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Abstract. Quasi-life tables, in which the data arise from many concurrent, independent, discrete-time renewal
processes, were defined by Baxter (1994), who outlined some methods for estimation. The processes are not observed
individually, only the total numbers of renewals at each time point are observed. Crowder and Stephens (2003)
implemented a formal estimating-equation approach that invokes large-sample theory. However, these asymptotic
methods fail to yield sensible estimates for smaller samples. In this paper, we implement a Bayesian analysis based
on MCMC computation that works equally well for large and small sample sizes. We give three simulated examples,
studying the Bayesian results, the impact of changing prior specification, and empirical properties of the Bayesian
estimators of the lifetime distribution parameters. We also study the Baxter (1994) data, and uncover structure that
has not been commented upon previously.
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1 Introduction

Repairable systems, and the stochastic processes that underpin them, are topics of considerable interest in reliability,
econometrics, finance and many other fields of application. For example, Baxter (1994) studied a situation in which
a manufactured unit contains a replaceable component whose failure is fatal to the unit. A component is installed at
time 0 and is liable to failure at subsequent times 1, 2, . . . ; if it fails at time s, a new component is installed, and
the new component is liable to failure at times s + 1, s + 2, . . .. Some of the failure data presented in Baxter (1994)
are given in Table 1, which is to be read across rows: these are the aggregated numbers of failures per month over 58
months with 4145 new units installed each month. For instance, there are no failures until month 8, by which time
8 × 4145 units are in operation (these having been installed at months 0,. . . ,7). Such data constitute an example of

Table 1: Failure data from Baxter (1994, Table 1)
0 0 0 0 0 0 0 2 6 6 1 11

26 18 22 28 19 18 48 35 46 69 48 73
141 116 96 120 99 110 140 97 126 99 57 90
132 98 113 178 115 99 227 139 185 169 226 230
262 109 90 224 207 202 269 149 163 259

a discrete-time data-collection exercise. In the following subsections we describe suitable statistical models for the
analysis of such data.

The complicating feature arising in the analysis is that only monthly-aggregate data are available, that is, we
do not observe individual failure and repair events, but rather only totals of numbers of repairs across a cohort of
individual experimental units. This complication makes direct statistical inference difficult to implement.

In this paper, we consider a Bayesian solution to the inference problem. We feel that the Bayesian solution offers
a full representation of uncertainty, and also facilitates coherent means for prediction. However, some alternative
approaches are available. For example, Baxter (1994) used a likelihood approach based on the basic renewal properties
of the recorded data. Maximum likelihood estimates of the lifetime distribution probabilities may also be obtained
using an EM approach; see, for example, Karim et al. (2001) for a successful application in a related data analysis
problem. Such an approach may be feasible here, but is not the focus of this paper. Finally, Crowder and Stephens
(2003) developed estimating equations for this type of data that rely on large-sample theory for their theoretical
properties. Unfortunately, this approach can fail when the data are not extensive; we demonstrate this in section 8.1.
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2 A discrete-time failure model

In the basic scenario a component is installed at time r, and is liable to failure at time r + s (s = 1, 2 . . .). When it
fails it is immediately repaired or replaced, and so on. At any given time there will be at most one failure incident,
and a typical repair record for the component might look like the following:

Time 1 2 3 4 5 6 7 8 9 10 11 12
Number of Repairs 0 0 1 0 1 0 0 0 1 1 0 0

This record corresponds to failures at times 3, 5, 9, and 10, giving lifetimes of lengths 3, 2, 4, 1 followed by a lifetime
censored at two months.

To construct a general model for this experimental situation, a discrete lifetime distribution is considered: this will
be denoted by q = (q1, q2, . . .), where

qs = pr(component fails at age s) (s = 1, 2, . . .).

We will refer to this specification as non-parametric, though it could be said that the qs are the parameters; subsequent
modelling may use a restricted parametric form for q. In this paper we concentrate in the main on the non-parametric
case. We will also use the survivor function,

Q(s) = pr(X > s) = 1− q1 − q2 − . . .− qs (s = 1, 2, . . .),

with Q(0) = 1, and the discrete hazards,

hs = pr(X = s)/pr(X ≥ s) = qs/Q(s− 1) (s = 1, 2, . . .).

We note for reference the standard relationships

qs = hs

s−1∏

j=1

(1− hj), Q(s) =
s∏

j=1

(1− hj) (s = 1, 2, . . .) (2.1)

3 Aggregation of renewal processes

As identified above, data aggregation complicates the inference procedure. We consider the discrete-time renewal
process defined in Section 2. Suppose that br units are installed at time r (r = 0, 1, 2, . . .) and operate independently.
The failure record up to time t for a unit among the cohort installed at time r (r < t) can be represented as a binary
vector of length t− r, with 1 for a component failure and 0 otherwise. The record for the ith unit in the rth cohort is
then

c
(r)
i = (c(r)

i,r+1, c
(r)
i,r+2, . . . , c

(r)
it ),

where c
(r)
i,r+s = 1 if the unit has a failure at time r+s, and c

(r)
i,r+s = 0 otherwise. Schematically, the parallel discrete-time

renewal processes for the br units can be displayed as in Table 2, in which the ith row is c
(r)
i and

dr,r+s =
br∑

i=1

c
(r)
i,r+s

is the total number of failures in cohort r at time r + s. In practice, the c
(r)
i,r+s are often not individually recorded,

Table 2: Array of failure indicators for cohort of units installed at time r
time r + 1 r + 2 . . . t

unit i = 1 c
(r)
1,r+1 c

(r)
1,r+2 . . . c

(r)
1t

2 c
(r)
2,r+1 c

(r)
2,r+2 . . . c

(r)
2t

. . . . . . .
br c

(r)
br,r+1 c

(r)
br,r+2 . . . c

(r)
brt

Total dr,r+1 dr,r+2 . . . drt

the available data comprising only the totals, dr,r+s. Sometimes the dr,r+s themselves are not individually recorded,
but only the totals over cohorts. This latter case occurs when the manufacturer keeps a record only of the numbers
of replacement components supplied to the customers at times 1, 2, . . ..

In subsequent sections, we will consider a likelihood-based approach based on the non-parametric model of the
failure distribution, and a Bayesian solution to the inference problem. The Bayesian approach enables full inference
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about the failure distribution, and predictions about future failures, but involves complicated numerical computation
of the posterior. We introduce a Markov chain Monte Carlo (MCMC) scheme that facilitates the computation of the
missing-data likelihood and the posterior distribution for the failure distribution, and yields a straightforward method
of prediction. We also address some aspects of prior specification. Finally, we illustrate the computational method
with examples, concluding with an analysis of the Baxter (1994) data.

4 Likelihood function

In this and subsequent sections, we consider a likelihood-based approach that eventually leads to a Bayesian solution via
MCMC. We first consider the construction of a tractable likelihood function by using a data-augmentation approach.

4.1 Constructing the likelihood function

Suppose that unit i, installed at time r, suffers mi component-failures up to time t. The completed lifetimes of the
failed components (i.e. the lengths of the intervals between 1s in the c

(r)
i -sequence) are li1, . . . , limi

, say, and li,mi+1

is the right-censored lifetime of the component in place and still functioning at time t; li,mi+1 = 0 if the mith failure
is actually at time t. With these definitions, the probability for the failure record of unit i is

p(c(r)
i |q) =

mi∏

j=1

qlij ×Q(li,mi+1) (4.1)

and the joint probability for all br records of the r-cohort, i.e. for the whole br × (t− r + 1) table, is

p(c(r)
1 , . . . , c

(r)
br
|q) =

br∏

i=1

p(c(r)
i | q). (4.2)

This likelihood cannot be written effectively as a function of the column totals drs alone because the drs are not, in
general, sufficient statistics. To see this, consider the two tables

(
1 0
0 1

)
and

(
1 1
0 0

)
,

which have the same column totals but different probabilities, q1(1 − q1)q2 and q2
1(1 − q1 − q2), respectively. The

likelihood function based on the drs alone is obtained by summing (4.2) over all tables with rows c
(r)
i generated by

repositioning the 0s and 1s in each column so that the drs-values are preserved: there are
(

br

drs

)
different arrangements in

column s, and the total number of contributing tables is the product of these binomial coefficients over s = r+1, . . . , t.
The failure records can be assembled in a b+ × t table, say C, where b+ =

∑t−1
r=0 br and C is structured as

C = (CT
1 , . . . , CT

t )T, in which the ith row of Cr+1 contains the repair record c
(r)
i of component i in cohort r. Thus,

Cr+1 (r = 0, . . . , t− 1) is a br × t matrix of 0s and 1s:

Cr+1 =




0 · · · 0 c
(r)
1,r+1 c

(r)
1,r+2 · · · c

(r)
1t

0 · · · 0 c
(r)
2,r+1 c

(r)
2,r+2 c

(r)
2t

...
...

...
... · · · ...

0 · · · 0 c
(r)
br,r+1 c

(r)
br,r+2 c

(r)
brt




,

in which the first r columns contain only zeros. From (4.1), the log-likelihood function for c
(r)
i , the ith row of Cr, is

m
(r)
i∏

j=1

{q
l
(r)
ij

Q(l(r)
i,m

(r)
i +1

)}, (4.3)

in terms of the lifetime lengths l
(r)
ij and the censored final lifetime l

(r)

i,m
(r)
i +1

, and where m
(r)
i is the number of failures

of the ith component in the rth cohort. The log-likelihood for Cr is obtained by summing (4.3) over i = 1, . . . , br, and
then that for C is obtained by summing again over r = 0, . . . , t− 1. The constraints on C are that the column sums
are d+s =

∑s−1
r=0 drs. Thus, with b+s =

∑s
r=0 br, there are

(
b+s

d+s

)
possible configurations of 0s and 1s in column s of C.

For the data in Baxter (1994, Table 1) br = 4145 and t = 58, and only the d+s were recorded. The number of possible
tables consistent with these totals is in excess of 106870 so it is clearly not feasible to marginalize by summing over all
tables for inference about q. An approximate likelihood inference method is described in the next section.
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4.2 A Monte Carlo Approximation to the Likelihood

For likelihood inference, or for use in a Bayesian analysis, it is possible to construct a Monte Carlo approximation that
avoids the need for enumeration of the likelihood function for the potentially vast number of missing data tables. Let
d = (d+1, . . . , d+t), and denote the space of all possible failure record profiles as C, and its restriction to those profiles
compatible with row-total data d as Cd. Then the likelihood p(d | q) for probabilities q can be written

p(d | q) =
∑

C∈Cd

p(d, C | q) =
∑

C∈Cd

p(C | q) (4.4)

as C implies d, where p(C | q) is given by (4.3) summed over all possible tables that satisfy the column total constraints.
The exhaustive summation over the set Cd is prohibitive, even for relatively small t and b. Let nC = |Cd| denote the
cardinality of Cd, that is, the number of tables that satisfy the column constraints. Then

p(d | q) =
∑

C∈Cd

p(C | q) = nC

nC∑

i=1

p(C(i) | q)
(

1
nC

)
= nCE [p(C | q)] ∝ E [p(C | q)]

where the expectation is taken with respect to a uniform distribution on the elements
{
C(i), i = 1, 2, . . . , nC

}
of Cd.

Thus a function, L(q) proportional to the full likelihood, defined by

L(q) = E [p(C | q)] (4.5)

is a function on which inference about q can be based. Therefore, instead of an exhaustive evaluation, we recommend
a Monte Carlo evaluation; that is, we generate a large number, N say, of tables independently and uniformly on Cd,
C1, C2, . . . CN and then approximate the summation in (4.5) by the Monte Carlo average

L̂(q) =
1
N

N∑

i=1

p(Ci | q)

Sampling uniformly on Cd is straightforward, due to the nature of the constraints; we only have to maintain column
totals, and meet the constraints independently for each column. As noted above, there are

(
b+s

d+s

)
possible configurations

for column s, and therefore
t−1∏
s=0

(
b+s

d+s

)

tables in total. To obtain a simulated column, we select d+s positions without replacement from the b+s available.
We have found that in moderately sized problems (t = 20, say) the Monte Carlo approximation often converges

adequately with N = 5000, and this is sufficient to facilitate numerical maximization of the likelihood. In fact, N = 100
often gives a good approximation.

This Monte Carlo approach motivates our subsequent method of analysis, that is a Bayesian analysis based on an
augmented likelihood. We shall see that a Markov chain constructed jointly on the parameter space of q (or a related
set of parameters) and on Cd will facilitate full Bayesian inference.

5 Bayesian analysis

Inferences can be obtained within a Bayesian framework by formulating a missing-data representation. An MCMC
scheme can then be used to impute the missing values and simultaneously make inference about the model parameters.
In the present case, if only the totals, drs, are recorded, the missing values comprise the individual records, the rows of
C. First, we utilize a reparameterization from the failure probabilities to a set of hazard probabilities, as this simplifies
our Bayesian approach considerably.

5.1 Hazard parameterization and augmented likelihood

Bayesian inference is facilitated via a hazard parameterization. We now demonstrate how the likelihood can be
simplified using the missing-data representation based on C, whose constituent matrices are the Cr+1 given above.
The likelihood function for the augmented data, C, is relatively simple, as all the individual lifetimes and censoring
times are known.

For the augmented data likelihood, suppose that there are, in total, nj lifetimes of length j and mj lifetimes
right-censored at j (j = 1, . . . , t) across all components (i = 1, . . . , br) in all cohorts (r = 0, . . . , t − 1). Then the
missing-data or augmented likelihood is

p(C | q) =
t∏

j=1

q
nj

j Q(j)mj
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In terms of the hazard probabilities, this is

t∏

j=1

{
hj

j−1∏

k=1

(1− hk)

}nj {
j∏

k=1

(1− hk)

}mj

=
t∏

j=1

hj
nj (1− hj)wj

where wt = mt and

wj =
t∑

k=j+1

(nk + mk) for j = 2, . . . , t− 1.

In the hazard parameterization, therefore, the likelihood is effectively a product of independent binomial terms. This
derivation is, of course, similar to that of the Kaplan-Meier estimator of survival. Inference will now proceed for
h1, h2, . . ., rather than for q1, q2, . . .; subsequent reparameterization to q1, q2, . . . will then follow in straightforward
fashion in the simulation-based approach that we use.

5.2 Prior specification and truncation coherence

We consider two forms of prior distribution, and then consider prior coherency issues by noting the use of anchored
prior distributions.

5.2.1 The Dirichlet Prior

A Dirichlet prior distribution for q, q ∼ Dirichlet(α1, . . . , αt+1), is given by

p(q1, . . . , qt) =
Γ (α1 + . . . + αt+1)

t+1∏
s=1

Γ(αs)

{
t∏

s=1

qαs−1
s

}
Q(t)αt+1−1. (5.1)

This corresponds to a prior for h in which h1, . . . , ht are independent with marginal distributions

hj ∼ Beta (αj , αj+1 + . . . + αt+1) (j = 1, . . . , t).

The Dirichlet prior is commonly used for multinomial data, but is not conjugate to a likelihood based on the failure
probabilities derived from censored data. However, it is conjugate for a likelihood in the hazard parameterization
and this is the principal reason for using that parameterization. A more natural, and flexible, conjugate prior for the
discrete hazards would again have hj a-priori independent, but with hj ∼ Beta(αj , βj) for j = 1, . . . , t, as suggested
by Mosiman (1962).

5.2.2 Truncation coherence

The Dirichlet prior for q is attractive, due to its tractability, but some care needs to be taken in the choice of the
hyperparameters (α1, . . . , αt+1). We wish to express our prior opinion for the countably infinite set of probabilities
(q1, q2, . . .), without prior knowledge of when truncation will occur, that is, a prior distribution on the space of discrete
distributions on the positive integers. The truncation issue is important as we may wish to combine data from different
sources where the underlying lifetime distribution is the same, but the truncation mechanism used differs from source
to source. We also feel that a truncation coherent prior is more intuitively satisfying.

Prior distributions on probability and distribution functions have been much discussed in the Bayesian nonpara-
metrics literature, and we use similar ideas to construct our prior here. Note, however, that we are restricting attention
to priors for discrete distributions over a countable set of possible values, so many aspects of the nonparametric spec-
ification are simplified. We make the connection with our work though a discussion of the Dirichlet process (Ferguson
(1973)) defined as follows. Let (Θ, B) be a measurable space, let F0 be a probability measure on the space, and let
α be a positive real number. A Dirichlet process, DP (α, F0), is any distribution of a random probability measure F
over (Θ, B) such that, for all finite partitions (A0, . . . , Ar) of Θ,

(F (A0), . . . , F (Ar)) ∼ Dirichlet(αF0(A0), . . . , αF0(Ar)).

Parameter α is the precision parameter, and measure F0 is the baseline or anchoring measure. This definition en-
compasses distributions on quite general measurable spaces. In this paper, the components of the finite partitions
of interest are extremely straightforward: we have Aj ≡ {j} for integer j, as we are dealing with discrete lifetime
distributions only. Thus the anchoring measure F0 is merely a discrete probability measure on the positive integers,
with mass function f0.

For j = 1, 2, . . ., we let αj = αf0(j) = απj , say, where α > 0, and π1, π2, . . . is a given probability distribution on
{1, 2, . . .}. The advantage of this formulation is that we can use a familiar parametric form for the πj : for example,
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• geometric: πj = θj−1(1− θ)

• logarithmic: πj = −θj/{j log(1− θ)}
• truncated-Poisson: πj = e−λλj/{(1− e−λ)j!}

Alternatively, we can use a discretized version of a continuous model, such as the Weibull: πj = F (j) − F (j − 1),
where F is the specified distribution function. For the Dirichlet distribution, with this choice of hyperparameters, we
have

E(qj) = πj and var(qj) =
πj(1− πj)

(α + 1)
. (5.2)

The parameter α controls the variability in the prior; increasing α encourages the prior on (q1, q2, . . .) to be nearer
the anchoring distribution, and if α is near 0 there is relatively large prior variability.

The advantage of using a prior structured in the way described above is that it is coherent across different levels
of data-truncation. In the present application censoring occurs for the rth cohort of components at time t − r
(r = 0, . . . , t − 1). On the other hand, a Dirichlet prior with αj = 1 for j = 1, . . . , t + 1, which might be selected as
the default non-informative prior, is not consistent with a similar one adopted for a different value of t. For example,
E(qj | follow-up to time t) = 1/(t+1), which depends on t. The truncation coherent prior, when truncation is at time
t, is Dirichlet with parameter vector

(α1, α2, . . . , αt,

∞∑

j=t+1

αj).

Also, in terms of the hazard parameterization, under this prior structure

E(hj) =
πj

Q(π)(j − 1)
and var(hj) =

πj(1− πj)
Q(π)(j − 1){αQ(π)(j − 1) + 1} ; (5.3)

so, again, the hazard prior expectation and variance behave sensibly.
We have chosen not to elaborate the model further but adding another level to the hierarchy, although this is

certainly a possible strategy. For example, rather than fixing π to be defined by the geometric discrete mass function
with parameter θ fixed, we could place a hyperprior on θ. Furthermore, the moment results in equations (5.2) and
(5.3) allow us to consider particular functional forms for the expected probability or hazard, and then backsolve to
obtain the appropriate prior specifications. For example, if we require a priori

E(hj) =
πj

Q(π)(j − 1)
= g(j)

for some function g on the non-negative integers (bounded by zero and 1), then we backsolve to obtain

πj = g(j)
j−1∏

i=1

(1− g(i))

and allow α to control the variability about this expectation. Finally, in particular circumstances, prior knowledge of
the components under study can be used to specify the expected probabilities/hazards.

5.3 Posterior distribution

Assuming follow-up only until time t, with the truncation coherent prior described in the previous section, the joint
posterior is given up to proportionality by

p(h | C) ∝
t∏

j=1

h
α∗j−1

j (1− hj)β∗j−1,

where

α∗j = αj + nj and β∗j =
∞∑

r=j+1

αr + wj (j = 1, . . . , t).

Hence, conditional on C, the hj are a-posteriori independent with

hj |C ∼ Beta(α∗j , β
∗
j ) (j = 1, . . . , t).

On integrating out h1, . . . ht, the log of the normalizing constant in the joint posterior is
t∑

j=1

{log Γ(α∗j ) + log Γ(β∗j )− log Γ(α∗j + β∗j )}.

Note that the calculation of the posterior quantities under the Mosiman prior is identical, with β∗j = βj + wj for each
j.
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6 Bayesian computation

The key to the Bayesian solution is to use Markov chain Monte Carlo (MCMC) to explore the joint space of probability
vectors (the t-dimensional simplex) and life tables with fixed column totals, St×Cd say. The posterior distribution for q
is formed via the augmented likelihood and the prior distribution for the unknown parameters. Let d = (d+1, . . . , d+t).
Then, following the argument used in section 4.2, we have

p(q | d) ∝ p(d | q)p(q) =

{ ∑

C∈Cd

p(d, C | q)

}
p(q) =

{ ∑

C∈Cd

p(C | q)

}
p(q)

An alternative view of this posterior calculation has C as a parameter in the model. Then the joint posterior of interest
can be manipulated as follows:

p(q, C | d) =
{

0 C /∈ Cd

p(C | q)p(q) C ∈ Cd

Our strategy involves utilizing the hazard parameterization, then marginalizing the joint posterior out over the hazard
probabilities, and constructing a Metropolis-Hastings algorithm on the space of missing tables, that is, we explore the
marginal posterior distribution for C on Cd, denoted below by πd. After the acceptance or rejection of a candidate
table has been carried out, the new hazard/failure probabilities can be sampled directly from the conditional posterior
distribution given in Section 5.3; for the hazard probabilities this distribution is the product of Beta distributions that
may be sampled trivially. A related approach was used in Stephens and Crowder (2004) for the analysis of warranty
data; in that case the cell centries in the upper triangle of a square, two-way table with fixed margins were imputed
using MCMC with the objective of performing Bayesian inference for the warranty lifetime distribution.

We note here that the marginal posterior distribution for C is, in general, not uniform. If it were, we could
sample directly from it, and have no need for MCMC. The distribution is not uniform as we have proposed a proper
lifetime distribution for the failure times.

6.1 MCMC moves

For moves on the table space, Cd, in the complete table there are b+ rows and t columns with column totals d+s

(s = 1, . . . , t) and some structural zeros. Any Metropolis-Hastings (MH) step should only propose moves that obey
these constraints. An initial legitimate starting table must be constructed; this is straightforward, as we merely fill
each column of the table independently in such a way that the column constraints are met. There are four obvious
types of move.

I Entire table changes: this move involves independent sampling from the uniform distribution on Cd. This
is achieved, essentially, by using a random permutation within each of the columns of the augmented table
(retaining the structural zeros). This global move may permit large changes in the likelihood function, but may
only be accepted rarely.

II Column-changes: a column, s say, is selected uniformly at random and filled with binary digits, independently,
subject to the column-sum constraints. There are

(
b+s

d+s

)
possible configurations for column s, and we sample uni-

formly from them. The proposed column is accepted/rejected according to the usual MH acceptance probability;
in this case that reduces to the likelihood ratio.

III Element-changes of entries in a column: a column, s say, is selected uniformly at random, and one of the d+s

non-zero column entries is selected uniformly at random and a randomly chosen pair, a 1 and a 0, are swapped.
Again, the MH acceptance probability reduces to the likelihood ratio. This move is a local (incremental) version
of Type I.

IV Element-switches: a pair of columns, s1 and s2, say, is selected at random and one non-zero element in each
column is chosen. Suppose that element k1 of column s1 and element k2 of column s2 are selected: if the
corresponding entries in C are Ck1s1 and Ck2s2 , respectively, the proposed new table is chosen to be identical to
the current one but with

Ck1s1 = 0 Ck1s2 = 1
Ck2s1 = 1 Ck2s2 = 0 .

This move preserves the column totals (we have added and subtracted 1 from the column totals for columns s1

and s2) and the other table constraints.

Move IV is the most “local” of the three types. Moves I and II require re-calculation of the likelihood for each of
the components corresponding to the first b+s rows of C, whereas Move IV only involves a likelihood change for
components k1 and k2.
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In each case the MH step described above has acceptance probability for candidate table C ′ and current table C
given by

min {1, πd(C ′)/πd(C)} . (6.1)

We justify this in the following discussion. Recall the general Metropolis-Hastings formulation: if the target distribution
πd(C) is to be sampled, and the Metropolis-Hastings proposal density for moving from C to C ′ is denoted P (C, C ′),
then the acceptance probability is

min
{

1,
πd(C ′)P (C ′, C)
πd(C)P (C,C ′)

}
.

For Move I, P (C, C ′) = P (C ′) and is equal to the prior distribution over the table space, which is uniform, and hence

P (C ′, C)
P (C, C ′)

=
P (C)
P (C ′)

= 1.

For Move II, P (C, C ′) = Ps(C ′s)P(s)(C(s)) where Cs relates to column s, and C(s) denotes the remaining columns of
the table; note that C ′(s) = C(s), as the columns apart from s are left unchanged. Therefore for Move II,

P (C ′, C)
P (C, C ′)

=
Ps(Cs)P(s)(C(s))
Ps(C ′s)P(s)(C(s))

=
Ps(Cs)
Ps(C ′s)

= 1

as column s is being sampled from its uniform prior distribution. For Move III, the proposal kernel is symmetric,
that is

P (C,C ′) = P (C ′, C) ∴ P (C ′, C)
P (C, C ′)

= 1.

Finally, for Move IV, the proposal kernel is again symmetric, and the same argument applies. Thus, in each case the
Metropolis-Hastings ratio reduces to the ratio of marginal posterior quantities, as in equation 6.1. The only other
check that we must carry out is that the Markov chain is irreducible on the table space, but the presence of Move I
in the mixture kernel and the feasible starting value, ensures this, and hence ensures that the stationary distribution
of the chain is the correct target distribution, πd, by standard theory (see, for example, Tierney (1994)).

6.2 A Note on Censoring and Auxiliary variables

A referee has raised the issue of overcoming problems with censoring by including the unobserved failure times of
components as further missing data, and including updates for these auxiliary parameters as part of the MCMC
routine. This is certainly a possible approach to follow, and is similar to the one used in the analysis of, for example,
competing risks data (see for example, Crowder (2001)). In this case, however, as there is potentially an auxiliary
variable for each row in the table, such an approach does not seem so attractive, especially as the model is reasonably
analytically tractable in the hazard parameterization.

6.3 A small example

Consider the following example in which t = 5, b = 1 for each r, and d+ = (d+1, d+1, d+3, d+4, d+5) = (0, 1, 2, 2, 3).
The initialized missing data table might be of the following form where the ∗ indicates the position of a structural

Table 3: Example Table

r 0 1 2 3 4
0 0 0 1 1 1
1 * 1 0 0 0
2 * * 1 1 1
3 * * * 0 1
4 * * * * 0

Total 0 1 2 2 3

zero. This table will have been obtained, for s = 1, 2, 3, 4, 5, by sampling d+s positions without replacement from the
rows 1, . . . s. For computing the likelihood, we store the summary statistics: these are the number, nj , of observed
lifetimes of length j, j = 1, 2, . . . , 5 indicated by the table, and the number, mj , of censored lifetimes of each length.
In this case, we have the summary table given in Table 4 and there are a total of

(
1
0

)(
2
1

)(
3
2

)(
4
2

)(
5
3

)
= 1× 2× 3× 6× 10 = 360

tables that meet the column constraints. However, by exhaustive enumeration, it can be shown that there only 21
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Table 4: Counts table for the small example

j 1 2 3 4 5
nj 6 1 1 0 0
mj 1 0 1 0 0

possible configurations of the summary statistics (one of which is given in Table 4). The likelihood, therefore, is a
sum of the augmented likelihoods evaluated conditional on the 21 sets of summary statistics in turn, with a multiplier
that corresponds to the number of tables that give rise to that set of summary statistics.

For an illustrative analysis, we use Markov chain Monte Carlo on the parameter space for q after the exact
likelihood is computed by summing over the 21 tables. We utilize the hazard parameterization, and implement
independent proposals for (h1, . . . , h5), that is, we propose moves for all five hazard parameters uniformly on the unit
interval. For illustration, we retain a uniform Dirichlet prior on q, corresponding to a prior on h of the form

p(h) = p(h1, . . . , h5) = (1− h1)4(1− h2)3(1− h3)2(1− h4).

Moves in the independence Markov chain from h to h′ are accepted with probability

min
{

1,
l(h′ | d)p(h′)
l(h | d)p(h)

}

as the proposal density is constant on (0, 1)5. In this analysis, the chain was run for two hundred thousand iterations,
with every hundredth sample stored after a burn in of ten thousand iterations. The acceptance rate was approximately
43 % for the independence Metropolis chain. The results of this analysis are contained in Table 5, and Figures
1 and 2. It is clear from the histograms and scatter plots that there is some evidence of multimodality in the
posterior distribution of the lifetime probabilities. In this instance, the independence Metropolis sampler in the
hazard parameterization is capable of moving between the modes with relative ease. The general issue of posterior
multimodality, and how it is addressed in a MCMC analysis, is discussed in the next section.

Table 5: Posterior summaries for the small example
Quantile q1 q2 q3 q4 q5

2.5 % 0.159 0.004 0.001 0.000 0.000
50 % 0.570 0.152 0.057 0.029 0.012

97.5 % 0.892 0.770 0.345 0.232 0.148

6.4 Exploring the modes of the posterior

One common problem in using MCMC moves that are local in nature is that, if the posterior distribution is multimodal,
it is possible that a single chain will get trapped in one region of high posterior probability and not explore the other
high probability regions. We have found that in smaller examples, this appears not to be a serious problem. However,
for larger examples, there is some cause from concern: chains run from different randomly-chosen starting tables attain
significantly different log-posterior values after a reasonably large number of iterations.

This issue is relevant for the Baxter (1994) data, which has an unobserved table with 4145× (58×57)/2 = 6851685
cells. As an attempt to overcome this problem, we would adopt the following pragmatic strategy. We run NC chains
from different starting tables and, after a given burn-in period, collect M samples of the hazard probability vectors
from each chain with suitable burn-in period, with the log-posterior probability for the unobserved table recorded for
each sample. It will be evident if there is multimodal behaviour, as the log-posterior values can be compared directly.
In any case, we can approximate the posterior distribution of the hazard probabilities using a Monte Carlo average
over all chains, essentially assuming that those tables that lie in the union of the chains’ sample paths comprise the
entirety of the table sample space. Equivalently, we can re-sample M of the NC ×M sampled probability vectors with
resampling weights determined by the recorded log-posterior; in the discrete table space, the required normalization
step is straightforward.

We have also explored other MCMC strategies that enable us to explore all corners of the table space Cd. Two
methods are of particular interest. The first is simulated annealing, where the Metropolis algorithm described above
is used to locate the mode of the posterior distribution on the table space. Specifically, the algorithm is run on
distribution π

1/T
d for ”temperature” T : as T → ∞ over successive iterations, the distribution tends to become more

peaked, so that eventually the Markov chain only explores the vicinity of the mode of πd. The second method is
an MCMC approach specifically designed to explore multimodal posteriors, and is based on the simulated annealing
algorithm. The generation of candidate table C ′ is achieved by a using a sequence of N intermediate Metropolis steps
and tables

C → C(1) → C(2) . . . → C(N) → C ′,
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where the Metropolis step C(r−1) → C(r) is via the Metropolis kernel π
1/Tr

d . The temperature sequence {Tr} is chosen
such that the proposal distributions are gradually less peaked, and then more peaked, to allow moves between modes
in a multimodal distribution.

The approach described above is known as tempering - see, for example, Neal (1996), and is just one of a number
of techniques that can be used to explore awkward distributions. We have found that tempering, population and
evolutionary MCMC (Liang and Wong, 2001) and sequential Monte Carlo (SMC) (see for example Doucet et al. 2001)
are particularly useful; in other work, we have extensively studied the use of such algorithms in the analysis of mixture
and clustering problems - see for example, Jasra et al. (2005), section 3.2. For general state spaces, population
methods appear to be extremely promising; we can prove uniform ergodicity of population MCMC approaches (Jasra
et al. 2005), and in the mixture context have shown that population MCMC methods often have superior performance
compared to more straightforward samplers. In the context of this paper, where the state-space is finite, tempering
appears to work well.

7 Prediction

A key objective in quasi life table analysis is prediction: if observational data are available up to time t, it is of keen
interest to make predictive inferences about the numbers of failures (and hence repairs) that will be required at times
t + 1, t + 2, . . .. These will involve components currently in operation (that is, installed at times 0, . . . , t − 1), plus
components installed subsequently.

Recall that br components are installed at time r (r = 0, . . . , t), and suppose that forecasts are required for the
numbers of repairs or replacements that will be required in the future. We assume that bt+1, . . . , bt+s are known or
can be projected. Then we wish to make predictive inferences about the column totals in an extended table with t+ s
columns.

Table 6: Data observed and to be predicted
Time 1 2 . . . t t + 1 t + 2 . . . t + s− 1 t + s
b0 d01 d02 . . . d0t d0,t+1 d0,t+2 . . . d0,t+s−1 d0,t+s

b1 * d12 . . . d1t d1,t+1 d1,t+2 . . . d1,t+s−1 d1,t+s

...
...

...
...

...
...

...
...

...
...

bt−1 * * . . . dt−1,t dt−1,t+1 dt−1,t+2 . . . dt−1,t+s−1 dt−1,t+s

bt * * . . . * dt,t+1 dt,t+2 . . . dt,t+s−1 dt,t+s

bt+1 * * . . . * * dt+1,t+2 . . . dt+1,t+s−1 dt+1,t+s

...
...

... . . .
...

...
... . . .

...
...

bt+s−2 * * . . . * * * . . . dt+s−2,t+s−1 dt+s−2,t+s

bt+s−1 * * . . . * * * . . . * dt+s−1,t+s

Total d+1 d+2 . . . d+t d+,t+1 d+,t+2 . . . d+,t+s−1 d+,t+s

Table 6 illustrates the prediction task: row r (r = 0, 1, . . .) the total numbers of repairs at times r + s (s = 1, 2, . . .)
for the br components installed at time r. The entries in the right-hand half of the table, beyond time t, are to be
predicted.

Prediction (i.e. guessing the value of as-yet-unobserved random variables) can be a computationally-complicated
task. Let D∗(t, s) denote the repairs-totals vector (d+,t+1, . . . , d+,t+s) for years (t + 1, . . . , t + s). Then, formally, the
posterior predictive distribution is

p{D∗(t, s) | d+1, . . . , d+t} =
∑

C

∫
p{D∗(t, s) | C, q} p(C, q | d+1, . . . , d+t) dq,

where p(C, q | d+1, . . . , d+t) is the posterior distribution. This expression is not generally computationally feasible. In
an MCMC setting, however, prediction is more straightforward. We examine the full conditional

p{D∗(t, s) | d+1, . . . , d+t, C, q},
which can be decomposed by examining the different rows of C. Thus, the predicted failure totals can be sampled
by sampling and summing over the individual failure profiles for each component in all of the cohorts from time 0 to
time t + s− 1 inclusive.

For an item in cohort r (r = 0, . . . , t − 1) the predicted failure profile must be sampled conditionally on C; for
component i in the rth cohort, conditional on C, it is known that the (m(r)

i +1)st lifetime is greater than l
(r)

i,m
(r)
i +1

= k,

say, as in the construction in Section 5. Thus, the next failure time will occur according to the failure distribution
defined by (q1, q2, . . .) restricted to the range (k + 1, k + 2, . . .), that is

qk+1

Q(k)
,
qk+2

Q(k)
, . . .
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This distribution may be sampled using inversion of the distribution function. For all subsequent lifetimes for this com-
ponent, the failure distribution (q1, q2, . . .) should be used, which is also the case for items in cohorts r = t, . . . , t+s−1.

For prediction from the full conditional distribution, we require the current values of qs for all s = 1, 2, . . ., and
in the posterior analysis above we have only sampled q1, . . . , qt. Sampling the values for qt+1, qt+2, . . ., conditional on
q1, q2, . . . , qt, is straightforward: we sample recursively, for s = t + 1, t + 2, . . .

qs | q1, . . . , qs−1, C ∼ Beta


αs,

∞∑

j=s+1

αj


 restricted to (0, Q(s− 1))

that is, essentially, the successive conditional priors on qt+1, qt+2, . . .. For predictions up to time t + s we need only
sample values up to qt+s.

The capability of our model to encompass prediction in a natural fashion as part of the MCMC procedure is an
attractive facet. Other methods of prediction, for example the chain-ladder method (see, for example Verrall (2000),
Mack and Venter (2000)) may also be implemented. See the further discussion of chain-ladder methods in contrast
with our approaches in Stephens et al. (2004).

8 Examples and results

We give four examples: the first three are simulated, based on geometric and non-parametric models respectively; the
final one is a discussion of the Baxter (1994) data given in Table 1.

8.1 Example 1: geometric data

In our first example we study both the analysis of a small simulated data set, and then the empirical (frequentist)
coverage performance of the posterior distribution (using the posterior credible interval) over a number of replicated
data sets. We contrast the Bayesian results with those obtained with the asymptotic estimating-equations approach
of Crowder and Stephens (2003).

First, a simulated data set was generated, for which t = 20, br = 1 (r = 0, 1, . . . , 19) and the column totals d+s

(s = 1, . . . , 20) are
0, 1, 1, 1, 3, 5, 2, 3, 2, 4, 4, 4, 5, 5, 4, 6, 7, 6, 8, 7

The simulated data form a square, upper-trangular array, with column totals fixed; the number of failures of a
particular component, and hence the row totals, are unspecified. These data were generated from a Geometric(θ)
model where, for j = 1, . . . , t,

qj = pr(Lifetime = j) = (1− θ)j−1θ and pr(Lifetime > j) = (1− θ)j = Q(j)

with θ = 0.4, and represent a case where a single unit is commissioned each month (say), and the unit us liable to
fairly frequent breakdown.

In the Geometric model we are able to make inference on the parameter θ directly. The matrix C contains
precisely dtot =

∑t
s=1 d+s ones, and the remaining

∑19
r=0(t− r)br − dtot entries are zero. In the Geometric model, the

lack-of-memory property implies that the likelihood for θ is binomial, that is

Dtot ∼ Binomial

(
19∑

r=0

(t− r)br, θ

)
,

and hence the maximum likelihood estimate and posterior distribution for θ are available with knowledge of dtot only.
Here, dtot = 78 and

∑19
r=0(t− r)br = 20× 19/2 = 190 so the maximum likelihood estimate is θ̂ = 78/190 = 0.411 with

estimated standard error
√

θ̂(1− θ̂)/190 = 0.036.
We now present the results of a Bayesian analysis of the data assuming the missing data likelihood outlined in

previous sections using a non-parametric model. We wish to estimate the hazard probabilities (h1, . . . , h20) or the
failure probabilities (q1, . . . , q20). For illustration in this example, a uniform prior distribution over the simplex is
used, that is, we assume that the α-parameters in the Dirichlet prior (5.1) each take the value 1. The results given
below were generated from a single run with burn-in 50000 iterations, 5000 samples collected over the next 2.5 million
iterations (a rather conservative sampling strategy) with total computation time less than one hour on a 1Gb RAM,
2.4GHz PC. Convergence was assessed by inspection of trace plots and autocorrelation functions; repeated runs gave
virtually identical answers. Numerical posterior summaries are given in Table 7 for the first six failure probabilities.
Figure 1 presents the results in the form of a boxplot of the sampled failure probabilities. It is clear that the MCMC
approach is reconstructing the unknown failure distribution accurately in light of the data. We note here that, for
these data, the estimating-equation approach used by Crowder and Stephens (2003) does not produce valid parameter
estimates; this is understandable, given the asymptotic justification for that approach.
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Table 7: Posterior numerical summaries for Example 1
Parameter q1 q2 q3 q4 q5 q6

True value 0.400 0.240 0.144 0.086 0.052 0.031
mle 0.453 0.248 0.136 0.074 0.041 0.022

2.5% quantile 0.283 0.027 0.005 0.013 0.002 0.001
25% quantile 0.373 0.084 0.038 0.055 0.016 0.011
50% quantile 0.433 0.128 0.071 0.083 0.032 0.023
75% quantile 0.488 0.178 0.108 0.118 0.053 0.041

97.5% quantile 0.572 0.265 0.186 0.195 0.105 0.091

We now study coverage performance of the Bayesian procedure. Table 8 contains summaries of the 95 % coverage
intervals for the Bayesian posterior median estimator for the first six probabilities in the lifetime distribution, derived
from 2000 replications of the MCMC procedure on independent simulations from the Geometric model.

Table 8: Posterior coverage of Bayesian median estimator for Example 1
Parameter q1 q2 q3 q4 q5 q6

True value 0.400 0.240 0.144 0.086 0.052 0.031
Lower 0.279 0.075 0.018 0.002 0.000 0.001
Median 0.417 0.152 0.101 0.024 0.012 0.018
Upper 0.522 0.294 0.206 0.123 0.096 0.070

This table demonstrates that the frequentist performance of the Bayesian procedure is good adequate for this relatively
small data set.

8.2 Example 2: Geometric data and prior sensitivity

The second example is a simulated data set for which t = 20, br = 20 (r = 0, . . . , 19) and the column totals d+s

(s = 1, . . . , 20) are
6, 8, 7, 19, 22, 18, 38, 28, 41, 36, 44, 55, 45, 61, 55, 69, 68, 80, 72, 85

giving dtot = 857. These data were generated from a Geometric(0.2) lifetime model, and we have the mle θ̂ = 0.2255
with estimated standard error 0.007.

The purpose of this example is to examine the sensitivity of inference to prior specification. Recall that we are
aiming to make inference about the lifetime distribution (that is, twenty probabilities) from, essentially, twenty data
(the column totals), and therefore might expect the prior to be relatively influential. We have studied the posterior
for four different priors: the uniform prior and three more informative anchored priors:

1. : Uniform, Dirichlet (not truncation coherent).

2. : Anchored prior: anchoring to Geometric(0.20) with α = 20.

3. : Anchored prior: anchoring to Geometric(0.20) with α = 200.

4. : Anchored prior: anchoring to Poisson(10) with α = 20.

Prior 3 is tightly anchored to the Geometric(0.2) distribution, and Prior 4 has a much longer expected lifetime. We
present the results of a single run using the sampling strategy as above, and present the results in graphical and
numerical form in Table 9 and Figure 2.

The boxplots in Figure 4 demonstrate the influence of the prior, but also that the likelihood contribution is not
overwhelmed. For example, for prior 4, which is a fairly strongly anchored prior on a distribution that is in conflict
with the true model, the correct geometric distributional shape is recovered for the first few lifetime probabilities.

8.3 Example 3: Non-Geometric Lifetime distribution

The third example is a simulated data set for which t = 10, br = 200 (r = 0, . . . , 9) and the lifetime distribution has
the form

q = (0.01, 0.04, 0.1, 0.1, 0.2, 0.3, 0.125, 0.05, 0.03, 0.02)

with remainder probability 0.025. The column totals d+s (s = 1, . . . , 10) are

2, 11, 25, 61, 87, 150, 195, 230, 255, 296.

For this example, a truncation coherent, loosely-anchored geometric prior with α = 10 and θ = 0.1 was used.
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Table 9: Posterior numerical summaries for Example 2
Parameter q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

True value 0.200 0.160 0.128 0.102 0.082 0.066 0.052 0.042 0.034 0.027
MLE 0.226 0.175 0.135 0.105 0.081 0.063 0.049 0.038 0.029 0.023
2.5 % 0.143 0.134 0.048 0.070 0.041 0.024 0.026 0.019 0.013 0.001

Prior 1 Median 0.187 0.181 0.106 0.098 0.073 0.056 0.062 0.044 0.038 0.017
97.5 % 0.241 0.286 0.154 0.149 0.107 0.086 0.128 0.072 0.070 0.045
2.5 % 0.148 0.113 0.099 0.057 0.051 0.018 0.026 0.007 0.002 0.000

Prior 2 Median 0.194 0.162 0.140 0.100 0.086 0.055 0.056 0.041 0.028 0.020
97.5 % 0.236 0.204 0.205 0.148 0.145 0.095 0.118 0.077 0.060 0.058
2.5 % 0.165 0.128 0.094 0.073 0.055 0.041 0.032 0.021 0.016 0.011

Prior 3 Median 0.202 0.163 0.129 0.103 0.081 0.064 0.052 0.040 0.032 0.025
97.5 % 0.236 0.203 0.166 0.140 0.114 0.093 0.081 0.064 0.054 0.047
2.5 % 0.153 0.084 0.050 0.016 0.029 0.035 0.039 0.038 0.036 0.032

Prior 4 Median 0.203 0.135 0.087 0.070 0.063 0.056 0.057 0.057 0.056 0.050
97.5 % 0.277 0.171 0.128 0.107 0.090 0.079 0.081 0.083 0.085 0.076

The results for this analysis are displayed in Figure 5 in the form of a boxplot for each of the ten lifetime probabilities.
This plot (verified over replicate runs for the same data but different MCMC starting values) demonstrates that the
posterior distribution is influenced by the prior, and does not recover the generating distribution. Under a uniform
Dirichlet prior (results not shown here) the posterior distribution better reflects the generating model, but this example
illustrates the level of difficulty of inference in this problem.

8.4 Example 4: Baxter data

We have examined a subset of the data in Baxter (1994, Table 2), taking only the first two years-worth of data, so
that t = 58. For each year, br = 4145 (r = 0, . . . , 57) and the column totals are given here in Table 1. We carried out
an MCMC analysis on a subset of these data, namely the first 24 of the 58 months.

We uncovered a previously hidden structure. Using standard Metropolis moves on the table space, and parallel
MCMC runs, it became clear that the posterior distribution πd is multimodal. Runs starting from different initial
configurations converged to one of a small number of modes. This impression of the posterior was confirmed using
simulated annealing and tempered Metropolis as described above in section 6.4. The mode in which the highest
posterior probability on Cd was obtained was revealing; it corresponds to a lifetime distribution that implies periodic
replacement of the items after 12 months of operation, in that the estimated hazard probability for month 13 was
virtually equal to 1. Given the context of the Baxter experiment, this result is entirely plausible. A complete
posterior summary for this large table space is not possible here, but we note that the modes of the multimodal
posterior distribution on the table space yield different lifetime distribution estimates. We also note that this “annual
replacement” structure (plausible in hindsight) may not have been found by methods other than MCMC exploration.

9 Discussion

We have given a Bayesian formulation for the analysis of quasi life tables. Central to our approach has been an
MCMC algorithm that samples the parameters of the unknown discrete lifetime distribution; our approach uses a
data-augmentation approach as part of the MCMC to sample the unobserved lifetimes for the components conditional
on the observed column totals.

In our analysis it is also recognized that, in the Bayesian framework, and in this inference problem in particular,
the prior specification for the probabilities in the lifetime distribution plays an important role. We also pointed out
that a standard prior specification based on the Dirichlet distribution is not coherent across different truncation times,
and this motivated us to construct coherent priors based on ideas from Bayesian nonparametrics.

The data from different cohorts have been pooled on the assumption that the ql take the same values for different
cohorts. If this is not the case, and the ql from different cohorts are unrelated, separate analyses will need to be
performed. Otherwise, it may be that there is some specified relationship between the ql for different r, e.g. reflecting
increasing component reliability over time, and then some appropriate pooling of data will be appropriate.
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Figure 1: Analysis of the small example: Posterior histograms of lifetime distribution probabilities derived from
MCMC analysis
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Figure 2: Analysis of the small example: Posterior scatterplot matrix
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Figure 3: Analysis of Example 1: Posterior boxplots of lifetime distribution probabilities derived from MCMC analysis
in the non-parametric model
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Figure 4: Analysis of Example 2: Posterior boxplots of lifetime distribution probabilities under the four priors for
Example 2
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Figure 5: Analysis of Example 3: Posterior boxplots of lifetime distribution probabilities, with the true values and the
95 % Prior interval


