M3/M4S3 STATISTICAL THEORY II
MEASURABLE FUNCTIONS

The real-valued function f defined with domain E C €, for measurable space (€2, F), is Borel
measurable with respect to F if the inverse image of set B, defined as

f!B)={weE: f(w) e B}

is an element of o-algebra F, for all Borel sets B of R (strictly, of the extended real number system
R*, including +oo as elements). The following conditions are each necessary and sufficient for f
to be measurable

L(A) € F for all open sets A C R*,
Y([~o0,2)) € F for all x € R*,
Y ([~o0,2]) € F for all x € R*,
(
(

x,00]) € F for all z € R*,

H

L ((x,00]) € F for all x € R*.

NOTES:

(i)

(i)

(iii)

The Borel o-algebra in R, B, is the smallest (or minimal) o-algebra containing all open
sets (that is, essentially, sets of the form

(a,b) or [a, ]’
for a < b € R) which are known as the Borel sets in R.

It is possible to extend this definition to a general topological space () equipped with a
topology, that is, a collection, 7, of sets in 2 that (I) 7 contains () and Q, (IT) 7 is closed
under finite intersection, and (III) if A is a sub-collection of 7, A C 7, and A;, Ag, As, ... € A,
then

[j A, eT.
=1

In this context, it is possible to define a general Borel o-algebra on €2; the open sets are the
elements 11,715, T;, ... of the topology 7, and the Borel sets are the elements of the smallest
o-algebra generated by 7, o (7). However, we will not be studying general toplogical spaces;
we shall restrict attention to R, and thus refer to the Borel sets and the Borel g-algebra,
meaning the Borel sets/o-algebra defined on R.

Strictly, a function f is a Borel function if, for B € B, f~! (B) € o (7); however, we will
generally consider measure spaces (2, F) and say that f is a Borel function if it is Borel
measurable, as defined in the first paragraph above.



Example Consider Lebesgue measure, m, defined for real numbers a < b (on the Borel o-algebra
on R, B) by
m ([a,b]) = m ((a,b)) =m((a,b]) = m([a,b)) = b —a.

Suppose f is an increasing function on R. Then the set A = f~!([—o0,z]) is an interval in R,
and thus f is measurable with respect to Lebesgue measure, as the measure of A, m(A), is
well-defined. Now consider the function g defined by g(z) = x for x € R. This function is
measurable with respect to Lebesgue measure (on B), as it is increasing. However, consider the
o-algebra, Z, generated by the sets {0, (—o0, 0], (0,00) ,R} . Then

g (~o0, 1)) ¢ 2

so ¢ is not measurable on Z.

RESULTS FOR MEASURABLE FUNCTIONS

Theorem 1.1 MEASURABILITY UNDER COMPOSITION
Let g1 and go be measurable functions on E C § with ranges in R*. Let f be a Borel function
from R* x R* into R*. Then the composite function h, defined on E by

h(w) = f(91(w1),92 (w2))

is measurable.

Proof. The function g = (g1,g92) has domain E and range R* x R*, and is measurable as g1 and
g2 are measurable, and denote h = f o g (the operator o indicates composition, i.e.

h(wi,wa) = (fog)(wiwa)  if  h(wi,wa) = f(g(wi,w2)) = f(g1(w1),92 (w2))
If B € B, then f~1(B) is a Borel set as f is a Borel function. Thus the inverse image under h,
= (B) =g (f71(B))
1s measurable as g1 and g2, and hence g, are measurable.

Corollary If g is a measurable function from F into R*, and f is a continuous function from R*
into R*, then h = f o g is measurable.

Theorem 1.2 MEASURABILITY UNDER ELEMENTARY OPERATIONS
Let g1 and go be measurable functions defined on E C §2 into R*, and let ¢ be any real number.
Then all of the following composite and other related functions are measurable

g1+ 92,91 + ¢, g192,¢91,91/92, |1 s 91 V 92,91 A 92, 915 97 -

Proof. In each case, we examine the domain of the composite function to ensure measurability in
the Borel o-algebra. Consider g1 + go; this is not defined on the set

{w:g1 (w) = —g2 (w) = oo}

(as 00 £ 0o is not defined), but this set is measurable, and so is the domain of g; + g2. Let
f (z1,22) = x1 + x2 be a continuous function defined on R* x R*. Then, by Theorem 1.1 and its
corollary, g1 4+ go is measurable. Taking go = ¢ proves that g; + ¢ is measurable.

The function g;go is defined everywhere on F; it’s measurability follows from Theorem 1.1,



setting f (z1,z2) = w1x9. Setting go = ¢ proves that cg; is measurable.

The function g1 /g2 is defined everywhere except on the union of sets
{w:gr1(w) =g2(w) =0} U{w: +g1 (w) = £g2 (w) = o0}
Similarly, if ¢ = 0, |g1|° is defined except on
{w: g1 (w) = +o0};

if ¢ < 0, it is defined except on
{w: g1 (w) =0}.

If ¢ > 0, it is defined everywhere. All of these sets are measurable Thus, we consider in turn
functions

[z, 22) = 1 /22 f(z)=2af

and use Theorem 1.1.
The functions g7 V g2, 91 A g2 are defined everywhere; so we consider functions

f(z1,22) = max {x1, 2} f(z1,22) = min{z1,x2}

and again use Theorem 1.1. Finally, setting go = 0 yields the measurability of gf and g; .

Theorem 1.3 If g and g2 are measurable functions on a common domain, then each of the sets

{fwigw <gW} {vigW=gW}i {vig) >gW)}

18 measurable.

Proof. Since g; and go are measurable, then f = g1 — ¢go is measurable, and thus the two sets

{wifw)>0}  Hw:f(w)=0}

are measurable. Since
{w:g1 (W) <g (W)} ={w: f(w) >0}
and
{wigt(w)=gpW}={w: f(w)=0}U{w: g1 (w) =92 (w) = £oo}

then {w: g1 (w) < g2 (w)} and {w : g1 (w) = g2 (w)} are measurable, and so is

wigw) <pwl={w:gaWw <gpWlu{w:gWw) =g W)}.



Theorem 1.4 MEASURABILITY UNDER LIMIT OPERATIONS
If {gn} is a sequence of measurable functions, the functions sup g, and inf g, are measurable.
n n

Proof. Let g =supg,. Then for real x, consider
n

gn ([=00,2]) = {w: gn (w) < 2}

and
97 ([~o0,2]) ={w: g (w) <z}
If g = sup gn, then g, < g for all n, and
n

Jw)<zr= g, (w) <z so that weg(~o0,z)) = we g, ([~o0,z])

so that
971 ([_007 :E]) - 97:1 ([—OO,JZ])

for all n. Thus, in fact

g ([=o0,2]) = (9" ([-o00,4])

and hence g is measurable, as the intersection of measurable sets is measurable. The result for
inf follows by noting that
n

inf g, = —sup (—gn) -
n n

Theorem 1.5 MEASURABILITY UNDER LIMINF/LIMSUP
If {gn} is a sequence of measurable functions, the functions limsup g, and liminf g,, are
n n

measurable.

Proof. This follows from Theorem 1.4, as

limsup g, = inf {sup gn} and liminf g, = sup { inf gn}
n k n>k n k n>k

SIMPLE FUNCTIONS AND THEIR CONVERGENCE PROPERTIES.

Definition : Simple Functions
A simple function, 1, is a set function defined on elements w of sample space ) by

k
b w) =3 aila, (@)
=1

for real constants ay, ..., a; and measurable sets Ay, ..., Ag, for some k =1,2,3, ..., where I4(w) is
the indicator function, where

1 wed
I = )
Alw) { 0 we¢A

Note that any such simple function, can be re-expressed as a simple function defined for a
partition of 2, E1, ..., £,

l
W)=Y eilp, (@)
i=1

by suitable choice of the constants eq, ..., eg.



Theorem 1.6 A non-negative function on € is measurable if and only if it is the limit of an
increasing sequence of non-negative simple functions.

Proof. Suppose that g is a nonnegative measurable function. For each positive integer n, define
the simple function v,, on Q by

m-+1
27’L

form=20,1,2,...,2" — 1, and
v, (W) =n if n<g(w).

Then {1,,} is an increasing sequence of non-negative simple functions. Since

Yo (@) ~g @) < 3z i n>g(w)

and ¥, (w) =nif g(w) = oo, then, for all w,
¥y (W) = g (w)
and we have found the sequence required for the result.

Now suppose that g is a limit of an increasing sequence of non-negative simple functions. Then it
is measurable by Theorem 1.5.

Theorem 1.7 A function g defined on § is measurable if and only if it is the limit of a sequence
of simple functions.

Proof. Suppose that g is measurable. Then g* and g~ are measurable and non-negative, and thus
can be represented as limits of simple functions {@ZJ:{} and {1/); }, by the Theorem 1.6. Consider
the sequence of simple functions defined by {wj{ — 1, }; this sequence converges to g* — g~ = g,
and we have the sequence of simple functions required for the result.

Now suppose that g is a limit of a sequence of simple functions. Then it is measurable by Theorem
1.5.



