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M3S3/M4S3 STATISTICAL THEORY II

THE DE FINETTI 0-1 REPRESENTATION THEOREM

Definition : Exchangeability
A finite sequence of random variables X1, X2, . . . , Xn is (finitely) exchangeable with (joint) probability
measure P , if, for any permutation π of indices

P (X1, X2, . . . , Xn) = P (Xπ(1), Xπ(2), . . . , Xπ(n))

For example, the random variables (X1, X2, X3, X4) are exchangeable if

P (X1, X2, X3, X4) = P (X2, X4, X1, X3) = P (X1, X3, X2, X4) = · · ·
An infinite sequence, X1, X2, . . ., is infinitely exchangeable if any finite subset of the sequence is finitely
exchangeable.

Theorem 3.1 (The De Finetti 0-1 Representation Theorem)
If X1, X2, ... is an infinitely exchangeable sequence of 0-1 variables with probability measure P , then there
exists a distribution function Q such that the joint mass function of (X1, X2, ..., Xn) has the form

p (X1, X2, ..., Xn) =
∫ 1

0

{
n∏

i=1

θXi (1− θ)1−Xi

}
dQ (θ)

where

Q (t) = lim
n→∞P

[
Yn

n
≤ t

]

and Yn =
n∑

i=1
Xi, and

θ
def
= lim

n→∞Yn/n ∵ Yn/n
a.s.−→ θ

is the (strong-law) limiting relative frequency of 1s.

PROOF By exchangeability, for 0 ≤ yn ≤ n

P [Yn = yn] =
(

n

yn

)
p (x1, x2, ..., xn) =

(
n

yn

)
p

(
xπ(1), xπ(2), ..., xπ(n)

)
(1)

where Xi = xi and

yn =
n∑

i=1

xi

and π () is any permutation of the indices. For finite N , let N ≥ n ≥ yn ≥ 0. Then, by exchangeability

P [Yn = yn] =
∑

P [Yn = yn|YN = yN ] P [YN = yN ] (2)

where the summation extends over (yn, ..., N − (n− yn)) . Now the conditional probability for Yn, given
YN = yN , denoted P [Yn = yn|YN = yN ], is a hypergeometric mass function

P [Yn = yn|YN = yN ] =

(
yN

yn

)(
N − yN

n− yn

)

(
N

n

) 0 ≤ yn ≤ n.

Rewriting the binomial coefficients, we have

P [Yn = yn] =
(

n

yn

) ∑ (yN )yn
(N − yN )n−yn

(N)n

P [YN = yN ] (3)
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where
(x)r = x (x− 1) (x− 2) ... (x− r + 1) .

Define function QN (θ) on R as the step function which is zero for θ < 0, and has steps of size P [YN = yN ]
at θ = yN/N for yN = 0, 1, 2, ..., N . Hence, utilizing the Lebesgue integral notation, we can re-write

P [Yn = yn] =
(

n

yn

) ∫ 1

0

(θN)yn
((1− θ) N)n−yn

(N)n

dQN (θ) . (4)

This result holds for any finite N , but in equation (2) we need to consider N →∞. In the limit,

(θN)yn
((1− θ) N)n−yn

(N)n

→ θyn (1− θ)n−yn =
n∏

i=1

θxi (1− θ)1−xi

as (x)r → xr if x → ∞ with r fixed. Now, the function QN (t) is a step function, starting at zero and
ending at one, with N steps of varying sizes at particular values of t. Now, there exists a result (the Helly
Theorem) proving that the sequence {QN (θ) ; N = 1, 2, . . .} has a convergent subsequence

{
QNj (θ)

}
such

that, for some distribution function Q,

lim
j→∞

QNj (θ) = Q (θ)

Thus the result follows comparing equation (1) and the limiting form of equation (4) as N −→∞.

Corollary : Posterior Predictive Distributions For 1 ≤ m ≤ n

p (Xm+1, Xm+2, ..., Xn|X1, X2, ..., Xm) =
p (X1, X2, ..., Xn)
p (X1, X2, ..., Xm)

(5)

=
∫ 1

0

{
n∏

i=m+1

θXi (1− θ)1−Xi

}
dQ (θ|X1, ..., Xm)

where, if

Q (θ) =
∫ θ

0
dQ (t)

we have

dQ (θ|X1, ..., Xm) =

m∏
i=1

θXi (1− θ)1−Xi dQ (θ)

∫ 1

0

m∏

i=1

θXi (1− θ)1−Xi dQ (θ)

as the updated “prior” measure. Hence, if Yn−m =
n∑

i=m+1
Xi, we have from equation (5)

p (Yn−m|X1, ..., Xm) =
∫ 1

0

(
n−m

yn−m

)
θYn−m (1− θ)(n−m)−Yn−m dQ (θ|X1, ..., Xm)

which identifies Q (θ|X1, ..., Xm) as the limiting posterior predictive distribution as n −→∞ with m fixed,
as from equation (5) and the representation theorem itself, we have

lim
n→∞P

[
Yn−m

n−m
≤ θ

]
= Q (θ|X1, ..., Xm) .
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Interpretation: The De Finetti Representation

p (X1, X2, ..., Xn) =
∫ 1

0

{
n∏

i=1

θXi (1− θ)1−Xi

}
dQ (θ)

can be interpreted in the following way;

• The joint distribution of the observable quantities X1, X2, ..., Xn can be represented via a condi-
tional/marginal decomposition.

– The conditional distribution is {
n∏

i=1

θXi (1− θ)1−Xi

}

formed as if it were a likelihood for data X1, X2, ..., Xn conditional on a quantity θ.

– The marginal distribution is determined by the probability measure Q (θ), which may admit a
density (wrt Lebesgue measure) pθ, and leave the representation as

p (X1, X2, ..., Xn) =
∫ 1

0

{
n∏

i=1

θXi (1− θ)1−Xi

}
pθ(θ) dθ

• θ is a quantity defined by
Yn/n

a.s.−→ θ

that is, a strong law limit of observable quantities.

• Q defines a probability measure for θ which we may term the prior probability measure.

• In the corollary,

dQ (θ|X1, ..., Xm) = pθ|X1,...,Xm
(θ|X1, ..., Xm) =

m∏
i=1

θXi (1− θ)1−Xi dQ (θ)

∫ 1

0

m∏

i=1

θXi (1− θ)1−Xi dQ (θ)

defines the updated prior formed in light of the data X1, ..., Xm; this is the posterior distribution
for θ.

Thus, from a very simple and natural assumption (exchangeability) about observable random quantities,
we have a theoretical justification for using Bayesian methods, and a natural interpretation of parameters
as limiting quantities. The theorem can be extended from the simple 0-1 case to very general situations

Theorem 3.2 The De Finetti General Representation Theorem
If X1, X2, ... is an infinitely exchangeable sequence of variables with probability measure P , then there
exists a distribution function Q on F , the set of all distribution functions on R, such that the joint
distribution of (X1, X2, ..., Xn) has the form

p (X1, X2, ..., Xn) =
∫

F

n∏

i=1

F (Xi) dQ (F )

where F is an unknown/unobservable distribution function

Q (F ) = lim
n→∞Pn(F̂n)

is a probability measure on the space of functions F , defined as a limiting measure as n −→ ∞ on the
empirical distribution function F̂n.


