CHAPTER 6
CONTINGENCY TABLES

Contingency tables are data arrays containing counts of observations that are recorded in cross classi-
fications by a number of discrete factor predictors. The basic probability model for count data is the
Poisson model; if N¢ is the count in cross-category C', then

N¢ ~ Poisson (Aoc)
say, and a natural GLM has
po =log Aoc = 2" B

that is a linear predictor to the canonical parameter ., which is log of the naive parameter. This
model is the log-linear model. The assumed Poisson model can be shown to be linked to the bino-
mial /multinomial model.

6.1 CONTINGENCY TABLES AND SAMPLING MODELS

Contingency tables are summaries of response data where the predictor variables (exposures, con-
founders) are discrete factors or categorical variables, and where the responses are counts. We
have studied simple 2 x 2 tables in epidemiology extensively: the data are counts of cases and controls
in exposed and unexposed groups.

[ E [ E [ TOTAL ]

F ni | ni2 ni.

6.1.1
F’ No1 | Moo no, ( )

TOTAL | n1 | na n.

In a cohort study, the sampling model is product binomial, that is, the column totals are fixed

ny1 ~ Binomial (n.1,71) niz ~ Binomial (n.g,mo) (6.1.2)

with the two sub-samples independent binomials with probabilities 7y = P (F|E) and 79 = P (F|E’)
respectively. In fact, in cohort studies we could also regard the cases and controls as independent
binomial cohorts with the row totals fixed, and instead model

ni1 ~ Binomial (ny.,v,) ng1 ~ Binomial (na.,v) (6.1.3)

where v, = P (E|F) and vy, = P (E|F").

In cohort studies, a sample or population of size n. is identified, and the exposure status for the
individuals in the sample determined; these individuals are then followed up until their disease or
morbidity status is established. Thus, we have an interpretation that implies either fixed cohort
size, n_, or fixed column totals (ni,n2), or, indeed fixed row totals (nj,ns ) and we have random
Bernoulli/binomial /multinomial sampling.

In case-control studies, however, the situation is somewhat different: we only have a product
binomial sampling model in the rows of the table, as implied by (6.1.3). As we have seen previously,
it is the row totals that are fixed in the design, and permits inferences about (v;,7,) to be made;
inference about (71, () is not possible as the column totals are not fixed by the experimenter, and we
do not have independent Bernoulli/binomial random sampling.
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6.2 SAMPLING MODELS FOR I x J TABLES

In this section, we study the equivalence of Poisson sampling models and binomial /multinomial sampling
models. Consider first the 2 x 2 table with cell entries N;;, 7,5 = 1,2, and an independent Poisson
sampling model

Ni; ~ Poisson (Xij) .

Suppose that the pattern amongst the Poisson rates is of interest. Note that the MLE of A;; in this
unrestricted model is

//{ij = nij
6.2.1 CONDITIONING AND NUISANCE PARAMETERS

In the standard epidemiological analysis of 2 x 2 tables, the main focus of interest are the conditional
probabilities in (6.1.2) and (6.1.3), but not the marginal probabilities P (F), P (F) and so on. These
parameters are essentially nuisance parameters, and little useful inference is lost by replacing them
in an analysis by their sufficient statistics, that is, the row and column totals. Similarly, if only
inference about the degree of association between the row and column factors is required, then the
conditional probabilities are not directly of interest, but the odds-ratio

_ 7T1/(1 —7T1)
7T0/ (1 —7T0)

is, and then the extra conditioning on the grand total may be used to reduce the inference focus to a
one-parameter problem.

The effect of different forms of conditioning may be studied first by regarding the overall rate
parameter for inclusion in the study as a nuisance parameter (often it will not be the focus of interest).
Note first that

I J
N = Z ZNU ~ Poisson (\) where A = A11 + A2 + Aop + oo
i=1 j=1

We condition on the grand total N, = n_, and inspect the conditional distribution of the remaining
three table entries;

P[N11 =n11, N2 = ni2, Nog = no1, N =n_]

fN117N127N21|N“ (n117n127n21‘n--) = P [N _ n]

note that fixing N1; = ny1, N12 = ny2, Na1 = no1, N = n_ automatically fixes Nog = n_—(n11 + ni2 + noy1) =

ngo say. Then

P [Ny1 = ni11, Nig = ni1g, Na1 = ng1, Nag = nag]
fN117N127N21|N“ (n11, 12, n21In.) = P[N.=n]

—A11 \11 —A12 \ 12 —A21 \ 21 —Ao2 \ 122

{e AT e A5 e 57 e 53

n11! n12! n21! n22!
6_)\“/\?1_“

n !

— < n. ) 07;11 072112 07??21 0222

nii, niz,N21,Nn22
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where

A A A A
01:£ 02:£ 03:2 04:%:1—01_02_03

as all otther terms cancel, and where the first term is the multinomial coefficient

< n ) n |
ni1,n12,N21,M22 n11!ni2!ngg ngs!

Hence, conditional on N, = n_, we have that

N117N127N21’N. =n,~ Multinomial (n__, 01,02,03)
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Other forms of conditioning lead to different probability models For example, conditional on having

the column totals fixed
Ni=n; Na=mns

we have, using exactly similar techniques, we have that

. . A1
Ny1|N;1 = ~ B [ e
111N 1 n.1 inomia <n,1, Nt /\21>

. . A12
Ni2|No = ~ B { _—
12| N2 n.o inomia <n_2, ot /\22>

and also, conditional on having the row, column (and hence grand) totals fixed
Ni=ni Ni=m. N.=n,
we have that

Ni1|N1 =n1,N1. =n1,N_ =n_~ HyperGeometric(ni,ni,n_,y)

so that
(o) ()
P[Nyy =nu|Ni=ni,Ni.=ni,N. =n]= o Z'l — w
(o)
where
A11A22
Py = Moot

These results are proved in detail in section 6.5.2.
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6.2.2 SUMMARY OF POSSIBLE MODELS OBTAINED BY CONDITIONING

The results from the previous section have profound implications for how we fit models to observational
data. We have four possible sampling models that might arise in the context of contingency tables

1. Model 1: Independent Poisson samples within the cells of the table
Nij ~ Poisson(\;j)

2. Model 2: Independent Poisson samples within the cells of the table
Nij ~ Poisson(\ij)

but with the grand total

presumed fixed, and equal to n_ say. Then, given N =n_, {N;;} have a multinomial distri-
bution with parameters n. and

I J
Lo
i=1 j=1
3. Model 3: Independent Poisson samples within the cells of the table
Nij ~ Poisson(\; )

but with the row totals

J
Ni.=> N
j=1
or the column totals
I
N;=> Ny
i=1
presumed fixed, and equal to (n;,...,n;) and (n1,...,n ) say. Then, given these row totals,

{Ni; : 7 =1,...,J} have a multinomial distribution within the rows with parameters n; and

Ait iz Aig
<x,x,,x> where /\l :];/\l]

with the data within rows independent across rows. Also given these column totals, {N;; : i =1, ...

have a multinomial distribution within the columns with parameters n ; and

/\1]' /\2]' /\Ij
2y 2 h A=\
(A_j,A_j, L) whee A ; }

with the data within columns independent across columns.

A}
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4. Model 4: Independent Poisson samples within the cells of the table
N;j ~ Poisson(\;j)

but with the row totals and the column totals

J
Ni=> Ny N;=) Ny
j=1 j

presumed fixed, equal to (n;,...,nr.) and (n1,...,n ) say. Thenthe {N;;:i=1,..,I,j=1,...,J}
have a multivariate hypergeometric distribution. Under the independence assumption, the
distribution is a common or central hypergeometric, whereas under a more general assumption
the distribution is the general or non-central hypergeometric distribution.

These different sampling distributions might
e reflect the data collection mechanisms

e be utilized in order to construct a more powerful analysis; if the sample size is small, exact
results in an unconditional analysis (model 4) might be not available (not enough data to
estimate the parameters in the model), so that we are forced to carry out a conditional analysis
that effectively reduces the number of parameters to be estimated.

e be utilized to facilitate the statistical inference; effectively, models 2 and 3 demonstrate
the equivalence of statistical inference in the unconditional analysis (to estimate \;;) and a
conditional analysis given grand, or row or column totals (to estimate ;).

6.3 THE EQUIVALENCE OF DIFFERENT SAMPLING MODELS FOR INFERENCE

The third point above is a crucial one; effectively, by conditioning on estimates of the “nuisance” pa-
rameters (A estimated by n_ in the case of model 2, (A1, ..., A1) or (A1, ..., As) estimated by (ny,...,nr))
or (ni,...,n.s) in the case of model 3) we can perform inference for the parameters of interest, that is,
the cell specific probabilities and how they depend on row/column classifications, using the usual GLM
framework.

EXAMPLE: For model 1, we might use a Poisson GLM with the canonical log link for the cell counts

Hij = log \ij = /Bij = 33;“9

and obtain ML estimates of 3,;, Eij say. Then we would have

;\\ij = exp {EU} /X - XI: iexp {B’J}

and hence

is an estimate of the cell-specific probability ;;
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6.4 INFERENCE AND TESTING IN I x J TABLES

For two discrete (factor, predictor, categorical variables) X and Y with I and J levels respectively.
The simplest type of sampling model is the multinomial model, where the I x J cross-categories each
have an attached probability, and where structured models (involving main-effects or interactions say)
for these probabilities can be used.

In the multinomial model, the total number of observations, n_, is presumed fixed. This sampling
model is not the only one that can be used, as discussed below, but is appropriate for the analysis of
some epidemiological and biostatistical studies.

6.4.1 MULTINOMIAL MODELS AND INFERENCE

The multinomial model for an I x J table specifies a joint distribution over the discrete factors X and Y
here we might have a predictor variable (exposure, confounder) and a response, or merely two discrete
variables. The joint mass function therefore is given by

PIX=iY=jl=m; i=1.,1j=1,.J

where the marginal mass functions are given by

J
P[X =i = ij =7 (i=1,..,1) PY=j1=) mj=n; (G=1..7)

and
I J
> m=1
i=1 j=1

Inference for the multinomial distribution is to be based in the cell counts {n;; : i =1,....,I,j =1,...,J}.
The likelihood for the multinomial model is

Fap (n ) = < n. .’ nU) ﬁ ﬁw?jj (6.4.4)

ni1, N2, - =1 j=1

so the log-likelihood is

I J
logl (7) = log < . n]J) + Z Z ni; log mi; (6.4.5)

nii, M2, - i1 =1

The functions in (6.4.4) and (6.4.5) will be the basis of likelihood and Bayesian inference.
Models for subsets of the data can also be deduced conditional on the total number of observations
n... For an individual cell count,

nijln.. ~ Binomial (n_,m;;)
For row ¢ or column j
n;.|n.. ~ Binomial (n_, ;) n_jln. ~ Binomial (n_,7 ;)
and

. . i1 g . . T1j TIj
Nily ooy Nig|ni. ~ Multinomial [ n;, —, ..., N1, oy nrjn g ~ Multinomial [ nj, —2,...,—2
5. 5. 7T_j 7T_j
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6.4.2 CHI-SQUARED AND LIKELIHOOD-RATIO TESTS

The multinomial model can be used in standard statistical hypothesis testing; two methods are com-
monly used for carrying out hypothesis tests of specific hypotheses. Suppose that a model implies
(returns) fitted cell probabilities 7;; and fitted cell entries n;; = n_m;;. The following two test statistics
can be used to test for model adequacy

¢ PEARSON CHI-SQUARED GOODNESS-OF-FIT STATISTIC:
This is defined by

J 2

_yoy b nwnm (6.4.6)

i=1 j=1

e LIKELTHOOD RATIO/DEVIANCE STATISTIC
This Likelihood ratio statistic for a model against the saturated alternative, or deviance, is defined
in the usual way by computing the maximized log-likelihood under the fitted model with that under
the saturated model

LR = —21og 2 (Ta)

ls (7s)
Here, the fit under the saturated model gives
~ T P
7rij = n— nij = nij

and, using the log-likelihood for 6.4.5) we have

LR = —2log /=" =2 Z Z n;j log J{ (6.4.7)

=1 j=1

where n;; is the fitted cell entry under the model M.

Under the model (if the model is correct), we complete the tests by noting that both (6.4.6) and (6.4.7)
have asymptotic Chisquared distribution with IJ — d degrees of freedom, where d is the total number
of parameters fitted.

EXAMPLE: TESTS FOR INDEPENDENCE
Under the an independence model, we have a simple form for the cell probabilities in that, if X
and Y are independent,

7rij = 7ri.7r_j

and the two marginal distributions are estimated separately from the data. The independence model
presumes, for example, that the cell entries within row i, say, are independent Binomial (n_, ;)
random variables, as the likelihood becomes

I J I J
fue s < LT = T o = T2 AT f =TT AT
i=1 j=1

1=1j5=1 1=1j5=1 1=1j5=1 1=1j5=1

The row and column totals are therefore sufficient statistics for estimating the row and column
probabilities, and

S

~ Ny ~ Ny
T, — — 7T_j = —
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and thus

~ ~ o~ n;. n.; n;.mn.; ~ n;. n.g n;.mn.;
My =TT =— X —= =—3= Nij =N.TiTj=n_X —X—==—7=.
J T n n? R I n n n

Thus the LR statistic (deviance) for the independence model is

I J I J
LR:QZanlogA ZZ mlog —2n logn.. —l—QZanlog

i=1 j=1 =1 j=1

and the number of fitted parameters is
I+(J-1)=I+J-1

as we have, essentially, used the main effects only model X + Y, and
log m;j = log m;. +logm j

The independence model , therefore, assumes that there is no interaction between row and column
classification.

6.5 EXACT HYPOTHESIS TESTING

An Exact hypothesis test is a test which proceeds by calculating the exact probability distribution of
the chosen test statistic under the null hypothesis, rather than using approximations to construct an
approximate null distribution. For example, if we take the chi-squared statistic of equation (6.4.6), and
consider corresponding random variable X? say, (with random cell entries N;; replacing observed
values n;;)

J

I
Z Z (N = M )” M” (6.5.8)

where the M;; are themselves random quantities defined in accordance with the model being fitted; for

example, under independence
I J
{Z Nij} > Nij
=1 7j=1
M;; = .

I J I J
s ool
1=17j=

In any case the random variable X? in (6.5.8) is the result of a multivariate transformation of the I.J
variables {IV;;}, and its probability distribution is difficult to compute. Normal distribution theory,
however, tells us that X? is approximately Chi — squared((I — 1)(J — 1)) distributed.

In summary, exact testing is merely a special type of hypothesis testing in which no approximations
are made in the construction of the null distribution of the test statistic. Many tests for Normal samples
and the Normal Linear Model (Z,T,F and ANOVA-F) are also exact tests, because the null distribution
is available analytically in each case. Contrast this, for example, with the chi-squared goodness of fit
test, the Score and Wald Tests, the Likelihood Ratio/Deviance test; in these cases, the null distribution
is only available via a normal approximation.

Exact testing relies on being able to compute, either analytically or numerically, the probability
distribution of the chosen test statistic under the assumptions of the null hypothesis. In the following
sections we will examine some techniques for exact testing.
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6.5.1 FISHER’S EXACT TEST IN 2 x 2 TABLES

In the special case where I = J = 2, exact methods lead to a specific test of the independence model.
Suppose that the table in (6.1.1) is to be used to attempt to find evidence against the independence
model. An exact (conditional) test of independence is based on examination of the cell entry n1;
conditional on fixed row, column and grand totals (n;,n1,n.); under the null hypothesis of
independence the probability of observing nj; in cell (1,1) conditional on (n;,n1,n_) is given by the

hypergeometric formula
nq. n. —ni. ny. ng.
n11) \na1—mi/ _ \"1/ \n21 (6.5.9)
(o) (i)
(as, of course, we can deduce the values of ny and m21). In the more common notation of the hyper-

geometric distribution, we identify the values of (N, R,n,r) as (n_,n1,n1,n11). Conditional on the
values of (n1,mn.1,n_) we know that n1; must take a value that satisfies

max{0,n1 — (n_. —n1)} <nyy <min{ny,n;} (6.5.10)

The hypothesis test for independence based on this conditioning on row and column totals leading to
the hypergeometric distribution is known as Fisher’s Exact Test.

6.5.2 PROOF OF EXACT CONDITIONING RESULTS

1. Hypergeometric: Suppose that {N;; :i=1,2 and j = 1,2} are independent Poisson random
variables with parameters {);; : ¢ = 1,2 and j = 1, 2}respectively to fill the cells in a 2 x 2 table.
Consider the new random variables (Y1, Y2, Y3, Y1) defined to be

Y1 = Nn Ni1="

Yo = Ni1 + Nio — Nip =Y, — Y,

Y3 = N1 + Noy No1=Y3—Y;

Yy = Ni1 + Nig + Nop + Noo Ny = (Y4 - Y3)— (Y2 — V1)

that is, Y5 is the row total for row 1, Y3 is the column total for column 1, and Yy is the grand
total. The joint mass function of (Ni1, N12, Na1, Na2) is

2
fN117N127N21,N22 (n117 ni2,n21, n22) - H

which, after a variable transformation, gives the joint distribution for (Y1, Y, Y3, Yy) is given by

e (A M ep (A} M ep {(An} M e {Ap) At
1! (y2 — 11)! (y3 —y1)! ((ya —y3) — (g2 — y1))!

A12A21 2o A2o 22
exp 1—A 6.5.11
1T — 00! (s — )} (1 — 9) — (a1 O 1M (6.5.11)

or, on rearrangement
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where A = (A1 + A2 + Ao1 + Ag2). The marginal distribution for (Y3, Y3, Yy) is then obtained
from (6.5.11) by summing out over y; on the range given by (6.5.10). Now under independence,
for each (i, )

A11A22
Nj = A, A
! ! A12A21
Ao = A+ A2+ A F A=At A1 AL A A A1+ A A
= (M + X)) A1+ A2) (6.5.12)

so the sum required is

1
%: y1! (o —y1)! (y3 — 1) ((ya — y3) — (y2 — yl))!.

Now, for convenience, we will introduce the hypergeometric notation, with r = y;, R = yo,n =
y3,Y4 = IN, so that the sum becomes

Zr!(R—r)!(n—r)!(l(N—n)—(R—r))! N R!(Nl—R)!%:<f><JX:f>

- mov-m(a)

from the hypergeometric distribution properties. Hence

f ( P Y P (22) " e {-\.} (6.5.13)
Ya,Y3,Yy \Y2,Y3, Y4 y2'(y4_y2)' Y /\22 /\22 22 p . t
_ <y4> <y4> <@>y2 <M>y3 N exp{-.} (6.5.14)
y2/) \y3) \A22 A22 Ya! o

with constraints on the variables 0 < g9, y3 < y4. Hence the conditional distribution of Y7 given
Ys,Y3,Y, is

Iy Yo, Yava (U1, Y2, Y3, Ya)
fY27Y37Y4 (y27 Y3, y4)

fY1|Y2,Y3,K1 (yl‘y27y37y4) =

1 Yo!(ya — y2)!
yi! (y2 —y)! (y3 — y)! (%2 — y3) — (y2 — 11))! <y4>

Y3
<yz> <y4 - yz)
Y1 Yys — Y1

= <y4> max {07 Yys — (y4 - y2)} S Y1 S min {y27 y3}

Ys

that is, a hypergeometric distribution.
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2. Marginal Totals: As noted above it can be deduced from elementary probability theory (mgfs,
convolution) that

exp {—).} A%

Yy ~ Poisson (\.) fya (ya) = Y4l

ys >0 (6.5.15)

and hence, conditionally on Yz = y4, we have that, from (6.5.14) and (6.5.15)

() (G2) " (52) 2epr
Jya,v3,va (Y2, Y3, Ya) _ \¥2/ \y3/) \ Az 22 Ya!
fya (ya) exp {—A\_} \¥
Ya!

= (G2 () ()

y2 ) \y3/) \A22 A22 A
= ()G G2) (i)

y2) \ys/) \ Az A2 (A1 4+ X2) (A1 +A2)

because of (6.5.12). This may be re-written by

" A]_ Y2 AQ Ya—Yy2
Fvayapva (Y2, yslya) = <y2> </\1, + /\2,> </\1. + /\2.>

y Ya /\.1 Y2 /\.2 Ya—Ys3
y3) \ A1+ A2 A1+ A2

and hence, given Y, = y4, Y5 and Y3 are independent Binomial random variables

ng,Y3|Y4 (Y2, Y3|ya)

. . Al . . A1
Y5|Yy = y4 ~ Binomial ,— Ys3|Yy = y4 ~ Binomial ,—— .
2|Ya = y4 <y4 /\1_+/\2_> 3[Ya = ys <y4 A_1+/\.2>

EXTENSIONS: Each of these results can be extended to the general I x J table case under indepen-
dence; conditional on fixed row and column totals, the distribution of the (I —1)(J — 1) undetermined
components is multivariate hypergeometric; conditional on the grand total, the row and column
totals have independent multinomial distributions; the unconditional distribution of the grand total
is Poisson.

For the 2 x 2 table:

Quantity of Interest Parameters of Interest Conditioning
Rates /\11, /\12, /\21, /\22 None

Cell Probabilities T11, T12, T21 Grand Total
Column Conditional Probs 71, mg Column Totals
Row Conditional Probs Y150 Row Totals

Association () Row and Column Totals
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6.5.3 EXACT TESTING VIA SIMULATION: MONTE CARLO (EXACT) METHODS

Computing the null distribution, in fact the null cdf, is essential for carrying out exact tests. In Fisher’s
exact test for a 2 x 2 table, the null mass function is given by (6.5.9), and computing the null cdf is
straightforward, if potentially laborious; we must evaluate the expression

(:)

for all values of x that satisfy max{0,n1 — (n. —n1)} <2 <min{ny,n1}. In practice, in a one-tailed
test or to compute a p-value, we only have to evaluate this expression for a restricted range of values of
x, that is, for  not greater than the observed cell entry nq;

In a general I x J table, and for conditional testing, the multivariate hypergeometric cdf must be
computed for all relevant tables that are consistent with the fixed row and column totals; unfortunately,
the number of such tables is potentially huge. More generally, for unconditional testing, the null cdf
may be impossible/impracticable to compute. This is a dilemma if we cannot rely on the normal
approximations that lead to Chi-squared type results; this is most commonly an issue when sample
sizes used are small.

A possible solution involves simulation-based methods, such as Monte Carlo methods and
randomization/permutation tests. Monte Carlo tests can be applied if the exact null distribution
is known, but is difficult to compute; randomization or permutation tests can be used when the exact
null distribution is not known analytically, but the null hypothesis implies some symmetry in the data.
Some details of these methods are given below.

In Monte Carlo simulation, the null cdf and/or the p-value is computed numerically using a
random sample produced from the relevant null distribution. This might be advantageous if the exact
null distribution is difficult to calculate because the number of possible values that the test statistic can
take is vast; the test for Fisher test for independence using the multivariate hypergeometric example
above in the Monte Carlo strategy for hypothesis testing is outlined below:

1. Choose a test statistic 7', and compute its mass function, fr, analytically

2. Produce a simulated random sample of size Np from fr using stochastic simulation methods; label
the simulated values 1, ta, ..., tn,

3. Estimate the null cdf from this sample as follows; for any value ¢, use the estimate

N
~ 1 <
Fr(t) = N Z;I{ti <t} I{t;<t}= { (1) Z > i is an indicator variable
1=
that is,
~ _ Number of 1,ts,...,t N, that are not greater than ¢

Fr(t) = Ny

4. Compute the (estimated) p-value for observed test statistic t* by

- ~ Number of 1, tg, ..., ty,, more extreme than t*
p=1—Fp(t") = ]\I;T

If the sample size Np is large enough, then p will be an accurate, well-behaved estimate of the true
p-value, by the usual laws of large numbers/Central Limit Theorems.
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6.5.4 PERMUTATION TESTS

The central idea of permutation tests refers to rearrangements of the data. The null hypothesis of the
test specifies that the permutations are all equally likely. The sampling distribution of the test
statistic under the null hypothesis is computed by forming all (or many) of the permutations, calculating
the test statistic for each and considering these values all equally likely.

Consider the following two group example, where we want to test for any significant difference
between the groups.

Group 1 : 55,58,60
Group 2 : 12,22,34

Here are the steps we will follow to use a permutation test to analyze the differences between the
two groups. For the original order the sum for Group 1 is 173. In this example, if the groups were
truly equal (and the null hypothesis was true) then randomly moving the observations among the
groups would make no difference in the sum for Group 1. Some of the sums would be a little larger than
the original sum and some would be a bit smaller. For the six observations there are 720 permutations
of which there are 20 distinct combinations for which we can compute the sum of Group 1.

ORDER GROUP 1 GROUP 2 SUM ORDER GROUP 1 GROUP 2 SUM
1 595,58,60  12,22,34 173 11 12,22,60  55,58,34 94
2 595,58,12  60,22,34 125 12 12,58,22 55,60, 34 92
3 59,58,22  12,60,34 135 13 55,12,22  12,55,58 89
4 595,58,34  12,22,34 148 14 12,34,60  55,58,34 106
5 595,12,60  58,22,34 127 15 12,58,34  55,22,60 104
6 595,22,60  12,58,34 137 16 55,12,34  12,58,60 101
7 59,34,60  12,22,58 149 17 22,34,60  55,58,34 116
8 12,58,60  55,22,34 130 18 22,58,34  55,22,60 114
9 22,58,60  12,55,34 140 19 55,22,34  12,58,60 111
10 34,58,60  12,22,55 152 20 12,22,34  55,58,60 68

Of these 20 different orderings only one has a Group 1 sum that greater than or equal to the Group
1 sum from our original ordering. Therefore the probability that a sum this large or larger would occur
by chance alone is 1/20 = 0.05 and can be considered to be statistically significant.

In the analysis of contingency tables, permutation tests for specific hypotheses would consist of
producing permutations of the original data consistent with the null hypothesis, subject to the required
constraints. For a permutation Chisquared or LR test, the statistic would be computed for all (or a
large number of permutations of data with respect to row or column classifications, perhaps subject to
row and/or column total sum restrictions



