
M3S3/M4S3 : SOLUTIONS 2

1. To establish a.s. convergence, apart from considering the original definition directly, we might
consider three possible methods of proof;

I the equivalent characterization

Xn
a.s.−→ X ⇐⇒ lim

n−→∞P [ |Xm −X| < ε, ∀ m ≥ n ] = 1 for each ε > 0.

II the Borel-Cantelli Lemma

III the consequence of “fast enough” convergence in probability or rth mean.

It transpires that we have insufficient information to prove whether or not each of the sequences con-
verges almost surely to any specific limit. For example, in each case

∞∑

n=1

P [Xn = c] = ∞

for all c, which begins to imply a.s. convergence, but the crucial condition of independence is not
necessarily met. Also, it is not possible usefully to bound P [ |Xm −X| < ε, ∀ m ≥ n ].

(a) Clearly if the sequence converges, it converges to 1 or 2, and as n −→ ∞ it is clear that the
probability P [Xn = 1] −→ 0, so we check whether the limit is 2.

We have

E
[|Xn − 2|2] =

(
| − 1|2 × 1

n

)
+

(
|0|2 × n− 1

n

)
=

1
n
−→ 0 as n −→∞

so Xn
r=2−→ 2; we can also prove directly that, for ε > 0,

P [|Xn − 2| < ε] = P [Xn = 2] = 1− 1
n
−→ 1 as n −→∞

so Xn
p−→ 2 (although this does follow because of the convergence in r = 2 mean).

(b) Here it seems that Xn may converge to 1; we have

E
[|Xn − 1|2] =

(
|n2 − 1|2 × 1

n

)
+

(
|0|2 × n− 1

n

)
=

(n2 − 1)2

n
9 0 as n −→∞

so Xn does not converge in r = 2 mean to 1; by similar arguments, it can be shown that Xn does
not converge in this mode to any fixed constant. However, we can prove that, for ε > 0,

P [|Xn − 1| < ε] = P [Xn = 1] = 1− 1
n
−→ 1 as n −→∞ ∴ Xn

p−→ 1.

(c) Here it seems that Xn may converge to 0; we have

E
[|Xn − 0|2] =

(
|n|2 × 1

log n

)
+

(
|0|2 × 1− 1

log n

)
=

n2

log n
9 0 as n −→∞

so Xn does not converge in r = 2 mean to 0; by similar arguments, it can be shown that Xn does
not converge in this mode to any fixed constant. However, for ε > 0,

P [|Xn − 0| < ε] = P [Xn = 0] = 1− 1
log n

−→ 1 as n −→∞ Xn
p−→ 0.
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2. By assumption
lim

n−→∞E
[ |Xn −X|2 ]

= lim
n−→∞E

[ |Yn − Y |2 ]
= 0

Then, by the Cauchy-Schwarz (and hence the triangle) inequality,

|Zn − Z|2 = |Xn + Yn −X − Y |2 = |(Xn −X) + (Yn − Y )|2 ≤ |Xn −X|2 + |Yn − Y |2

and taking expectations, and limits as n −→∞ yields the result, that is

E
[|Zn − Z|2] ≤ E

[|Xn −X|2] + E
[|Yn − Y |2] −→ 0 as n −→∞

For convergence in probability, fix ε > 0; then, by assumption

lim
n−→∞P [|Xn −X| < ε/2] = 1 lim

n−→∞P [|Yn − Y | < ε/2] = 1

so that
lim

n−→∞P [ |Xn −X|+ |Yn − Y | < ε ] = 1.

Now
|Xn + Yn −X − Y | ≤ |Xn −X|+ |Yn − Y | (1)

and hence
|Xn −X|+ |Yn − Y | < ε =⇒ |Xn + Yn −X − Y | < ε (2)

therefore
P [ |Xn −X|+ |Yn − Y | < ε ] ≤ P [ |Xn + Yn −X − Y | < ε ].

As n −→∞,

P [ |Xn −X|+ |Yn − Y | < ε ] −→ 1 =⇒ P [ |Xn + Yn −X − Y | < ε ] = P [ |Zn − Z| ] −→ 1

and Zn
p−→ Z.

For convergence almost surely, fix ε > 0; then, by assumption,

lim
n−→∞P [|Xm −X| < ε/2 , ∀ m ≥ n] = lim

n−→∞P [|Ym − Y | < ε/2 , ∀ m ≥ n] = 1

Now, recall the definition of the limit L of a real sequence {an}; for every ε > 0 there exists a natural
number n0 such that for all n > n0, |an −L| < ε. This implies here that we can find an n large enough
such that

P [|Xm −X| < ε/2 ,∀ m ≥ n] and P [|Ym − Y | < ε/2 , ∀ m ≥ n]

and hence
P [|Xm −X| < ε/2 and |Ym − Y | < ε/2, ∀ m ≥ n]

are arbitrarily close to 1. But

|Xm −X| < ε/2 and |Ym − Y | < ε/2 =⇒ |Xm −X|+ |Ym − Y | < ε

for all m ≥ n. Therefore
P [|Xm −X|+ |Ym − Y | < ε, ∀ m ≥ n]

is also arbitrarily close to 1, which in turn implies (by the triangle inequality, and equations (1) and
(2)) that

P [|Xm + Ym −X − Y | < ε, ∀ m ≥ n] = P [|Zm − Z| < ε, ∀ m ≥ n]

is also arbitrarily close to 1, and hence Zn
a.s.−→ Z.
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3. By definition
lim

n−→∞E[|Xn −X|2] = lim
n−→∞E[(Xn −X)2] = 0

But, for n ≤ m,

|Xn −X|2 = |(Xn −Xm + Xm −X)|2 ≤ |Xn −Xm|2 + |Xm −X|2

and
lim

n−→∞E[|Xn −X|2] = lim
m−→∞E[|Xm −X|2] = 0

so consequently
lim

n,m−→∞E[|Xn −Xm|2] = lim
n,m−→∞E[(Xn −Xm)2] = 0 (3)

Now, for any two variables, U and V , we have

{E[(UV )]}2 ≤ E[U2]E[V 2] (4)

To see this, consider the variable W = sU + V ; we have immediately that

0 ≤ E[W 2] = E[(sU + V )2] = E[s2U2 + 2sUV + V 2] = as2 + bs + c.

where a = E[U2], b = 2E[UV ] and c = E[V 2]. Clearly a ≥ 0, so consider a > 0 (if a = 0, then inequality
(4) holds trivially). Then, as

g(s) = as2 + bs + c

stays non-negative for all s, g(s) has at most one real root. This implies that the “discriminant” is
negative, that is

b2 −
√

4ac ≤ 0.

Consequently, substituting in the forms for a, b and c yields

(2E[UV ])2 − 4E[U2]E[V 2] ≤ 0

and the result in equation (4) follows.

Using equation (4), therefore,

Cov[Xn, Xm] = E[(Xn − µ)(Xm − µ)] = E[(Xn −Xm + Xm − µ)(Xm − µ)]

= E[(Xn −Xm)(Xm − µ)] + E[(Xm − µ)2]

But, by equation (4)

{E[(Xn −Xm)(Xm − µ)]}2 ≤ E[(Xn −Xm)2]E[(Xm − µ)2] = E[(Xn −Xm)2]σ2 −→ 0

as n −→∞, from equation (3). Hence

lim
n−→∞Cov[Xn, Xm] = lim

n−→∞E[(Xn −Xm)(Xm − µ)] + lim
n−→∞E[(Xm − µ)2]

= 0 + σ2

and hence

Corr[Xn, Xm] =
Cov[Xn, Xm]√

V ar[Xn]V ar[Xm]
=

Cov[Xn, Xm]√
σ2σ2

−→ σ2

√
σ2σ2

= 1

as n −→∞.
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4. A result from lectures on almost sure convergence implies here that

In =
1
n

n∑

i=1

g(Ui)
a.s.−→ I ⇐⇒ E[|g(U)|] < ∞, with I = E[g(U)]

so it is sufficient to check whether the function g is absolutely integrable on (0, 1). But

∫ 1

0
|g(u)|du =

∫ 1

0

∣∣∣∣
1
u

sin(2π/u)
∣∣∣∣ du =

∫ 1

0

1
u
|sin(2π/u)| du

and this integral is unbounded. To see this,

EfU
[|g (U)|] =

∫ 1

0

∣∣∣∣
1
u

sin
(

2π

u

)∣∣∣∣ du =
∫ 1

0

1
u

∣∣∣∣sin
(

2π

u

)∣∣∣∣ du

=
∫ ∞

1

1
y
|sin (2πy)| dy setting y = 1/u.

=
∫ ∞

2π

1
t
|sin t| dt setting t = 2πy.

=
∞∑

k=1

[∫ (2k+1)π

2kπ

1
t

sin t dt−
∫ 2(k+1)π

(2k+1)π

1
t

sin t dt

]

Now, in the first integral, on (2kπ, (2k + 1)π), we have

1
t
≥ 1

(2k + 1)π

and, in the second integral, on ((2k + 1)π, 2 (k + 1)π), we have

1
t
≤ 1

(2k + 1)π
.

Hence

EfU
[|g (U)|] ≥

∞∑

k=1

[∫ (2k+1)π

2kπ

1
(2k + 1)π

sin t dt−
∫ 2(k+1)π

(2k+1)π

1
(2k + 1)π

sin t dt

]

=
∞∑

k=1

1
(2k + 1)π

[∫ (2k+1)π

2kπ
sin t dt−

∫ 2(k+1)π

(2k+1)π
sin t dt

]

=
∞∑

k=1

1
(2k + 1)π

[
[− cos t](2k+1)π

2kπ − [− cos t]2(k+1)π
(2k+1)π

]

=
∞∑

k=1

1
(2k + 1)π

[2− (−2)]

=
∞∑

k=1

4
(2k + 1)π

and the final sum is divergent.
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5. By definition, if i =
√−1, then

CX(t) = EfX
[exp{itTX}] =

∫
exp{itTX}fX(x) dx

where the final integral is k-dimensional. Partially differentiating with respect to tj of this form yields

∂

∂tj

{∫
exp{itTx}fX(x) dx

}
=

∫
∂

∂tj

{
exp{itTx}

}
fX(x) dx

=
∫

ixj

{
exp{itTx}

}
fX(x) dx

which when evaluated at t = 0, yields
∫

ixjfX(x) dx ≡ iµj .

Repeating for each j = 1, . . . , k yields the result.

Similarly,

∂2

∂tj∂tl

{∫
exp{itTx}fX(x) dx

}
=

∫
∂2

∂tj∂tl

{
exp{itTx}

}
fX(x) dx

=
∫

(ixj)(ixl)
{

exp{itTx}
}

fX(x) dx

which when evaluated at t = 0, yields
∫
−1xjxlfX(x) dx ≡ −EfXj,Xl

[XjXl]

as i× i = −1. Forming the k× k matrix of such expectations derived from partial derivatives yields the
result, as

XXT = [XjXl]j,l=1,...,k
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