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Bayes Estimates for the Linear Model

By D. V. LINDLEY AND A. F. M. SMITH

University College, London

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH SECTION
on Wednesday, December 8th, 1971, Mr M. J. R. HeALY in the Chair]

SUMMARY
The usual linear statistical model is reanalyzed using Bayesian methods and
the concept of exchangeability. The general method is illustrated by applica-
tions to two-factor experimental designs and multiple regression.

Keywords: LINEAR MODEL; LEAST SQUARES; BAYES ESTIMATES; EXCHANGEABILITY,
ADMISSIBILITY; TWO-FACTOR EXPERIMENTAL DESIGN,; MULTIPLE REGRESSION; RIDGE
REGRESSION; MATRIX INVERSION.

INTRODUCTION

ATTENTION is confined in this paper to the linear model, E(y) = AO, where y is a
vector of observations, A a known design matrix and 0 a vector of unknown para-
meters. The usual estimate of @ employed in this situation is that derived by the
method of least squares. We argue that it is typically true that there is available
prior information about the parameters and that this may be exploited to find
improved, and sometimes substantially improved, estimates. In this paper we
explore a particular form of prior information based on de Finetti’s (1964) important
idea of exchangeability.

The argument is entirely within the Bayesian framework. Recently there has been
much discussion of the respective merits of Bayesian and non-Bayesian approaches
to statistics: we cite, for example, the paper by Cornfield (1969) and its ensuing
discussion. We do not feel that it is necessary or desirable to add to this type of
literature, and since we know of no reasoned argument against the Bayesian position
we have adopted it here. Nevertheless the reader not committed to this approach
may like to be reminded that many techniques of the sampling-theory school are
basically unsound: see the review by Lindley (1971b). In particular the least-squares
estimates are typically unsatisfactory: or, in the language of that school, are in-
admissible in dimensions greater than two. This follows since, by a well-known
device in least-squares theory (see, for example, Plackett, 1960, p. 59), we may
write the linear model after transformation in the form E(z,) = ¢, for i < p and
E(z;) =0 for i > p. Here the z’s are transforms of the data, and the £’s of the
parameters. Adding the assumption of normality, we can appeal to the results of
Brown (1966), generalizing those of Stein (1956), which show that for a very wide
class of loss functions the estimate of &; by z;, for i< p is inadmissible. In Section 1
of this paper we do comment on the admissibility of the Bayesian estimates and try
to show, in a way that might appeal to an adherent of orthodox ideas, that
they are likely to be superior, at least in some situations, to the least-squares
estimates.
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1. EXCHANGEABILITY

We begin with a simple example. Suppose, in the general linear model, that the
design matrix is the unit matrix so that E(y;) = 0; for i=1,2,...,n, and that
VisVas -++» ¥V, are independent, normally distributed with known variance o2. Such a
simple model might arise if y; was the observation on the ith variety in a field trial,
of average yield ;. In considering the prior knowledge of the 0; it may often be
reasonable to assume their distribution exchangeable. That is, that it would be
unaltered by any permutation of the suffixes: so that, in particular, the prior opinion
of 0, is the same as that of 0,, or any other 6;; and similarly for pairs, triplets and
so on. Now one way of obtaining an exchangeable distribution p(0) is to suppose

2(6) = f 11 206|400,

where p(;|w), for each pu, and Q(u) describe arbitrary probability distributions.
In other words, p(8) is a mixture, by Q(w), of independent and identical distributions,
given . Indeed, Hewitt and Savage (1955), in generalization of de Finetti’s original
result, have shown that if exchangeability is assumed for every n, then a mixture is
the only way to generate an exchangeable distribution.

In the present paper we study situations where we have exchangeable prior
knowledge and assume this exchangeability described by a mixture. In the example
this implies E(6,) = u, say, a common value for each i. In other words there is a
linear structure to the parameters analogous to the linear structure supposed for the
observations y. If we add the premise that the distribution from which the 0; appear
as a random sample is normal, the parallelism between the two stages, for y and 0,
becomes closer. In this paper we study the situation in which the parameters of the
general linear model themselves have a general linear structure in terms of other
quantities which we call hyperparameters.t In this simple example there is just one
hyperparameter, p.

Indeed, we shall find it necessary to go further and let the hyperparameters also
have a linear structure. This will be termed a three-stage model and is analysed in
detail in the next section. There are straightforward extensions to any number of
stages.

Returning to the simple example with E(y;) =0, E(6;) =u and respective
variances o2 and 72, say, the situation will be completely specified once a prior
distribution has been given for u. (Effectively this is the third stage just mentioned.)
Supposing p to have a uniform distribution over the real line—a situation usually
described by saying there is vague prior knowledge of u—Lindley (1971a) has obtained
the posterior distribution of 6; and found its mean to be

o2 2
B0y -2 (1)

where y = X y,/n. The detailed analysis has been given in the reference just cited,
so we content ourselves with a brief discussion to serve as an introduction to the
general theory in the next section.

The estimates, (1), will be referred to as Bayes estimates, and it is these that we
propose as substitutes for the usual least-squares estimates. We denote them by 6%,

T We believe we have borrowed this terminology from I. J. Good but are unable to trace the
reference.
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and reserve the usual notation, 9;, for the ordinary estimates. Notice that 6% is a
weighted average of y; = 9;- and the overall mean, y, with weights inversely propor-
tional to the variances of y; and ;. Hence the natural estimates are pulled towards
a central value y, the extreme values experiencing most shift. We shall find the
weighted average phenomenon will persist even within the general model. Of course
the estimate (1) depends on o2 and 72, which will typically be unknown, but their
estimation presents no serious difficulties. If, for each i, there is replication of the y;
then ¢ may be estimated as the usual within variance. Since we have replication
(from the distribution N(u,7%) underlying the exchangeability assumption) for the
6;, 7> may be estimated. For example X (6 — 0*)%/(n—1) might be a reasonable
estimate of 7%, although in fact the reference just cited shows this can be improved
upon. These estimates of o® and 7% can be used in place of the known values used in
(1) and the cycle repeated.

Let us now digress from the Bayesian viewpoint and try to persuade an orthodox
statistician that (1) is a sensible estimate for him to consider, and indeed is better
than the least-squares estimate. Of course, 6} is a biased estimate of 6;, so its merit
cannot be judged by its variance. We use instead the mean-square error E(6} — 0;)%
This is just a criterion for judging the merit of one of the n estimates, so let us look
at the average mean-square error over the n values. Simple, but tedious, calculatlons
enable this to be found and compared with the corresponding quantity for 01, namely

o The condition for the average m.s.e. for 6} to be less than that for 9 is that

2 (0,—0)/(n—1)<272+ 6% @)

The m.s.e. for 6} depends on 6; and hence this condition does also. Consequently
the Bayes estimates are not always superior to least-squares. But consider when (2)
obtains. The 0, are, by supposition, given u, 72, a random sample from N(u,7?) so
that the left-hand side of (2) is the usual estimate of 72, had the 6; been known.
Hence the condition is that the estimate of 72 be less than 2724 02 The distribution
of the estimate is a multiple of 2 and simple calculations show that the chance—
according to the N(u, 7%) distribution—of (2) being satisfied is high for n as low as 4
and rapidly tends to 1 as n increases. But 72, as we have seen, can itself be estimated,
so with this in (1) we are almost certain to have a smaller m.s.e. for 6} than for 0,
In particular the expectation (over the 6-distribution) is always in favour of the
Bayes estimate.

That argument is heuristic. Our estimates are similar to those proposed by Stein
(1956), which he rigorously showed to be superior (in the average m.s.e. sense) to the
least-squares estimates. It has been pointed out to us by L. Brown (personal com-
munication) that (1), with known o2, 72, is an admissible estimate. Essentially this
is because the impropriety in our prior distribution is confined to one dimension—
in p. We digress to amplify this statement.

If a proper prior distribution (that is, one whose integral over the whole space is
unity) and a bounded utility function are used, then the estimate obtained by using
as an estimate that value which maximizes the expected (over the parameter distri-
bution) utility is always admissible. This is easy to demonstrate since, under the
two conditions stated, all the usual mathematical operations, such as reversals of
order of integration, are valid. Difficulties arise if either of the italicized conditions
above are violated. Quadratic loss, leading to m.s.e. is unbounded, but can con-
veniently be replaced by

1—exp{—(6—€)TA(6—e)} ©)
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for estimate e, where A is positive semi-definite and, in particular, a unit matrix.
The use of vague prior knowledge, with a uniform, and therefore improper, prior
distribution does cause difficulties and it is this feature, at least in dimensions higher
than two, that gives rise to inadmissible estimates, as Stein was the first to show.
In the general theory of the next section all our estimates will be admissible in terms
of the bounded loss function (3) provided the prior distribution is proper; we con-
jecture admissibility if the impropriety is confined to at most two dimensions.

Returning, then, to the inequality (2), we see that there is good reason within the
orthodox framework for preferring the new estimates to the old. Further justification
may be found in papers by Hoerl and Kennard (1970a, b) who discuss a special case
of the estimates that we shall develop in Section 5.3. We do not take these justifica-
tions very seriously, feeling that the Bayesian viewpoint is supported by so many
general considerations in which criteria, like mean-square error, play little or no
part, that the additional validation they provide is of small consequence.

Before proceeding to the general discussion one point must be emphasized. In the
example we have assumed an exchangeable prior distribution. The estimates (1) are
therefore only suggested when this assumption is practically realistic. It is the
greatest strength of the Bayesian argument that it provides a formal system within
which any inference or decision problem can be described. In passing from the real-
world problem to its mathematical formulation it becomes necessary to make, and
to expose, the assumptions. (This applies to any formalism, Euclidean geometry,
for example, and not just to Bayesian statistics.) Here exchangeability is one such
assumption, and its practical relevance must be assessed before the estimates based
on it are used. For example, if, as suggested above, our model described the observed
yields of n varieties in an agricultural field trial, the exchangeability assumption would
be inappropriate if one or more varieties were controls and the remainder were
experimental. However, the assumption might be modified to one of exchangeability
within controls and separately within experimental varieties. Similarly with a two-way
classification into rows and columns, it might be reasonable to assume separately
that the rows and the columns were exchangeable. In any application the particular
form of the prior distribution has to be carefully considered.

It should be noted that in assigning a prior distribution to the 6; of the above
form, whilst we are effectively regarding them as a random sample from N(u,7),
we are not thereby passing to a Model II, random effects, situation such as has been
discussed by Fisk (1967) and Nelder (1968). We are interested in the estimation of
the fixed effects. One of us (A. F. M. S.) has studied the genuine Model II situation
and obtained estimates for u (0, in the general model below) but this will be reported
separately.

We now turn to the general theory. The mathematics is not difficult for someone
familiar with matrix algebra, and the main result is stated as a theorem with corollaries.
The results in Section 2 all assume known variances. The extensions to unknown
variances will be described later.

2. GENERAL BAYESIAN LINEAR MODEL
The notation y~ N(,D) means that the column vector y has a (multivariate)
normal distribution with mean p, a column vector, and dispersion D, a positive
semi-definite matrix.
Lemma. Suppose, given 6, a vector of p; parameters,

y~N(A, 91, &) ()
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and that, given 6,, a vector of p, hyperparameters,

e1 ~N(A, 85, Co). )]
Then (a) the marginal distribution of y is
N(A;A;0,,C+A,C,AY), (6)
and (b) the distribution of ,, given y, is N(Bb, B) with
B1=ATC{'A;+C3? ©)
and
b=A7 Cily+C;1A,0,. ®)

(Here y is a vector of n elements and A;, A,, C; and C, are known positive-definite
matrices of obvious dimensions.)

The lemma is well known but we prove it here, both for completeness and because
the proof has an unexpected byproduct.

To prove (a) we write (4) in the form y = A, 0, +u, where u~ N(0, C;) and (5) as
0, = A,0,+v where v~ N(0,C,). Hence, putting these two equalities together, we
have y = A; A, 0,+ A, v+u. But, by the standard properties of normal distributions,
A;v+u, a linear function of independent normal random variables, is
N(0,C;+A,C,A]) and the result follows.

To prove (b) we use Bayes’s theorem,

p(8,]y) oc p(y|0) p(8)).
The product on the right-hand side is e~#? where Q is given by

(V—A;0)T CiH(y—A; 0)+(8,— A, 0,)" C37(6,— A, 0,)
= 0TB10,—2bT 0, +{yT Cly+ 0T AT C;1 A, 0,}

on collecting the quadratic and linear terms in 6, together, and using the expressions
(7) and (8) for b and B. Completing the square in 6;, Q may finally be written

(6,—Bb)T B-1(6, —Bb) + {yT C;1y+ 6T AT C;1 A, 6,— bT Bb). ©)

The term in braces is a constant as far as the distribution of 0, is concerned, and the
remainder of the expression demonstrates the truth of (b).

The proof of the lemma is complete, but by combining the separate proofs of
(a) and (b) an interesting result can be obtained. On integrating e~*?, with Q given
by (9), with respect to 0,, the result is proportional to the density of y, already obtained
in (a). The integration does not affect the term in braces in (9) so that, in particular,
the quadratic term in y in (9)—remembering that b contains y—may be equated to
the quadratic term obtained directly from (6), with the result that

Ci1—CiA;BAT Gl = {C; +A; G, AT}

We therefore have the
Matrix lemma. For any matrices A;, A,, C, and C, of appropriate dimensions
and for which the inverses stated in the result exist, we have

Cy1—Cy1A(AT C;1A,+C7Y) L AT Cf = {C,+A, C, AT} L. (10)
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The result follows from the last equation on inserting the form for B, equation (7).
It is, of course, easy to prove the result (10) directly once its truth has been con-
jectured: furthermore C; and C, do not have to be positive definite. It suffices to
multiply the left-hand side of (10) by C;+A; C, AT and verify that the result is a
unit matrix. The above proof is interesting because it does not require an initial
conjecture and because it uses a probabilistic argument to derive a purely algebraic
result. The matrix lemma is important to us since it provides simpler forms than
would otherwise be available for our estimates. This result has been given by Rao
(1965, Exercise 2.9, p. 29).

We next proceed to the main result. As explained in Section 1, we are dealing
with the linear model, which is now written in the form E(y) = A, 6,, the suffixes
indicating that this is the first stage in the model. We generalize to an arbitrary
dispersion matrix, C,, for y. The prior distribution of 6, is expressed in terms of
hyperparameters 0, as another linear model, E(8,) = A, 0, with dispersion matrix C,.
This can proceed for as many stages as one finds convenient: it will be enough for
us to go to three, supposing the mean, as well as the dispersion, known at the final
stage. For our inferences, and in particular for estimation, we require the posterior
distribution of 6,. This is provided by the following result.

Theorem. Suppose that, given 0,

y~N(A;0,,C), (11.1)
given 6,,
0,~N(A;0,,C,) (11.2)
and given 6,
0,~ N(A;0;,Cy). (11.3)
Then the posterior distribution of 8;, given {A;}, {C;}, 05 and y is N(Dd, D) with
D1 = AT C1 A +{C; + A, G AT} (12)
and
d=ATC{ly+{Cy+A; C;AT} 1A, A3 0, (13)

(Here 0, is a vector of p;, elements and the dispersion matrices, C;, are all supposed
non-singular.)

The joint distribution of 0, and 0, is described in (11.2) and (11.3). The use of
part (a) of the lemma enables the marginal distribution of 6, to be written down as

6,~N(A;A30;, C;+A, C;AY). (14

(Notice that this is the prior distribution of 0, free of the hyperparameters 0,.
We could have expressed the prior in this way but in applications we find the hier-
archical form more convenient.)

Then, with (14) as prior, (11.1) as likelihood, part (b) of the lemma shows that the
posterior distribution of 6, is as stated.

In particular the mean of the posterior distribution may be regarded as a point
estimate of 0, to replace the usual least-squares estimate. The form of this estimate
is a generalization of the form noted in the example of Section 1; namely, it is a
weighted average of the least-squares estimate (AT C;1A))~*AT Ci'y and the prior
mean A, A, 0, (equation (14)) with weights equal to the inverses of the corresponding
dispersion matrices, AT C;*A, for the least-squares values, C,+ A, C;AT for the
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prior distribution (14). For the simple example considered in Section 1 we produced
an heuristic argument to show that, with respect to our prior distribution, we were
confident of satisfying inequality (2) and thus achieving smaller mean square error
than with the least-squares estimate. This result can be shown to hold generally for
Bayes’s estimates derived from hierarchical prior structures, as in (11.1)-(11.3), and
will be presented in a future paper.

The matrix lemma enables us to obtain several alternative forms for the term in
braces in (12), and hence for the posterior mean and variance, both of which involve
this expression. These alternatives look more complicated than those already stated
but are often useful in applications. Notice that a computational advantage of the
matrix lemma is that its use reduces the order of the matrices to be inverted. The
matrix on the right-hand side of (10) is of order »n, whereas on the left-hand side,
apart from C; which is usually of a simple structure (often C; = ¢%I), the matrix to
be inverted is of order p;, typically much less than x.

Corollary 1. An alternative expression for D! (equation (12)) is

AT C71A + G- C1 Ay (AT G A+ C3) T AT G5 1s)

This is immediate on applying (10), with the suffixes all increased by one, to the
second term in (12).

In most applications of these results the design of the experiment rather naturally
suggests the second stage, (11.2), in the hierarchy but at the third stage we find
ourselves in a position where the prior knowledge is weak. (Least-squares results
apply when the second-stage prior knowledge is weak.) It is natural to express this
by supposing the third-stage dispersion matrix C; to be large, or to let its inverse,
the precision matrix, be zero. In the original form of (12) and (13) it is not easy to
see what happens when C3! = 0, but (15) enables the form to be seen easily.

Corollary 2. If C31 =0, the posterior distribution of 0, is N(D,d,, D) with

Dyt = AT CT1 A, + C31 - C31 A(AT C31 A) AT G (16)
and
d, = AT Cy. a”n

The form for Dj? follows by direct substitution of C3! = 0 in (15). That for d,
follows by remarking that if the second and third terms in (15) are postmultiplied
by A, the result is zero, but such postmultiplication takes place in the original
expression for d, equation (13).

This corollary is the form we shall most often use in applications.

It is possible to extend the theorem to cases where some or all of the dispersion
matrices C; are singular. This can be accomplished using generalized inverses and
will be the subject of a separate paper. Notice that we have not assumed, as in the
usual least-squares theory, that AT CT1 A, is non-singular. (The case C; = oI will
be more familiar.) In the standard exposition it is usual to constrain the individual
parameters in the vector ©; to preserve identifiability in the likelihood function.
Identifiability problems do not arise in the Bayesian formulation since, provided the
prior distribution is proper, so is the posterior, whether or not the parameters referred
to in these two distributions are identifiable or not in the likelihood function. An
example below will help to make this clear.

The situation described in Section 1 has already been discussed in detail by
Lindley (1971a), though not within the general framework which was briefly described
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in Lindley (1969). The interested reader can easily fit the example into the argument
of this section. Corollary 2 is relevant and it is an easy matter to perform the necessary
matrix calculations. We proceed to the discussion of other examples.

3. EXAMPLES

3.1. Two-factor Experimental Designs
Consider ¢ “treatments” assigned to #n experimental units arranged in b “blocks”.

If the ith treatment is applied within the jth block and yields an observation y;;, the
usual model is

with the errors independent N (0, 0?). In the general notation of (11.1)
0T = (i, o, g, -5 s By Bas -5 Bo)

and A, describes the design used.

For the second stage we argue as follows. It might be reasonable to assume that
our prior knowledge of the treatment constants {«;} was exchangeable, and similarly
that of the block constants {8;}, but that these were independent. We emphasize the
word “might” in the last sentence. In repetition of the point made in Section 1, we
remind the reader that this assumption is not always appropriate and our recipes
below are not necessarily sensible when this form of exchangeability is unreasonable.
For example, it may be known that the treatments are ordered, say oy <o <... <oy
In this case other forms of prior information are available and alternative estimates
are sensible: these will be reported on in a separate paper.

Adding the assumptions of normality we therefore describe the second stage
(11.2) by

%4~ N©,02), B;~N@O,03), p~N(w,od),

these distributions being independent. The means of «; and 8; have been chosen to
be zero. Any other value would do since the likelihood provides no information
about them, but the choice of zero mean is convenient, since it leads to straightforward
comparisons of the Bayes and (constrained) least-squares estimates as deviations from
an average level. We shall consider the case where the prior knowledge of u is vague,
so that 02 —00; w will then be irrelevant. A third stage is not necessary. We proceed
to calculate expressions (12) and (13) for the posterior distribution of 6.

The matrix C, is diagonal, so the same is true of C3! and its leading diagonal is
easily seen to be

-2 2 -2 2 —2
(cﬂ 3055 ey 050 057, o0y OF )

and as o2 —»o0, the first element tends to zero. C, is the unit matrix times o2 We can
therefore substitute these values into (12) and (13), remembering that C; =0 and
A; 7T = (w,0,...,0) and easily obtain

D1=0"2ATA,+C;!
and
d=0c"2ATy.
Hence 6%, the Bayes estimate Dd, satisfies the equations
(AT A +0*C31) 6F = ATy. (18)
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These differ from the least-squares equations only in the inclusion of the extra
term o%C3L.

In the case of a complete randomized-block design where each treatment occurs
exactly once in each block we have, on arranging the elements of y in lexicographical
order,

bt b1t g
(AIT A1+0'2 CE]") = blt (b+0'2/0'§) If Jt,b N (19)
tlb Jb,l (t+ 0'2/0'%) Ib

where 1,, is a vector of m 1’s, L, is the unit matrix of order m and J,, ,, is a matrix
of order m x n all of whose elements are 1. As usual

(A'fy T= (bty..’byl.’ "'9byt.9 Diseens ty.b)'
Notice that the matrix (19) is non-singular and the solution to (18) is easily seen to be

p*=y., of =boy+0) T bo}(y;—y), Bf =(top+0*) taf(y;—y). (20)

Consequently the estimators of the treatment and block effects (on being measured
from the overall mean) are shrunk towards zero by a factor depending on the ratio
of ¢* to o2 or 0/29 respectively. This is in agreement with the result, equation (1),
quoted above. Because this is an orthogonal design the magnitude of the ““shrinkage”
of the treatment effect does not depend on the exchangeability for the blocks, and
vice versa. With a non-orthogonal design, such as balanced incomplete blocks, the
same remark is not true.

3.2. Exchangeability Between Multiple Regression Equations

The following practical example stimulated our extension from the example of
Section 1 to the general model, and we shall report on its use in Section 5.2. The
context was educational measurement where variables x and y were related with the
usual linear regression structure. However the values of the regression parameters
depended on the school the student had attended. Novick (personal communication)
suggested to us that improved estimates might be obtained for any one school by
combining the data for all schools. This is just what the Bayes estimates do, and would
seem to be appropriate whenever exchangeability between regressions (schools) is a
sensible assumption. The mathematics for p regressor variables goes as follows.

Suppose

Yy~ N(Xj Bj, In, 0_?) (21)

forj=1,2,...,mand B; a vector of p parameters: that is 7 linear, multiple regressions
on p variables. In the notation of the Theorem, A,, expressed in terms of submatrices,
is diagonal with X as the jth diagonal submatrix; 67 is (BT, B7, ..., B,%) of mp elements.
The exchangeability of the individual B; added to normality gives us the second stage
as

Bi~N(E,Z) (22)

say. Here A, is a matrix of order mp X p, all of whose p x p submatrices are unit
matrices, and 6, = . We shall suppose vague prior knowledge of § and use the
special form of Corollary 2.
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Simple calculations show that (AT C31A,)~! = m~1Z and then that
Gl A (AT C31A)TAT Gt

is a matrix of order mp all of whose p X p submatrices are m~1Z~1. In the usual way
AT Ci1A,, expressed in terms of submatrices, is diagonal with 72X X; as the jth
diagonal submatrix. The equations for the Bayes estimates B} are then found to be

0I2X1TX1+2_1 e 0
052 XT X, + =1

0 . o2XIX,, + 21

B g* o XTy
% & —2XT
% 9.2 -1 p — Oy ) 2 y , (23)
B g o Xy

where B* = 3 Bf/m. These equations are easily solved for B* and then, in terms
of B*, the solution is

B = (072X X;+Z ) (072 XT y + 271 B%), 24

a compromise between the least-squares estimate and an average of the various
estimates. The example of Section 1 is a special case with p = 1.

Noting that Dg?, given in Corollary 2 (16), may, for this application, be written
in the form,

o7 XT X, + =1 0 =1
: : -m7
0 o2XIX,, + 51 =1
z ... 0
xp ¢+ o+ @E1TLED
0o ... =

and thus may be inverted by the matrix Lemma (10), we can obtain an explicit form
for B}, After some algebra we obtain the weighted form of (24) with * replaced by
W, B; where,

-1
W, = L%(X}‘ X;072+Z ) XT X, cr;z] XTX; 072+ Z )1 XT X 072

This shows explicitly how the information from the ith regression equation is com-
bined with the information from all equations.

3.3. Exchangeability Within Multiple Regression Equations
In contrast to the last section suppose that we have a single multiple regression
situation

y~NXB,L, 0. 25)
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In the educational context, the p regressor variables might be the results of p tests
applied to students and the dependent variable, y, a measure of the students’ perfor-
mance after training. We are interested in the case where the individual regression
coefficients in BT = (By,B,,...,B,) are exchangeable. To achieve this it may be
necessary to rescale the regressor variables: for example, to write (25) in correlation
form in which the diagonal elements of XT X are unity and the off-diagonals are the
sample correlations. (Again we emphasize the point that this is an assumption and
may not be appropriate). If the assumption is sensible then we may fit it into our
general model by supposing

By~ N(£,03). (26)

There are at least two useful possibilities: (i) to suppose vague prior knowledge for &
(Corollary 2), (ii) to put & = 0, reflecting a feeling that the j3; are small.
In (i) simple but tedious calculations analogous to those of Section 3.2 show that

B* = {I, +k(XTX) 1 (I, —p~1J )} B, @7
where k = 0%/0%. Similar calculations in (ii), using only a two-stage model, give
B* = {I, +k(XTX)1 8. 28)

The estimates (27) and (28) are very similar to those proposed by Hoerl and
Kennard (1970a). The main difference is that k in their argument is a constant
introduced for various intuitively sensible reasons, whereas here it is a variance ratio.
Also the derivation is different: Hoerl and Kennard argue within the orthodox,
sampling theory framework, whereas we use the formal theory. We do not attempt
to reproduce their most convincing argument against the least-squares estimates and
in favour of (27) and (28), merely referring the sampling-theorist to it and saying
that we agree with its conclusions with the reservation that we feel that the estimates
may not be so sensible if the exchangeability within the regression equation is
inappropriate. We return to this example in Section 5.3 where the estimation of &k
is discussed.

Examples 3.2 and 3.3 may be combined when there is exchangeability between
and within regressions. We omit the details of this and many other extensions and
instead consider how we might remove the major impediment to the application of
the general theory, namely the assumption that all the variances are known. In the
next section we show that the simple device of replacing the known variances by
estimated values in the Bayes estimates is satisfactory.

4. ESTIMATION WITH UNKNOWN COVARIANCE STRUCTURE

For the purpose of the immediate exposition denote by 6 the parameters of
interest in the general model and by ¢ the nuisance parameters. The latter will
include the dispersion matrices C; when these are unknown. Consider how the
Bayesian treatment proceeds. We first assign a joint prior distribution to 6 and ¢—
instead of just to 6—and combine this with the likelihood function to provide the
joint posterior distribution p(6, ¢|y). This distribution then has to be integrated with
respect to ¢, thus removing the nuisance parameters and leaving the posterior for 6.
Finally, if we are using quadratic loss or generally one of the forms given by (3),
we shall require the mean of this distribution, necessitating another integration.
The calculation of the mean will also require the constant of proportionality in
Bayes’s formula to be evaluated, involving yet another integration. Any reasonable
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prior distributions for ¢ that we have considered lead to integrals which cannot all
be expressed in closed form and, as a result, the above argument is technically most
complex to execute. We therefore consider an approximation to it which is tech-
nically much simpler and yet yields the bulk, though not unfortunately all, of the
information required for the estimation.

The first approximation consists in using the mode of the posterior distribution
in place of the mean. Secondly, we mostly use the mode of the joint distribution
rather than that of the 6-margin. The modal values satisfy the equations

O (6, 8]y) = 2p(6,8|y) = 0

These equations may be re-written in terms of conditional and marginal distributions.
In particular that for § may be expressed as

20616, 9p($]y) =0

or, assuming p(¢|y)#0, as
0
3P0, ) =0. (29)

But the conditional density p(8|#,y) in (29) is exactly what has been found in the
general theory of Section 2, where it was shown to be normal, with mode consequently
equal to the mean. Hence we have the result that the f-value of the posterior mode
of the joint distribution of 8 and ¢ is equal to the mode of the conditional distribution
of 0 evaluated at the modal value of ¢. Consequently all we have to do is to take the
estimates derived in Section 2 and replace the unknown values of the nuisance
parameters by their modal estimates. For example, the simple estimate (1) is replaced
by

Vils?+y [t
1/s2+1/e2°

where s2 and 2 are respectively modal estimates of o® and 72. This approach avoids
the integrations referred to above. The modal estimates of ¢ may, analogous to (29),
be found by supposing 6 known, and then replacing 6 in the result by their modes.

It is reasonably clear that the approximations are only likely to be good if the
samples are fairly large and the resulting posterior distributions approximately
normal. Also the approach does not provide information about the precision of the
estimates, such as a standard error (of the posterior, not the sampling-theoretic
distribution!) would provide. But as a first step on the way to a satisfactory descrip-
tion of the posterior distribution, it seems to go a long way and has the added merit
of being intuitively sensible. In practice we shall find it convenient to proceed as
follows. For an assumed ¢ calculate the mode 6V, say. Treating ¥ as known we
can find the mode for ¢, 1) say. This may be used to find 8, and so on. This
sequence of iterations typically converges and only involves equations for the modes
of one parameter, knowing the value of the other.

We now proceed to apply these ideas to the situations discussed in Section 3.
At the moment we have no general theory to parallel that of Section 2. The reason
for this is essentially that we do not have an entirely satisfactory procedure for
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estimating the dispersion matrix of a multivariate normal distribution. This might
appear an odd statement to make when there are numerous texts on multivariate
analysis available that discuss this problem. But just as the usual estimates of the
means are inadmissible, so are those of the variances and covariances (Brown, 1968),
and are, in any case, obtained from unrealistic priors. We hope to report separately
on this problem and defer discussion of a general theory.

5. EXAMPLES WITH UNKNOWN COVARIANCE STRUCTURE
5.1. Two-factor Experimental Designs

We saw in Section 3.1 that there were three variances in this situation: o2 the
usual residual variance contributing to the likelihood function, and o3, 0% being
respectively the variances of the treatment and block effects. (02 o0 so does not
enter.) It is first necessary to specify prior distributions for these and this we do
through the appropriate conjugate family, which is here inverse-y2, assuming the
three variances independent. This conjugate family involves two parameters and is
sufficiently flexible for most applications. Specifically we suppose

vA Ve A

A
Poye, Yala o2 ang YBZB 2 30
EVXr g K, AN =gt (30)

The joint distribution of all quantities involved can then be written down as
proportional to

(sosmens [ Lot % 9)]
1
x (02)~Htret® exp [_—272{1/& At X ot?}]

X (o%)—%‘b”ﬁ“) exp [—2—102—{1//9 A+ 2 ﬁf}] , @31)
B

where S%(u, o, B) is the sum of squares i(y;;—pu—o;— ;)%

If o2 o% and 0% are known, the mode of this distribution has been found—
equation (18), or in the balanced case, equation (20). We have only to substitute the
modal estimates of the three variances into these expressions. To find these modal
estimates we can, reversing the roles of 8 and ¢ in the general argument of the previous
paragraph, suppose u, « and 8 known. Using the corresponding Roman letters for
these modes, we easily see them to be, from (31),

52 = {vA+ SAu*, o*, B}/ (n+v+2),
52 = {ry A+ X B/ (t+v, +2), (32)
s3={vs Mg+ T BIB(b+v5+2).

These equations, together with (18) (or (20)), can now be solved iteratively.
With trial values of ¢?, o and 0%, (18) can be solved for u*, o* and B*. These values
can be inserted into (32) to give revised values for s2, s2 and s%, which can again be
used in (18). The cycle can be repeated until the values converge.

A few points about these solutions are worth noting. Firstly, the value of
S? that occurs is not the usual residual sum of squares, which is evaluated about
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the least-squares value, but the sum about the Bayes estimates. Since the former
minimizes the sum of squares, our S2 is necessarily greater than the residual:
s2 could therefore be larger than the usual estimate. Secondly, whilst it would be
perfectly possible to put v = 0 (referring to ¢2), so avoiding the specification of a
value for A and thereby taking the usual vague prior for a variance, one cannot put
v and v zero. If this is done the modal estimates for the treatment and block effects
are all zero. The point is discussed in detail in connection with the example of
Section 1 in Lindley (1971a). Essentially the estimation of ¢% and o% is difficult,
in the sense that the data contain little information about them, when tﬁ‘ey are small
in comparison with o2: the residual “noise” is too loud. In the contrary case where
02 and o% are large in comparison with o?, the actual values of »,, A,, v5 and A4 do
not matter much provided the v’s are both small.

5.2. Exchangeability Between Multiple Regression Equations

We continue the discussion of Section 3.2 but mainly confine our attention to the
homoscedastic case where o = ¢?, say, for all j. It is only necessary to specify prior
distributions for o®> and 2, the dispersion matrix of the regression coefficients
(equation (22)). As in the last example we suppose vA/o?~ x2. The conjugate distri-
bution for X is to suppose Z—! has a Wishart distribution with p, say, degrees of
freedom and matrix R. We are not too happy with this assumption but at least it
provides a large-sample solution (see the remarks at the end of Section 4). Z and o?
are supposed independent.

The joint distribution of all the quantities is now

@) imewp | -5 £.0,-X,8)7 @~ X))

x|zmexp (- £ 8,- 57 5@, )
x|Z|-#e-rDexp{—LtrZ-1R}
x (0?2 exp {—vA/[20%, 33)

assuming & to have a uniform distribution over p-space. (The four lines of (33) come
respectively from the likelihood, the distribution of @, (22), the Wishart distribution
for Z-1 and the inverse-y2 for 0%.) The integration with respect to § is straightforward
and effectively results in the usual loss of one degree of freedom. The joint posterior
density for B, o* and Z-1 is then proportional to

(@ toxp | =503 B lm=t (=X, )7 05X, B}

x| E|-Hmto—p-2 exp [—%trz-l{mé ®;—B)@®,— B.)T” . G4

where

B.= m‘lg Bj
Jj=1
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The modal estimates are then easily obtained. Those for (; are as before,
equation (24), with Z and o? replaced by modal values. The latter are seen to satisfy

5= g{m—l DA+, =X, BET (v;— X, BOY (n-+v+2),
and

z* - {R+ 381 - @1 ~ ") [+ =02 69)

It is possible in this case, as in Section 5.1 and 5.3, to proceed a little differently
and obtain the posterior distribution of the @,’s, free of ¢ and Z and consider the
modes of this. This is because the integration of (34) with respect to Z— and o? is
possible in closed form. The result is

L:l{m—l vA+(y;—X; pj)T y;—X; B])}] —}(n+v)

—3(m+p—1)

X (36)

R+ 3B, B) (B~ )"

The mode of this distribution can be used in place of the modal values for the wider
distribution. The differentiation is facilitated by using the result that, with V equal
to the matrix whose determinant appears in (36),

7 8l V] = 2B, ),

It is then possible to verify that the modes for 3, satisfy the same equations as before,
(24), with Z and o? replaced by values given by (35) except that the divisors on the
right-hand sides are (n+v) and (m+ p—1) rather than (n+v+2) and (m+p—p—2).

It is possible to extend this model significantly by reverting to the heteroscedastic
case as originally considered, (21). Here we have to specify a joint distribution for
the o?. A possible device is to suppose that, like the means, the of are exchangeable.
A convenient distribution to generate the exchangeability is to suppose vA/o?~ y2.
In the context of several means (Section 1) Lindley (1971a) has shown how the
estimates of the variances get pulled towards a central value. The details are so
similar here that we do not repeat them.

As explained in Section 3.2, it was Novick’s suggestion to consider this problem
in an educational context, and we conclude this section by briefly reporting on an
application that he, in conjunction with Jackson, Thayer and Cole (1972), have made
of these results. We are most grateful to them for permission to include the details
here. Their analysis used data from the American College Testing Program on the
prediction of grade-point average at 22 colleges from the results of 4 tests; namely,
English, Mathematics, Social Studies and Natural Sciences. We therefore have the
situation studied in this section with p = 5 (one variable corresponding to the mean),
m =22, and n; varying from 105 to 739. They used the heterosecdastic model but
the basic equations (24) and (35) are essentially as here described. With the substan-
tial amounts of data available the prior constants, v, A, p and R scarcely affect the
analysis: the first three were taken to be small and changes of origin of the regressor
variables effected to make the prior judgment that R was diagonal. With p small the
diagonal elements again play little role. We omit details of how the calculations were
performed and refer the interested reader to their paper.
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Data were available for 1968 and 1969. The approach was to use the 1968 data
to estimate the regressions, to use these estimated equations on the 1969 x-data to
estimate the y’s, the grade-point averages, and then to compare these predictions with
the actual 1969 y-values, using as a criterion of prediction the mean of the squares of
the differences. This operation was done twice; once with the full 1968 data, and
once with a random 25 per cent sample from each College. The results are summarized
in Table 1.

TABLE 1
Comparison of predictive efficiency

Average mean-square error

Least-squares Bayes
All data 0-5596 0-5502
25% sample 0:6208 0-5603

The first row refers to the analysis of the whole data and shows that the Bayesian
method only reduces the error by under 2 per cent. With such large samples there is
little room for improvement. With the quarter sample, however, in the second row
of the table, the reduction is up to 9 per cent and most strikingly the error is almost
down to the value reached with the least-squares estimates for all the data. In other
words, 25 per cent of the data and Bayes are as good as all the data and least squares:
or the Bayesian method provides a possible 75 per cent saving in sample size. They
also provide details of the comparisons between the two estimates of the regression
coefficients. These tend to be “shrunk towards a common value (for each regressor
variable) and in some cases with the quarter sample the shrinkage is substantial.

It would be dangerous to draw strong conclusions from one numerical study but
the analysis should do something to answer the criticism of those who have said that
Bayesian methods are not “testable”. We favour the method because of its coherence,
but the pragmatists may like to extend the method of Novick ef al. to other data sets,
remembering, of course, that we have made an assumption of exchangeability, and
the method cannot be expected to work when this is unreasonable.

5.3. Exchangeability Within Multiple Regression Equations

In this section we briefly indicate how the analysis of Section 3.3 proceeds when
o2, the residual regression variance, and o2, the variance of the regression coefficients,
are both unknown. As before, we assume that independently

vA[a®~yl, v Aﬂ/0§~xﬁﬁ.
As in Section 5.2 the integration with respect to &, the mean of the f;’s, may be

performed and the result is that the posterior distribution of 8, ¢* and o% is propor-
tional to

(At ivexp [~ Lo+ G- XBT - XB))

X (0/29)“’3(1"*“”3"“1) exp [—2%'% {v ey -I-ji(ﬁj — ,3.)2}] , 37
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where
1 y4
B.=p1XB;
j=1
The modal equations are then easily seen to be (the first coming from (23))

B* = {I, +k*XTX) (I, ~p71 J,)} 1B,
= {PA+ Gy —XpHT (y—XBH)}/(n+v+2),

(38)
5% = {vﬂ )x,g'*‘él(lgf—ﬁ,*y}/@'*'l’ﬂ"' 1).

The value of k* is of course s2/s%2. The marginal posterior distribution of 8 can be
obtained in a manner similar to that described in the last section.

We are now in a position to compare our method with that of Hoerl and Kennard
(1970b). We have taken the example of a 10-factor, non-orthogonal multiple regression
summarized in Gorman and Toman (1966) and re-analysed by Hoerl and Kennard
using their ridge regression method. The results are summarized in Table 2.

TABLE 2

10-factor multiple regression example

Estimate  f, B2 Bs Ba Bs Bs B: Bs  Bo P k

Least-

squares —0-185 —0-221 —0-359 —0-105 —0-469 0-813 0-285 0-383 0-092 0-094 0-000
Bayes —0-256 —0-178 —0-326 —0-086 —0-289 0-592 0-195 0-349 0-117 0-116 0-039
Ridge —0-295 —0-110 —0-245 —0:050 —0-040 0-325 0-050 0-240 0-125 0-125 0-250

As already explained the main difference between ridge regression and the Bayes
approach lies in the choice of k(= 02/02) in equation (23). This has the value zero
for least- -squares, is chosen subjectlvely in the ridge method by selectlng it so large
that the regression estimates stabilize, and is estimated from the data in the Bayes
method.” In applying the Bayes method we started with k* =0 in (38), obtained
estimates B*, which were then used in the other equations in (38) to obtain s% and s2.
It was found that 10 iterations were needed until the cycle converged. The solution
is fairly insensitive to changes in the small, positive values of v and v, and these were
set to zero.

In the case of non-orthogonal data, the least-squares procedure has a tendency
to produce regression estimates which are too large in absolute value, of incorrect
sign and unstable with respect to small changes in the data. The ridge method
attempts to avoid some of these undesirable features. The Bayesian method reaches
the same conclusion but has the added advantage of dispensing with the rather
arbitrary choice of k£ and allows the data to estimate it. It will be seen from Table 2
that except for B, B, and B, all the estimates are pulled towards zero, the effect
being greater with the ridge method than with Bayes, the latter choosing a considerably
larger value of k than the data suggest.
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DISCUSSION ON THE PAPER BY PROFESSOR LINDLEY AND DR SMITH

Dr J. A. NeLDER (Rothamsted Experimental Station): I welcome this paper as shedding
interesting new light on an old topic, the linear model with normal errors. The authors
develop a thoroughly Bayesian argument, but this does not mean that we have to be
Bayesians in order to make use of their ideas, as I shall try to show.

The authors have laid great stress on their estimates being Bayesian estimates, and have
compared their estimates with least-squares estimates which they interpret only within a
sampling-theoretic framework. Essentially what they are doing is incorporating in their
model extra information about a set of (say) population means to the effect that they can
be taken as a random sample from a “hyper-population”. Such situations undoubtedly
occur: e.g. the authors’ own example about a random subset of the many lines produced
in a breeding program. The same notion underlies designed experiments in incomplete
blocks, where the blocks of the design are allocated at random to the finite population in
the field. Here the Lindley-Smith estimates of the treatment effects when the block effects
are assumed exchangeable but nothing is assumed about the treatments are the familiar
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ones obtained from the standard analysis using both inter-block and intra-block informa-
tion. They have replaced the traditional one-stage model

y = Bitti+es
where
Bi~N(u,0’®) and e;~N(0, o?),
with a two-stage model

Vi~ N(Bi+ 1, 0?),
where

Bi~ N(u, ”).

Here the Bayesian analysis of the two models gives identical estimates of #; and these
are the same as the estimates first derived by Yates using maximum likelihood with the
one-stage model. The interesting question now arises: what is the corresponding
maximum-likelihood procedure for the two-stage model? I want to take a point of view
neither Bayesian nor sample-theoretic and look at inferences from the likelihood function.
How do we cope with two-faced parameters like the 8; which are both random and fixed
at the same time? The basic idea for incorporating prior information, due to Edwards
(1969), is that we should express it by means of prior likelihoods, rather than by prior
probabilities. The distinction is non-trivial; the use of prior likelihoods has the property
that we do not close the universe of possible models, because we specify only the relative
weights to be attached to the alternatives. Further alternatives can always be added. In
the simple model with

yi ~ N(0;, 0%,
0, ~N (1, ™)
the log likelihood relevant to the location parameters is just
—3[Z (i— 0:)*/0*+ 3 (0; — w?/7*],

where the second term is the prior likelihood expressing the fact that the 6,’s are regarded
as a random sample from a normal population of variance 72. The ML estimators are just

a=y,
0: = o+ y.lm)|(a~2+772),

i.e. the same as the authors’. Applying this procedure to the incomplete-block example
produces the same ¢; estimates as before and B; estimates equal to those of the authors.

This parallelism can be carried through a large part of the paper, and I conclude that
though the sampling-theory school may be caught in the toils of inadmissibility, and
perhaps deserve the authors’ strictures, this does not mean that we have to be Bayesians
to make use of their results.

I want to say something about ridge regression. The authors say of Hoerl and
Kennard’s papers that “they do not attempt to reproduce their most convincing argument
against the least-squares estimates . . .”. This is a pity because I cannot find any convincing
arguments in those papers; they measure the deviation of § from B in terms of the
Euclidean distance, but it is hard to see why they should unless there is some underlying
idea of exchangeability. When there is, the procedures of this paper can be used and
provide a justification for their procedure; when there is not we have to accept the least-
square estimates with their associated information surface. 1t is true that they may be very
sensitive to small changes in the data, but this is not an indictment of least squares, rather
it is an indictment of the data used for fitting that particular model. The data are
generating information in what is almost a subspace of the parameter space, and it is
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important that this should be recognized by the experimenter and the necessary action
taken. As for estimates with the wrong sign, this usually implies inadequate scaling of the
parameters in the model. It is interesting in this context that Marquardt, who developed
the equivalent of the ridge regression method in optimization algorithms to cope with
near-singular surfaces, has recently concluded (Marquardt, 1970) that the use of generalized
inverses, i.e. of acceptance of a subspace of estimability, is equally effective.” As Marquardt
says, “the generalized inverse method confines the solution to a linear subspace containing
the origin, whereas the ridge method confines the regression vector to a sphere about the
origin’.

Finally a comment on the predictive efficiency of the new estimates as given in Table 1.
It is hard to assess their success without some more knowledge of the internal consistency
of the data in this respect, but taking them at their face value I would interpret them to
mean that a better model gave better predictions. To paraphrase Dr Lehrer, mathematician
and singer of songs at the piano, ‘“‘a model is like a sewer, what you get out of it depends
on what you put into it”.

It will be clear, I hope, that I have very much enjoyed this paper, and so have real
pleasure in proposing the vote of thanks.

Dr V. D. BArRNETT (University of Newcastle upon Tyne): It is a pleasure to second the
vote of thanks to the authors, on an interesting and important paper. The linear model
features as a central one for the application of statistical method, in unifying a vast range
of practical problems including typically the various analysis of variance and regression
situations. Much of what the authors might term our “orthodox’ heritage of statistical
methodology stems from applying the principle of least-squares to the linear model, or
more particularly from linear hypothesis theory with an assumed normally distributed
error structure. Anyone concerned with the comparative aspects of statistical inference,
or simply wishing to explore the variety of methods which might be brought to bear to
draw meaningful inferences in this area, must surely welcome this evening’s detailed study
of estimation for the linear model from the Bayesian viewpoint. It casts a new light on an
old and important problem.

The authors themselves make it quite clear that they do not regard this work as the
final word on the Bayesian analysis of estimation for the linear model. It provides a basic
framework for extension in various respects, some of which are to be considered in
promised further work. At the same time the basic assumptions underlying the present
work are rather particular ones and demand careful scrutiny with regard both to practical
application and formal justification. I should like to address a few remarks to these
questions of basic premises and implementation.

The principle of least squares for parameter estimation has a rather unique universality,
in making no distributional assumptions about the error structure. At this basic level its
sample-specific nature may not be entirely satisfying, and we seek consolation in any
asymptotic optimality properties that accrue when the error structure is normal. We have
then a general principle of estimation; with inherited characteristics in a special case. We
might ask to what extent it is possible to parallel this from the Bayesian viewpoint, in
promoting a general principle of estimation reflected against the hierarchical normal
structure? In initiating their study with a discussion of de Finetti’s concept of exchange
ability, it was tempting to believe that the authors would be placing crucial practical
emphasis on what for long has seemed a vital idea. I must confess to being somewhat
confused, however, in the later parts of the paper as to just how central this concept is in
their work. To what extent, if any, can we attribute importance to exchangeability, per se,
as an ingredient in Bayesian estimation? It figures in delimiting the normal hierarchical
structure later used—and is offered as a natural expression of a certain form of prior
information in certain practical situations—but it is in no way specific to the normal
structure. Are any desirable features of the estimates to be credited to exchangeability,
or to normality? In this respect some of the claims of Section 1 seem rather generous: in
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promising study of exchangeability as expressed by mixtures applied to linear models
where the parameters themselves have linear structures in relation to hyperparameters.
It does seem that only a very special form of this has been presented. Can we go further;
for example without the normality assumption ?

The bulk of the paper considers the known variance situation. Whilst much of the
general theory of Section 2 has already appeared in Lindley (1971a) its fuller treatment is
illuminating, and clearly illustrated in the market-place applications of Section 3. But in
real-life applications we will not know the variance structure, and it seems that the major
feature of this paper, in terms both of its novelty and applicability, must be its considera-
tion of the case of unknown variance structure. The modal invariance property is a
fascinating one, and a useful aid to Bayesian analysis of such multi-parameter problems.
The suggestion, however, that estimation of unknown variances ‘‘presents no serious
difficulties” seems optimistic and hardly fully substantiated; specifically the claim at the
end of Section 3 that “the simple device of replacing the unknown variances by estimated
values in the Bayes estimates is satisfactory”. Even in the simple example of Section 1 the
proposed iterative estimation of 72 is not entirely convincing—even less so for the more
complex situations described later. Two issues are involved which cause concern and
surely need further comment or study. The first is the question of the stability of such
iterative procedures. What do we really know about this in the context of the Bayesian
estimation problems of this paper? Experience of iterative methods applied to “orthodox”
multiparameter problems suggests that we should hardly be surprised to encounter
anomalous behaviour. The second matter that seems to require attention is the question
of how far we should proceed through the normal hierarchy before (that is, at what
“stage’”) we call a halt to hyperparameterization in the unknown variances case.

A simple example (somewhat similar to that in Section 1) seems to highlight this.
Suppose y is an independent random sample of size n from N(6,, %) where o2 is known.
In the spirit of this paper we might take a two-stage model where 6, has a prior N(u, 72)
distribution. If u, 72 are known, then 6, has posterior distribution

NA{np/o?)+ (u/72)}, A), with A = (v72+no-2)~L,

But suppose p, 72 are not known and instead we have k previous “true” values of
0; 6y, ..., 0 (a sample from N(u, 7). This could arise in industrial batch production
problems, where batches of components are used in assembly and as a result precise values
of the means for k earlier batches are elicited. Here we do not even need to estimate
04, ..., 0. Following the authors we might approximate the posterior distribution of 6, by
substituting 2 = 3 (0;— 0.)?/(k—1) for =2 and 6, for p. But 2 is only an estimate of 7*
and exhibits sampling fluctuations which are not taken into account in any way. When &
is small these can be important (if k is large, less so); the estimation of 6, surely needs to
reflect this. Similar difficulties exist for the example of Section 1 but in more extreme form
since here we do not know the 6; but must estimate them iteratively. It might therefore
seem more appropriate to introduce a third stage with a prior distribution for (u, 7%)
proportional to 72 (expressing prior ignorance) and to “up date” this by 6, ... 6 to yield
a prior distribution for 6, which in turn is augmented by y to produce the posterior
distribution
— 2\ k/2
n(6l%,0) o exp|—m G-y [{1+ 500"

These two posterior distributions are quite different in form (though coincident when
k — o0) and in certain cases, particularly when k or 2 are small, resulting inferences differ
greatly; both modal estimates and Bayesian confidence intervals. (Modal estimates
are surprisingly similar, however, unless k£ or ¢ are very small.) How are we to choose
between the two approaches? In a sense the three-stage model has more appeal. Why not
always proceed to the stage where we can introduce prior ignorance assumptions, and avoid
the iterative estimation?
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There is one small point I should like to raise. On various occasions reference is made
to the use of the mean of the posterior distribution as a natural estimator, and the mode
is later proposed as an ‘“‘approximation”. Leaving aside their coincidence in normal
distributions, is not the mode the more natural Bayesian estimator (as the “most likely”
value) and the mean only supported if we superimpose a special form of loss structure ?

Finally, I should like to comment on comparisons and pre-requisites. The authors
firmly state at the outset their resolve to avoid further proliferation of comparative
discussion of the relative merits of Bayesian and non-Bayesian methods. And yet they
immediately appear to abandon this attitude, and the “orthodox” statistician finds himself
frequently enlightened or instructed. I do not want to dwell on the “new lamps for old”
arguments, but I cannot help feeling that the attributed or adopted criteria are not always
entirely fair. I should not be surprised to find later discussants taking issue on some of
these points. However, there is one constructive aspect of this matter on which I should
appreciate the authors’ comments. No statistician can afford to avoid recognizing the
basic assumptions of his model or of the techniques he uses. Pragmatic assumptions may
be necessary on occasions and concepts and criteria must have an element of arbitrariness
about them. This is true of orthodox methods as well as Bayesian methods. Unfortunately,
what is ““‘unreasonable” to one person may be ‘‘obviously true” to another. But in so far
as someone may reject outright a Bayesian approach there is undoubtedly an element of
“preferring the devil they know”’—in the sense of having built up a practical feeling for
the dangers which may arise from the uncertain, or dubious, elements of the orthodox
approach. Inevitably there is less experience of this from the Bayesian standpoint—and
the authors would provide a valuable service if they could tell us something of the real
nature of their “devils”. They warn us to seriously beware of applying the methods of
this paper if exchangeability, or normality, is unreasonable. But how do we assess this?
In their examples even, I find it most difficult to assess the propriety of exchangeability or
normal prior distributions on parameters or hyperparameters. What guidance have we
on these matters ?

In conclusion may I say how much I have enjoyed this paper. It provides much food
for thought through cogent argument and compelling illustrations. Undoubtedly it is a
vital contribution to the Bayesian study of an important topic and should stimulate useful
further work in this area. I am most pleased to second the vote of thanks.

The vote of thanks was put to the meeting and carried unanimously.

Professor Cepric A. B. SmitH (Galton Laboratory, University College London):
Imagine that we are collecting information about the heights of men in various African
tribes. In tribe T; the expected mean height is 6,, the expected variance v,, the observed
mean y; in a sample of m; individuals. We are interested in the values of the 6;, We
simplify the discussion by assuming all m; reasonably large and equal (with common value
m), all distributions within tribes to be nearly Gaussian (as will be in any case true for the
¥: by the central limit theorem), and (less realistically) that all variances v; are equal, with
common value v (which is known or estimated with sufficient accuracy). We can concen-
trate attention on the j; which have variance o2 = v/m.

The 6; themselves in the various tribes will have a distribution, strictly speaking
discontinuous but representable nearly enough as ¢(6) df. In the authors’ treatment this
is assumed Gaussian. But this seems less than realistic in many practical cases.

The question arises, can we regard the 6; in the tribes actually examined as a random
sample from the distribution ¢? Strictly speaking, this is almost never the case. We do
not select tribes by formal randomization procedure. But we may feel justified in analysing
the data as if it were a random sample. This may be called a “random effects model”” or
“exchangeability”. Despite the authors’ protestations, the distinction between these
terms seems rather fine, but note that it involves an act of judgment, i.e. subjective and not
objective probabilities, even in the random effects model.
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At first sight the “pulling-in” of the estimates appears to contradict common sense;
one would think it obvious that in each tribe the “best” estimate of 6, is 7;. If one could
assume a very nearly flat prior distribution for ¢, this would indeed be so, and it is tempting
to think that the “pulling-in” found by the authors is mainly due to a rather severe
assumption of a Gaussian form for ¢. However, the following argument shows that this
is not so. Note that if we have only a small number # of tribes, we will not (in general)
know the exact form of ¢, and we will have to proceed as the authors do by using a mixture
of various plausible forms ¢, for ¢, each with its own prior probability (or density).
However, for the sake of discussion, let us assume that we have examined a large number
n of tribes, so that we can identify ¢ with sufficient accuracy; also that we have a large
number of observations in each tribe, so that ¢ = v/m is small. The posterior probability
density for 0, is then of the form

const x o exp { — (7; — 0,)2/20%} ¢(6,).
Suppose that, near 7;, we have In ¢(0) = 4;+ By(0— 7,) + negligible terms, where
_[dng6y  _ $’6)
5= {55 ot = B0

Then, on substituting this into the expression above, we see that to this order of
approximation the posterior distribution is Gaussian with mean (and mode)

0f = 7:+ 0® $(6,)/4(6)

and with variance o2 The second term here represents the “pulling-in” effect.
What is the distribution of the 6}, taken over all i? Its expected mean is

E(0}) = E(3,)+ o® E{¢"(0,)/$(0.)}.
But E(3;) = E(0,) = u, the mean of the distribution ¢. And

£(f) - [7 EQu0 w0 -0 r. -

So E(0f) = p, i.e. the “pulhng—ln does not affect the mean. It simplifies the calculation
of the variance to take measurements from the mean p, so that we may assume E(6¥) = 0
Then, neglecting terms in o%, and setting var 6; = 72,

var 0f = E(07*)~ E(5) +20% E{j; ¢"(6,)|$(8.)}.
But E(73) = var 5} = 72+ 0% And, since j;~0,,

LE- oo [ s

Suppose that 0¢(0) - 0 as 6 — + o0, as is true apart from very unusual distributions. Then
on integrating by parts we find

f:oqs'(e) a6 = o—f_:qsw) 6 = —1,

Hence var 0 = 72— o2, Since o? is not being neglected, this means that the variance of
the 0} is apprec1ab1y smaller than that of the y;, whatever the form of the distribution ¢.
If we regard the 6} as sensible estimates for the 6;, this means that for any form of the
distribution ¢ there will be an appreciable “pulling-in” from the straightforward sample
means y;; that is, this phenomenon cannot be attributed to the special Gaussian form
used by Lindley and Smith.

I would like to add my agreement to Dr Nelder’s suggestion that Lindley and Smith’s
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Mr T. LeoNARD (University College London): I would like to make a few remarks
about the possible extension of the excellent ideas expressed in this paper to situations
where the exchangeable parameters cannot be considered to be normally distributed. In
such circumstances, a good procedure is usually to transform the parameters in such a
way that the normality assumption is more realistic for the new parameters.

A simple example occurs when the data x; are independent and binomially distributed,
with parameters 0, and indices n; (i = 1, ..., m). It is convenient to transform to the
log-odds «;, where

o; = log{6,/(1-0,)}.

Under the exchangeability assumption, it is reasonable to suppose that, given p and o2,
the «; are independent and normally distributed with common mean p and variance o2,
where p is uniformly distributed, and o® possesses an inverse x? distribution.

The prior to posterior analysis is straightforward, and when o? is known, it is easily
shown that the posterior modes of the «; are given by the solutions to the equations

e X; oy—a,
1+e% n; n;o?

when o? is unknown it is replaced by its modal estimate.
Unless x; is close to zero or n;, approximations are given by

Gi=1,..m);

0'2 li + U; A,
O = ——% T
o+ v,
where
I; = log {xs/(n;— x,)},
v = x7t+ (i —x) 7

These provide similar weighted average forms to those described in the paper.

Logarithmic transformations and exchangeable normal prior distributions may also be
employed in the analysis of Poisson or multinomial data. They may also be applied to the
situation described on p. 3 in the main paper, where there are normal data with exchange-
able variances. In all these cases, simple equations may be found for the exact modes,
and weighted average forms may be approximated.

Professor M. R. Novick (University of Iowa): Within the time and space limitations
imposed on them, Lindley and Smith have done a commendable job of laying out in proper
mathematical form a model of intriguing complexity. It is a pity that we cannot carry on
into the early hours of the morning, examining the remarkable theoretical implications of
this model and, even more excitingly, the applications that can be made of these
mathematical results. Such discussions are available, however, and I commend to the
attention of this audience a series of reports on these topics. Some of these have or will
shortly appear (Novick and Jackson, 1970; Jackson et al., 1971; Novick et al., 1971;
Novick et al., 1972). These papers contain elaborate praise for the remarkable work
presented here this evening so that it seems appropriate that I concentrate now on whatever
faults I can invent for tonight’s paper.

First, Lindley and Smith have conveniently concealed the difficulties in actually getting
out the required estimates. In the applications we have so far studied, modal estimates can
be obtained by the iterative solution of what we have called Lindley equations. There are,
however, definitely problems of bimodality. These can generally be handled, but only by
giving careful attention to the prior distribution of the hyperparameters. It is not, however,
a trivial exercise as Lindley and Smith have implied.

Secondly, I disagree with the choice of terminology as to whether all of this is Model I
or Model II. I do not think that there is necessarily a right answer to this, but exchange-
ability does imply the equivalence of a random sampling assumption for parameters and
this I (and Box and Tiao, 1968) would call the Random Effects Model.
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Lindley and Smith have warned that we must have exchangeability in our prior beliefs
to apply these methods. I would elaborate this by saying that we should have an informed
exchangeability and not one implied by ignorance. In the cited empirical study, I personally
went to great lengths to attain an informed exchangeability, with gratifying results. Later,
for a very simple model, I was able to obtain an explicit formula showing that the increase
in precision using this method was a function of the between group homogeneity of the
parameters.

Let me further remark that this assumption of exchangeability is a very questionable
one when imposed across variables rather than across groups. I think that application of
the work discussed in Section 5.3, both Bayesian and classical, must be done very carefully.
My own feeling is that further theoretical work needs to be done in this area, possibly with
a principal components or orthogonal factor analytic model, in a reduced variable space.
Here it may be more reasonable to make a valid assumption of exchangeability. If so, we
may finally be able to do a really good job of estimating a single covariance matrix.

As a final remark, let me chide Lindley and Smith for not having referenced the work
of Truman Kelley (1927) who, more than forty years ago used, in an educational
measurement context, methods that are very similar to those later adopted by Robbins,
by Stein (1966) and by those of us now working within a Bayesian framework with
exchangeable prior distributions.

Professor D. R. Cox (Imperial College): Prior information enters regression analysis
in the choice of explanatory variables and of the form of relation to be fitted. Once these
are provisionally fixed, prior information may affect the estimation of parameter values,
some of the main types of such information being (a) knowledge of the sign of one or more
coefficients; (b) a relation with analogous parameters in other sets of data, e.g. that if
B, and B¥ are the current and previous values respectively, then 8,> B8 or | 8,—BF |<d,
or B,—B¥ is a random variable of known distribution; (c) statements about the inter-
relations of the explanatory variables, such as used in path analysis; (d) the assumption
that certain parameters are linked by having been generated by a common physical random
mechanism; () the postulation of subjective prior distributions for parameters. Points (d)
and (e) are linked mathematically, but conceptually are quite different, of course.

It seems to me highly desirable that if any such assumptions are introduced they should
as far as possible be tested from the data, either graphically or by significance tests.
Failure to do so may mean overlooking inconsistency arising from biased data, from the
omission of important explanatory variables or from the prior assumption being
misconceived.

In sampling theory, possibility (d) can often be represented as a fully parametrized
empirical Bayes problem. That is, the vector observation Y has density fyio (¥| 0; ¢)
depending on unknown parameters ¢ and on parameters @ with a density fo(8; )
depending on further parameters . We can thus find fy(y; ¢, ¢) and obtain estimates
q?;, 1,2;, for example by maximum likelihood. Now if we are interested in some components
0, of ® we can, for given ¢, i, obtain the posterior density fo,iv(61|y; ¢, ). This suggests
the estimate

F (0 = fov(6:]y; $, )

or of improved estimates based on refining this. The authors in a fully Bayesian approach
have been able to integrate out ¢, i instead of having to substitute point estimates.

Professor R. L. PLACKETT (University of Newcastle-upon-Tyne): I would like to
emphasize the atmosphere of unity which has been such a welcome feature of this evening’s
discussion by deriving the authors’ results from sampling theory without the use of prior
distributions or prior likelihoods.
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If we take the two-stage linear model with which they begin, then equations (7) and (8)
can be obtained by combining the original set of observations y~ N(A;6,, Cy) with an
additional set A,8,~ N(8,, C;). It is no coincidence that equation (10), in the special case
when C, = I, appears in the section of Plackett (1950) which is concerned with adjustments
to the least-squares estimators, their dispersion matrix and the sum of squared residuals,
due to the appearance of additional observations. If we extend this argument to the
three-stage model, then we have to combine the last two stages. In that case, we are
combining y~N(A;0;, C;) with Ay Ag0;~N(6;, Co+A, C3AT). When the authors
come to apply the results of Section 2, their use of exchangeability implies that the
additional data A,0, or A;0; have the form ¢1. These relationships explain why the
estimators take a weighted form throughout the paper, and why they are closer together
than the least-squares estimators.

An attempt to estimate how much data is actually introduced in this way can be made
from an analysis of Table 1. Consider the first column. Suppose that the variance of an
individual observation is o2, and the variance of a predicted value from all the data is ac®.
Then

o?(1+a) = 05596 and o%(1+4a) = 0-6208,

whence a = 0-04, equivalent to 25 observations, and ¢% = 0-54. Let Bayes and all the
data predict with variance bo?. Then b = 0-02, equivalent to 50 observations. The
conclusion from this posterior analysis is that the effect of using a Bayesian model is to
double the amount of information in the data.

Professor P. SPRENT (University of Dundee): The tendency to pull towards the central
value gives the estimate in equation (1) a clear advantage over the least-squares estimate.
As contributors to this discussion have already pointed out the least-squares estimates
are too dispersed. This is evident if we write y; = p+ 8;+€;, where 0; = p+8; and the
€; are N(0, 0%) while the 6; are N(u, 7%); assuming independence, the y; are N(g, o®+7%),
and thus have greater dispersion than the ;. The more extreme y; correspond to cases
where §; and ¢; have the same sign and thus overestimate the magnitude of 6,.

If we take u = 0 for convenience and assume 7 is large (but there is only one replicate
for each §,) then if 72 = 02 = 1 and §; = 1, the probability is approximately 0-95 that
y; (.e. 6,) will lie between —1 and 3. Assuming p, = 0; for large n when p = 0, the Bayes
estimate 0 will lie between —0-5 and 1-5 with the same probability. In this case, despite
its bias, 6} seems preferable to ;. Ifnow 7% = 1, o2 = 9 and 8, = 1, then with probability
approximately 0-95, ; will lie between —5 and 7 while 6 will lie between —0-5 and 0-7.
It is clear that with a probability very close to unity 6 will in this case be less than the
true value. The practical man would, one hopes, faced with these values of 7% and o?,
realize the futility of trying to find out anything useful about 8, from a single replicate
corresponding to each 8;. Theratio A = o2/72is a useful guide both to this futility and the
seriousness of bias in the Bayes estimate. Is it too frivolous to call it a coefficient of
stupidity? If 72 = 9 and o2 = 1, A is small; taking 8; = 1 we then have with probability
approximately 0-95 that f, lies between —1 and 3 while 0F lies between —0-9 and 2-7; the
Bayes estimate again is reasonable.

Clearly when 72 = 0 all 6; = 0 and y, is the appropriate estimate of w in either case.
Similarly when o® = 0, both estimates reduce to y;, the exact value of p+5;.

I suggest that when bias in the Bayes estimate is large it cannot be dismissed lightly,
but reflects a high value of the coefficient of stupidity, A. If there are r replicates for each
y: in (1), having mean y;,, we may conjecture that ¢* in (1) should be replaced by o?/r,
giving A = ¢?/(r7?), and the Bayes estimates would approach more closely the least-squares
estimates as r increased. A study of degree of bias might prove illuminating in the more
sophisticated examples in this paper.
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Dr J. B. Copras (University of Essex): I am not sure what the “orthodox statistician™ is
supposed to be assuming when he is being convinced that the estimate labelled (1) is better
than the least-squares estimate. Surely no one would disagree that if this special model of
the random @’s is true, which implies amongst other things that the observations are
positively correlated, then the estimates should be made to depend on each other in the
way indicated. When the assumption of such a prior structure is absent, on the other hand,
the situation is simply one in which an experiment is repeated z times with different and
unknown parameter values: in other words, a compound decision problem in the sense of
Robbins. I attempted to show at one of our previous meetings (Copas, 1969) that it is
very doubtful that compound decision rules, of which (1) is typical, are in fact better than
the classical results, unless a relationship of some sort is assumed between the components,
such a exchangeability. For one, only the average mean squared error over i from 1 to »
is considered, whereas the risk of particular components may be unacceptably high, and
in any case there would presumably be no particular reason for supposing that inequality
(2) was satisfied unless the §’s were assumed to be some sort of random sample.

As Professor Cox has mentioned, the mathematical models described in this paper are
almost identical to those dealt with in the completely non-Bayesian approach known as
empirical Bayes. Thus this work could be described as giving Bayes solutions to the
empirical Bayes problem. The main difference lies in the meaning of the mixing
distribution Q of Section 1. In empirical Bayes, Q is simply a frequency model for a
continuing series of repetitions of an experiment. In principle, any assumption in this model
can be tested. If I understand correctly, we now see this distribution as a measure of prior
beliefs operating through the assumption of exchangeability. Is it not remarkable that
one’s prior beliefs about treatment i would be identical in every way to one’s prior beliefs
about treatment j? I hope that the elegant mathematics of this paper will not tempt us to
rest assured in our ignorance and refrain from enquiring of our experimenter the
differences which must inevitably exist between the various parts of his data.

Finally, two brief questions. What is meant by the statement that exchangeability is
assumed for every n? Does this entail a hypothetical continuation of the number of
components in the problem? Secondly, it is easy to show that the correlation between
any pair of &’s in the mixture model must be non-negative. Do the authors have a simple
representation of exchangeable priors with negative correlations? I have in mind a
randomization approach to field trials in which the true plot yields are, in a sense,
negatively associated.

Dr D. V. HiInkLEY (Imperial College): I have two points to make about this very
interesting and useful paper. Both have to do with related unpublished work which I
think can augment the solutions proposed by the authors.

The first point has to do with outliers—in the parameters, not the observations. Take
the simple problem of estimating 6, ..., 6, when observations y;~ N(6;, 1) are available,
and the 6, are independently N(0, r*) with r2 known; this is a simple version of the problem
in Section 1. The Bayes estimate for quadratic loss is 62 = 6{r?/(r?+ 1)}, where 0 is the
vector of least-squares estimates, i.e. y in this case. The Bayes estimate minimizes the
Bayes risk, but the risk for any given 0; is unbounded. Thus the Bayes estimate is
particularly vulnerable to atypical parameter values, that is outliers, which will be shrunk
too much. Efron and Morris, in a series of unpublished papers at Stanford University
and Rand, devise an estimate which limits risk with little relative increase in Bayes risk.
For our simple problem of estimating 0, ..., 0, they propose estimates such as

6,+ M, b, < —M@E2+1)

9;' = 0? = 01' (;TZZ_—I),

0,— M, M@ +1)< 0.

—ME+1D)<0,<M@E+1),
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As an example, suppose that the Bayes risk of 8 is normalized to be 1-0, and that r? = 1.

Then the Bayes risk of 02 is 0-5. If 6, are used with M = 1, the Bayes risk is only 0-525
and furthermore the maximum risk is 2 for any ;. This approach can be generalized to
the cases studied by the authors. Incidentally one suspects from Table 2 that B¢ is an
outlier, particularly from a normal plot of the least-squares estimates; the Bayes estimate
of B, is made normal.

My second point is of a somewhat mathematical nature, and has to do with use of
variance estimates in Bayes estimates such as (1). Suppose now that we are estimating
multivariate means 0,, using independent observations y; from N(0,,I) where the 0; are
independent samples from N(0, Z). If we write Y = (yy, ..., ¥»), then the Stein-type estimate
for 6. is of the form

6} = I-kS-1}6,,

where 0, is the maximum-likelihood estimate and S = YYT. In a forthcoming paper by
Efron and Morris (1972), reference is made to the fact that Stein has established a
uniformly superior replacement for kS—! in ¥, namely aS-+bIjtr (S) for suitable a
and b. Does this help in the authors’ search for a way of coping with their unknown
variances ?

Mr E. F. HARDING (Cambridge University): In estimating three means p,, pq, s by

normal samples with the loss function

011_l‘«1)2+(ﬂz"!1'2)2+(,‘23_l~‘3)2 @
the usual estimate (%, %,, X5) is, by Stein’s so-called paradox, not admissible. To use an
example I heard from Professor Barnard, if pu, refers to butterflies in Brazil, u, to ball-
bearings in Birmingham and p; to Brussels sprouts in Belgium, then an admissible
estimator will cause the estimates of these three quite unrelated things to be related to
each other, the largest & being on the whole pulled down and the smallest pulled up. Now,
if you do not like that sort of thing, and in general I do not, then so much the worse for
the loss function; one can, after all, always work a “paradox” backwards.

Coming now to exchangeability as such, take another instance in which the three u’s
are the tax-allowable expenses of Professor Lindley, Dr Smith and myself, normally
distributed data about these being available. The Tax Commissioners might, I suppose,
regard the three of us as exchangeable a priori, and use the loss function (1); in which case
Professor Lindley could find himself paying too much tax because one of the others of us
was paying too little—fair to the Exchequer, perhaps, but not to him—and he could
reasonably plead that they should use the estimator fairest zo him: because he, after all,
can hardly think himself exchangeable with, say, me. And this is the point: exchangeability
is relative to the one who wants to do the exchanging.

Viewing statistical decision theory as ‘‘a game between the statistician and Nature”
perhaps encourages the habit of imperiously acting according to principles of exchange-
ability, etc., since one hardly regards the “states of Nature” as having ethical rights; but
when, in particular instances, it becomes a ‘“‘game” between the statistician and other
people, then one may expect one’s hypotheses to demand respect.

I would not harp on this (the authors do, here and there, indicate that one ought,
strictly, to verify exchangeability) had they not passed rather lightly over the matter of
verification. Indeed, a first reading suggests that assuming exchangeability is a good thing
because it leads to procedures with better statistical qualities. True: but they are better
relative to the loss function (1), and if you dislike the ethical consequences then, again, so
much the worse for the loss function. Of course, if u; were a sequence of batch means in
a continuing industrial process and the profit was expressible in a form like (1), then
exchangeability would lead to wholly desirable consequences. That would be a clear case,
unlike, however, the authors’ blithe and unqualified application of exchangeability to a
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case which is, I think, very like the imaginary tax example: their final example of estimating
the merits of the different American colleges. If Federal funds were to be distributed
according to merits, then estimates derived from exchangeability could well lead to the
better colleges getting less, and the worse more, than their fair shares. In such casesI
would prefer to solve a sequence of decision problems, in which the loss function for the
ith mean would be (&, — u;)?, and I think that a special case has to be made out for doing
otherwise, to show that the “unfairness’ which must result is either justified or irrelevant.
One might even be able to incorporate all this into a complicated loss function!

Mr A. P. Daw (University College London): I should like to make two points and
pose a problem.

Firstly, there seem to be close connections between the approach of tonight’s paper
and the work of Ericson (1969) on finite sampling theory, in which exchangeability also
played a leading role. One might view Ericson’s structure as a three-stage model with a
first stage that is singular, because in finite sampling one usually observes the first-stage
parameters, that is to say the values of the sampled units, without error. Ericson was
interested in prediction for the unsampled units, and this raises the question of how we
should deal with prediction in general for multi-stage models.

Secondly, let me take a fundamentalist approach, according to my understanding of
de Finetti’s ideas. Given the possibility of taking a set of observations, a subjectivist
should be putting his prior distribution jointly on the set of possible (as yet unobserved)
outcomes. If one chooses to work with “‘unknown parameters” it is not, generally, because
of any physical structure of the problem, but because, given various assumptions of
exchangeability and conditional exchangeability, such parameters are conjured into
existence by invoking de Finetti’s theorem. What, then, is the status of the first-stage
parameter 0;, and what assumptions about the distribution of y are we making when we
express opinions of exchangeability among certain components of 6, ?

I am also interested to know the true mathematical expression of two-way exchange-
ability, as considered in the authors’ first example, the two-factor design. We are interested
in some first-stage parameters {6,;} measuring somehow a mean response for cell (i,7).
Lindley and Smith assume a singular second stage of the interaction-free form:
0, = p+a;+B;; and then take the o’s and B’s as independently exchangeable. What I
should like to know is this: suppose we have observations {y;;} which we are willing to
regard as exchangeable both within rows and within columns (but not simultaneously).
Is the above structure as general as possible? What about an interaction term:
05 = p+a;+Bi+v;? If yiy = 0+ €, this is identical with the model

Vi = s+ Byt 0u,
where 7,; = y;;+ €, so without replicated y’s we cannot get much information about the
¥’s. But even in this case there is a qualitative difference between the two models, and I am
now asking for guidance on how to parametrize such a situation when such arbitrariness
exists.

Finally, a problem: we have seen the application of multi-stage models to the standard
normal theory linear set-up, and in the discussion Mr Leonard has mentioned approaches
to similar problems with binomial and multinomial models. However, many situations
have a more complicated structure, but the ideas presented tonight would be attractive to
apply if they could be made tractable. Let me outline a problem I have in mind and ask
whether Lindley and Smith can give me any help with it.

The situation is that a number of patients are asked questions a number of times by a
number of doctors. When doctor £ asks patient i the jth question for the rth time, he
elicits a binary answer S;;z,. We suppose that there is a true answer 7;; which the doctors
are trying to uncover, but some may be better at doing so than others. There are various
exchangeabilities I should like to impose on this problem: firstly, {T7;;} might be exchange-
able over i, and perhaps in a restricted form over j. Then one could look at the conditiona:

2



30 Discussion on the Paper by Professor Lindley and Dr Smith [No. 1,

distribution of the S’s given the T’s, where we could introduce more symmetries. Perhaps
we could make these conditional distributions depend on further exchangeable
parameters. I cannot quite see what the multi-stage expression of such structure might be
in general, but one can simplify at a number of points. However, the technical difficulties
of inference in even the simplified models seem rather daunting. Does the normal theory
analysis give any insights into how to tackle this problem?

The following contributions were received in writing, after the meeting.

Dr C. CHATFIELD (University of Bath): I had intended to attend this meeting, but
finally decided that the discussion would probably involve yet another round in the endless
controversy between Bayesians (subjectivists), Frequentists, Likelihoodlums, etc., which
would probably not be profitable for an applied statistician like myself. Arguments about
the foundations of statistics are, of course, extremely interesting from an academic point
of view, but, as far as one can ascertain, the different approaches seem to give more or
less the same answer in the vast majority of cases.

A major difficulty for applied statisticians is that the arguments involved tend to be
extremely difficult to follow and centre around rather artificial examples. A further
difficulty is that participants in these discussions tend to show scant respect for one
another’s position—for example, see the authors’ statement that they ‘“know of no
reasoned argument against the Bayesian position”. For my own part I agree with H. O.
Hartley in the discussion of Cornfield’s paper (1969) that no single theory of inference is
entirely free from deficiencies and so, like most applied statisticians, I adopt the standard
sampling theory approach for mainly practical reasons. (Of course, on occasions I also
find it useful to look at likelihood surfaces or use Bayes theorem.)

Turning from these general matters to the paper, I wonder how many other people
find the basic idea of exchangeability hard to swallow except possibly in a few special
situations. I can imagine the reaction this assumption would receive from many scientists,
and also the likely reaction to the Lindley-Smith estimates in their equation (1). Perhaps
their estimates do have a smaller mean-square error than the ordinary least-squares
estimates provided that the priors really are exchangeable and provided that one knows
both o2 and 72. However, in practice these variances will almost certainly be unknown and
I am very doubtful about using the estimates (1) with estimates of o2 and 2.

It is nice to see that the authors have actually performed a numerical study in which
Bayes estimates do come out marginally superior to the ordinary least-squares estimates.
However, as the authors say, one cannot draw strong conclusions from a single study.
Moreover I am doubtful if the improvement they achieve justifies the extra effort involved.
Scientists have trouble enough with straightforward regression without the complication
of accepting the idea of subjective exchangeable priors.

Perhaps I am being slightly unfair in concentrating on the practical aspects of what is
really a Research Section paper and which is clearly an important paper from a theoretical
point of view. However, the meeting was billed as an ordinary meeting (organized by the
Research Section), and I feel that ordinary meetings should be of broader interest and of
more practical use than appears to be the case here.

Of course this last remark also applies to many other Research Section meetings, and
so perhaps it would be a good idea to discontinue the recently introduced practice of
calling all Research Section meetings “‘ordinary meetings”.

Dr StepHEN E. FIENBERG (University of Chicago): It is a great pleasure for me to have
the opportunity to discuss this paper by Professor Lindley and Dr Smith. I regret that I
was unable to hear its presentation. The problems discussed here are ones on which I
myself have expended considerable energies. It is more than faint praise for me to remark
that I wish I had written this paper.
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The presentation of the general theory in Sections 1 and 2 is lucid, and perhaps to the
surprise of many of us, quite straightforward. Work on the Bayesian analysis of linear
models abounds, but the use of a multi-stage Bayesian analysis with successive reductions
in the number of parameters at each stage has considerable intuitive appeal.

I was especially glad to see Sections 3.1 and 5.1 dealing with the complete two-way
layout, since I once worked my way through this example (Fienberg, 1967) to arrive at the
simple generalization of expression (20) for the two-way layout with replications, i.e.

E(ir) = pto;+Bi+yu (1<i<t, 1<j<b, 1<k<n),
where the second stage is
yiu~N(O, 05), a;~ N(O, 02),
Bi~N(0, 63), p~N(w,ocd.

In this somewhat more general case, taking the posterior mean and letting o2 -+ oo, one
gets p* = y..,

af = (v~ )ﬂ_
t “ 7" bnot+no+o?
tno
% _ _
Bt = s.=2.) tno}+no+ o?

and

* no
Yy = (J’z‘f.—f‘*“‘af_ﬁf)’m%i-

Letting n = 1 and o2 = 0 we get expression (20). The theorem and the simple form of
expression (18) greatly simplify the amount of algebraic manipulation I was forced to
carry out.

Going on to the case where the second-stage variances are unknown, it is interesting to
note that, using the estimates

§* = 2 i —yu)*[(2+bt(n =1},

sy =S u =Y =2 +y.FHG-D-1-2}
sp=nZ (= Flb=3),

sz =nb T (e =»./(t=3)

for o2, (e®+mno?), (0®+noi+ntol) and (o®+nod+nbo?) respectively, in o}, B¥ and v
above, one arrives at the estimator of Stein (1966), provided negative estimates of variances
are replaced by zeros, in keeping with the classical practice. (Here ¢ and b are assumed to
be >3.) This estimator is of course similar to the one suggested by Lindley and Smith
although no iteration is necessary. Stein points out that the anticipated contraction of the
main effects is likely to be small relative to that for the interaction effects.

Rather than using point estimates for the prior parameters, Dempster (1971) suggests
laying out intervals for them which are acceptably consistent with the data in the sense of
passing simple significance tests, or equivalently of belonging in certain confidence regions.
These intervals can then be translated into intervals for the posterior means, and in effect
yield upper and lower bounds

I am somewhat troubled by the use of modal approximations proposed in Section 4
of this paper, and there are three items of concern. First, integrating out the nuisance
parameters from the posterior distribution is not really as technically complex as implied
by Lindley and Smith. One often gets posterior distributions of the 8’s, which are products
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of multivariate #-distributions. Then, one can use an identity such as that given by
Dickey (1968) to reduce the integral for the posterior mean to an integral of dimension
one less than the number of #-like factors. For the one-way ANOVA model discussed in
Section 1 this reduction yields a one-dimensional integral that can be handled easily by
simple numerical techniques.

Second, the use of the mode of the posterior distribution in place of the mean is fine
when the 6 posterior margin is nearly normal. When the posterior distribution is unimodal
but asymmetric, the use of the mode may lead to relatively large errors. Mosteller and
Wallace (1964) suggest taking modes of transformed parameters relative to a weighted
measure, so as to make the resulting mode and mean much closer than the mode and mean
of the original #-margin.

Finally, the use of the mode of the joint posterior distribution in place of that of the
6-margin is one which requires far more justification than that of computational expediency.

A problem not considered in the present paper is that of estimating parameters for
linear models, when some or all of the observation vectors are incomplete. In a discussion
of a paper by Hartley and Hocking (see Fienberg, 1971), I proposed a crude Stein-like
improvement for a simple k-means problem where the maximum-likelihood estimator has
a regression form. Extensions of the techniques presented by Lindley and Smith should
yield substantial improvement over my estimators, which are, in turn, uniformly superior
to the maximum-likelihood estimators according to the criterion of expected quadratic
loss. Have the authors undertaken an investigation of such extensions?

Professor BRuce M. HiLL (University of Michigan): Professor Lindley and Dr Smith
have presented an elegant and informative Bayesian treatment of an important class of
problems. Although they apparently would not agree, I think they are dealing with a
genuine Model II situation. The distinction they make in terms of where one is interested
in fixed effects or variance components does not seem an important one to me. Nor do I
think that exchangeability is really the appropriate basis for their results, but rather
normality. Exchangeability of the 6; is indeed a natural way to characterize subjective
opinion in certain contexts, but there is no more reason (and in fact, I believe, much less)
to expect robustness of normal theory prior distributions of the type they assume for the
#; than to expect robustness of normal theory distributions for errors. Thus I expect
their analysis is appropriate, even as an approximation, only for a small subclass of the
exchangeable prior distributions for the §;. This is not to argue against normal theory,
which is often suggestive, as well as being important for more traditional reasons (i.e.
central limit theorem mystique), but rather to emphasize that Bayesian inference need not
be bound up with normality, either for likelihood or prior distributions, any more than
classical theory as, for example, is shown in my paper (Hill, 1969).

Dr R. THoMPsoN (Unit of Statistics, Edinburgh): The authors may care to comment
on the relationship between the exchangeability model and the random effects Model II.
Consider, for example, the two-factor experimental design discussed in Sections 3.1 and
5.1, when the variances o2, o2 and o areknown. Then equation (20) gives the same estimates
of @ as the random effects model with the o’s and §’s normally distributed with variances
o2 and o3. But estimation of the variances o?, o2 and ¢, by maximum likelihood, assuming
a random model, does not in general give the same estimates as equations (32) for the
exchangeable model. It seems that, when o2 and o} are large compared with o2, the estimates
of the o’s and B’s are pulled more to the general mean on a random effect model than on
an exchangeable model.

Lindley and Smith assert in Section 5.1 that when there is vague prior knowledge of
02, o2 and o} the modal estimates of the treatment and block effects are zero (i.e. when
v = v, = vg = 0). Consideration of the following example suggests that this is not so.
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Let
b=1t=4, n=16,
;(yi.~y..)2 = ;(y.j~y..)2 = 40-5,

Zi: ; D=y —ys+2.)% = 60.

Then 5% = 4, s2 = s} = 8 satisfy equations (32) (with the minor modification that if there is
vague prior knowledge on o2 o2 and o} then presumably the 2 in the denominator of
equations (32) should be deleted).

It would seem that a stronger form of the matrix lemma, (10), is needed for the within
regression example (Section 3.3). For then the so-called inverse of (C,+ A, C; AY),
found by application of (10), reduces to (I—p~*J,) when C3! = 0, and this is a singular
matrix.

Professor B. pE FINETTI (University of Rome): I think that the main point to stress
about this interesting and important paper is its significance for the philosophical questions
underlying the acceptance of the Bayesian standpoint as the true foundation for inductive
reasoning, and in particular for statistical inference. So far as I can remember, the
present paper is the first to emphasize the role of the Bayesian standpoint as a logical
framework for the analysis of intricate statistical situations. So often in such situations the
mathematical technicalities play an overwhelming role (usually suppressing any attempt
at intellectual reflection), so that one is reduced to an empirical choice amongst various
ad hoc procedures culled from standard texts.

The present paper not only rebuilds the usual procedures with the innovations of the
Bayesian approach, but explains why such innovations are logically and practically
necessary. These explanations are given both a Bayesian and ‘““objectivistic’” interpretation:
for example, the digression that tries “to persuade an orthodox statistician that (1) is a
sensible estimate for him to consider, and indeed is better than the least-squares estimate”.
Personally, I am particularly pleased to see the notion of exchangeability introduced into
statistical techniques, for example, in between—and within—exchangeability. In this way
the concept is not only applied but, through such different forms, its meaning and role
should become clearer and more familiar to statisticians.

I would like to express my warmest congratulations to my friend Lindley and his
valiant collaborator, Smith.

Professor OscAR KEMPTHORNE (Statistical Laboratory, Iowa State University): The
authors should be congratulated on their presentation. It will be informative to many.
I have no detailed questions or remarks about the formal development, I wish mainly to
comment on philosophical issues that underly the whole matter under discussion.

It seems still to need to be said that there is not, nor ever has been, a controversy about
one type of use of Bayes’s theorem. This is merely a statement of conditional probability
and if the probabilities that enter into the computation are frequency probabilities, then
the resultant conditional probability is a frequency probability. Any such conditional
probability is verifiable by repetitions of the whole of the sampling process in just the
same way that an ordinary probability is verifiable. While I have considerable difficulty
understanding the idea of verifiability and literature search has not aided me, I assert
that underlying all scientific knowledge is some concept of verifiability that is fairly
generally accepted even if not well formalized, and that verification in experimental
sciences is a matter of agreement of results among repetitions of an experiment, the
repetitions being defined by the protocol of the experiment and done by different people.
So, if, for instance, y = A, 0+e conditionally on 6, 8 = A, ¢ +f conditionally on ¢ and
so on, in which the parameters of the ultimate linear model are known, there is no problem
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in applying ideas of conditional probability to obtain the conditional distribution of 6
given y. It is useful that the authors have written out exactly how the mathematical
computations proceed and the solution with particular priors.

It is worth noting also that the essential aspects of the Bayesian argument have been
used widely in psychological testing theory for perhaps sixty years and in the adjustment
of animal breeding records at a more complicated level for perhaps forty years (see,
for example, Lush, 1937). I have drawn attention to this before (Kempthorne, discussion
of Lindley, 1971a) but repetition seems necessary. I have some knowledge of the genetic
case, and shall write what is done for a simple case. The situation is that we have records
on cows, say, which we denote by y;;, i indexing the cow and j the record within cow. The
model used is

= ,U‘+c1'+eif’ j= 1’2’ ey Ny

with p© known—the breed average, say. The terms e;; arise from measurement error and
are assumed to be uncorrelated with mean zero and variance o2. The terms c; arise from
the Mendelian process and are assumed to be uncorrelated with mean zero and variance
o?. Then it is completely standard knowledge (see, for example, Kempthorne, 1957) in
these areas that the best mean-square error predictor of ¢, which is of the form K,(y;.— )
is obtained with

0% n; p

O+ (@)~ T+(m—1 p’
where p = o%/(c2+ 0%). The “best” estimate then of u+c; is given by

{(oe/n) pi+ 02y _ (1/09)+{y:/(0%/n:)}
{03+ (a2/n)} 1/03+1/(c%/ns)

That this is a weighted mean of two “estimates” p and y;. weighting inversely as variance
is clear and was mentioned by Alan Robertson in a short note (Robertson, 1955). The
next stage of estimating u, o2, 62 by some way or other has been used very widely. There is
a short description of this written by C. R. Henderson (an animal breeder) (Henderson
et al., 1959). It is worth noting that Henderson states and proves (using his notation)

R+ZDZ)1=R1-RI1Z(Z'R*Z+DH)1ZRL

K’i=

This result grew out of a Bayesian process which I call legitimate because the model is
based on prior knowledge and not on lack of knowledge. It is worth noting that Henderson
advocates from the viewpoint of computation the maximization with regard to the 8; of a
sort of likelihood equal to p(6,) p(» | 01), which gives the mode of the posterior distribution.

Let me turn to the philosophical issues.

First, the authors regard the result of Stein (1956) as compelling. I confess that I have
failed to see the force of this result. The problem of treating a multivariate parameter
estimation from the naive decision viewpoint is that even if one envisages a vector loss
function one will eventually have to reduce the problem to one dimension by some norming
in some general space. The loss function is usually a real-valued function and the result
that one obtains depends critically on it. In the simple case of a random sample with a
real unbounded parameter, the loss function (4 —p)? leads to the sample mean and the
loss function |A—p| to the median. So the sample mean is inadmissible—and hence
unsatisfactory—and so is the sample median. I may seem to be making a mere play on
words here, because the authors know these facts as well as, and probably better than, I,
but they say that because the multivariate mean p is inadmissible with regard to
(f.— )’ (. —w) it is unsatisfactory. Is it not the fact that with a reasonable use of language,
any estimate is ‘““typically unsatisfactory’” because it will at best be admissible only for a
particular loss function or a small class of such functions? The Stein result for the case
y~ N(w, 1), where y and . are p-vectors, uses the loss function (. — )’ (. — ). and implies
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that if this is your loss function you should not use § = y. This, it appears, was a great
surprise to the ‘“‘sampling-theory school” to use the authors’ phrase. It was so, I am told,
because it had seemed previously that best invariant estimates were thought to be
admissible. The informed reaction to the question of what is the “best” £ in terms of a
particular loss function surely has to be that one does not know because the mathematics
is so difficult. But, in any case, even if §i = y were the best, I would not regard the result
as of great interest or binding practical relevance. I am of the opinion that the mathematical
workers of the ‘““‘sampling-theory school” are not in touch with real problems of learning from
investigation. The investigator who runs an experiment on k treatments, say 4, B, C, ..., K
does not know what use he will make of the results. He may note, for instance, that another
investigator has done an experiment with treatments B, C and E and others unlike those in
A, B, C, ..., K. He will wish to have an estimate of ug, e, pz to apply in his comparison.
The loss function (& —p)’ (4 — ) is simply irrelevant for that purpose. Furthermore, his
use of fip, fic, iz as given by a pulled-in estimator of @' = (w4, s, Hos -, Hx) iS DOt
necessarily admissible for (us, uo, pz). The present authors indicate rather definitely
that “inadmissible” implies ‘“‘unsatisfactory’”. I seem to get the lesson from the past two
decades that admissibility ideas have been unfruitful, except for the reduction of data to a
sufficient statistic. There is a great communication gap, because a huge number of experi-
ments are analysed by the techniques of the ‘““methods” books, and neither the authors
of these books nor the users seem to be bothered by the theoretical fact that they are using
“inadmissible” procedures. Let me hasten to add that while I do not understand the
deeply mathematical work that has been done, I know enough mathematics to form the
opinion that it is very difficult and much of it is beautiful gua mathematics. I do not wish
to denigrate the work or the workers. I merely question its relevance to problems of
interpretation of a given set of data. I also would like to register the plaint that
“inadmissible with respect to a particular loss function” becomes through journal space
exigencies merely “‘inadmissible”’, and then it is quite an easy step to replace this word by
‘““unsatisfactory’”. And this is just what the authors have done.

In connection with the Stein result, it is surely well realized by workers in the
admissibility area that the result, if it is to be taken as having real logical force, involves
the experimenter and the statistician in an embarrassing dilemma. Let us suppose that the
experimenter has done an experiment comparing two treatments 4 and B and wishes to
record numbers fi4, fiz. A little later he makes a test of treatment C with independent
errors. Then he is told by the admissibility workers that his answers for u, and ug are no
longer good. Surely it is offensive to the experimenter to be told that his opinion (in
whatever way he forms this) about p4 and up will be altered if it turns out later that he
obtains data also on u¢. I believe this sort of idea will not “sell”. I believe the idea will
“butcher” the accumulation and condensation of investigational information. I doubt
strongly that the authors have talked to workers in experimental science and tried to sell
them the idea. I surmise, furthermore, that if our informed public were aware of the
“pulling-in” of test records of their off-spring that they would not be happy. I am glad to
see evidence that the public is concerned about the test procedures that are being used.
It is high time. Let us try to persuade an “orthodox” Bayesian (e.g. Professor Lindley)
that a scientist’s opinions about measured physical properties of substance X are not and
should not be based on what he has observed for substance Y unless errors of measurements
are dependent. This is not to say that the scientist will not form opinions such as
“substance X is like substance Y with regard to its phase diagram”.

Let me also try to persuade the authors that the reporting only of Bayesian estimates,
each based on the prior of the person who obtained them, will butcher the processes of
science. Here I deliberately again use the word “butcher”. This is not to say that workers
should not report their own private subjective Bayesian estimates. But they should report
sufficient statistics so that other workers can construct their own Bayesian estimates.
Indeed, let me assert my opinion, with which I believe Professor Lindley must agree, that
reported Bayesian estimates, which must be accompanied by reporting of the prior on
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which they are based, are useless to any other worker unless they have not been margina-
lized in any way, or unless the other worker has the same prior. Another worker will
simply be unable to recover the sufficient statistic and construct his own Bayesian estimate.
I believe this view is compelled by the Bayesians themselves, unless they argue (as perhaps
some do and as Jeffreys does) that there is one and only one prior that is appropriate (and
that one happens in the case of Jeffreys to be improper, so the logical status of any prob-
ability conclusions cannot but be obscure). Professor Lindley and the Bayesians should be
happy that the conventional “‘inadmissible” and “‘unsatisfactory” statistics are reported,
because they can then apply whatever prior they wish.

I can well surmise the attitude of scientists whose only data input from other workers
consists of other workers’ Bayesian estimates. Surely the answer will be, “I do not care
what Joe thinks about the parameter: I want to know the observational facts or a good
condensation of them’. I believe our present authors are not in touch with the processes
of science. They are not aware of the need for the development of interpersonal validity
to opinions. For them life is very lonely. They are concerned about how they alone should
make a terminal decision. They are not concerned with the acceptability of their experi-
mental conclusions to other workers. In contrast, I would report the standard statistics
with estimates of error and so on. I might also compute my own posterior distribution,
but I would be hesitant about burdening the literature with it. If a compelling case could
be made for a Jeffreys prior I would use it and report corresponding Bayesian estimates,
but the case presented has not been found compelling. In just the same way, if a compelling
case could be made for a particular loss function, I would base my thinking on it. But I
would not, I hope, merely try to rationalize a loss function that fits with the probability
structure for the data that I am using, which the authors do seem to do in connection with
equation (3). What loss functions are candidates in the case of the multivariate normal
mean? Very little thought suggests 3. (%;— 5%, or X (&, — ps)%, or max,|f;—p.| to go to
the extreme power. But also, I can readily imagine there being interest in selecting the
component of p that is highest. There are huge possibilities for very interesting and difficult
mathematical work.

On quite a different point, why should one, as a Bayesian, be interested in average
mean-square error? The concept of repetition in the sample space is dismissed, it appears,
by the Bayesians, but like the present authors, they like to discuss averages in a population
of repetitions in the sample space. But, at the same time, they castigate others who use the
concept of repetitions, namely those of the “sampling theory” school, for so doing. If the
purpose of a Bayesian analysis is solely to produce estimators that have good mean-square
error properties, there is no basis for argument. If, loosely speaking, standing on one’s
head aids one in getting an estimator with good repetitive properties, one should stand on
one’s head. No one has ever questioned this. It is very curious to me that the appeal to a
Bayesian process is made on the basis of hard logic from axioms of reasonable behaviour,
but often recourse is made for justification to repeated sampling. Or am I alone in thinking
there is a grave discrepancy here? On the same point, what is the status of P(Data |6)?
Is this a frequency probability? Where did it come from?

I have to comment on the sentence: It is the greatest strength of the Bayesian argument
that it provides a formal system within which any inference or problem can be described”.
I would like to turn it around and say: “It is the greatest defect of the Bayesian argument
that it provides a formal system according to which you can believe what you wish and,
furthermore, without any data”. I believe the search for the sort of panacea envisaged is a
false one, which is based on a rotal misunderstanding of the nature of language and the
nature of knowledge. Here again I believe some homework is desirable.

Why, incidentally, should one be interested in the standard error of the posterior
distribution? Does Bayesian inference have any predictive value? The posterior distribu-
tion, its mean, or median or mode, or whatever, is merely a statistic. Most of the world
likes to have some idea of the reliability of a statistic and I believe correctly so. The
Bayesians believe quite the opposite and, I believe, incorrectly so.
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The use of the exchangeability assumption is warned against. “The estimates (1) are
therefore suggested only when this assumption is practically realistic”, it is said. But how
does one check the assumption? What does it mean to say that an assumption is “‘practically
realistic’? The authors use the phrase. What do they mean? Furthermore, let us turn
to the American College Testing Program. Is it “practically realistic’ to use an exchange-
able prior? Information is available in the records to show that schools differ widely,
students of different social and ethnic backgrounds perform differentially on tests, and so
on. Information on students is available to show, I think, that exchangeable priors are
“practically unrealistic’” whatever that means. Are they being used in high school and
college testing? It seems that many of our (U.S.A.) societal processes merit outside
examination.

I close with brief remarks. First, the paper presented has very interesting material and
material that may well be useful to a ““legitimate” Bayesian, e.g. an animal breeder. Second,
even though I disagree strongly with the underlying background I value the presentation
and the discussion. Third, I believe the authors and most Bayesians (but not all) may
rather easily be “hoisted with their own petard”, to use a delightful Anglicism. Finally, I
regard Professor Lindley as a personal friend and have a Bayesian feeling that this is
reciprocated. The type of criticism I have voiced is possible, intrinsically, only on some
basis of this sort. The same applies to my discussion of the paper by Cornfield that is cited,
though I regret to add that the discussion by others and by me in that paper and in the
Waterloo paper did not apparently merit discussion. It is only by hard arguing that
obscurities in the minds of all of us can be removed and that is why I must push hard and
be treated in the same way.

Professor LINDLEY and Dr SmitH replied briefly at the meeting and subsequently in
writing as follows:

So many interesting points have been raised in the discussion that we cannot, within
reasonable space limitations, give them all the attention they deserve. We therefore hope
that contributors will not take a one-sentence response to an idea to imply lack of interest
on our part: quite the contrary.

Dr Nelder is not correct when he says that our estimates are the same as those derived by
Yates. Using an exchangeable prior for the blocks and vague prior for the treatments, the
estimates are the same when all variances are known. Even with this last condition, an
exchangeable prior for the treatments produces different estimates. In both cases when
we turn to the unknown variance situation, the techniques described in Section 5 lead to
estimates different from those usually employed for balanced incomplete blocks. We do
not understand methods based on likelihoods (whether prior or otherwise) since they seem
to fail in one of the most basic of all statistical problems, namely sampling from a finite
population (Godambe, 1966). The remark of Marquardt that was quoted is not strictly
correct since the ridge estimates are not confined to a sphere. They are a compromise
between least-squares estimates and others so confined. The Bayesian method does not
invoke such restrictions whether to a sphere or a linear subspace: in this case it allows a
compromise, the magnitude of which can be estimated from the data.

Dr Barnett and Professor Hill both have doubts concerning our assumption of
normality at the second and subsequent stages. We share them. As a partial justification
we would say that a prior distribution can sometimes be reasonably taken to be normal,
and it may be better to have an approximate answer than none at all. In answer to Dr
Barnett’s query regarding the relative importance of exchangeability, per se, or normality,
per se, as the basis for Bayesian estimation, we note the following. The representation of
exchangeability by the mixture form is by no means confined to the normal hierarchy: we
cite as an example the discussion of heteroscedasticity in Lindley (1971a), where it is
applied to gamma distributions. On the other hand, the normal hierarchy can be used to
incorporate meaningful, non-exchangeable priors; for example, if the means in a one-way
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model correspond to different levels of a single factor, we might expect them to lie on a
linear or quadratic surface, and this can be represented within the structure (11.1)—(11.3).
This will be reported on elsewhere by Dr Smith.

Professor C. A. B. Smith puts forward an interesting argument that suggests the
assumption of normality is robust in respect of a shift effect. We note that in the case of a
normal likelihood the form of the prior can have a substantial influence on the magnitude
of the shift. Let data x~ N(0, 1) and let 6 have a Cauchy prior with density proportional
to (1+ 6%~ The posterior distribution has turning points at the roots of the cubic
(x—0) = 201+ 6»~1. If x is large an approximate root is x, a better value is x— (2/x).
In particular, the shift of the natural estimate, x, towards the prior value, zero, tends to
zero as x = co. This is quite different from the behaviour of our estimates. We have tried
using -like priors and hope to report on this elsewhere. Our guess is that the methods of the
paper are not robust to outliers. Dr Hinkley’s suggestions are valuable here but we do not
like the abrupt change of form of the estimates that he describes.

Dr Barnett asks about Bayesian devils. Is not the whole point of the Ramsey-Savage—
de Finetti approach, leading to the Bayesian position, that it bars them from the beginning ?
Axiom one is essentially “there shall be no devils”. His query about the two posterior
distributions does not revolve around which is right and which is wrong, but rather on
their appropriateness to the practical situation. A subjectivist Bayesian assesses each
problem on its merits. The formal framework makes it clear what has to be specified and
what calculations will lead to the required answer. The choice of whether p is known or
not has to be dictated by the practical situation.

Mr Leonard’s remarks are valuable. The method shows promise of being capable of
extension to any member of the exponential family with its associated conjugate family.

Professors Novick and Kempthorne take us to task for omitting important references.
Their strictures are justified and we apologize to all the authors they cite for failing
adequately to acknowledge their contributions. (It is particularly remiss of us to have
omitted the work of Box and his colleagues since it is so close to ours and appears in the
“usual statistical journals”). The fact is that practitioners in psychology and genetics
have been ahead of statisticians in appreciating the significance of related information.
Perhaps the only novelty in the paper is the suggestion of using these estimates in wider
fields. Both Novick and Fienberg alert us to the difficulties concerned with the estimation
of the variances (and covariances). Our guess is that faulty estimation of these does not
matter too much when the primary object is to determine the means (just as the correct
weights are not too important in standard least squares), but they are surely correct when
the variances themselves are of interest. Dickey’s work is important here and again we
humbly apologize for omitting to refer to it.

Our reason for not using Model II terminology, a point raised by Novick and Hill, is
that Model II typically has a decision space involving the variance components whereas
ours incorporates the means. Indeed, by looking at the latter we obtain estimates for the
former. We agree with the remark made somewhere by Yates that the distinctions between
the models are largely irrelevant.

Professor Cox and Dr Copas discuss an empirical Bayes approach. Cox’s estimates are
clearly unsatisfactory in some situations; for example, Model II analysis of variance where
a maximum-likelihood estimate is rather absurdly zero. However, it is interesting to note
that in the general linear model with C;* = 0 the posterior mean for 0,, given effectively
by equations (16) and (17), can be written explicitly in the form

(AT Ci* A+ Ci)1 (AT Ci1 A, 6,4+ C71A, 6y)

where 8, is the standard least-squares estimator derived from equation (11.1), and 6, is
the least-squares estimator of 8, which obtains if (11.1) and (11.2) are combined to give
the distribution of y conditional on 8,. This has an obvious interpretation in Professor
Cox’s empirical Bayes formulation.
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Our limited experience suggests that scientists do often perform experiments with
reasonably homogeneous treatments and would be prepared to take similar bets on each
of the treatments being used. Dr Copas says the assumption can, in principle, be tested.
Our assumptions can actually be tested—in terms of gambles for example. The point
concerning negative correlations is interesting. We do not know the complete answer to
his question but point out that the correlation must exceed —1/n in the symmetric case
of n means, and so must be small.

Professor Plackett’s contribution is totally delightful. It may be dangerous to express
prior knowledge in terms of equivalent numbers of observations, but his is a valuable
exercise in doing this and throws considerable light on the approach.

We cannot agree to Professor Sprent’s term, coefficient of stupidity. The use of prior
knowledge becomes even more important when the data are providing relatively little
information. In his example (= = 1, o = 3) it is certainly true that the estimate will be
less than the true value with high probability, but on the other hand it is more likely to be
within + 1 of the true value (63 per cent for our estimate, 26 per cent for the least squares).

We are most interested in Dr Hinkley’s final remarks about Stein’s results. One of us
(D. V. L.) has obtained similar estimates for a multivariate normal dispersion matrix
using a Wishart prior, but there are several snags in its use. Our only reply to Dr Harding
can be that we would not be willing to exchange butterflies for ball-bearings, nor is the
loss function he quotes the only one for which the usual estimate is inadmissible—the
paradox holds for almost all losses.

Why did not Professor Fienberg’s memorandum get published? Since writing this
paper D. V. L. has obtained estimates closely similar to those he mentions, by extending
the arguments of Sections 3.1 and 5.1 to include an interaction component. The method is
particularly attractive because it provides estimates of the cell means, u+ o;+ B+ Vi,
which depend on estimates of the relative sizes of the main effects and interactions, thereby
quite avoiding the usual significance tests. The estimates of variances that he proposes do
not seem so sensible because they use the data y;;, etc. rather than the estimates of the cell
means. Stein’s famous estimate x;[1+(n—2)/ X x2) can probably be improved by using
Z; = x;[1+(m—2)/ > Z?] in accordance with the iteration procedure suggested in the
paper. In answer to his query concerning incomplete observation vectors, some work has
been done on this and although, as always, the Bayesian procedure is clear, its
implementation presents technical problems that we have not been able to surmount. As
a partial justification of the modal approximation we cite the work of Tiao and Zellner
(1964) which shows that posterior distributions which are proportional to products of
t-kernels are well approximated by normal distributions, when reasonable amounts of
data are available. We note that Dickey’s reduction in dimensionality of the integral
becomes rather intractable when more than two such products are involved.

We do not understand Dr Thompson’s numerical solution to equation (32) since he
does not appear to have calculated the values of o} and 8}. Nor do we understand his
point concerning singular matrices for the within-regression example. The estimates are
found directly from equations (16) and (17).

Mr Dawid makes an important point in relating our work to that of Ericson. In a
personal communication he has shown how, using a result of Ericson, it is possible in
some cases to write down the posterior mean quite simply, thereby avoiding the tedious
matrix manipulations of this paper. To answer his second point about the status of 0,
consider the case where # varieties of wheat are being tested in a trial. The components
of 0, are essentially measures of the qualities of the varieties. In a sense they are never
needed since all we want to know is how a variety will perform in a specified situation.
Nevertheless it is practically convenient to have such a concept as an average yield. We
do not know the answer to his problem of two-way exchangeability, nor to that of error-
rates.

It was good to have Professor de Finetti’s kind remarks since all Bayesian work owes
so much to his important and original views on probability.
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The Royal Statistical Society is well known for the discussions that take place at its
meetings and for the invective that often accompanies them. We are particularly grateful
for the kindness that contributors have shown towards our ideas. Most of them have been
prepared to look at the estimates and judge them as estimates, whether from a likelihood,
least squares or other approach, and not get involved in continual arguments on
philosophy. This is a healthy approach. Let us see what the results amount to and temper
our theory with a little pragmatism.

The two exceptions to this are Dr Chatfield and Professor Kempthorne. If a reduction
by 75 per cent is not of practical importance then we would like to know what does measure
up to Dr Chatfield’s peculiar criteria. Professor Kempthorne twice complains that his
previous discussions of our work and Cornfield’s have been ignored. The reason is very
simple. His fellow Iowan, Aydelotte (1966), has said, “‘an imprecise or slipshod formulation
is impregnable: a statement that has no exact meaning cannot be disproved”. Professor
Kempthorne is impregnable because he will not say precisely what he would do. He knocks
everyone about, Bayesians, sampling theorists, the lot, because we make our arguments
precise. He does none of this and then has the effrontery to tell us we are not scientific.
Precision is an essential ingredient of science.

On the one hand, he tells us that we are doing what some scientists, namely geneticists,
have been doing for a long time; and later he says we are out of touch with scientific
thinking. He cannot have it both ways. He casts doubts on Stein’s results on the grounds
that the range of means that might be involved when considering one of them is uncertain.
We quote a little example that came our way recently from a physicist. He had four
sample means, 79, 82, 89 and 126. He was puzzled by the last and thought it overestimated.
He then obtained other means: 83, 91, 104, 111 and 112. He then revised his opinion about
the 126: a high value certainly, but not excessive. Is not this just what a Stein estimate does
in precise terms.

It would impose unreasonably upon our Society’s space to answer every one of his
points in detail. We conclude by remarking that his penultimate paragraph reveals that
he has not, despite de Finetti’s expectation, understood the idea of exchangeability (it
does not mean the units are the same), and by expressing the hope that the American
College Testing Program can deal with his accusations.
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