CHAPTER 3
REGRESSION AND THE LINEAR MODEL

The aim of regression modelling is to explain the observed variation in a response variable, Y, by
relating it to some collection of predictor variables, X1, Xo, ..., Xp. The variation is decomposed into
a systematic component, that is, a deterministic function of the predictor variables, and a random
component that is the result of measurement procedures (or unmeasurable variability). The simplest
model is the Normal Linear Model, where the systematic component is a function of the predictors
and some model parameters, 3, and the random variation is assumed to be the result of additive
normally distributed random error terms. This model is explained in section 3.1.

An extension of this framework is necessary if non-normal data are to modelled. In section 77,
a generalization of the linear model framework is introduced, and this leads us to the Generalized
Linear Model (GLM) framework. We shall see that the statistical ideas and procedures of likelihood,
estimation and testing introduced previously are applicable to the GLM framework.

3.1 THE NORMAL LINEAR MODEL

We assume that the variables to be modelled are as follows; we will observe paired data, with response
data y; paired to predictor variables stored in vector form z; = (z;, ..., wiD)T, and our aim is to explain
the variation in (y1,...,yn).  We achieve this by modelling the conditional distribution of response
variable Y; given the observed value of predictor variable X; = x;. Specifically, we may write

D

Yi =B+ Bz + ..+ Bpaip + & = By + > B + & (3.1.1)
j=1

where ¢; ~ N (0, 02) for i = 1,...n are independent and identically distributed random error terms.
Note that this implies

D D
Y;‘Xl =x;~N ,30 + Zﬂjxi]’, o? EfY|X [Y;‘Xl = .I'l] = ,30 + Z,le'ij. (3.1.2)

Jj=1 Jj=1

In vector notation, (??) can be re-written Y; = 7 8 +¢;, where z; = (1, 21, Ti2, ..., a:iD)T, and thus, for
vector Y = (Y1, ..., Y,,)" we have

Y =Xp3+¢

where X is a n X (D + 1) matrix called the design matrix

1 z11 -+ wip

1 xo1 -+ wop

X=1|1 231 -+ x3p
L 1 Tn1 *°° ITnD |
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and to mimic (3.1.2)
Y ~ N, (X8,0%1I) (3.1.3)

where I, is the n x n identity matrix, giving a joint pdf for Y given X of the form

el {~gr %07 %0 (3.1.)

f a2\Y; /87 02 =
Yig. ( ) (2mo?
3.1.1 THE EXTENDED LINEAR MODEL

The formulation of the linear model above can be extended to allow for more general dependence on
the predictors. Suppose that g1, g2, ...,gx are K (potentially non-linear) functions of the D original
predictors, that is

gk(ﬂﬂi) = 0k (901'1, ~~~7~TiD)

is some scalar function, for example, we could have

o gi(xi1,...,zip) = gr(xi1) = x;1 (the identity function)

(
k(Ti1) = ar\/Ti1
(
(

® Gr\Ti1, .-, TiD

I
Q

® 0i(®i1, ..., Tip) = gr(xi1) = axlogxn
o gi(Ti1, -, Tip) = gr(Ti1, Ti2) = arxi1 + brxio

and so on. This reformulation does not effect our probabilistic definition of the model in (3.1.3); we
can simply redefine design matrix X as

I gi(x1) --- gk (21) 1
1 gi(z2) - gk (22)
X=|1 g1(x3) -~ gKr(x3)
L 1 g1 (.ﬂcn) 9K (.'Tn) ]

now an n X (K + 1) matrix. In the discussion below, we will regard the transformed variables
(91(X),g2(X), ..., gk (X)) as the predictors and drop the dependence on the transformation functions.
Hence we have

e Y as an x 1 column vector
e X asan x (K+ 1) matrix with ith row (1, g1(z;), ..., gx (x;))

e Jasa (K +1)x 1 column vector

3.1.2 MAXIMUM LIKELITHOOD ESTIMATION IN THE LINEAR MODEL

Maximum likelihood estimation for the normal linear model is straightforward. Recall that if 0 = (ﬁ , 02)
then the mle 6 is given by

Orrr = arg max fy|s,2 (y; 0, o?) = arg max[ (8, oy, x)
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where parameter space © = R¥ xR*". Taking logs in (3.1.4) gives

L X8 (y-x0) (515)

log L (ﬁ,02;y,x) = —g log o2 — glog27r ~ 5,

and considering the maximization for § indicates
log L (8, 0% y,2) = in (y—X0)" (y—X
arg max log (8,0%y,z) = arg Join (v = XP)" (v — XP)
and thus,
S(B)=(y—XB)" (y—XB) =yy —y"XB— X y + gTX"XF ="y — 29" X6 + §TXTX.

Using vector/matrix differentiation

% {y"XB} =¢y"X % {F"XTXB} =2XTXp (3.1.6)
and so if E is the solution of
%(ﬁ@ =—y'X+X"X3=0
then it follows that E satisfies
XTX3 = XTy. (3.1.7)
If the matrix X7 X is non-singular, then we have the ML estimates of 3 as
B=(XTX)"' xTy (3.1.8)
and substituting back into (3.1.5) gives
1 N\T - 1 &
0=~ (y=XB) (y=XB) == (s —0)’ (3.1.9)

i=1
where g; = x;fﬁ is the fitted value, and 1; — ¢; is the residual. Note that X7X is a symmetric matrix.

T ~
The expression (y — Xﬁ) (y — Xﬁ) is termed the residual sum of squares (or RSS). A common

adjusted estimate is

Ghps = ﬁ (y - XE>T (y - XE) (3.1.10)

the justification for this result depends on the sampling distribution of the estimator. It can be shown
that 6% is unbiased for 0.

If K =1, with identity function g(t) =t

T i=1 T 11 i=1 i=1
XX = " " (X X) = P "
i Yy > n
i=1 i=1 i=1
and so
1 > T > T > Yi 1 DT Yi— DL Ti Y, Tiyi
T\—1 T i=1 i=1 i=1 i=1 =1 i=1 =1
>z on > Ty Ny TYi— ), Ty Yi
i=1

s
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3.1.3 PROPERTIES OF THE ML ESTIMATORS

By elementary properties of random variables, the properties of ML estimator T = (XTX)_1 XTy
-1 -1
Byixpor [Tl = Byxpe [(X'X) 7 XTY] = (X7X) ' X7) By|x 5,2 [Y]

so that T is unbiased for 3, and
Vary|x g, 7] = Vary|x go? [(XTX)_l XTY}
= ((XTX)_l XT> VarY|X,ﬁ,a2 [Y] ((XTX)—l XT>T

= ((x™%) 7' XT) %L (X (X7X) )

-1 -1

= o2 (XTX) T (XTX) (XTX) ' = o* (X"X)

Note that, in fact, given $ and o?
Y ~ Ny (XB,0%0) = T = (XTX) ' XTY ~ Ny (8,07 (X7X) ). (3.1.11)
It also follows that
(v XB) (s ~X5) = (y-XB) (y-XB) + (5-5) X"X) (3-0)
or
s(9) =5(8)+(5-58) (x'x)(5-0)
where

S(B) = (y—XB)" (y—XB) (1)

n

S(B)=(-%B) (v-XB) =0 w-D=D - (@

(5-05) (x7x) (5-5) = (X6-XB) (x5-xp) (3)

are the (1) TOTAL , (2) RESIDUAL and (3) FITTED sum of squares (TSS, RSS and FSS).
Therefore, by normal distribution theory, it follows that

sw . S0

NX__
o2 n o2 n—K-1

so that

s? = E{> is an UNBIASED estimator of o2
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and the quantity

B-8 _B-8
s.e. (E) §v/Vii

~ Student (n — K —1).

It also follows that

s@-s(3) (3-0) xx)(5-0)

= ~ X
o2 o2 K+1

so that finally
53-8 (B)] )tk +1)
$(B)/n-K-1)

It follows that in this case the ML estimator is the Minimum Variance Unbiased Estimator (MVUE)
and the Best Linear Unbiased Estimator (BLUE).

~ Fisher (K +1,n— K —1)

3.1.4 THE ANALYSIS OF VARIANCE

Analysis of variance or ANOVA is used to display the sources of variability in a collection of
data samples. The ANOVA F-test compares variability between samples with the variability within
samples. In the above analysis, we have that

S(B) =S5 (E) + (E - ﬂ)T (XTX) (E . ﬂ) or  TSS=RSS+ FSS.

Now, using the distributional results above, we can construct the following ANOVA Table to test the
hypothesis

H[)Z,Blz...:ﬂK:O

against the general alternative that Hj is not true.

Source of Variation D.F. Sum of squares Mean square F
FSS/K

FITTED K FSS FSS/K RSS/n— K = 1)

RESIDUAL n—K-1 RSS RSS/(n— K —1)

TOTAL n—1 TSS

This test allows a comparison of the fits of the two competing models implied by the null and alternative
hypotheses. Under the null model, if Hy is true, then the model has Y; ~ N (60, ag) fori=1,2,..n,
for some (3, and o3 to be estimated. Under the alternative hypothesis, there are a total of K +1
parameters to be estimated using equation (3.1.8). The degrees of freedom column headed (D.F.)
details how many parameters are used to describe the amount of variation in the corresponding row of
the table; for example, for the FIT row, D.F. equals K as there are K parameters used to extend the
null model to the alternative model.

Now consider the following design; suppose that there are K possible medical treatments and you
wish to test for any difference between them. The parameter vector is 5 = [3;, B9, ..., 5 K]T say, and
the null hypothesis is that, for some (3,

H03/61:/82:”':/8K:/8
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Suppose that there are ny, ..., ng observations in the K treatment groups respectively. Then the design
matrix in the corresponding (full) linear model takes the form

[0 0 1 0]
X1 00 1 0
Xy .
X = Xp= | " ... 1 0 ng TOWS
X 0 0 1 0
1 0 0 1 0
K columns )

that is, X is a ng x K block matrix with only the kth column non-zero, and equal to the ng X 1 vector
of 1s. Under the assumption that the observed responses are normally distributed with common
variance o2 we are in the linear model framework, and all of the above likelihood and statistical
theory applies.

3.1.5 ONE-WAY ANOVA

The two sample T-test can be extended to allow a test for differences between more than two data
samples. Suppose there are K samples of sizes ni,...,ng from different populations. The model can
be represented as follows: let y;; be the jth observation in the kth sample, then

Ykj = By + €kj
fork=1,..,K, and ex; ~ N (0, 02). This model assumes that
Yij ~ N (By,07)

and that the expectations for the different samples are different. We can view the data as a table
comprising K columns, with each column corresponding to a sample.
To test the hypothesis that each population has the same mean, that is, the hypotheses

Hy /31:/82:"~:/8K
Hl : HOtH[)

an Analysis of Variance (ANOVA) F-test may be carried out.

To carry out a test of the hypothesis, the following ANOVA table should be completed;

Source D.F. Sum of squares Mean square F

BETWEEN TREATMENTS K —1 FSS FSS/(K —1) w
RSS/(n — K)

WITHIN TREATMENTS n—K RSS RSS/(n — K)

TOTAL n—1 TSS

where n =ni + ... + ng, and

K ng K ng

K
TSS=) > (w;—7.)" RSS=)> (w—m) FSS=) m(m-7y)° (3112
k=1

k=1 j=1 k=1 j=1
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where, as above TSS is the total sum-of-squares (i.e. total deviation from the overall data meany ) RSS
is the residual sum-of-squares (i.e. sum of deviations from individual sample means 7, k = 1, ..., K)
and FSS is the fitted sum-of-squares (i.e. weighted sum of deviations of sample means from the overall
data mean, with weights equal to number of data points in the individual samples) Note that using
(3.1.12), it can be directly verified that T'SS = F'SS + RSS. If the F statistic is calculated in this
way, and compared with an F distribution with parameters K — 1, n — K, the hypothesis that all the
individual samples have the same mean can be tested.

EXAMPLE In a bioinformatics context, it is often of interest to compare the structures of different
parts of the genome. In this example, three genomic segments were used to studied in order to discover
whether the distances (in kB) between successive occurrences of a particular motif were substantially
different. Several measurements were taken using for each segment;

Method
SEGMENT A SEGMENT B SEGMENT C
42.7 44.9 41.9
45.6 48.3 44.2
43.1 46.2 40.5
41.6 43.7
41.0
Mean 43.25 46.47 42.26
Variance 2.86 2.94 2.66
For these data, the ANOVA table is as follows;
Source D.F. Sum of squares Mean square F
SEGMENTS 2 34.1005 17.0503 6.11
Residual 9 25.1087 2.7899
Total 11 59.2092

and the F' statistic must be compared with an F5 g distribution. For a significance test at the 0.05 level,
F must be compared with the 95th percentile (in a one-sided test) of the I g distribution. This value
is 4.26. Therefore, the F' statistic is surprising, given the hypothesized model, and therefore there is
evidence to reject the hypothesis that the segments are identical.

3.1.6 TWO-WAY ANOVA

One-way ANOVA can be used to test whether the underlying means of several groups of observations
are equal Now consider the following data collection situation Suppose there are K treatments, and L
groups of observations that are believed to have different responses, that all treatments are administered
to all groups, and measurement samples of size n are made for each of the K x L combinations of
treatments x groups. The experiment can be represented as follows: let yy;; be the jth observation
in the kth treatment on the lth group, then

Yty = B + 61 + €y

fork=1,...,K,l=1,.., L, and again eg;; ~ N (0, 02). This model assumes that Y3; ~ N (ﬂk + 61, 02)
and that the expectations for the different samples are different. We can view the data as a 3
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dimensional-table comprising K columns and L rows, with n observations for each column x row
combination, corresponding to a sample.

It is possible to test the hypothesis that each treatment, and/or that each group has the same
mean, that is, the two null hypotheses

Hy @ B1=0y=..=0g
H[) . 61:62:~~~:6L

against the alternative H; :not Hy in each case. For these tests, a Two-way Analysis of Variance
(ANOVA) F-test may be carried out. The Two-Way ANOVA table is computed as follows

Source D.F. Sum of squares = Mean square F
FSS /(K —1)
TREATMENTS K —1 FSS; FS$1/(K =1) —os TR
FSSy/(L—1)
P L-1 F F L-1 e
GROUPS S8 SSa/( ) RSS/(R+1)
Residual R+1 RSS RSS/(R+1)
Total N -1 TSS

where N =K x Lxn, R=N — L — K. and again
TSS =FSS + FSS; + RSS.

In the table below, there are K = 3 Treatments, and L = 6 Groups, and n =1

I II III GROUP totals

1 096 0.94 0.98 2.88
2 0.96 098 1.01 2.95
3 0.85 0.87 0.86 2.58
4 0.86 0.84 0.90 2.60
5 0.86 0.87 0.89 2.62
6 0.89 093 092 2.74
TREATMENT totals 5.38 5.43 5.56 16.37

There are two natural hypotheses to test; first, do the TREATMENTS differ, and second, do the
GROUPS differ ?

Two-way analysis of variance: can be used to analyze such data. Given two sources of variation
the data can be thought of as a table with the rows and columns representing these two sources .
Two-way analysis of variance studies the variability due to the GROUPS effect (here, variability in
the specimens) and the variability due to the “column” effect (variability in the TREATMENTS), and
calibrates them against the average level of variability in the data overall. Having performed the
appropriate calculations, the results are displayed in an ANOVA table. For example, for the data above

Source D.F. Sum of squares Mean square F
GROUP 5 0.040828 0.0081656 31.54
TREATMENT 2 0.002878 0.001439 5.57
Residual 10 0.002589 0.0002589

Total 17 0.046295
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The two F statistics can be interpreted as follows; the first (F' = 31.54) is the test statistic for the test
of equal means in the rows, that is, that there is no difference between GROUPS. This statistic must
be compared with an Fs ;o distribution (the two degrees of freedom being the entries in the degrees of
freedom column in the specimens and residual rows of the ANOVA table). The 95th percentile of the
F5 19 distribution is 3.33, and thus the test statistic is more extreme than this critical value, and thus
the hypothesis that each specimen has the same mean can be rejected.

The second F statistic, (F' = 5.57), is the test statistic for the test of equal means in the columns,
that is, that there is no difference between TREATMENTS. This statistic must be compared with
an Fy 1o distribution (the two degrees of freedom being the entries in the degrees of freedom column in
the methods and residual rows of the ANOVA table). The 95th percentile of the F5 10 distribution is
4.10, and thus the test statistic is more extreme than this critical value, and thus the hypothesis that
each method has the same mean can be rejected.
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