CHAPTER 5
LOGISTIC AND POISSON REGRESSION

5.1 LOGISTIC REGRESSION IN EPIDEMIOLOGY

Logistic regression is a special case of the binomial/Bernoulli GLM described previously where, for
binary response random Y; with canonical logistic (or logit) link

_ . Boi
Y;‘egl ~ Bernoulli (000 in|90i (yi; 000 = 030’; (1 — 001')1_% IOgit (000 = IOg <1 00 ) = .I'lT,B
— boi
For this model, the expected response p; is
pi =00i = ——— - (5.1.1)

The deviance for the logistic regression GLM (with dispersion parameters are given by ¢ = w; = 1) is
D=-2 Zyi log (@) + (1 — y;) log (1 —@) =2 Z {log (1 + exp {x?ﬁ}) — ylx;fﬁ}
i=1 =1

5.1.1 RELATIVE RISKS, ODDS AND ODDS RATIOS FOR 2 x 2 TABLES

For the logistic regression GLM, results relating to odds and odds ratios are straightforward. From
(5.1.1), we have the odds on occurrence or odds on incidence

;=1 06; T
P[Yi:o]_1—0i_exp{xiﬂ}

1J/P[Y;=0] _ 6;/(1—6;) exp{aifB} T
P = = = =exp< (z; —x;) B 5.1.2
PIY;=1]/PY; =0] 6,/ (1—0;) {x]Tﬁ} {< i) } (5.1.2)
logyy = (xi—x;)"
Now, suppose that z; and x; (both vectors of K + 1 elements) differ only in element k; then
v=exp{(wi—2)" B} =ep{l@w -z B} = logv = (s —au) By

and thus the odds ratios for different predictor values is available in a straightforward form. Thus the
log-odds ratio is a linear function of the predictor and the coefficient. The odds ratio for discrete
(factor) predictors in the logistic GLM is particularly straightforward; suppose that a factor has I
levels, parameterized in the linear predictor using parameters o, ..., ;. Then the odds ratio between
different levels, i; and iy of this factor is, from (5.1.2)

Y =exp{a;; —ag}  sothat  logy = ay — o,
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70 CHAPTER 5. LOGISTIC AND POISSON REGRESSION

COHORT STUDY EXAMPLE : The data from such a typical cohort study can be represented in
the usual way by a 2 x 2 table with entries (n11, 712,121, n22), and our representation has been to say
that P (F|E) = m and P (F|E') = 7, with

ODDS ON INCIDENCE  w; = —— wo = —2
1-— 1 1-— 0 w 0
P(EF) P (& — ODDS RATIO ¢ = =% = Q—l
wo 0
DDS ON EXP E Q) =———= Qg = —=—=—%
ODDS O OSUR 1 P(EF) 0 PIEF)
Here, then, EXPOSURE is a predictor factor with I = 2 levels (F = 0,1) say, and the response is
Binomial /Bernoulli, with ¥; = 1 corresponding to a “case”. The typical model used is a product

binomial, that is, the exposed and unexposed groups are independent with

Yi| (E=1) ~ Bernoulli(m) = Nu1| (E = 1) ~ Binomial (n.1,m1)
Yi| (E=0) ~ Bernoulli(m) = Niz| (E = 0) ~ Binomial (n.2, mo)

~ n N n
that yields the usual mles 71 = ~1 and Ty = ﬁ, so that

n.q n.g
ODDS ON INCIDENCE : & =-—1 5, =22
= e " n11M22
— ODDS RATIO : ¢ = —=
~ ni1 no1 nia2n21
ODDS ON EXPOSURE : @, =— ==
ni2 n22

In a logistic GLM setting, a natural model would (in the conventional notation)

1—7T0

1—7T1

ForEzO:log( 0 )ZM FOl"Ezl:log(L):u—i—a

Hence the relative risk or rate ratio is
m _ exp{pta} 1 +exp{p} exp{a}+exp{p+a}
mo l+exp{u+a} exp {u} 1+exp{u+a}

and so that the odds on incidence in the unexposed/exposed groups and odds ratio and log odds
ratio are

™

1—

SIS _m/(A-m)
wl—l_m—ep{ﬂ‘f‘a} w—m/(l_m)

wo = =exp{a}..logy =«

0 —
e {n}

NOTE: Remember that, in cohort studies, all of these quantities are estimable. In case control
studies, the odds on exposure in the cases and in the controls, that is, (21,€) are estimable in the
usual way, but that the the parameters relating to odds on incidence in the cases and in the controls
(w1, wp), as well as relative risk are not; in practice the rare disease hypothesis is applied, where
it is assumed that, for example

. 1/ (1 —m1)
0 WQ/(].—WQ)

as (1 —mp) and (1 — ) are approximately 1. In addition, if the exposure rate in the population is
known and equal (to 0 say) in the cases and in the controls, we have that

P(F|E) B P(E) P(E|F) T 1-0g 0
P(F|E)  P(E)P(E[F) m \ 0g !
and the estimate of the relative risk is
1—-0g\ A
< 5 ) o
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5.1.2 EXTENSION TO MORE THAN 2 EXPOSURE LEVELS

In the GLM framework, the extension to models for more than two exposure levels is straightforward;
if exposure has Ig levels (labelled 0,1,2,...Jg — 1 say), with incidence rate 7. for exposure level e =
0,1,2,...,Jg — 1, the models can be extended

e FACTOR PREDICTORS: The simplest logistic regression GLM has

e = 0:10g<1i07r0>:u

e > 0:10g<

1—7re> = Htae

a model with Jg parameters, so that the odds ratios for level e against level 0 is

= 77%/ (1 _7r6> = exp &«
we_ﬁg/(l—ﬁg) p{ 6}

and for level e; against level es is

7r61/(1 _7r61>
7T62/(1 —7Te2)

e CONTINUOUS PREDICTORS: If exposure can be represented as a continuous predictor,
assuming a common amount of exposure, x., within an exposure level, then the model becomes

Te
log <1 —7Te> = Bo + B1Te

that is, a model with only 2 parameters. For this model,

=exp{e — Qey}-

w@mz =

wel,ez = exp {('Tel - 1'32> /61} .

Finally, if the exposure level is known individually to be x; for subject ¢, then the model becomes

log< i )zﬁo—i-ﬁlxi

1-— Yy
and we have the standard regression model.

e ORDINAL PREDICTORS: THE CONSTANT ADJACENT ODDS RATIO MODEL
A common modelling situation arises when the levels of the discrete predictor are ordered (the
variable is termed an ordinal predictor variable); in this case, using the above models we retain
the structure of the continuous model,

log< Te >:a0+,30€
1—m,

and thus, for e > 0

7re/ (1 - 7re> _ €xXp {Oé[) + /806}
Te—1/ (1 —me—1)  exp{ag+By(e—1)}

that is, identical for all e. This is the constant adjacent odds ratio model

we,e—l = = €xp {/80} :
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5.1.3 EXTENSION TO STRATIFIED EXPOSURE

Suppose now that we wish to study the influence of exposure in the presence of a potential confounding
factor; suppose that factor A with levels a = 0,1, ..., K4 —1 is also believe to modify risk in the presence
or absence of exposure. In standard notation we might fit the following two factor models:

(I) E : a common incidence rate for all levels of the confounder in exposed and unexposed groups

(IT) A: acommon incidence rate for all exposure levels modified by different levels of the confounder

(III) E + A: a common, additive modification of incidence rate in the exposed and unexposed groups

by the confounder

(IV) Ex A: an interaction between exposure and confounder

These models can be represented as follows:

(I) Kg parameters

(IT) K, parameters

Te o e=0
1—me p+af e>0

log (Lo} ={ H a=
1—m, p+ad a>0

(III) Kg + K4 — 1 parameters

7 e=0,a=0
10g< Tea ): p+al e=1,..Kg—1,a=0
1 — Teq g+l e=0,a=1,...,Ks—1
p+af +al e=1,..Kp—1l,a=1,...K4—1
(IV) KgK 4 parameters
1 e=0,a=0
10g< Mea ): ol e=1,..,Kg—1,a=0
1 — Teq p+ o e=0,a=1,...,K4—1

i+ ol +ag + 45

e=1,....Kp—1l,a=1,.... K, —1

Taking Model 4 as the most general model, we can inspect odds ratios for any combination of two levels
of exposure and any two levels of the confounder; if K = 2 (exposed and unexposed) we have that for
E =0, the log odds ratio for confounder level a; against confounder level az > 0 is

and for £ =1

A A

IOg wgi),az = (M + Oéfl) - (M + O‘fz) =0y — Qg

log Yy, = (n+of +af +952) — (u+of + a2, +955) = (o — o) + (v —712)

and thus if

(vEA —4EN =0

then there is no interaction between exposure and confounder for factor levels a; and as. Broadly, if
Model 3 fits as adequately as Model 4, then there is no prospect of confounding.
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5.1.4 EXTENSION TO POLYTOMOUS RESPONSE

The data in the logistic regression models above can be presented in the form of a 2 x 2 table, or more
generally 2 x J table, with the two rows corresponding to the two outcomes F and F’ (0/1). Thus
the response is dichotomous. A more general form of data has a polytomous response, where the
outcomes are class labels 0,1, 2, ..., K; the responses themselves can be

e ordinal or ordered, that is, where 0 < 1 < 2 < ... < K in some sense specific to the response

concerned. For example, in a study measuring pain severity as a response, we may have responses
0,1,2,3 corresponding to NONE, MILD, MODERATE, SEVERE.

e nominal, or unordered, where the labels are simply that, and have no intrinsic meaning.

Maintaining the J levels of the exposure factor as the most general case, we thus have a data array
which is (K + 1) x J, for example for K =3 and J =6

EXPOSURE LEVEL

RESPONSE | 1 2 3 4 5 6
0| ni1 ni2 niz niy nis N
1] mo1 mo2 nog n2g nas  Nog
2| n31 nzgz M2 N5 M35 N36
3| ng nga M43 Ngq Ny Ny

and typically we assume that the data are independent within the columns of the table. Let

m,; = P [Response is k|Exposure level is J] k=0,1,... K

K
be the conditional probability of response k for exposure level j. Then ) m; = 1 for each j, and
j=0
the counts in column j of the table have a multinomial rather than binomial distribution, with joint
mass function

J WO;]WU?J ...7TKI§ 1,g .
nlj,$2j,...,$1+17j

Many GLMs can be fitted to these data, each with different form of the linear predictor. For a single
exposure level

¢ RELATIVE RISK MODEL with reference category 0

™

Tk _ T
o exp{x ﬂk}

e ADJACENT CATEGORY RESPONSE MODEL:

—Wk—l exp {x ﬂk}

e PROPORTIONAL ODDS MODEL

-
P[Y >k :j:%l ’ ~ exp {aT5,)
PY <& PAT Pk
> T
7=0
¢ CONTINUATION MODEL
K
> T
PlY >k j=k+1
{ ]:] + :exp{a:Tﬁk}
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5.2 POISSON REGRESSION

Poisson regression is the term applied to the Poisson GLM described previously where, for non-
negative integer response variable Y; where, typically, the canonical log link is used

. ex _/\i /\yi-
YilAoi ~ Poisson (Aoi)  fyxg; (Ui3 Aoi) = % log (Aoi) = =] 3

The expected response p; is p; = Ao = exp {x;fﬁ} The deviance for the Poisson regression GLM
(dispersion parameters ¢ = w; = 1).is

D= —Qi {yi (xlTB— log yi) - (exp {xlTB} + yzﬂ

i=1
5.2.1 OFFSET MODELS FOR POISSON DISTRIBUTED DATA

An underlying model for Poisson count data is the Poisson process model; we assume that, conditional
on predictor variables x;, the incidence rate for occurrence of the disease is \; = exp {x;fﬁ }, and thus
in a total exposure time 7T; for that subset of individuals, we have that the random variable recording
the number of incidences, Y;, has a Poisson distribution

Yi|\i, T; ~ Poisson (T;\;) .

This is part motivation for the reporting of incidence rates

N Yi
A==
T;

where T; is the number of person years (total time on study) for category i. In this case, T; is a
constant, so in the model for )\;, the linear predictor should be combined with an offset, that is

log \; = 7' 3+ log T;

and again we explain the systematic variation in the rate via the link and covariate. In SPLUS, the
offset model is fitted routinely as follows;

glm(y factor(exposure) + offset(log(T)),family = poisson(link = log))

5.2.2 POISSON APPROXIMATIONS TO BINOMIAL SAMPLING MODELS

The offset can also be used to standardize for other factors, or rather to reconstruct a hypothetical
standard population within which the incidences are to be observed. Suppose that, after appropriate
time/category standardization, a binomial model for incidences is deemed appropriate

Y;|0;, N; ~ Binomial (N;, 0;)
which we approximate by
Yi|\i, T; ~ Poisson (N;0;) .
and again, if \; = N;0;, so that log \; = log0; + log N;
log \; = 21 8 + log N;
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5.3 MODEL SELECTION AND VALIDATION

There are three general issues/techniques that can be used to motivate the choice of a particular model
in a linear/generalized linear model setting. The first is the general principal of parsimony, the
second is the use of deviance as a model validation measure, and the third is information criteria,
where maximized log-likelihood values are used as the basis for model comparison, after appropriate
adjustment for model complexity is made.

5.3.1 PARSIMONY

The principal of parsimony encapsulates the idea that simpler models (models with fewer parameters)
are preferable to more complex models (with larger numbers of parameters); there are several reasons
why this is so

e simpler models may be easier to fit

e simpler models are easier to interpret; for example, main effects only models are more straight-
forward to interpret than models with interaction terms.

e simpler models may have better “out-of-sample” prediction properties. This is because complex
models may overfit the observed data, to the detriment of the models’ prediction ability. In an
extreme case, when the saturated model is used to fit the observed data exactly, the model has
no prediction ability at all.

5.3.2 DEVIANCE-BASED MEASURES

Recall that, for the scaled deviance, we have stated that

. D (yﬁ)
D* (y;07¢> == Xo—q (5.3.3)
if the linear predictor has d parameters (for a model with K predictors and an intercept, d = K+1) This
result is exact in the linear model, but only ever approximate in the GLM, with the approximation
being occasionally quite poor (see Note 1 below). Nevertheless, it motivates the use of deviance as a
model adequacy assessment, as it implies that, as the properties of the xi_d distribution include an
expectation of n — d, we would expect a adequately fitting model to have

D*(y;§,¢>zn—d or %zl

For the binomial and Poisson models, ¢ = 1.
NOTES:

1. The approximate result presented in (5.3.3) breaks down in two ways in some GLMs. First, the
Chi-squared approximation itself becomes compromised. Secondly, the distribution conditional
on true parameter 6 of random variable

D* (Y; 0, ¢>

does depend on the 6, rather than being independent of 6 as implied by (5.3.3). For some
models the distribution of D* can be investigated using simulation.
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2. The value of the deviance presented can depend on the way the data are analyzed. Consider a
Bernoulli/binomial example for an exposure factor having two levels (i = 0, 1); suppose the data

in the two (unexposed and exposed) cohorts are represented as {y;; : ¢ =0,1,j = 1,2,...,n;}, and
n;

let s; = > yij, s = so + s1, and n = ng +n;. The individualized likelihood, and the three
j=1

possible models are

1 ng
1 ..
[ [Tt 0

1=0
NULL 7=2 d=1 D=-2[slog7+ (n—s)log(l— 7))
n
S; !
EXPOSURE FITTED Ri= d=2 D=-2 [Z s;log 7 + (ni — s7)log (1 — 7;)

Now suppose that the individual information is to be disregarded and a pooled analysis is to be
carried out. We now have only two data points, the pair (sg, s1), and a likelihood

1) 0-)

The only model available now are the NULL, with 7 = s/n, d = 1, and deviance —2 [slog T + (n — s) log (1
and the SATURATED where 7; = s;/n;, d = 2, and likelihood

1 ) N Si N —Yij
H { <:l> <%> <1 - %) } #1 ls (o, m1) #0
120 T T T

Note that the estimates for the pooled and individual analyses are identical. Note also, however,

that the two null deviances, Dél) and Dép) for the individual and pooled analyses respectively are
different from each other; in fact

1
Dép) = Dél) +2 Z [s;logT; + (n; — s;) log (1 — 7))
=0

3. The Pearson-type deviance/goodness of fit measure

( ) Zvlul /lwl

can also be used as a model assessment quantity, as again, approximately
X2 (Y7 5) ~ X?zz—d

although, as before, the chi-squared approximate distribution and the independence of the true
value of @ may not hold
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5.3.3 INFORMATION CRITERIA

A common method for model assessment utilizes Information Criteria. The central idea is that the
maximized log-likelihood value should be a good indicator of model fit, but needs to be penalized with
respect to the model complexity, that is, the number of parameters fitted.

Suppose that the fit of model with canonical parameters 6; (or 3, where g(h (0;)) = 21 3) is to be
assessed. Writing the maximized log likelihood as I(3) = log fy5(y; B), the better the fit of the model,

-~

the larger [ (8) will be. However, the number of parameters fitted will contribute to the magnitude of

-~

I(B) (if more parameters are fitted, the larger we might expect [(3) to be), and so to obtain a fair model
assessment criterion, we need to penalize [(3) in some way. We define the Information Criterion
(IC) for model M with d-dimensional parameter vector 3;; , by

IC,y = —2ly (BM) + e(n, d)
for some function ¢(n,d). There are two common choices for ¢(n,d);
1. AKAIKE INFORMATION CRITERION (AIC): ¢(n,d) = 2d, so that
AIC), =2 [—zM (BM) + d}
For example, in the Normal Linear Model with design matrix X,
I (BM) — —log2r — S logo”® — L (y - XBM>T (y - XBM)
2 2 202
so that if 02 is known

AIC, = R—Sf + 2d + const
g

~ \T —~
where RSS= (y — XﬁM> (y — XﬁM>. If 02 is unknown, the ML estimate

o’ = % (y - Xﬁm)T (y - X@w)
can be used, so that

AIC); =nlog <RTSS> + 2d + const

2. BAYES INFORMATION CRITERION (BIC): ¢(n,d) = 2dlogn, so that
BIC,, = 2 [—zM (BM) +dlog n}
In both cases, the model with the smallest IC is to be selected. The advantage of the BIC is that it is

a consistent model selection procedure, in that it selects the correct model (when a correct model is
amongst the models available).
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5.4 OVERDISPERSION IN GLMS

Overdispersion is a common phenomenon in the GLM analysis of observed data. We concentrate
here on Binomial and Poisson distributed data for illustration; deviance formulae have been established
for these models previously, and in both models, we have the dispersion parameter ¢ = 1. We have also
established that two estimates of ¢ exist for the exponential-dispersion family with K parameters

fyi10,6(Wi; 0i, ¢) = exp {wi (36 + o(8)) +d <yi’ wﬂ> } ’

¢ i
(where the coefficients or weights w; are fixed constants), namely
= _ D(y,0) _ i~ )’
¢D—n—K P_n—KZV (f;) Jwi

We have established previously that, for the Binomial and Poisson models, @D and @P should be 1
approximately. This is not always the case however. If the estimate of ¢ is much greater than 1, we
might conclude that the model does not fit the data very well. We now examine possible sources of
overdispersion, and possible inferential solutions.

5.4.1 POSSIBLE SOURCES OF OVERDISPERSION

Overdispersion (relative to a fitted model) in Binomial and Poisson data can arise in several ways. In
fact, it may be that apparent overdispersion can be eliminated with more careful analysis. Apparent
overdispersion, diagnosed with reference to ¢p,¢p > 1 may be eliminated in the following ways:

e There may be an available systematic component (exposure/predictor/confounder, main effect
or interaction) that has been omitted from the model.

e The link function may be inappropriately chosen, and another link may reduce the dispersion
estimate

e There may be atypical or outlying observations that are present, for which the prediction model
is inadequate despite the fact that the model might be perfectly adequate elsewhere.

e It might be that the chisquared approximation assumed for deviance in GLMs may not be
appropriate, and the estimators biased, so that apparent overdispersion is not actually present

5.4.2 MODELS FOR OVERDISPERSED BINOMIAL DATA

If all of the possibilities above have been eliminated, indicating genuine overdispersion, it may be
necessary to develop extensions to the models used We do this here in the binomial case; suppose that
we have a model with a total of I exposure/confounder cross-classification categories with incidence
probabilities 7g, 71, ..., m7_1,0bserved counts yo, ..., yr—1 and total samples of size nog,...,n;_1, so that a
basic model is

Y; ~ Binomial (n;, ;) i=0,1,...,1 -1

and a canonical logit link to log-odds parameters, say

o (12 ) =11
1—7Ti
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with d dimensional parameter vector § might be used. To represent overdispersion, we might have
instead that, 7; is itself taken as a random variable with fixed first and second moments, for example

Erje lml =&  Varge [m] = k& (1-¢;)

where now constants &, are related to the log-odds

log (1 E’§> =213

The model implied for observable count Y;, conditional on 7; remains

Ey,r, [Yilmi] = nimi Vary, g, [Yilm] = nimi (1 —m;)
but now, unconditional of 7; but conditional on &; we have, by iterated expectation

Ey,¢, Yilé] = Enyje, [Evim, Yilmi 1€;] = Erje, [nimil€] = naé;

and

Varye, Vi) = Erje, [Varys, Yilm 1] + Varee, [Bypx, [Yilm] 6]
= Eﬂ'i|§i [nﬂri (1 — 7Ti) ]51] + VaT'ﬂ-iKi [nml]{l]
= [Eﬂ'i|§i [Wl’&] - Eﬂ'i|§i [7T12’§1H + nl2’%§l (1 - §1)

= i [& = {Var e, [mil6] + {Br, [milei]} ] +ndng; (1 - &)
= i [& — {Var e, [mil6] + {Bre, [milei]} ] +ndng; (1- &)
= i [§ —{rE (A —&) + &} +nisg (1-¢)

= 1§ (1= &) {1+ (ni — 1)k}

and thus the implied variance in response is effectively inflated by a factor of {1 + (n; — 1) k}.
This derivation implies that a plausible model for overdispersed data might be

Vary,x, [Yi|m] = onym; (1 — ;)
for some dispersion parameter ¢ in the special case n; = n, that is, we should set
p={1+(n—-1)k}.
In this model, with fitted parameters we have
py =nimi V() = énim (1 —75)

the Pearson-type goodness of fit measure is
1< i — NiT;) 544
¢ (00) - 52%1—m (544
i=0

with n; = n, where approximately 2 (Y, 0) ~ X%—d' In the case where the n;s are not identical,

the formula in (5.4.4) can also be used, this is, essentially, the argument used previously to justify the
estimators ¢p and ¢p.
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5.4.3 MODEL SELECTION FOR OVERDISPERSED DATA

Previously we have seen how to choose between two models on the basis of deviance comparison; for
models M; and M, with numbers of parameters dy < do, we suggested that

‘DMl (ya 0M1> - DM2 (yv 0M2> 2
¢ ~ ng—dl

indicating an estimator of dispersion parameter of the form

Dy, (Y, §M1> — D, (y,§M2>
dy — d;

6= (5.4.5)
may be appropriate, where Dy, is either ordinary of Pearson-type deviance. In fact, our assessment
of the presence of overdispersion may be more appropriately done via (5.4.5); we are only concerned
about overdispersion relative to our model selection task.

A different approach inspects the ratio of scaled deviances: To compare the (relative) fits of the
two models we might inspect

{DMl (YﬁM1> — D, (yub\M2>} /¢ (da — dy)] [DMl (Y,§M1> — D, (yub\M2>} / (do — dy)

Dy (3,90) /6 (n — )] Dy (3:0rs2) / (n = d)

which, approximately has a Fisher (dy — dy,n — dg) distribution; note that the dispersion parameter
has cancelled. This result is directly analogous to the ANOVA F-test results described earlier.

5.4.4 FITTING THE OVERDISPERSION MODEL: QUASI-LIKELIHOOD

The estimates 7T; = g (x?ﬁ) that appear in, for example, (5.4.4) cannot be computed by the usual

iterative (IRLS) algorithms (see handout); effectively there is no likelihood function, as we have only
specified moments (expectation and variance) of the distribution of observables Y;. Inference mecha-
nisms for such models are referred to as quasi-likelihood approaches, and a brief introduction is given
below.

The score equations for a GLM in the exponential dispersion family with

e cxpectation yu; and variance ¢V (u;) /w;
e link function g

e linear predictor x?ﬂ
(so that g (u;) = ' 3) take the form

Ww; y’L 1 Tik
OV (1) 9" (1)

=0 k=1,.., K. (5.4.6)
Note that these are a form of unbiased estimating equation, that is

> Gi(Yi,8)=0

=1
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with
Ey,3(Gi (Y, )] =0 if BEy,glYil=p;=9" (=7 B)
Suppose now that we retain the essential moment components of the model,
EY] = p Var [Yi] = ¢;V (1) (5.4.7)
where ¢; = ¢/w;, but no additional distributional assumptions are to be made.

In the exponential family, if

16.6) = Y- [0 gy 0

so that

O B ou; o B ¢; Op; ¢ 00; Ou, B b V(i)

it still follows that the usual expectation/variance results for the score function hold, that is

21752 = 2 i) = v wi - =0

o[ 5] = e vas )]

and

_ {V (1) + (EY:] — pg) V! (Mz)}
¢V (1)}

B qbivl(ui) = Var B/V_(:j)] =Var {algji@] (5.4.8)

Recall that these results give the moments of the asymptotic normal distribution of ML estimates B ML-

Thus if we define (rather than deduce)

Ou; B &V ()

then (5.4.8) also hold given only (5.4.7). Effectively, we define the quasi-likelihood estimates as
the parameters (3 that provide the solution to the set of equations

~wilyi—g T @lB) -
1; V(g @T) o (@T8) P i
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Specifically, the quasi-score or quasi-likelihood equations are identical to (5.4.6)

- (yi i)  Lik Wy yz i) Tk
_ =0 k=1,.., K. 5.4.9
;%(J’m ¢X: Vi) g () 549

but where variance function V' (p;) is replaced by a general variance function given by, for example,

e Var[Y;] = 12, the constant coefficient of variation model where

EYi o
VarYi]  H
o Var Y] = ¢;p; (1 — ;) /n; (an overdispersed binomial-type model)

e Var Y] = ¢;u; (an overdispersed Poisson-type model)

o Var[Y;] = ¢;u? (an overdispersed Exponential-type model).

The model can be fitted using the IRLS algorithm to yield quasi maximum likelihood (QML)
estimates Bgur, quasi (Pearson-type) deviance and dispersion estimate

i — it X (0
( ) ZVM ) Jw; ¢:%

and estimated variance covariance (and hence standard-errors) of Boarr



