)|. We denote

π(h) :=
∫
E h(x)π(dx), π ∈ P(E). The total variation distance between two probability

measures µ, λ ∈ P(E) is taken as ||µ− λ||TV := supA∈E |µ(A)− λ(A)|. We also refer to

the vector x = (x1, . . . , xn) as x1:n and the product space E0 × · · · × En as E0:n.

2 Proposed Methodology

2.1 SMC Samplers

The SMC method is essentially a sequential importance sampling/resampling approach

where we sample a population or cloud of particles at time n = 0, . . . , t, ξ
(N)
n = (ξ1n, . . . , ξ

N
n ) ∈

TN (assume the target is associated with state space (T, T )) from an importance func-

tion, and reweight in order to calculate expectations wrt πn:

Eπn [h(X)] =

∫

T
h(x)πn(x)dx.(2.1)

SMC samplers begin by drawing (ξ10 , . . . , ξ
N
0 ) from η0 ∈ P(T ) and weight according
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to π0 ∈ P(T ), i.e. w0(ξj0) = π0(ξj0)/η0(ξj0), j = 1, . . . , N and estimate (2.1) by:

̂Eπ0 [h(X)] =

∑N
j=1 h(ξ

j
0)w0(ξ

j
0)∑N

j=1 w0(ξ
j
0)

.

The method of SMC seeks to reweight the particles for π1 and, in order to calculate the

weights in practice, the method works on an extended state space (T ×T, T × T ). That

is, ξ11 , . . . , ξ
N
1 are drawn from a Markov kernel K1 : T × T → [0, 1] and reweighting with

respect to π1, that is:

w1(ξ
j
0:1) ∝ w0(ξ

j
0)W1(ξ

j
0:1)

W1(ξ
j
0:1) =

ν1(ξ
j
0:1)

π0(ξ
j
0)K1(ξ

j
0, ξ
j
1)

where ν1 is a probability density wrt dx
⊗2 admitting π1 as its marginal and W1 is

termed the incremental weight. The algorithm progresses in this manner until time t is

reached (πt ≡ π). It is well known that, for such importance sampling procedures, the

weights will degenerate to zero, with the exception of a single particle which has weight

1. Resampling or selection is used to deal with this problem; see Doucet et al. (2001) or

Liu & Chen (1998) for details. To see an SMC sampler in full, see Algorithm 2.1 (at the

end of the paper) with m = 1 and no step 4.

For clarity of exposition we assume particles progress through a selection/mutation

algorithm, that is, we sample ξ
(N)
0 (mutation) and then decide whether or not to perform

a resampling step but always denoting the resulting particles ξ̂
(N)
0 , i.e. continues as:

ξ
(N)
0 selection−−−−−→ ξ̂

(N)
0 mutation−−−−−→ ξ

(N)
1 .

It should be noted that many other methods in the sequential Monte Carlo literature

(e.g. resample move (Gilks & Berzuini 2001), the sequential particle filter of Chopin

(2002) and population Monte Carlo (Cappé et al. (2004)) are special cases of SMC

samplers.

2.2 Interacting SMC

Our method is based upon using m parallel SMC samplers, with an equal number of

particles (as noted by Chopin (2004) this provides a way to monitor the degeneracy of
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SMC simulation). For now, assume that we have m samplers with associated with target

densities νi,n (i ∈ {1, . . . , m}) which admit πi,n as the marginal (the πi,n are related to

the πn in some way to be described later) and importance functions ηi,0, Ki,1, . . . , Ki,t.

The basic algorithm is given in Algorithm 2.1. We now discuss how this method is

to be applied.

2.3 Methodology for Static Inference

Consider the case for which π0, . . . , πt−1 are artificial densities used in order to allow

movement around the state space (see Jasra et al. (2005b) for examples of such densities).

For each sampler i we target a sequence of probability measures πi,n (up to some

terminal time 0 < n∗ < t) on measurable space (Ti,n, Ti,n), with the assumption that

∀i = 1, . . . , n∗ Ti,n ⊆ T , Ti,n ∈ T , Ti,n ⊆ T and (Ti,n, Ti,n) = (T, T ) ∀i, n∗ + 1 6 n 6 t.

We assume ∀i

Ti,0 ⊆ Ti,1 ⊆ · · · ⊆ Ti,n∗ = T

with corresponding filtration

Ti,0 ⊆ Ti,1 ⊆ · · · ⊆ Ti,n∗ = T .

Note that it is often a good idea to let

T =
⋃

i

Ti,0 Ti,0 ∩ Tj,0 = ∅ ∀i 6= j

so that all the samples (initially) lie on distinct parts of the state space T .

We define initial distributions ηi,0 ∈ P(Ti,0) and Markov kernelsKi,n : Ti,n−1×Ti,n →

[0, 1] and take (as in Neal (2001) and Del Moral et al. (2005a)) the auxiliary densities:

νi,n(xi,1:n) = πi,n(xn)

n−1∏

q=0

Li,q(xi,q+1, xi,q)

with

πi,n(x) ∝ πn(x)I(x ∈ Ti,n)

assuming

∫

Ti,n

πn(x)dx > 0
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and Li,n : Ti,n+1 × Ti,n → [0, 1] is a Markov kernel with time reversed index (backwards

Markov kernel). It should be noted that Li,n is essentially arbitrary and, since the optimal

kernel (in the sense of minimizing variance of importance weights) is unavailable, the sub

optimal choice of Del Moral et al. (2005a) is:

Li,n(xi,n+1, xi,n) =
πi,n(xi,n)Ki,n+1(xi,n, xi,n+1)

πi,n(xi,n+1)
(2.2)

where Ki,n+1 has invariant distribution πi,n. Thus, the incremental weights become:

Wi,n(ξ̂
j
i,n−1, ξ

j
i,n) =

πi,n(ξ
j
i,n)Li,n−1(ξ

j
i,n, ξ̂

j
i,n−1)

πi,n−1(ξ̂
j
i,n−1)Ki,n(ξ̂

j
i,n−1, ξ

j
i,n)

where ξji,n is the j
th particle for sampler i at time n.

At time n∗ we sample all particles from the same Markov kernel Kn∗ and then

resample so that all samples are approximately distributed according to πn∗+1 (which is

the same for each sampler), we then sample from Kn∗+1 and form a new set of particles:

ξjn∗+1 = (ξj1,n∗+1, . . . , ξ
j
m,n∗+1) j = 1, . . . , N.

We then continue with a single sampler targeting νmn (the product auxiliary density),

n > n∗ + 1 on (
∏m
i=1 T,

∨m
i=1 T ) where the density is

νmn (x1:m,n) =

m∏

i=1

νn(xi,n).

The algorithm continues with Markov kernels Kn (n
∗+2 6 n 6 t) , incremental weights:

Wn(ξ̂
j
1:m,n−1, ξ

j
1:m,n) =

m∏

i=1

Wn(ξ̂
j
i,n−1, ξ

j
i,n).

2.4 Notes on the Algorithm

Before we present both a theoretical analysis of the method as well as numerical examples

we discuss a couple of aspects of the algorithm.

Extending the Space. From the outset it appears that moving the particles onto larger

state spaces will be problematic. We adopt the approach of not attempting to move the

particles too much, by employing Markov kernels which propose the new dimensionality

with high probability of being the same as the current one and using fixed dimensional
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proposals which have small variance, taking the backwards kernel to be the reverse (we

describe this in more detail in the examples). The point here is that we will use our

method so that the problem of extending the space is side-stepped. For example, in

the application of the algorithm in Section 4, samples will lie in the other regions (with

respect to a given sampler). In our second example, in Section 5, kernels are constructed

so that we may traverse the entire space easily and therefore efficiently extending the

space is not of concern in practice.

Stratifying the Space. The initial stratification of the space is not as difficult for

trans-dimensional problems as for fixed dimensional problems and we discuss this in an

example specific way. It should be noted that the idea of partitioning the state space is

not new in Monte Carlo methods, for example stratified sampling (see Robert & Casella

(2004) and the references therein) or, more recently, the Wang-Landau algorithm (Wang

& Landau 2001; Atachade & Liu 2004) operate on a stratified space. See Robert &

Casella (2004) pp. 155-156 for further discussion.

Choice of n∗. The choice of when the samples are combined is also of importance.

That is, we will combine particles from different dimensional spaces; thus it is likely that

some SMC samplers will have higher variance (in terms of the importance weights) than

others. In this article we combine particles instantly and, we have found that this does

not adversely affect the algorithm, if this is not done too far from time from the target of

interest (but not so far as the Markov kernels used do not have time to explore the space,

far depending upon the problem at hand). That is, given that the initial regions have

reasonable support under our target density, if the samples can adequately represent

these parts of the space then the difference in variability of samples is not a substantial

difficulty. We discuss better ways to do this in Section 6.

3 Theoretical Analysis

In the present Section we demonstrate that our algorithm admits a Feynman-Kac (Del

Moral 2004) representation which allows us to appeal to several convergence results in

this area.
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3.1 Feynman-Kac Formulae

Feynman-Kac formulae may be described as follows. Consider a sequence of measurable

spaces (En, En) with En−measurable functions Wn, inhomogeneous Markov kernels Mn
(from (En−1, En−1) into (En, En)) and initial distribution η0. Associating the Markov

chain with the probability space (Ω =
∏
n>0En,F =

∨
n>0 En, (Xn)n>0,Pη0) (Pη0 is the

probability law of a Markov chain with initial distribution η0 and transitionsMn).

Most of our discussion will be in terms of the n−time predicted and updated marginals,

ηn, η̂n respectively:

ηn(fn) =
γn(fn)

γn(1)
=

∫

E0:n

fn(xn)Qη0,n(dx0:n)

η̂n(fn) =
γ̂n(fn)

γ̂n(1)
=

∫

E0:n

fn(xn)Q̂η0,n(dx0:n)

γn(fn) =

∫

E0:n

fn(xn)

n−1∏

q=0

Wq(xq)Pη0,n(dx0:n)

γ̂n(fn) =

∫

E0:n

fn(xn)

n∏

q=0

Wq(xq)Pη0,n(dx0:n)

where Qη0,n(dx0:n) =
1
Zn

∏n−1
q=0 Wq(xq)Pη0,n(dx0:n) is the predicted Feynman-Kac path

measure, Q̂η0,n(dx0:n) =
1
Ẑn

∏n
q=0Wq(xq)Pη0,n(dx0:n) is the updated Feynman-Kac path

measure, Zn, Ẑn are the normalizing constants, Pη0,n(dx0:n) is the finite dimensional

probability law of the inhomogeneous Markov chain, fn ∈ Bb(En) and we adopt the

convention
∏
∅ = 1.

3.2 Feynman-Kac Representation of Interacting SMC

We now demonstrate that the interacting SMC algorithm has a Feynman-Kac repre-

sentation, assuming we perform (multinomial) resampling at every iteration. We adopt

an interpretation of the algorithm identical to the interacting Metropolis model of Del

Moral & Doucet (2003).

Let En =
∏m
i=1(Ti,n × Ti,n), En =

∨m
i=1(Ti,n × Ti,n), Vn =

∏m
i=1 Ti,n, Vn =

∨m
i=1 Ti,n
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and adopt initial distributions and Markov kernels:

η0(dx1:m,0) =

m∏

i=1

δyi(dyi,0)ηi,0(dy
′
i,0)

Mn(x1:m,n−1, dx1:m,n) =





∏m
i=1 δy′i,n−1 (dyi,n)Ki,n(yi,n, dy

′
i,n) 1 6 n 6 n

∗ − 1
∏m
i=1 δy′i,n−1 (dyi,n)Kn(yi,n, dy

′
i,n) n∗ 6 n 6 t

where xi,n = (yi,n, y
′
i,n) and yi ∈ Ti,0.

Now, assume ∀i = 1, . . . , m:

πi,0 ∼ ηi,0

(
πi,n × Li,n−1

)
2
∼
(
πi,n−1 ×Ki,n

)
1

(
πn × Ln−1

)
2
∼
(
πn−1 ×Kn

)
1

where ∼ denotes mutual absolute continuity here and:

(
πi,n−1 ×Ki,n

)
1
(d(x, x′)) = πi,n−1(dx)Ki,n(x, dx

′)

(
πi,n × Li,n−1

)
2
(d(x, x′)) = πi,n(dx

′)Li,n−1(x
′, dx).

Then define:

W0(x1:m,0) =

m∏

i=1

dπi,0
dηi,0

(y′i,0)

Wn(x1:m,n) =

m∏

i=1

d(πi,n × Li,n−1)2
d(πi,n−1 ×Ki,n)1

(yi,n, y
′
i,n) 1 6 n 6 n

∗

Wn(x1:m,n) =

m∏

i=1

d(πn × Ln−1)2
d(πn−1 ×Kn)1

(yi,n, y
′
i,n) n

∗ + 1 6 n 6 t

note we have used the fact that πi,n∗ ≡ πn∗ .

The above discussion allows us to ascertain the following Proposition, which is es-

sentially the time reversal formula of Del Moral (2004) (Lemma 5.5.1).

Proposition 3.1. For any h ∈ Bb(Vt) we have that:

η̂t(h) =

∫

Vt

h(y1:m,t)π
⊗m
t (dy1:m,t).



11

Remark. The proof is straightforward and given the Appendix. The result shows that

the above interpretation provides an alternative way to view the algorithm discussed in

Section 2.3.

Whilst the above Feynman-Kac representation allows us to consider our algorithm

from a purely importance sampling framework (that is, without resampling), a McKean

interpretation (e.g. Del Moral (2004)) of the flow is easily provided, which allows us to

incorporate selection steps.

3.3 Particle Approximation

In order to simulate from the model described above, we would need to sample from the

distributions of interest in the selection steps: which we are unable to do. Therefore, we

consider a particle approximation.

We simulate from the following distributions:

P(dξ
(N)
0 ) =

N∏

j=1

η0(dξ
j
0)

P(dξ(N)n |ξ(N)n−1) =





∏N
j=1Φn(r

m(ξ
(N)
n−1))(dξ

j
n) 1 6 n 6 n

∗ + 1

∏N
j=1Φn(r(ξ

(N)
n−1))(dξ

j
n) n∗ + 2 6 n 6 t

where

rm(ξ
(N)
n−1)(dxn−1) =

m∏

i=1

(
1

N

N∑

j=1

δ
ξ
j

i,n−1
(dxi,n−1)

)

r(ξ
(N)
n−1)(dxn−1) =

1

N

N∑

j=1

δ
ξj1:m,n−1

(dx1:m,n−1)

Φn(ηn−1)(dxn) =

∫

En−1

Ψn−1(ηn−1)(dxn−1)Mn(xn−1, dxn)

Ψn(µ)(dx) =
Wn(x)µ(dx)

µ(Wn)

where µ ∈ P(En), Ψn : P(En) → P(En) is the Boltzmann-Gibbs transformation and

Φn : P(En−1) → P(En). In the notation of Del Moral (2004) we have that ηNn = rm

for 1 6 n 6 n∗ and ηNn = r for n
∗ + 1 6 n 6 t. Note that the superscript N denotes

the particle approximation. We leave our results in full generality as they apply for any
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corresponding Feynman-Kac particle approximation with such a change of approximation

measure.

For the theoretical analysis to follow, we now assume the algorithm has an extra

time step with a Markov transitionMt+1 which is Dirac measure, (Et+1, Et+1) = (Et, Et)

(hence ηt+1 = η̂t, η
N
t+1 = η̂

N
t ).

3.4 Lp Bounds

We now present a convergence result, related to a bound on Lp distances of η̂Nt (h)−η̂t(h).

In terms of statistical inference we are interested in functions in the following class:

Ss(Et) = {h : h(x1:m,t) =
1

m

m∑

i=1

f(xi,t) ∩ f ∈ Bb(Ti,t × Ti,t)}.

The result we present, however, is given for a larger class of functions, in order to simplify

the proof. This class is (for 1 6 l <∞):

Sp(Et) = {h : h(x1:m,t) =
l∑

j=1

cj
( m∏

i=1

hij(xi,t)
)
∩ −∞ < cj <∞ ∀j ∩ hij ∈ Bb(Ti,t × Ti,t)}.

The result is as follows and is a simple adaptation of Proposition 2.9 of Del Moral &

Miclo (2000):

Lemma 3.2. For the particle model defined above and for any h ∈ Sp(Et), p > 1 there

exists a finite C
(p)
m,t+1

√
NE

[∣∣[η̂Nt − η̂t](h)
∣∣p
]1/p

6 C
(p)
m,t+1

l∑

j=1

|cj |
m∏

i=1

||hij||.

This implies that {η̂Nt (h) : N > 1} converges almost surely to η̂t(h) as N →∞.

Remark. The proof may be found in the Appendix. Since h ∈ Ss(Et) ⊂ Sp(Et), we have

the bound ||f ||C(p)m,t+1 for functions of actual statistical interest, as well as a form of law

of large numbers. This Lemma provides a theoretical justification of our approach.

3.5 Central Limit Theorem

In the present Section we present a CLT for our interacting SMC sampler.
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To simplify the statement of the result we make the following definitions. Firstly, that

Qn+1(f)(xn) = Wn(xn)Mn+1(f)(xn) and Qq,n = Qq+1Qq+2 . . .Qn (we adopt the conven-

tionQn,n = Id the identity operator). Secondly, the matrix Θi,n(h), h = (h
1, . . . , hd), hr ∈

Bb(Ti,n−1 × Ti,n), r = 1, . . . , d, n > 0 has (j, r)th element

Θjri,n(h) =

n∑

q=0

ηi,q
(
Qi,(q,n)[hj − ηi,n(hj)]Qi,(q,n)[hr − ηi,n(hr)]

)

where Qi,(q,n) is the marginal semigroup of Qq,n. Thirdly, denote the product space of

d-dimensional functions of interest as Ss(Et)d, with hr(x1:m,t) = 1/m
(∑m

i=1 f
r(xi,t)

)

and f = (f1, . . . , fd). Finally, denote the d−dimensional normal distribution Nd(µ,Σ)

with mean µ and covariance Σ. Throughout we make the abuse of notation that for an

operator Q, Q(h) = (Q(h1), . . . , Q(hl)).

Proposition 3.3. Under the weak integrability conditions of Del Moral (2004), pp. 300-

306 we have for any h ∈ Ss(Et)d, d > 1
√
N
(
η̂Nt (h)− η̂t(h)

)
⇒ Nd(0,Θt+1(h))

where

Θt+1(h) = Θ̂n∗(Qn∗,t+1(h, 1))+

t+1∑

q=n∗+1

Θ̃q(Qq,t+1[h− η̂t(h)])

and

Θ̃jrq (Qq,t+1[h− η̂t(h)]) = ηq
(
Qq,t+1[h

j − η̂t(hj)]Qq,t+1[hr − η̂t(hr)]
)

Θ̂jrn∗(Qn∗,t+1(h, 1)) =

m∑

l=1

[
α2lΘ

jr
l,n∗(Ql,(n∗,t+1)(f, 1)) + αlβ

j
lΘ
j(d+1)
l,n∗ (Ql,(n∗,t+1)(f, 1)) +

αlβ
r
lΘ
r(d+1)
l,n∗ (Ql,(n∗,t+1)(f, 1)) + β

j
l β
r
lΘ
(d+1)(d+1)
l,n∗ (Ql,(n∗,t+1)(f, 1))

]

with

αl =
1

m

m∏

i=1,i6=l

ηi,n∗(Qi,(n∗,t+1)(1))

βjl =
1

m

m∑

i=1,i6=l

ηi,n∗(Qi,(n∗,t+1)(f
j))

[ m∏

r=1,r 6=i,l

ηr,n∗(Qr,(n∗,t+1)(1))

]
−

η̂t(f
j)

m∏

i=1,i6=l

ηi,n∗(Qi,(n∗,t+1)(1)).
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Remark. The proof may be found in the Appendix. Our result shows that sample path

averages of functionals of interest converge weakly to a normal distribution with co-

variance Θt+1(h). The covariance expression is decomposed of the impact of the initial

stratification (Θ̂n∗) and reverting to a single approximation measure (the Θ̃n∗). It would

be of interest to prove under what conditions the variance is inferior to an ordinary (par-

allel) SMC sampler. Contrary to our Lp result and the propagation of chaos properties

below, the result does not hold for general Feynman-Kac particle approximations with

a change of approximation measure.

3.6 Propagation of Chaos

Propagation of chaos is an important area in the theoretical analysis of sequential Monte

Carlo methods; see Del Moral et al. (2005b) for example. Such properties establish

that, for a fixed time horizon t and fixed block sizes of particles (q) that the particles

become asymptotically independent with the correct (target) probability measure. That

is, since the particles are actually statistically dependent, propagation of chaos properties

demonstrate (as N →∞) that the particles behave as if they were independent.

For the following result we denote the t−time marginal distribution of the 1 6 q 6 N

particles as P
(N,q)
η0,[t]

(after mutation) and denote P̂
(N,q)
η0,[t]

after selection (note P̂
(N,q)
η0,[t]
(·) =

P
(N,q)
η0,[t+1]

(·)). Denote the tensor product of functions h ∈ Bb(En) as h ⊗ · · · ⊗ h (product

q times) as h(q) and let Q
(q)
n+1 = W

(q)
n M

(q)
n+1 with M

(q)
n+1 =Mn+1 × · · ·×Mn+1 (product q

times). We then have the following result, which relies strongly upon the theory of Del

Moral (2004) (see also Theorem 1.1 of Del Moral & Miclo (2001)):

Theorem 3.4. For any 1 6 q 6 N we have:

||P̂(N,q)
η0,[t]

− η̂⊗qt ||TV 6
(q − 1)2
N

+
2q2

N
+

1

η⊗qt (W
(q)
t )

[
D
(1)
1,t (q,N, ||W

(q)
t ||) +

(
D
(2)
1,t (q,N, ||W

(q)
t ||)

)1/2]
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where for f ∈ Bb(Eqn), 1 6 n 6 n∗

D(1)m,n(q,N, ||f ||) =
2mq2||f ||
N

+
1

η⊗qn−1(W
(q)
n−1)

[
D
(1)
m,n−1(q,N, ||Q(q)n (f)||) +

||f ||
(
D
(2)
m,n−1(q,N, ||W

(q)
n−1||)

)1/2]

D(2)m,n(q,N, ||f ||) = D(1)m,n(2q,N, ||f ||2) + 2||f ||D(1)m,n(q,N, ||f ||)

with initial values D
(1)
m,0(q,N, ||f ||) = 2mq2||f ||/N , D

(2)
m,0(q,N, ||f ||) = 6m(2q2)||f ||2/N ,

f ∈ Bb(Eq0) and

D
(1)
1,n∗+1(q,N, ||f ||) =

2q2

N
+

1

η⊗qn∗ (W
(q)
n∗ ))

[
D
(1)
m,n∗(q,N, ||Q

(q)
n∗ (f)||) +

||f ||
(
D
(2)
m,n∗(q,N, ||W

(q)
n∗ ||)

)1/2]

D
(2)
1,n∗+1(q,N, ||f ||) = D

(1)
1,n∗+1(2q,N, ||f ||2) + 2||f ||D

(1)
1,n∗+1(q,N, ||f ||)

with similar recursions for D
(1)
1,n, D

(2)
1,n, n

∗ + 2 6 n 6 t + 1.

Remark. The proof may be found in the Appendix. We note the functions, D
(1)
1,t , D

(2)
1,t

for fixed q, m will tend to zero as N → ∞. The result relaxes the assumption of Del

Moral & Miclo (2001) and Del Moral (2004) that the potential functions need to be

upper bounded. We note, however, that the penalty is that the rate at which the total

variation distance decreases to zero is much slower. It would be of interest to prove that

the rate could be increased.

4 Example 1: Bayesian Mixture Modelling

To demonstrate our methodology we consider the Bayesian analysis of mixture models

with an unknown number of components.

Mixture models are typically used to model heterogeneous data, or as a simple means

of density estimation, see McLachlan & Peel (2001) for an overview. Bayesian analysis

using mixtures has been fairly recent e.g. Richardson & Green (1997) and there is often

substantial difficulty in simulation from mixtures see Jasra et al. (2005c) for example.
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4.1 Model

We use the model from Richardson & Green (1997). The model is as follows; data

y1, . . . , yq are i.i.d with distribution

yi|θk ∼
k∑

r=1

ωrN (µr, λ−1r )

where θk = (µ1:k, λ1:k , ω1:k−1) (ω1:0 is assumed to be null). We denote the parameter

space as
⋃
k∈K{k} × Θk, with Θk the parameter space for the k−component mixture

model (and β a hyperparameter below) and K ⊂ N. The priors, which are the same

for each component r = 1, . . . , k, are taken to be: µr ∼ N (ξ, κ−1), λr|β ∼ Ga(α, β),

β ∼ Ga(g, h), ω1:k−1|k ∼ D(δ), k ∼ U{1,...,kmax} where D(δ) is the symmetric Dirichlet

distribution with parameter δ, Ga(α, β) is the Gamma distribution, shape α, scale β and

U{1,...,kmax} is the Uniform distribution on the integers 1, . . . , kmax with kmax known.

4.2 Sequential Monte Carlo Sampler

For this example we take the auxiliary distributions to be:

πn(θ, β, k|y1:q) ∝ l(y1:q; θ, k)
γnp(θ, k)p(β) n ∈ {0, . . . , t}

where γn ∈ (0, 1) is an inverse temperature to be defined below, l(·) is the likelihood

function, p denotes a generic probability density and the initial distribution (importance

distribution) is the prior. To apply the SMC sampler we use the following Markov

(MCMC) kernels (see Robert & Casella (2004) for a recent overview):

1. Update β via a Gibbs kernel.

2. Update µ1:k via a Metropolis-Hastings (MH) kernel with additive normal random

walk proposal.

3. Update λ1:k via a MH kernel with multiplicative log-normal random walk proposal.

4. Update ω1:k−1 via a MH kernel with additive normal random walk proposal on the

logit scale.
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5. Update (θ, k) via a birth/death reversible jump (RJ) kernel which is the same as

in Richardson & Green (1997) except no latent variables are simulated.

Note that for the problem we will consider the MCMC kernels mix reasonably well.

We also note, that for the trans-dimensional move, we are not constrained to use an

RJ kernel. However, our intuition is that since trans-dimensional moves are notoriously

difficult to construct, if we use a RJ kernel, a bad move will be rejected and we protect

ourselves from losing good particles. This is at the cost of having to apply reversible

moves. For example, placing kernels associated to a birth move (e.g. Green (1995)) in

the importance weight can lead to variances which are typically very high. However, by

‘filtering’ such a proposal through an accept/reject mechanism, we may obtain a smaller

variance of the importance weight and less weight degeneracy in practice.

We will apply the kernels in the following way. At odd time points we apply the

Gibbs kernel 1 and even time points apply the cycle of kernels 2-5, the initial target

density is the prior which we are able to sample from. We do not change the distribution

at even time points. This ensures regular updates at the cost of increasing the variance of

the importance weights. The backwards Markov kernels are taken to be the suboptimal

choice in Del Moral et al. (2005a) (equation 2.2). Thus, using the invariance of the

MCMC kernels, at odd time points (recall we do not change the distribution at even

time points) we have (unnormalized) incremental weight:

Wn(x1:n) = l(y1:q; θn−1, kn−1)
γn−γn−1

at even time points (and 0) the temperature parameters are equal with unit incremental

weights.

4.3 Data

For this example we consider the Hidalgo stamp data. The data are 485 measurements

(in cm) of stamp thickness for the printing of a stamp issue from different types of paper:

see McLachlan & Peel (2001) for further details.

The priors were set as in Richardson & Green (1997) of which we refer the reader for

further details. We note kmax = 30.
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4.4 Application of SMC Sampler

We ran the SMC sampler detailed above 20 times each with a population size of 500. We

took t = 750 (since we do not change densities at even time points we run the algorithm

for 1500 time points) and used the systematic resampling method with threshold 250

samples (applied after the Gibbs update).

The MH kernels had a decreasing value of the proposal variance and these were set

so that the average acceptance rate was in the range (0.15, 0.6) (as noted by Chopin

(2002) this will not necessarily mean that the kernels mix well, but it is not clear how to

construct a good global MCMC move (or Markov kernel) which is why we have resorted

to population-based simulation in the first place).

The temperature sequence was taken to be piecewise linear with γ increasing uni-

formly by 1/15000 (i.e. γ1 = 1/15000, γ2 = 2/15000 etc) for the first 150 distributions,

1/2500 for the next 125, 1/750 for the next 225 and finally 1/250 for the last 250 dis-

tributions (see Figure 1 (a)). This choice was made to help ensure that the resampling

occurred quite consistently; see Figure 1 (b) (the plot is for the first run of the algorithm).

In Figure 2 (a) we can observe the sampled k. The performance of the sampler

appears to be poor. In Figure 2 (a) there are regions of points with sampled k around

3− 5 and 7− 14. However, there does not appear to be any runs of the algorithm that

are producing a diverse set of samples in terms of k.

The problem in this example (we were unable to find algorithm settings that lead to

satisfactory results) is that the Markov kernels employed are able to sample the state

space, but do so quite slowly (see Jasra et al. (2005b) for the results of a RJ algorithm).

As a result, samples that may be about to jump between modes (and hence in a low

probability regions) are often lost at the resampling stage. We now demonstrate that

our interacting SMC sampler is able to avoid these difficulties.

4.5 Application of Interacting SMC Sampler

For the application of our method we took m = 3 samplers each run with a population of

167 particles (thus storage requirements are similar to the SMC sampler above) 20 times.
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We used the same MCMC kernels, and resampling procedure as for the SMC sampler.

For the temperatures we had a uniform cooling schedule until time t/2 at which point we

targeted our original density of interest and combined samplers (thus after resampling

for the first time after t/2 we are effectively running (non-interacting) parallel MCMC

algorithms). This was to allow enough time for the kernels to explore the full space.

For the sets we took a sequence of three sets for each sampler and constrained the

densities to lie in sets of the form

Ti,n =
⋃

k∈Ki,n

{k} ×Θk

where we took K1,n = {1, . . . , 5}, K2,n = {6, . . . , 10} K3,n = {8, . . . , 20} (n 6 145)

(i.e. the three samplers are constrained to these sets for the first 145 time points) and

K1,n = {1, . . . , 10}, K2,n = {3, . . . , 13} , K3,n = {5, . . . , 25} (146 6 n 6 375) with

Ki,n = {1, . . . , kmax} i ∈ {1, 2, 3} for the rest of the algorithm. Our choice of sets is based

upon the results of SMC sampler, i.e. the inability of the SMC sampler to adequately

represent the modes k ∈ {3, . . . , 5} and k ∈ {7, . . . , 14}. We took the first sets for the

first 145 time points (corresponding to approximately 1/4 of the distributions), then the

second for the next 130 (corresponding to 1/2 of the distributions).

To extend the space at time n we generate a new kji,n with large probability of

retaining the same value and otherwise uniform over Ki,n \ {kji,n−1} and then using the

same random walk proposal densities above (and the Gibbs kernel on βjn) if k
j
i,n =

kji,n−1 otherwise drawing from the prior (for the parameters). The backwards kernel

has distribution on k that is identical if the kji,n ∈ Ki,n−1 and the same random walk

densities, otherwise a uniform distribution over Ki,n−1 and the prior on the parameters

(thus the incremental weight is similar to a Hastings ratio).

We note that, in this type of example, we see our method as a way to assist SMC

sampling, therefore the usage of the information from the SMC sampler is used in our

simulation design (see Section 6 for further discussion).

4.6 Performance of Interacting SMC Samplers

In Figure 2 (b) we can see the performance of the interacting SMC sampler.
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The sampled k (Figure 2 (b)) show that the interacting samplers have properly

represented the full range of k which was missing under the standard SMC sampler. This

may not mean the samples are correctly approximating the target, but the results are

similar to a population-based RJMCMC algorithm that we ran (see Jasra et al. (2005b)).

Our experience with this method is that it is often best to allow a reasonable amount

of time for the samplers to correctly approximate the target on the full space (i.e. linked

to the fact that we are combining samplers with different variances). That is, when

applying the method with the points are shifted onto the correct space close to time

t, will mean poor estimates of quantities of interest. This must be counter-balanced

with the cooling schedule. For example, if we allow unconstrained sampling when the

inverse temperature is not close to 1 (this is dependent upon the problem) then it is

likely that the sampling will revert to the original SMC sampler: we are unlikely to gain

any advantage.

An important point is that if the Markov kernels used are unable to move around

the space, then our method is unlikely to provide any improvement, unless we know the

model probabilities a priori. That is, we will have samples that represent the entire

space, but they may not be in correct proportion if the kernels do not mix. In the next

example we provide a solution to this problem.

5 Example 2: Mixture Modelling in Population Genetics

For our second example we consider the analysis of multilocus genotype data using

Bayesian mixture modelling. For the statistical model, we follow Pritchard et al. (2001)

(model with no admixture), but in an attempt to make the example more realistic, we

add some element of admixture. Note that, to our knowledge, no sampling method has

ever been shown to work effectively for this class of models (that is, to move around the

variable dimension support).
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Figure 1: Effective sample size plots (a) and temperature (b) from the SMC sampler;

Hidalgo stamp data. We fitted the random beta model (Richardson & Green 1997) to

the data, the output is for a single population of 500 samples from an SMC sampler

using 750 tempered densities with a piecewise constant cooling schedule.

5.1 Model

In statistical terms, we may consider the data as a bilinear sequence of paired multinomial

observations, that is y = (y111, y112, . . . , yqL2) where yilj is observation i ∈ {1, . . . , q},

at locus l ∈ {1, . . . , L} and site j ∈ {1, 2}. We have that yilj ∈ {1, . . . , al}, i.e. there

are al alleles at locus l. Given latent variable zilj ∈ {1, . . . , k}, k ∈ {1, . . . , kmax} and

parameters θ we take:

p(yilj = a|θ, zilj = r, k) = θrla

where
∑al
a=1 θrla = 1 ∀r, l and the yilj are assumed independent given θ, z, k.

For the priors k is taken to be uniform, the zilj are i.i.d given k and are uniform on

the space. The θrl = (θrl1, . . . , θrl(al−1)) are i.i.d given k and are symmetric Dirichlet

D(δ). Therefore we have posterior density for (z, θ, k), up to proportionality, is:

π(z, θ, k|y) ∝
[∏

i,l,j

p(yilj |θ, zilj, k)
]
k!
1

k2Lq
p(θ|k)p(k)

where the factorial is included due to the invariance of the priors and likelihoods to

permutation of the labels of the parameters (see Jasra et al. (2005c) for example).
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Figure 2: Sampled k from the SMC samplers; Hidalgo stamp data. (a) is the standard

SMC sampler, (b) is the interacting SMC sampler. Note that the SMC sampler consists

of 20 runs with 500 particles each.

5.2 Interacting SMC Sampler

The SMC sampler will again employ a tempered densities strategy with MCMC updates.

To assist a reversible jump move we describe below, the algorithm is performed after a

reparameterization of the θ on to the real line via a logit transformation (denote this φ).

For the sampler we will initially stratify the model space (i.e. there are kmax samplers)

and then extend each sampler onto the entire space. This is done in a similar manner to

the previous example except that the Gibbs kernels are employed.

The MCMC moves are used as follows:

1. Update z via a cycle of single site Gibbs updates.

2. Update φ via a cycle of Gibbs updates.

3. Update (φ, z, k) via a mixture of reversible jump kernels (A) and (B).

The Markov kernel applied is thus a cycle of the above moves in the order given

and are applied so that they leave the previous density in the sequence invariant. The

backwards kernel is thus easily calculated using the form (2.2) and are thus the equation

is omitted. For the Gibbs updates see Pritchard et al. (2001). Our moves are easily
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applied even after reparameterization and model extension. The algorithm is initialized

with a draw from the prior.

We note that the example will use adaptive methods, which can be justified in the fol-

lowing way. Suppose that we adapt some kernel K via some random variable ρ (e.g. the

particle history), then the backwards kernel Lρ may be also dependent on ρ, since (re-

setting the time counter):

E

[
h(X ′)

π1(X
′)Lρ(X

′, X)

ηρ(X)Kρ(X,X ′)

]
=

∫
h(x′)π1(x

′)Lρ(x
′, x)ν(ρ)dx′dxdρ

where ν is the probability density for ρ. Application of Fubini’s Theorem provides the

appropriate unbiasedness.

Reversible Jump Move A

Move (A) is a simple (vanilla) RJ move employed to compare the move (B) with and

is performed as follows. Propose to jump from state (φ, z, k) to (φ′, z′, k + 1) with

probability bk and maintain the current (φ), generating new component parameters φk+1

say from the prior and then generating z′ from the full conditional. In the reverse death

(selected with probability dk+1), select a component to die with uniform probability. We

then invert the jump function and generate z from the full conditional.

The birth is accepted (when targeting density n) with probability min{1, A}, with:

A =
l(y;φ′, z′, k+ 1)γn

(
1
k+1

)2Lq
(k + 1)!

l(y;φ, z, k)γn
(
1
k

)2Lq
k!

× dk+1πn(z|φ, k)
(k + 1)bkπn(z′|φ′, k + 1)

where πn(z| · · ·) is the full conditional of the z given the time n.

Reversible Jump Move B

Move (B) is far more complicated and works assuming an initial stratification of the

model space. We will assume that we have an approximation of the posterior in each

dimension and use methods similar to those in Green (2003) and Hastie (2005).

More specifically, just before the time we extend the space we create a mixture ap-

proximation of the (current) target distribution in each dimension and use the methods
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of Figuierdo & Jain (2002) to fit the mixture. In order to do this we select an identifia-

bility constraint for the parameter space (recall that due to the invariance of the target

density to relabelling the parameters, there are k! symmetric modes (for a k component

model) and thus for all the samples to represent a single mode we permute them) and

fit a mixture of distributions to each model. We use the approximation in dimension k:

pk(φ) =

gk∑

j=1

vkj

{[ L∏

l=1

k∏

r=1

Nal−1(φrl; %krlj, ςkrlj)
]
k!I(φ1l∗j∗ < · · · < φkl∗j∗)

}

where (l∗, j∗) are the locus, allele pair we have chosen to identify the model and
∑gk
j=1 v

k
j =

1 ∀k.

The move is as follows. We begin by permuting the sample to obey the identifiability

constraint used in the approximation. In order to jump from (φ, z, k) to (φ′, z′, k + 1),

we select a birth with probability bk and a component to add (c say) with uniform

probability. We then select a component, p′, of the approximation (in dimension k + 1)

to anchor on, with probability vk+1p′ with the reverse anchor chosen with probability:

rkp ∝ vkpfp(φ)

where fp(·) is the component (of the approximation) density. The jump function (assume

for simplicity of notation that we add component k + 1, but in general we my add any

component), denoting the Cholesky decomposition of ςjlm as ϕjlm, is:

φ′rl = %k+1rlp′ + ϕ
k+1
rlp′ (ϕ

k
rlp)
−1[φrl − %krlp] r = 1, . . . , k

φ′(k+1)l = %k+1(k+1)lp′ + ϕ
k+1
(k+1)lp′ul

with ul ∼ Nal−1(0, I(al−1)(al−1)). If the identifiability constraint is not satisfied we reject

immediately. We propose z′ from the full conditional. The reverse death is performed

in much the same fashion, except we select a component to die with uniform probability

and invert the appropriate jump function (i.e. conditional on the anchors and component

to be removed).

We accept or reject the birth (when targeting density n) with probability min{1, A},

with:

A =
πn(z

′,φ′, k+ 1|y)
πn(z′,φ, k|y)

τk+1p′ v
k
p

τkp v
k+1
p′

dk+1πn(z|φ, k)|J |p,p′,c
bkπn(z′|φ′, k+ 1)

∏L
l=1Nal−1(ul; 0, I(al−1)(al−1))
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where |J |p,p′,c is the Jacobian:

|J |p,p′,k+1 =
[ k∏

j=1

L∏

l=1

|ϕk+1jlp′ |
|ϕkjlp|

] L∏

l=1

|ϕk+1(k+1)lp′|

and we use the notation Nk(x; a, b) to denote the k−dimensional normal density evalu-

ated at x. We follow the accept/reject decision with a random permutation of the labels

of the parameters, to allow invariance of the kernel.

5.3 The Data

For this example we use 50 (simulated) data points at 10 loci. The data were originally

simulated from the package POPGEN and of size 200 data at 100 loci (and kindly

simulated by Dr. J. Marchini, University of Oxford). The (original) data were generated

so that there were 4 classes. We set kmax = 7 (as in prior simulations we rarely sampled

k > 7) and δ = 1.

5.4 Interacting SMC Sampler

We ran 7 samplers for 600 time points. The temperatures increased uniformly from time

1 to 300 and then run on the target density. We stratified the space for 250 time points

(at which time we constructed our mixture approximation). The final 300 time points

were parallel MCMC sampling after the first time all samplers resampled (that is all the

weights are uniform after this point and thus there is no reason to resample). We used

systematic resampling with threshold half the sample size and ran each sampler with

1500 samples. For the approximation, we ordered on the first locus and allele.

Our choices are made for the following reasons (note that we do not claim any

optimality for this sampler).

The samplers need to be run for a substantial time to allow appropriate movement

around the state-space and to correct for the initial stratification. Another reason (for

the time specification) is the kernels cannot be expected to mix quickly (even using the

adaptive method). We ran parallel MCMC samplers, since for the adaptation procedure

to be effective, the samples need to be close to the correct target. We also, as stated
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above, want to correct for the stratification (which is more ‘sudden’ that for the previous

example) and allow the samplers to interact.

The choice of identifiability constraint was arbitrary and we found that if we changed

this, it seldom provided an improvement.

To improve the parallel MCMC run, we may use any of the strategies mentioned in

Jasra et al. (2005a), but have not done so.

5.5 Performance of Interacting SMC Sampler

The algorithm was run on a Pentium 4 3 Ghz machine and took approximately 3.5 hours

to run. The sampled k can be seen in Figure 3 and we can see that we have been able to

successfully represent most of the models in the state space. For a vanilla reversible jump

sampler (using jump A), we cannot correctly move around the space and even running

the sampler for a long time will not be as reliable as the results presented here. This is

because we have allowed interaction of the samples and parallel samplers.

To gauge the effectiveness of the adaptationmethod, we ran a reversible jump sampler

for 50000 iterations (on the target) with the adaptive move and found that the acceptance

rate for the birth of move A and B were 0.17% and 0.87% and the deaths were 0.21% and

1.3%, that is, the rate increases by about 8 times. Note this comparison used reversible

jump, since the initial stratification and tempering can lead to distorted acceptance rates.

We note that our sampler has only returned a posterior which favours three classes,

but due to the data reduction, there may not be enough signal in the data to suggest

fitting four components.

6 Discussion

In this article we have presented an interacting sequential Monte Carlo method. We

demonstrated that the method can significantly improve the performance of SMC sam-

plers for mixtures of distributions with an unknown number of components.

Our method relies upon an initial stratification and tempering by extending the space.

The choice of such stratification can be made based upon a pilot run of an SMC sampler.
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sample

k
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1
2

3
4
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6

7

Figure 3: Sampled k from the SMC sampler; population genetics example. We ran 7

samplers, each with 1500 samples for 600 timepoints.

Indeed, we recommend that our method is best used in the situation where the original

SMC sampler has not performed well (note that for our examples, without adaptation,

the method requires little extra coding effort). Our second example ran samplers on

each dimensionality, respectively, which solves the problem for small model spaces.

The example in Section 5 featured the use of adaptive methods. We believe that

this is preferable to single chain adaptive MCMC, for the following reason. Our method

effectively deals with the adaptation problem, that is, adaptive methods seek to find

kernels which mix well over the space, but in order to this, the initial kernel must mix

well over the space. Our approach uses, in the beginning, flat densities and population-

based methods (i.e. resampling) to allow reasonable movement around the space and

thus information to adapt the kernels.

We have noted that we combine particles from different state spaces, which are likely

to have different variances in terms of the importance weights. This can mean (and

we have observed this behaviour in simulations) that particles from certain regions are

lost due to the fact that they do not have high target density when compared to other

samplers. We recommended that the samplers are not combined until close to time t. A

more satisfactory approach may be to use different tempering strategies (that is different

for each sampler) so that samples have similar variance; it would be of interest to see if it

is possible to derive an optimal set of temperatures so that samplers have approximately

similar variance.
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One method, that could deal with the above concerns, could be to only combine

certain samplers. That is, to use instants n∗1 < · · · < n∗r at which to combine the samples

between samplers (at time n∗r we have a single sampler). This approach would allow

local diversity and provide an interesting way to allow the samplers to interact, via the

selection step. From a theoretical point of view, it is clear that our convergence results

may be extended to this case.

We have demonstrated our method for trans-dimensional problems only. The reasons

for this are three-fold. Firstly, it is far easier to stratify the space for trans-dimensional

problems than for most general simulation scenarios. Secondly, trans-dimensional prob-

lems are those for which it is most straightforward to detect poor coverage of the state-

space. Lastly, trans-dimensional simulation is one of the most difficult problems in

statistical computation and is vital for most areas of modelling. One way to use our

methodology for fixed dimensional simulation would be to stratify the energy space (as

in Kou et al. (2005)) and to extend this. This approach would provide an interesting

area of future research.
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A Proofs

Proof of Proposition 3.1. Consider γ̂t(h):

γ̂t(h) =

∫

E0:t

h(y′1:m,t)

t∏

q=0

Wq(xq)Pη0(dx0:t).
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Applying Fubini’s Theorem and integrating over the Dirac measures we obtain:

γ̂t(h) =

∫

V0:t

h(y′1:m,t)

m∏

i=1

{
dπi,0
dηi,0

(y′i,0)
( n∗∏

q=1

d(πi,n × Li,n−1)2
d(πi,n−1 ×Ki,n)1

(y′i,n−1, y
′
i,n)
)
×

( t∏

q=n∗+1

d(πn × Ln−1)2
d(πn−1 ×Kn)1

(y′i,n−1, y
′
i,n)
)}
PKηi,0,t(dy

′
i,0:t)

where PKηi,0,t is the law of the inhomogeneous Markov chain:

PKηi,0 ,t(dyi,0:t) = ηi,0(dyi,0)
{n∗−1∏

n=1

Ki,n(yi,n−1, dyi,n)
}{ t∏

n=n∗

Kn(yi,n−1, dyi,n)
}
.

Now, we have that for all i = 1, . . . , m:

PLπt(dyi,t:0) =
dπi,0
dηi,0

(yi,0)
{ n∗∏

q=1

d(πi,n × Li,n−1)2
d(πi,n−1 ×Ki,n)1

(yi,n−1, yi,n)
}
×

{ t∏

q=n∗+1

d(πn × Ln−1)2
d(πn−1 ×Kn)1

(yi,n−1, yi,n)
}
PKiηi,0(dyi,0:t)

where

PLπt(dyi,t:0) = πt(dyi,t)
{ t−1∏

q=n∗

Lq(yi,q+1, dyi,q)
}{ n∗−1∏

q=0

Li,q(yi,q+1, dyi,q)
}
.

Therefore we can easily obtain:

γ̂t(h) =

∫

Vt

h(y′1:m,t)π
⊗m
t (dy

′
1:m,t)

from which we can derive the result.

Proof of Lemma 3.2. Recall that:

ηNn (dx1:m) =

m∏

i=1

1

N

N∑

j=1

δ
ξji,n
(dxi,n) 0 6 n 6 n

∗

ηNn (dx1:m) =
1

N

N∑

j=1

δ
ξ
j
1:m,n
(dx1:m,n) n

∗ + 1 6 n 6 t + 1.

We first prove a result related to functions of the form h(x1:m) =
∏m
i=1 hi(xi) hi ∈

Bb(Ti,t × Ti,t) for the Lp distances between ηNn∗ and ηn∗ , and then apply Minkowski’s

inequality so that the result applies for h ∈ Sp(En∗). The result will allow a simple

induction step in the proof of the Lemma.
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Suppose m = 1, then by Proposition 2.9 of Del Moral & Miclo (2000) (note the fact

that the measurable space changes in our context does not invalidate the application

of the Proposition - it is valid when the measurable space changes with time index) we

have:

√
NE

[∣∣[ηN1,n∗ − η1,n∗ ](h1)
∣∣p
]1/p

6 ||h1||C(p)n∗

where the measure ηNi,n refers to the marginal for the i
th Feynman-Kac particle approxi-

mation (resp. ηi,n the n−time marginal). We thus conjecture that:

√
NE

[∣∣
m∏

i=1

ηNi,n∗(hi)−
m∏

i=1

η1,n∗(hi)
∣∣p
]1/p

6
( m∏

i=1

||hi||
)
C
(p)
m,n∗(A.3)

for some finite C
(p)
m,n∗ .

Assume the induction hypothesis (A.3) for m = s and consider m = s+ 1:

√
NE

[
|[ηNn∗ − ηn∗ ](h)|p

]1/p
=
√
NE

[∣∣
s+1∏

i=1

ηNi,n∗(hi)−
s+1∏

i=1

ηi,n∗(hi)
∣∣p
]1/p

=
√
NE

[∣∣ηNs+1,n∗(hs+1)
[ s∏

i=1

ηNi,n∗(hi)−
s∏

i=1

ηi,n∗(hi)
]
+

( s∏

i=1

ηi,n∗(hi)
)[
ηNs+1,n∗(hs+1)− ηs+1,n∗(hs+1)

]∣∣p
]1/p

6
( s+1∏

i=1

||hi||
)
C
′(p)
s,n∗ +

( s+1∏

i=1

||hi||
)
C
′(p)
n∗

where we have used Minkowski’s inequality, the mutual independence of the particle

systems and Proposition 2.9 of Del Moral & Miclo (2000), which completes the induction

proof with C
(p)
s+1,n∗ = C

(p)
s,n∗ + C

′(p)
n∗ .

Now consider h ∈ Sp(En∗), we have for a given m:

√
NE

[∣∣
l∑

j=1

cj
( m∏

i=1

ηNi,n∗(hi)−
m∏

i=1

ηi,n∗(hi)
)∣∣p
]1/p

6
√
N

l∑

j=1

|cj |E
[∣∣

l∑

j=1

cj

m∏

i=1

ηNi,n∗(hi)−

m∏

i=1

ηi,n∗(hi)
∣∣p
]1/p

6 C
(p)
m,n∗

l∑

j=1

|cj|
m∏

i=1

||hij ||.(A.4)
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To prove the Lemma, let n∗ + 1 6 n 6 t + 1 and assume that (A.4) holds for time

n− 1. We conjecture that

√
NE

[∣∣[ηNn − ηn](h)
∣∣p
]1/p

6 C(p)m,n

l∑

j=1

|cj|
m∏

i=1

||hij ||

for some finite C
(p)
m,n.

Now it is clear that by the Marcinkiewicz-Zygmund inequality (e.g. Shiryaev (1996))

that

√
NE

[∣∣[ηNn − Φn(ηNn−1))](h)
∣∣p
]1/p

6 ||h||Bp.

We may apply Minkowski’s inequality to obtain:

√
NE

[∣∣[ηNn − ηn](h)
∣∣p
]1/p

6
√
NE

[∣∣[ηNn − Φn(ηNn−1))](h)
∣∣p
]1/p
+

√
NE

[∣∣[Φn(ηNn−1)− Φn(ηn−1))](h)
∣∣p
]1/p
.(A.5)

To deal with the second term on the RHS of (A.5), we use Lemma 2.2 of Del Moral &

Miclo (2000), that is:

Φn(η
N
n−1)(h)− Φn(ηn−1))](h) =

1

ηn−1(Wn−1)

([
ηNn−1(Qn(h))− ηn−1(Qn(h))

]
+

Φn(η
N
n−1)(h)

[
ηn−1(Wn−1)− ηNn−1(Wn−1)

])

(recall Qn(xn−1, dxn) = Wn−1(xn−1)Mn(xn−1, dxn)) thus we have

√
NE

[∣∣[Φn(ηNn−1)− Φn(ηn−1))](h)
∣∣p
]1/p

6
2C
(p)
m,n−1

∑l
j=1 |cj |

∏m
i=1

(
||hij||||Wi,n−1||

)

ηn−1(Wn−1)

where we have used the fact that the potential functions are of product form (wrt particle

systems) as are the semigroups Qn and the induction hypothesis. As a result, we have:

√
NE

[∣∣[ηNn − ηn](h)
∣∣p
]1/p

6 C(p)m,n

l∑

j=1

|cj|
m∏

i=1

||hij ||

which clearly ends the proof of the first part of the Lemma.

The second part of the Lemma is proved by considering the sets AN = {
∣∣[ηNt+1 −

ηt+1](h)
∣∣p > ( 1N )p/2−1−ε} (N > 1, ε > 0, p > 2(1 + ε)) and applying the first Borel-

Cantelli Lemma.



32

Proof of Proposition 3.3. We begin by proving that for any n∗ 6 n 6 t that ηn(Qn,t+1(h̄)) =

0 with h̄ = h − ηt+1(h); this will be useful later in the proof. Since γn(1) = 1 we note

that

ηn(Qn,t+1)(h̄)) =

∫

E0:t+1

[ t∏

q=0

Wq(xq)

]
(h(xt+1)− ηt+1(h))Pη0(dx0:t+1)

= ηt+1(h)[1−
∫

E0:t

[ t∏

q=0

Wq(xq)

]
Pη0(dx0:t)]

= 0.

Our proof is constructed by proving a central limit theorem for the product measure
√
NηNn∗(Qn∗,t+1(h̄)) and then using this result as part of an inductive proof on the time

parameter. We prove the result for d = 1 only as extension to larger d may be achieved

via the Cramér-Wold device.

Let n = n∗ and arbitrary fi, gi ∈ Bb(Ti,n−1 × Ti,n), hi = (fi, gi) as a simple corollory

to Proposition 9.4.2 in Del Moral (2004) we have for each i = 1, . . . , m:

√
N
(
ηNi,n(hi)− ηNi,n(hi)

)
⇒ N2(0,Θi,n(hi))

note that we have used the fact that γi,n(1) = 1 ∀i, n.

Since we are interested in a CLT for

√
N

(
1

m

m∑

i=1

ηNi,n(Qi,(n,t+1)(f))

m∏

j=1,j 6=i

ηNj,n(Qj,(n,t+1)(1))− ηt+1(h)
m∏

i=1

ηi,n(Qi,(n,t+1)(1))

)

we consider the δ−method with function:

F2m(u11, u12, . . . , um1, um2) =
1

m

m∑

j=1

uj1

m∏

i=1,i6=j

ui2 − ηt+1(h)
m∏

i=1

ui2.

As the particle systems are independent, application of the δ−method results in

√
NηNn (Qn,t+1(h̄)) ⇒ N

(
0,

m∑

i=1

θ2i,n(h)
)

(A.6)

where θ2i,n(h) = (αi, βi)
′Θi,n(Qi,(n,t+1)(f, 1))(αi, βi) and we have dropped the superscripts

for notational convenience.
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Let n = n∗+1, in order to prove a CLT for
√
NηNn (Qn,t+1(h̄)) we follow the approach

of Chopin (2004) Lemma A.1 and consider the characteristic function:

E

[
exp{it

√
N [ηNn (Qn,t+1(h̄)]

]
= E

[
E
[
exp{it

√
N [ηNn (Qn,t+1(h̄))− Φn(ηNn−1)(Qn,t+1(h̄))]}

∣∣FNn−1
]
×

exp{it
√
N [Φn(η

N
n−1)(Qn,t+1(h̄))]}

]
.

where we have denoted the σ−algebra generated by the particles at time n− 1 as FNn−1.

Consider

√
N(Φn(η

N
n−1)(Qn,t+1(h̄))) =

√
NηNn−1(Wn−1Mn(Qn,t+1(h̄)))

ηNn−1(Wn−1)
.

By assumption Wn−1(x1:m,n) > 0 and since g(y) = 1/y is continuous for y ∈ R+ we have

by Lemma 3.2:

1

ηNn−1(Wn−1)
−→p 1

where→p denotes convergence in probability. By the result (A.6) and using the corollary

to Slutsky’s theorem we obtain:
√
NηNn−1(Wn−1Mn(Qn,t+1(h̄)))

ηNn−1(Wn−1)
⇒ N

(
0,

m∑

i=1

θ2i,n−1(h)
)

where we have used the semigroup property of Qn,t+1.

Additionally, conditional on FNn−1, we have that

1√
N
(Qn,t+1(h̄)(ξ

j
1:m,n)− Φn(ηNn−1)(Qn,t+1(h̄)))

forms a triangular array, with N i.i.d elements and satisfies the Lindeberg condition (see

Del Moral (2004) p. 294) thus applying the CLT for triangular arrays we yield:

√
N
(
ηNn (Qn,t+1(h̄))− Φn(ηNn−1)(Qn,t+1(h̄))

)
⇒ N

(
0, ηn(Qn,t+1(h̄)

2)
)

where we have used

lim
N→∞

E[(Qn,t+1(h̄)− Φn(ηNn−1)[Qn,t+1(h̄)])2|FNn−1] −→a.s ηn
(
(Qn,t+1(h̄))

2
)

via Lemma 3.2 and clearly Qn,t+1(h̄) ∈ Sp(En) (where →a.s denotes almost sure conver-

gence). Application of Theorem 25.12 in Billingsley (1995) yields:

lim
N→∞

E

[
exp{it

√
N(ηNn (h)− ηn(h))}

]
= exp

{
− t2
[
ηn(Qn,t+1(h̄)

2) +

m∑

i=1

θi,n−1(h)
]
/2
}
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and thus
√
NηNn (Qn,t+1(h̄))⇒ N

(
0, ηn(Qn,t+1(h̄)

2) +
∑m
i=1 θi,n−1(h)

)
.

We now propose the induction hypothesis:

√
NηNn (Qn,t+1(h̄)) ⇒ N (0,Θn(h)).(A.7)

for n∗ + 2 6 n 6 t+ 1 and f ∈ Ss(En).

Following the above arguments for characteristic functions and applying the induction

hypothesis (A.7) yields that the asymptotic variance is:

Θn(h) = Θn−1(h) + ηn(Qn,t+1(h̄)
2)

which completes the proof.

Proof of Theorem 3.4. We first consider n = 0 and assume 2 6 q 6 N (the proof for

q = 1 is trivial) with f ∈ Bb(Eq0) and note that by Proposition 8.6.1 of Del Moral (2004):

|E
[
(ηN0 )

⊗q(f)− η⊗q0 (f)
]
| = |E

[
(

m∏

i=1

r�q(ξ
(N)
i )R

(q)
Ni
)(f)− η⊗q0 (f)

]
|

where

r�q(ξ
(N)
i ) =

1

(N)q

∑

α∈〈q,N〉

δ
ξ
α(1)
i ,...,ξ

α(q)
i

R
(q)
Ni
=
(N)q
N q
Idi +

(
1− (N)q

N q

)
R̃
(q)
Ni

where (N)q = N !/(N− q)!, 〈q,N〉 is the set of all one-to-one mappings of {1, . . . , q} into

{1, . . . , N} and α is such a mapping, R̃(q)Ni : T
2q
i,0 × T 2qi,0 → [0, 1] is a Markov kernel (see

Del Moral (2004) p. 289 for details) and Idi is the identity operator on T
2q
i,0.

Now we have that for any f ∈ Bb(Eq0):

E[(
m∏

i=1

r�q(ξ
(N)
i ))(f)] = η⊗q0 (f)

since the product measure in the expectation operates on seperate parts of the function.

Therefore:

|E
[
(ηN0 )

⊗q(f)− η⊗q0 (f)
]
| = |η⊗q0

(
(

m∏

i=1

R
(q)
Ni
− Id)(f)

)
|
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where Id is the identity operator on Eq0. Note that:

m∏

i=1

R
(q)
Ni
− Id =

m∏

i=1

(
(N)q
N q
Idi +

(
1− (N)q

N q

)
R̃
(q)
Ni

)
− Id

=

[ m∏

i=1

(
(N)q
N q
Idi +

(
1− (N)q

N q

)
R̃
(q)
Ni

)
−
(
(N)q
N q

)m
Id

]
−
(
1−
(
(N)q
N q

)m)
Id

=

(
1−
(
(N)q
N q

)m)[
R̃
(q)
N − Id

]

where R̃
(q)
N is a Markov kernel:

R̃
(q)
N =

(
1−
(
(N)q
N q

)m)−1[ m∏

i=1

(
(N)q
N q
Idi +

(
1− (N)q

N q

)
R̃
(q)
Ni

)
−
(
(N)q
N q

)m
Id

]
.

As a result:

|E
[
(ηN0 )

⊗q(f)− η⊗q0 (f)
]
| =

(
1−
(
(N)q
N q

)m)
|η⊗q0
(
(R̃
(q)
N − Id)(f)

)
|

6

(
1−
(
(N)q
N q

)m)
η
⊗q
0

(
R̃
(q)
N (|f − η

⊗q
0 (f)|)

)

6

(
1−
(
(N)q
N q

)m)
osc(f).

Since (1− (N)q/N q) 6 q2/N , elementary manipulations yield:

|E
[
(ηN0 )

⊗q(f)− η⊗q0 (f)
]
| 6 2mq2||f ||

N
.(A.8)

We will also require a bound on E
[
((ηN0 )

⊗q(f)− η⊗q0 (f))2
]
. This is obtained via:

E
[
((ηN0 )

⊗q(f)− η⊗q0 (f))2
]
= E

[
(ηN0 )

⊗q(f)2 − η⊗q0 (f)2
]
−

2E
[
(ηN0 )

⊗q(f)η⊗q0 (f)− η⊗q0 (f)2
]
.

Now

|E
[
(ηN0 )

⊗q(f)2 − η⊗q0 (f)2
]
| = |E

[
(ηN0 )

⊗(q,2)(f (2))− η⊗(q,2)0 (f (2))
]
|

6
2m(2q)2||f ||2

N

where η⊗(q,2) = η⊗q × η⊗q, f (2) = f ⊗ f and we have used the result (A.8) (note the

inequality holds for any q as |E
[
(ηN0 )

⊗q(f)− η⊗q0 (f)
]
| 6 osc(f)). Thus

|E
[
(ηN0 )

⊗q(f)2 − η⊗q0 (f)2
]
| 6 6m(2q)

2||f ||2
N

.(A.9)
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Now consider the time point n = 1, f ∈ Bb(Eq1)

|E
[
(ηN1 )

⊗q(f)− η⊗q1 (f)
]
| = |I1 + I2|

I1 = E
[
(ηN1 )

⊗q(f)− Φ(q)1 ((ηN0 )⊗q)(f)
]

I2 = E
[
Φ
(q)
1 ((η

N
0 )
⊗q)(f)− η⊗q1 (f)

]

where Φ
(q)
n : P(Eqn−1)→ P(Eqn) is the semigroup:

Φ(q)n (µ)(f) =
µ(Q

(q)
n (f))

µ(Q
(q)
n (1))

where µ ∈ P(Eqn−1).

Firstly, considering I1:

|I1| 6 E
[
|E
[
(ηN1 )

⊗q(f)− Φ(q)1 ((ηN0 )⊗q)(f)|FN0
]
|
]

6
2mq2||f ||
N

recall FN0 is the σ−algebra generated by ξ
(N)
0 and we can argue in an analogous manner

to (A.8).

Secondly, for I2, applying Lemma 2.2 of Del Moral & Miclo (2000) we have:

|I2| 6
1

η⊗q0 (W
(q)
0 )

[
|E
[
(ηN0 )

⊗q(Q
(q)
1 (f))− η⊗q0 (Q

(q)
1 (f))

]
|+

|E
[
Φ
(q)
1 ((η

N
0 )
⊗q)(f)

(
η⊗q0 (W

(q)
0 )− (ηN0 )⊗q(W

(q)
0 )
)]
|
]
.

By (A.8) we obtain:

|E
[
(ηN0 )

⊗q(Q
(q)
1 (f))− η⊗q0 (Q

(q)
1 (f))

]
| 6 D

(1)
m,0(q,N, ||Q

(q)
1 (f)||)

where we have denoted the bound on |E
[(
(ηNn )

⊗q(f) − η⊗qn (f)
)p]| as D(p)m,n(q,N, ||f ||).

Applying Hölder’s inequality we have:

|E
[
Φ
(q)
1 ((η

N
0 )
⊗q)(f)

(
η⊗q0 (W

(q)
0 )− (ηN0 )⊗q(W

(q)
0 )
)]
| 6 E

[
Φ
(q)
1 ((η

N
0 )
⊗q)(f)2

]1/2 ×

E
[(
η⊗q0 (W

(q)
0 )− (ηN0 )⊗q(W

(q)
0 )
)2]1/2

6 ||f ||E
[(
η⊗q0 (W

(q)
0 )− (ηN0 )⊗q(W

(q)
0 )
)2]1/2

.
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We thus have:

D
(1)
m,1(q,N, ||f ||) =

2mq2||f ||
N

+
1

η⊗q(W
(q)
0 )

[
D
(1)
m,0(q,N, ||Q

(q)
1 (f)||) +

||f ||
(
D
(2)
m,0(q,N, ||W

(q)
0 ||)

)1/2]

and arguing as for (A.9)

D
(2)
m,1(q,N, ||f ||) = D

(1)
m,1(2q,N, ||f ||2) + 2||f ||D

(1)
m,1(q,N, ||f ||).

Since the proof used for n = 1 will apply for any 1 6 n 6 n∗ we thus define the

recursion for D
(1)
m,n, D

(2)
m,n in the statement of the proof (i.e. by induction).

To obtain the bound on the total variation distance, we note:

||P(N,q)η0,[t+1]
− η⊗qt+1||TV = sup

f :Eqt+1→[0,1]

|P(N,q)η0,[t+1]
(f)− η⊗qt+1(f)|.

Now

|P(N,q)
η0,[t+1]

(f)− η⊗qt+1(f)| 6 |P(N,q)
η0,[t+1]

(f)− E
[
(ηNt+1)

⊗q(f)
]
|+ |E

[
(ηNt+1)

⊗q(f)
]
− η⊗qt+1(f)|

6
(q − 1)2
N

+ |E
[
(ηNt+1)

⊗q(f)
]
− η⊗qt+1(f)|

where we have used part of the proof of Theorem 8.3.3 of Del Moral (2004).

In order to complete the proof, note that since m = 1 when n = n∗+1 (immediately

after mutation) we have

D
(1)
1,n∗+1(q,N, ||f ||) =

2q2

N
+

1

η⊗qn∗ (W
(q)
n∗ ))

[
D
(1)
m,n∗(q,N, ||Q

(q)
n∗ (f)||) +

||f ||
(
D
(2)
m,n∗(q,N, ||W

(q)
n∗ ||)

)1/2]

D
(2)
1,n∗+1(q,N, ||f ||) = D

(1)
1,n∗+1(2q,N, ||f ||2) + 2||f ||D

(1)
1,n∗+1(q,N, ||f ||)

and similar definitions for recursions (i.e. as in the statement of the proof) when n >

n∗ + 1. Thus we have that:

|E
[
(ηNt+1)

⊗q(f)
]
− η⊗qt+1(f)| 6 D

(1)
1,t+1(q,N, ||f ||)

6
2q2

N
+

1

η⊗qt (W
(q)
t )

[
D
(1)
1,t (q,N, ||W

(q)
t ||) +

(
D
(2)
1,t (q,N, ||W

(q)
t ||)

)1/2]

where we have used ||f || 6 1 and that D(1)1,t+1 is non-decreasing function in terms of the

norm.
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Due to the above arguments:

|P(N,q)η0,[t+1]
(f)− η⊗qt+1(f)| 6

(q − 1)2
N

+
2q2

N
+

1

η⊗qt (W
(q)
t )

[
D
(1)
1,t (q,N, ||W

(q)
t ||) +

(
D
(2)
1,t (q,N, ||W

(q)
t ||)

)1/2]

since the construction is true for any f ∈ Bb(Eqt+1) with ||f || 6 1 we have:

||P(N,q)
η0,[t+1]

− η⊗qt+1||TV 6
(q − 1)2
N

+
2q2

N
+

1

η⊗qt (W
(q)
t )

[
D
(1)
1,t (q,N, ||W

(q)
t ||) +

(
D
(2)
1,t (q,N, ||W

(q)
t ||)

)1/2]

as required.

REFERENCES

Andrieu, C. & Moulines E. (2003). On the ergodicity properties of some adaptive

MCMC algorithms, Technical Report, University of Bristol.

Andrieu, C. & Robert C. P. (2001). Controlled MCMC for optimal sampling, Tech-

nical Report, Universitié Paris Dauphine.
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Yor, M., Lecture notes in Math. 1729 1–145. Springer: Berlin.

Del Moral, P. & Miclo, L. (2001). Genealogies and increasing propagation of chaos

for Feynman-Kac and genetic models. Ann. Appl. Prob., 11, 1166-1198.

Del Moral, P., Doucet, A. & Jasra, A. (2005a). Sequential Monte Carlo samplers,

Technical Report (under revision), University of Cambridge.

Del Moral, P., Doucet, A. & Peters, G. W. (2005b). Asymptotic and increasing

propagation of chaos properties for genealogical particle models, Technical Report,
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Algorithm 2.1 Interacting Sequential Monte Carlo Sampler.

1. (Initialization)

• Set n = 0.

• For i = 1, . . . , m, j = 1, . . . , N draw ξji,0 ∼ ηi,0.

• Set

wi,0(ξ
j
i,0) ∝

πi,0(ξ
j
i,0)

ηi,0(ξ
j
i,0)
.

Iterate steps 2. and 3.

2.(Selection)

• For i = 1, . . . , m.

• If
([∑

j wi,n(ξ
j
0:n)

2
]
/
[∑

l wi,n(ξ
l
0:n)
]2
)−1

< L (for some threshold L), resample the

particles for sampler i and set all weights equal to 1.

3.(Mutation)

• Set n = n+ 1, if n = n∗ go to 4.

• For i = 1, . . . , m, j = 1, . . . , N draw ξji,n ∼ Ki,n(ξji,n−1, ·).

• Reweight

Wi,n(ξ
j
i,(0:n)) =

νi,n(ξ
j
i,0:n)

νi,n−1(ξ
j
i,0:n−1)Ki,n(ξ

j
i,n−1, ξ

j
i,n)

wi,n(ξ
j
i,0:n) ∝ wi,n−1(ξ

j
i,0:n−1)Wi,n(ξ

j
i,0:n).

4.(Single Sampler)

• Sample all particles with the same Markov kernel, reweight and then resample (for

each sampler). Sample all particles from kernel Kn∗+1.

• Form new particles ξjn∗+1 = (ξ
j
1,n∗+1, . . . , ξ

j
m,n∗+1).

• Continue with a single SMC sampler targeting the appropriate densities.


