CHAPTER 2
STATISTICAL INFERENCE

We typically presume, at least, that a random sample of data xi,...,x, are available, that is that n
independent observations of random variables with probability mass/density function fx have been
recorded. Much of “non-inferential” statistics is concerned with summary and presentation of the raw
data. Here, we will concentrate on statistical inference and testing.

2.1 ESTIMATION

The objective is to learn about parameters in a probability model from data. We assume that the

mass/density function fx depends on (vector) parameter § = (64, ...,0p). Two methods of estimation
of 0 are used:

e Method of moments: match sample moments to theoretical theoretical moments implied by
the model, that is, solve the system of P equations

1 n
Ey, [X7] :szf p=12.,P
=1

e Method of Maximum Likelihood: choose estimate 6 as
6 = argmaxfx (21, ..., 23 6)

For an independent sample,

0 = arg r;leaécil;[l fx (w;0) = argmaxlog {H fx (x; 9)} = argmax {Z;log fx (33 9)}

i=1
where

log L(0) = Y _log fx (x:;0)
i=1
is the log-likelihood. If log L(#) is differentiable on parameter space O, then 0 satisfies

a%o{logL(@)} = ;a%j{logfx (z:;0)} =0 (2.1.1)

forallp=1,2,..P.

Definition 2.1.1 The standard error of an estimator T of parameter 0 is
s.e. (I50) = /Varg,, [T] = se (0)
for some function s.. The estimated standard error is
e.s.e(T) = s, (@)

where B is the estimate of 0 (that is, the observed value of T').
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2.1.1 LIKELIHOOD INFERENCE AND SCORE EQUATIONS

We consider likelihood inference for a (possibly vector) parameter 6 taking values in parameter space
©, with data = = (1, ..., x5) and likelihood function

L(0) = fxjo (x;0) Hsz i3 0

In all the results below, fx|s (z;6) will denote the likelihood for all of @1, ..., 7.

Definition 2.1.2 Score Function

For univariate 0 the observed score function is denoted Uy (x)

Up (v) = ;0 log fx|o (73 0) .

The score function can be shown to exhibit certain key properties. In the univariate case, we have the
following;

(1) If ¢ = g (#) is some reparameterization, then by the chain rule for differentiation

Oh(g(0)) _9h(g(0))0(9(9)) _ ., Oh(g(0)) _ Oh(¢)I¢

o0 ag(0) 00 90 96 09

we have that

(2) The function Uy (X) is a random variable.

(3) The expectation of Uy (X) with respect to the joint distribution of Xq, ..., X,, is zero. First note
that

O {1og fxjo (#:0)} * fxia (2:0) < O {Fxio (:0)} % T (2:0)

b
fx9 (2;0)
0

2 {fxio (x;0)}

Hence

By Us (X)) = [ {log fxpp (z: 0)}] Fxio (:0) da

{ f)ﬂgl’@}d

- 55 { [ xu@oras] = Sy o

/
/
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From the result in equation (2.1.1), maximum likelihood estimation can be seen to be an operation
requiring the solution of the equations

Z Ug (.I'l) =0
i=1
that is, an equation of the form
> Gi(0)=0 (2.1.2)

where

G (0) = % {log fxjo (x:;60)}

is a function derived from the ith data point. The form in (2.1.2) is known as an estimating equation.
Writing G; (0) = G; (0;x;), the function G; (0; X;) is a random variable; the vector function G (0) =
(G1(0),...,G, (0)) is an estimating function.

Definition 2.1.3 Fisher Information
The Fisher Information is denoted I (0), and is defined (equivalently) by

I(0) = Varfxw [Uy (X)] = EfX|0 [{UG (X)}ﬂ

2

0
:aEﬁme[———glogfxw(xxe>

Efxw o0

o 2
{55108 fxa (X:0)}

82
= EfX1|0 {—nw IOg fX1|9 (X]_, 0):| .

For vector parameter 6 = (61, ..., 0k ) the definitions for score function and Fisher information can be
extended naturally; the vector score function is

Up () = (U, (2) ., Upyc ()"

with
Up, (z) = 9 {log fxo (z;0)}
k 00y,
and the Fisher information becomes a K x K variance-covariance matrix with (i, j)th entry

1Oy = B |~ 5o (s e (i0)}

82
= —nBy, {W {log fx,10 (X199)}]
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2.1.2 DESIRABLE PROPERTIES OF ESTIMATORS

Suppose that T (a function of (Xi,..., X)) is an estimator of parameter 6 that has sampling density
Jrjp- It may be desirable that the estimator has the following properties

e Unbiasedness: T is unbiased for 6 if
EfT|0 [T]=9.
The bias of T is
b(0) = EfT|0 [T] - 6.
The mean square error (MSE) of T is
MSE (0) = Egy,, |(T = 0] = Varg,,, [T] +{b(6)}*

e Consistency: 7T is a consistent estimator of 0 if
lim P[|T—0| <e]=1
n—oo
that is T' converges in probability to 6 as n — oo.

e Efficiency: An unbiased estimator 7" is more efficient than another unbiased estimator T™ if,
for all 6

Varleo [T] < VarfT*lo [T*].

In fact, there is a lower bound on the variance of unbiased estimators in many problems; the
Cramer Rao Lower Bound indicates that if T" is an unbiased estimator of 6, then for each 6

1
Varg,, [T] > m

with equality if an only if the score function satisfies
Up (0) =g (0) (T —0)

for some function g. If equality is found, then T is the minimum variance unbiased estimator
(MVUE).

e Asymptotic properties: two of the properties above relate to finite sample results. We can
extend these ideas by considering asymptotic unbiasedness and asymptotic efficiency, that
is, as n — oo.
It can be shown that, under mild regularity conditions, maximum likelihood estimators exist
e comnsistent,
e asymptotically unbiased,
e efficient estimators with variance equal to
-1
[ (0)]

in the limit as n — oo. In fact, the maximum likelihood estimator is asymptotically normally
distributed

Oy 5N (0, I (0)]—1)
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2.2 HYPOTHESIS TESTING : NORMAL SAMPLES

Given a sample z1, ..., Zpn from a probability model f(x; @) depending on parameter 0, we can produce an
estimate 0 of 0, and in some circumstances understand how 0 varies for repeated samples. Now we might
want to test, say, whether or not there is evidence from the sample that true (but unobserved) value of
0 is not equal to a specified value. To do this, we use an estimate of 6, and the corresponding estimator
and its sampling distribution, to quantify this evidence.. First, we concentrate on data samples that
we can presume to have a normal distribution, and look at two situations, namely one sample and
two sample experiments.

e ONE SAMPLE: Random variables: X7, ..., X,, ~ N(u,o?), sample observations z1, ...z, - pos-
sible comparisons of interest: y = pgy, 0 = 0y

e TWO SAMPLE: Random variables Xi,..., X, ~ N(ux,0%), Y1,...Yy ~ N(uy,0%), data
Z1,...Tny and yi, ...Yn, - possible comparisons of interest pix = iy, 0x = oy

2.2.1 HYPOTHESIS TESTS FOR NORMAL DATA I - THE Z-TEST (0 KNOWN)

If Xi,..., Xp ~ N(u,0?) are the i.i.d. outcome random variables of n experimental trials, then

2 2
X~N <M, %) and no ~ Xn-1

with X and S? statistically independent. Suppose we want to test the hypothesis that u = p,, for
some specified constant p, (where, for example, p, = 20.0) is a plausible model; more specifically, we
want to test the hypothesis Hy : u = p against the hypothesis Hy : u # pg, that is, we want to test
whether H is true, or whether H; is true. Now, we know that, in the case of a Normal sample, the
distribution of the estimator X is Normal, and

2
XwN(u,%>:>Z— £ N(0,1)

o/vn
where Z is a random variable. Now, when we have observed the data sample, we can calculate z, and
therefore we have a way of testing whether © = p is a plausible model; we calculate z from x1, ..., z,,
and then calculate

T — Mo
a/\/n
If Hy is true, and p = p, then the observed z should be an observation from an N(0,1) distribution

(as Z ~ N(0,1)), that is, it should be near zero with high probability. In fact, z should lie between
-1.96 and 1.96 with probability 1 — o = 0.95, say, as

A

P[-1.96 < Z < 1.96] = ®(1.96) — ®(—1.96) = 0.975 — 0.025 = 0.95

If we observe z to be outside of this range, then there is evidence that Hy is not true. Alternatively,
we could calculate the probability p of observing a z value that is more extreme than the z we did
observe; this probability is given by

[ 2®(2) z2<0
_{2(1—<I>(z)) z2>0

If p is very small, say p < a = 0.05, then again. there is evidence that Hy is not true. In summary,
we need to assess whether z is a surprising observation from an N (0, 1) distribution - if it is, then we
can reject Hy.
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2.2.2 HYPOTHESIS TESTING TERMINOLOGY

There are five crucial components to a hypothesis test, namely

TEST STATISTIC

NULL DISTRIBUTION

SIGNIFICANCE LEVEL, denoted «

CRITICAL VALUE(S) (Cg,,Cg,)

P-VALUE, denoted p.

In the Normal example given above, we have that

z is the test statistic
The distribution of random variable Z if Hy is true is the null distribution

a = 0.05 is the significance level of the test (we could use v = 0.01 if we require a “stronger” test).
The solution Cr of ®(Cr) =1 — /2 (Cr = 1.96 above) gives the critical values of the test £Cg.

p is the p-value of the test statistic under the null distribution

EXAMPLE : A sample of size 10 has sample mean T = 19.7. Suppose we want to test the hypothesis

H[) U= 20.0
Hl By 7é 20.0
under the assumption that the data follow a Normal distribution with o = 1.0.
We have
L 19.7 —20.0
1/4/10

which lies between the critical values +1.96, and therefore we have no reason to reject Hy. Also, the
p-value is given by p = 2®(—0.95) = 0.342, which is greater than o = 0.05, which confirms that we
have no reason to reject Hy.

=-0.95

2.2.3 HYPOTHESIS TESTS FOR NORMAL DATA II - THE T-TEST (¢ UNKNOWN)

In practice, we will often want to test hypotheses about 1 when o is unknown. We cannot perform the
Z-test, as this requires knowledge of o to calculate the z statistic.

We proceed as follows; recall that we know the sampling distributions of X and s?, and that the two
estimators are statistically independent. Now, from the properties of the Normal distribution, if we

have independent random variables Z ~ N(0,1) and Y ~ x2, then we know that random variable T
defined by
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has a Student-t distribution with v degrees of freedom. Using this result, and recalling the sampling
distributions of X and s?, we see that

X —p
o/ (X - p)
T= = ~ln-1
(n—1)s2/g>  8/Vn :
(n—1)

and T has a Student-¢ distribution with n — 1 degrees of freedom, denoted St(n — 1). Thus we can
repeat the procedure used in the o known case, but use the sampling distribution of 7" rather than that
of Z to assess whether the test statistic is “surprising” or not.

Specifically, we calculate

_(@—p)
s/v/n

and find the critical values for a o = 0.05 significance test by finding the ordinates corresponding to the
0.025 and 0.975 percentiles of a Student-¢ distribution, St(n — 1) (rather than a N(0,1)) distribution.

t

EXAMPLE : A sample of size 10 has sample mean z = 19.7. and s? = 0.782. Suppose we want to
carry out a test of the hypotheses

HQ[LZQOO
Hlu%QOO

under the assumption that the data follow a Normal distribution with ¢ unknown.

We have test statistic ¢ given by
_19.7-20.0
0.78/4/10

The upper critical value Cg is obtained by solving

—1.22.

F,, . (Cr) =0.975

where Fgy,,—1) is the c.d.f. of a Student-¢ distribution with n—1 degrees of freedom; here n = 10, so we
can use the statistical tables to find C'r = 2.262, and not that, as Student-t distributions are symmetric
the lower critical value is —C'r. Thus t lies between the critical values, and therefore we have no reason
to reject Hy. The p-value is given by

2F;, (1) t<0
p:{2ﬂ—ﬂnﬁ»t20

so here, p = 2F;, ,(—1.22) which we can find to give p = 0.253; this confirms that we have no reason
to reject Hy.

2.2.4 HYPOTHESIS TESTS FOR NORMAL DATA III - TESTING o.

The Z-test and T-test are both tests for the parameter u. Suppose that we wish to test a hypothesis
about o, for example

2 52
Hy:0° =0}

Hy :0? # 0}
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We construct a test based on the estimate of variance, s?

p-32 that the random variable @), defined by

. In particular, we saw from the Theorem on

(n —1)s?
Q= Y Xo-1
0

if the data have an N (u,0?) distribution. Hence if we define test statistic ¢ by

(n—1)s?

2
99

then we can compare ¢ with the critical values derived from a x2_; distribution; we look for the 0.025
and 0.975 quantiles - note that the Chi-squared distribution is not symmetric, so we need two distinct
critical values.

In the above example, to test

Hyp:0?=1.0
Hy:0?#1.0

we compute test statistic

(n—1)s* 90.782
q= 2 =

= =5.43.75
lors 1.0

and compare with

Cr, =F,2 (0.025) — Cg, =2.700

Xn—1

CR2 =F 2 (0.975) - CR2 = 19.022

Xn—1

so ¢ is not a surprising observation from a x2_; distribution, and hence we cannot reject Hy.

2.2.5 TWO SAMPLE TESTS

It is straightforward to extend the ideas from the previous sections to two sample situations where
we wish to compare the distributions underlying two data samples. Typically, we consider sample one,

2 . . . . 2
L1, ey Ty, from a N(py, 0% ) distribution, and sample two, y1, ..., yn, , independently from a N (uy-, 03,)
distribution, and test the equality of the parameters in the two models. Suppose that the sample mean
and sample variance for samples one and two are denoted (z, s%) and (7, s3-) respectively.

First, consider testing the hypothesis

Ho:px = py
Hy:px # py

when ox = oy = o is known. Now, we have from the sampling distributions theorem we have
B 2 B 2 L 2 2
X~N<MX,U—> Y~N<uy,a—>=>X—Y~N<O,U—+J—>
nx ny

and hence



2.2. HYPOTHESIS TESTING : NORMAL SAMPLES 25

giving us a test statistic z defined by

which we can compare with the standard normal distribution; if z is a surprising observation from

N(0,1), and lies outside of the critical region, then we can reject Hy. This procedure is the Two Sample
Z-Test.

If ox = oy = o is unknown, we parallel the one sample T-test by replacing ¢ by an estimate in the
two sample Z-test. First, we obtain an estimate of o by “pooling” the two samples; our estimate is the
pooled estimate, s%, defined by

(nx —1)s% + (ny — 1)s%
nx +ny — 2

& =

which we then use to form the test statistic ¢ defined by

T —

<y

t:

sp

2|
+
2|

n

It can be shown that, if Hy is true then ¢ should be an observation from a Student-t distribution with
nx +ny — 2 degrees of freedom. Hence we can derive the critical values from the tables of the Student-¢
distribution.

If ox # oy, but both parameters are known, we can use a similar approach to the one above to derive
test statistic z defined by

Y

2 2
o o
F
nx ny

Clearly, the choice of test depends on whether ox = oy or otherwise; we may test this hypothesis
formally; to test

Zz =

which has an N(0,1) distribution if Hy is true.

Hy:0ox =0y
Hy:0x #oy

we compute the test statistic

q:

Sholpdie

which has a null distribution known as the Fisher or F' distribution with (nx — 1,ny — 1) degrees of
freedom; this distribution can be denoted F(nx — 1,ny — 1), and its quantiles are tabulated. Hence we
can look up the 0.025 and 0.975 quantiles of this distribution (the F' distribution is not symmetric), and
hence define the critical region; informally, if the test statistic ¢ is very small or very large, then it is a
surprising observation from the F' distribution and hence we reject the hypothesis of equal variances.
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2.2.6 ONE-SIDED AND TWO-SIDED TESTS

So far we have considered hypothesis tests of the form

Ho :p=p

Hy :p#
which is referred to as a two-sided test, that is, the alternative hypothesis is supported by an extreme
test statistic in either tail of the distribution. We may also consider a one-sided test of the form

Ho:p=pyg Ho :p=pg
Hy:p> Hyo:p < g

Such a test proceeds exactly as the two-sided test, except that a significant result can only occur in the
right (or left) tail of the null distribution, and there is a single critical value, placed, for example, at
the 0.95 (or 0.05) probability point of the null distribution.

2.2.7 CONFIDENCE INTERVALS

The procedures above allow us to test specific hypothesis about the parameters of probability models.
We may complement such tests by reporting a confidence interval, which is an interval in which we
believe the “true” parameter lies with high probability. Essentially, we use the sampling distribution to
derive such intervals. For example, in a one sample Z-test, we saw that

_ X
o/vn
that is, that, for critical values +Cg in the test at the 5 % significance level

X_“gcR] —0.95
o/\/n

Z

~ N(0,1)

P[-Cr <Z <Cg|=P |:_CR§
Now, from tables we have Cr = 1.96, so re-arranging this expression we obtain

P {X - 1.96% <pu<X+ 1.96%] —0.95

W 7/

from which we deduce a 95 % Confidence Interval for p based on the sample mean = of

o

r + 1.96 n
We can derive other confidence intervals (corresponding to different significance levels in the equivalent
tests) by looking up the appropriate values of the critical values. The general approach for construction
of confidence interval for generic parameter 6 proceeds as follows. ;From the modelling assumptions,
we derive a pivotal quantity, that is, a statistic, Tpg, say, (usually the test statistic random variable)
that depends on €, but whose sampling distribution is “parameter-free” (that is, does not depend on
). We then look up the critical values Cr, and Cpg,, such that

P[CngTPQSCRz]Zl—Oé

where « is the significance level of the corresponding test. We then rearrange this expression to the
form

Ple;<0<e]=1-a

where ¢; and ¢y are functions of Cgr, and Cg, respectively. Then a 1 — a % Confidence Interval for 0
is [c1, ca).
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SUMMARY
For a data sample x1, ..., x,, with corresponding random variables X7, ..., X,,, we
1. consider a pair of competing hypotheses, Hy and H;

2. define a suitable test statistic T = T'(X3,..., X,,) (that is, some function of the original random
variables; this will define the test statistic), and a related pivotal random variable Tpg = Tpg(X)

3. assume that Hj is true, and compute the sampling distribution of T', f7 or Fr; this is the null
distribution

4. compute the observed value of T', t = T'(z1, ..., x,); this is the test statistic

5. assess whether ¢ is a surprising observation from the distribution fr. If it is surprising, we have
evidence to reject Hy; if it is not surprising, we cannot reject Hj

This strategy can be applied to more complicated normal examples, and also non-normal and non-
parametric testing situations. It is a general strategy for assessing the statistical evidence for or
against a hypothesis. For the tests discussed in previous sections, the calculation of the form of the
confidence intervals is straightforward: in each case, Cr, and Cg, are the a/2 and 1 — a/2 quantiles of
the distribution of the pivotal quantity.

One Sample Tests

Test Pivotal Quantity Tpg Null Distribution Parameter Confidence Interval
Z-TEST X N(0,1) %+ Cgo/Vn
- U/\/ﬁ ) 12 RO
T-TEST 7o Xk St(n — 1) Z+Cg s/\Vn
- S/\/ﬁ /"[’ R
(n —1)s? (n—1)s> (n—1)s?
-TEST =-— 2 2 :
Q Q 0_2 Xn—]_ “ CR2 CRl

Two Sample Tests

Test Pivotal Quantity Tpg Null Distribution Parameter Confidence Interval
X - — (Y - 1 1
ZTEST(1) 7= X =) =V —ny) N(0,1) px —py  (F—7)£Croy/— +—
1 1 nx ny
Oy — + —
nx ny

T-TEST(2) po Ko -V py) St(nx +ny —2)  pux —py (T—7) +Crgsp 1,1

T 1
spy/— +— nx n
nx ny
X~ pux) — (V- 2 2
zresTe) z- S om) gy e @op O X+ D
o2 o2 nx Ny
X Y
nx ny
s% /o o2 2 2
Q-TEST Q=2xX"X F(nx —1,ny —1 X { X _ . X ]
3o N Crit  Cmst
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2.3 HYPOTHESIS TESTING : NEYMAN-PEARSON AND EXTENSIONS

The general strategy for statistical hypothesis testing was outlined previously and proceeds as follows:
for a data sample xq, ..., x,, with corresponding random variables X1, ..., X,,, we

1. consider a pair of competing hypotheses, Hy and H;

2. define a suitable test statistic 7' = T'(X3, ..., X,,) (that is, some function of the original random
variables)

3. assume that Hj is true, and compute the sampling distribution of T', f7 or Fr; this is the null
distribution

4. compute the observed value of T', t = T'(z1, ..., x,); this is the test statistic

5. assess whether ¢ is a surprising observation from the distribution fr. If it is surprising, we
have evidence to reject Hy; if it is not surprising, we cannot reject Hy. The highest level of
acceptable “surprise” is related to the specified significance level a.

2.3.1 CRITERIA FOR ASSESSING TESTS

Definition 2.3.1 TYPE I and TYPE II ERRORS.

A Type I error occurs when the null hypothesis Hy is REJECTED when it is in fact TRUEF.
A Type II error occurs when the null hypothesis Hy is ACCEPTED when it is in fact FALSE.

The concept of these types of error can be best illustrated by the following 2 x 2 table

UNOBSERVED TRUTH
Hy True Hj not True
OBSERVED Hy rejected TYPE I ERROR v
RESULT OF TEST
Hy not rejected v TYPE II ERROR

Consider in this testing context a partition of the parameter space ©® = ©g U ©1 where Oy and O, are
the ranges of values of 6 implied by Hy and H; respectively

Definition 2.3.2 For a particular test, let R C X be the critical region. For 0 € Oq, define the Type
I error probability «(0) by

a(f) = P[X € R|0 € O] (2.3.3)
If ©¢ comprises a single value, then « =P[X € R|Hy is TRUE]

For 6 € ©; define the Type II error probability 3(0) by
B(0) = P[X ¢ R|f € ©4] (2.3.4)
and the power function by
1—p3(0) = P[X € R|f € O]

Intuitively, the power function should be high, as it represents the probability of correctly rejecting
Hy.
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Definition 2.3.3 For constant «, if a() < a <1 for all € ©¢ and if X € R, then Hy is rejected
at significance level a.

NOTE: The value « is any upper bound of a(6), so if Hy is rejected at level y then (by definition) it is
rejected at level v+ 6 for 6 > 0

Definition 2.3.4 The size of a statistical test is

sup a(0)
USSH)

which is equal to o if ©y comprises a single value.

The task remaining is to construct the critical region R; this is achieved by specifying the test
statistic and the probabilities described in the previous definitions,, and identifying the subset of for
which the target probabilities are met, via (2.3.3) and (2.3.4). It would be ideal to be able to specify
a(f) and ((0) small, uniformly in 6. These objectives cannot be achieved simultaneously, and hence
a compromise is sought. Now Hpy and H; are treated asymmetrically; in reality the testing context
relates to finding sufficient evidence to reject Hy, rather than deciding between the two hypotheses.
Hence rejecting Hy when it is true (a Type I error) is a more serious error than accepting Hy when it is
false (a Types II error), and this implies that the size of the test, a, should be fixed at some small level
(0.05 or 0.01 say), and subject to this constraint, the test constructed that minimizes 3(#) uniformly in
0. That is, set a() <, for all § € Oy, and then attempt to find a test to minimize 3(0) for all 6.

Definition 2.3.5 If a test is of size a and if 3(6) uniformly in 6 minimizes the probability of a Type
11 error among all tests with size < «, then the test is termed the uniformly most powerful
(UMP) test of size c.

Definition 2.3.6 A simple hypothesis is one which specifies the distribution of the data completely.

Example 2.3.1 Consider the parameter space © = {6y, 01} where ©g = {6y} and ©; = {6,}, and

These are two simple hypotheses, and
B(0) = B(01) = 3, say

The next result constructs the UMP test for this example as based on a test statistic which is a function
of the ratio

_ [x1p(X561)

T = Fo(X:00)

where X here is a (vector) random variable.
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Theorem 2.3.1 The Neyman-Pearson Lemma
Suppose that © = {0y,01} and a test of the hypotheses
H() 0= 00
Hl 0= 01

18 required. Suppose that, as a requirement, the size is to be less than or equal to a. Then the most
powerful test of Hy against Hy is defined by any the critical region

;0
R— {.I': fX|9(x7 1) > k}
fx10(x;00)
where k > 0 is defined by
04(00) = P[T S R‘@ = 00] =«

To evaluate the value of constant k that appears in the Theorem, need to compute P[T € R|0 = ;] for a
fixed size a. To do this, the sampling distribution of T" given that # = 0 (that is, the null distribution)
must be used.

2.3.2 COMPOSITE HYPOTHESES.

Often the hypotheses do not specify the distribution of the data completely. For example, hypotheses
H() 0= 00
Hl ;0 7é 00

could be of interest. If, in general, a UMP test of size « is to be found, then its power must equal the
power of the most powerful test against a point alternative hypothesis, H; : § = 01, for all 6; € ©\6o.

Note that (i) It is possible that, for given alternative hypotheses, no UMP test exists, and (ii) for discrete
data, it may not be possible to solve the equation P [T € R|0 = 6] = «, for every value of a, and hence
only specific values of a may be attained.

UMP tests do not always exist, so it is convenient to also consider locally most powerful tests.
Consider the hypothesis

H() . 0:00
H : 0>0

and a partial alternative 67 = 0y + 6 for 6 small. Then

fx10(X;61) fx19(X;500 + 6) 0
log=———= =1o ~o6— lo X;0 = 0Up, (X
S Fan(Xety) % Fa(edy) 000 8Pl Do, = 80 (0
where Up, (X) is the score function defined previously. For these alternatives, Hy would be rejected
if Uy, (z) is too large; this test is locally most powerful in the sense that it maximizes the slope
of the power function at § = §y. To complete the calculation, the distribution of Uy, (X) is needed.
Using the Central Limit Theorem, it follows that

Uso (X))~ N(0,1(60)) (2.3.5)

where I () is the Fisher information at § = 6y. This result forms the basis for the Rao Score Test
described below.
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2.3.3 THE LIKELIHOOD RATIO TEST

As an alternative to the search for most powerful tests, consider a general approach to test construction,
and assess the qualities of the types of test constructed.

Definition 2.3.7 Likelithood Ratio Test

The Likelithood Ratio Test statistic for testing Hy against Hy is

sup fxo(X;0)
_ USSH

T=T(x)=
)= Fep(X:0)
USSH)

where Hy is rejected if T is too large, that is, if

P[T > k|Ho] = a

Theorem 2.3.2 If Hy imposes q independent constraints on Hy, then, as n — oo

sup fxo(X;0)
USSH

sup fxo(X;0)
0€Og

2logT = 2log A XZ (2.3.6)

that is, 2logT has an approxzimate Chi-squared distribution with q degrees of freedom.

(The notation 2 means “is approximately distributed as”).

Equation (2.3.6) gives one method of testing two hypotheses; there are two other related testing
approaches, both of which rely on asymptotic normal approximations. These methods are the Rao
Score Test and the Wald test. First, some notation is needed. For convenience, let

In (0) = fx)o (x;0)
be the likelihood function for vector parameter 6 = (61, ...,0 K)T, and define vector quantity
I, (0) = (Up, (), ...Upyc ()"

as the observed vector score function with k" element

Up, (z) = 8%;3 {log fxp (2;0)} = Zlog fx,p0 (xi;0) k=1,.,.K

i=1
When required, we will also use I, (6) to denote the corresponding vector random variable

(Upy (X)), Upye (X))

We now wish to test a null hypothesis Hy : 0 = 6. First, let 5n be an estimate (or the corresponding
estimator) derived from solving the score equations which, in the current notation, can be written

I (0)=0

(in the simplest case, 0, is the MLE)
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2.3.4 THE RAO(SCORE) TEST
The Rao (Score) Test statistic, R, for testing Hy against Hj : 6 # 0y is defined by
R, = ZT [1(0)] " Z, (2.3.7)
where
Zn = Tl;z (6o)
and where [ (.) is the Fisher information evaluated at 0y for a single X;, that is a K x K matrix with
(i, /)™ element

92
[ (0)]1']' = _EfX|0 9090 log fX|6 (X;0)
00,003
and
82
[Il (0)] EfX|0 |:80 80 IOg fX1|9 (X17 0):|
as [ (0) =nly (0). For large n, if Hy is true,

A
Rn"’X%{

and Hy is rejected if R, is too large, that is, if R,, > C, and where P [R,, > C|Hy| = « for significance
level a.

Interpretation and Explanation: we have previously calculated the expectation and variance of
the score function; in particular, the expected score is zero, and the variance covariance is determined
by the Fisher information. The score test uses these results; if Hy is true, we would have that, from
(2.3.5),
A
Ugo (X) ~ NK (O,I (00)) = NK (0,72]1 (00))
so that the standardized score

Vo = {A(60)} " Ugy (X) 2 Nk (0,1x)

where 1k is the K x K identity matrix, and where matrix A (6) is given by

{A@)}Y {A@O)}=1(0).

Hence, by the usual normal distribution theory
_ — A
Ry = Vi Voo = {Usy (X)} [ (60)) ™ Usy (X) = Zy {11 (00)} " Zn ~ Xk

so that observed test statistic
1 n
rn =20 {11(60)} " 2n where z, = N ZUek (;)

should be an observation from a X%{ distribution.
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Extension: It is legitimate, if required, to replace the Fisher Information at I; (6y) by a suitable

estimate I, (én> There are several ways of estimating the Fisher information, for example

( 1,(0,)

{1 ()} (o)) 235)

gjl " (én, xl>

3)\4>
/N
)
3
N——
I
S
N
=

S

\

where the jth element of the K x 1 vector !’ (én,xl> is

0
26, {log fx,6 (ﬂﬂi;@)}‘e:én

and 1" (én,xl> is the K x K matrix with (j, k)™ entry
2

0
80_7801: {IOg in|9 (xi; 0)} ‘Gzén .

These two terms represent the contribution of the i*"* data point to the observed (or empirical) score
function and Fisher information.

2.3.5 THE WALD TEST

The Wald test uses similar logic and asymptotic approximations to construct another test statistic. To
test a null hypothesis Hy : 0 = 0y for vector parameter § = (04, ...,0), the Wald Test statistic, W,
for testing Hy against Hy : 0 # 0y is defined by
- Tr. /- -
W, = Vn (en - 00) [In (en)} Jn (en - 00) (2.3.9)
Then, for large n, if Hy is true,

A
WnNX%(

and Hy is rejected if W), is too large, that is, if W,, > C, and where P[W,, > C|Hy] = « for significance
level a.

Interpretation and Explanation: the logic of the Wald test depends on the asymptotic Normal
distribution of the score equation derived estimates

Vit (B = 0) 4 Nic (0,[1:0)] )
so that
6, AN (0, [nIl(Q)]_1>

and standard multivariate Normal Theory. Again, estimates of the Fisher Information such as those
in (2.3.8) can be substituted for I(6p) in (2.3.9).
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2.3.6 EXTENSION TO TESTS FOR COMPONENTS OF 6.

The theory above concerns tests for the whole parameter vector 6. Often it is of interest to consider
components of 0, that is, if = (61, 62), we might wish to test

Hy : 67 =040, with 05 unspecified
Hy : 07 # 019, with 05 unspecified

The Rao Score and Wald tests can be developed to allow for testing in this slightly different context.
Suppose that 6; has dimension m and 6; has dimension K — d. Let the Fisher information matrix
I (#) and its inverse be partitioned

Iv I ] 1 [I112]7" —[h12) g [Toe)
I = I; (0 = = _ -
! { Iy I [1.(6)] —[Ia24]) " I [T11] ™! [To0.1] "
be a partition of the information matrix, where
Lio = Iy —Iip[lo] ' Iy
Loy = Iog — Doy [In] ' Iz

and all quantities depend on 6.
e The Rao score statistic is given by
R = 28 [10 ()] 2o A2,
(0)

where éno is the estimate of § under H

Tno = %z; (éff))

and 1, (97(10 ) is the estimated Fisher information /;, evaluated at 97(10
estimates in (2.3.8).

) )

, obtained using any of the

e The Wald statistic is given by

= )" [199 3] 5 (s~ 00) 2.

where énl is the vector component of én corresponding to #1 under Hy, and f7(111'2) (0n> is the

estimated version of I17 2 (using the sample data, under Hy) evaluated at én, obtained using any
of the estimates in (2.3.8).

These tests can be carried out in any likelihood-based estimation problem: for example, in a two sample
Binomial problem, a test of

H0201:02

can be re-written in terms of parameters (¢;, ¢y) where ¢; = 01 — 02, ¢y = 02, with the null hypothesis
re-phrased

Hy : ¢; = 0 with ¢, unspecified

and the theory of component-wise tests is important.
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2.4 BAYESIAN THEORY

The classical (maximum-likelihood/Neyman Pearson) view of Statistical Inference Theory contrasts
with the alternative Bayesian approach. In Bayesian theory, the likelihood function still plays a
central role, but is combined with a prior probability distribution to give a posterior distribution for
the parameters in the model. Inference, estimation, uncertainty reporting and hypothesis testing can
be carried out within the Bayesian framework.

2.4.1 PRIOR AND POSTERIOR DISTRIBUTIONS

In the Bayesian framework, inference about an unknown parameter 6 is carried out via the posterior
probability distribution that combines prior opinion about the parameter with the information
contained in the likelihood fx | (x; @) which represents the data contribution. In terms of events, Bayes
Theorem says that

P(A|B)P(B)

P(A)
that is, it relates the two conditional probabilities P(A|B) and P(B|A). Carrying this idea over to
probability distributions, it follows that we can carry out inference via the conditional probability dis-

tribution for parameter 6 given data X = x. Specifically for parameter ¢, the posterior probability
distribution for 0 is denoted py x (0|7), and is calculated as

Pox (Ol) = 7 ;;f((;;;;;e((;))de = c(x) fx)p (:0) po (0) (2.4.10)

P(B|A) =

say, where fxo (z;0) is the likelihood, and py (¢) is the prior probability distribution for 6. The
denominator in (2.4.10) can be regarded as the marginal distribution (or marginal likelihood) for
data X evaluated at the observed data x

fx(@) = / Fxio (2:6) po (6) db. (2.4.11)

2.4.2 BAYESIAN INFERENCE: ESTIMATION AND UNCERTAINTY INTERVALS

Inference for the parameter ¢ via the posterior mg|y (0]y) can be carried out once the posterior has been
computed. Intuitively appealing methods rely on summaries of this probability distribution, that is,
moments or quantiles. For example, one Bayes estimate, 0p of 0 is the posterior expectation

B = By, (01X = 2] = /0p9|x(0x)d0

whereas another is the posterior mode, 53, that is, the value of 6 at which py x (0|x) is maximized,
and finally the posterior median that satisfies

05 1
/ po|x (0]z)dO = 3
Definition 2.4.1 A 100(1 — )% Bayesian Credible Interval for 0 is a subset C' of © such that

PleC]>1—a

The 100(1 — )% Highest Posterior Density Bayesian Credible Interval for 0, subject to
PO e Cl>1—aisa subset C of © such that C = {0 € © : po)x (0|z) > k} where k is the largest
constant such that

PlleC]>1—-a.
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2.4.3 BAYESIAN INFERENCE AND DECISION MAKING

Suppose that, in an inference setting, a decision is to be made, and the decision is selected from some
set D of alternatives. Regarding the parameter space © as a set of potential “states of nature”, within
which the “true” state 0 lies.

Definition 2.4.2 Define the loss function for decision d and state 0 as the loss (or penalty)
incurred when the true state of nature is 0 and the decision made is d. Denote this loss as

L(d,0)
Definition 2.4.3 With prior w(0) and no data, the expected loss (or the Bayes loss) is defined as
o [L(d,0) = [ L(d,0)po 0)
The optimal Bayesian decision is
dp = arg Q%i{ylEpe [L(d,8)]

that 1s, the decision that minimizes the Bayes loss.

If data are available, the optimal decision will intuitively become a function of the data. Suppose now
that the decision in light of the data is denoted 6(x) (a function from X to D, and the associated loss
is L(6(x),0)

Definition 2.4.4 The risk associated with decision §(X) is the expected loss associated with 6(X),
with the expectation taken over the distribution of X given 0

Ry (8) = Expg [L(6(X),0)] = / L(5(X), 0) fx|ol: 0)d

Definition 2.4.5 The Bayes risk expected risk Rp(6) associated with 6(X), with the expectation
taken over the prior distribution of 0

R(8) = Ey[Re(0)] = Ep [Exe [L(8(X),0)]]

— /{/L(&(w),&)fxw(x;@)dw}pe (0) do
= [ [ 1660t Ola)dzas

_ /{/L(&(x),e)p9|x(0x)d0} fx(@)dx

where
Fx(x) = / P o(x: 0)p (6) dB

Definition 2.4.6 With prior pg (0) and fized data x, the optimal Bayesian decision, termed the
Bayes rule is

dp = arg;erginR(é) = arg;ergin/ {/L(é(w),@)p9|x(0w)d0} fx(z)dx = arg;erlr)lin/L(5(x),0)p9|x(0x)d0

that is, the decision that minimizes the Bayes risk, or equivalently (posterior) expected loss in
making decision 6, with expectation taken with respect to the posterior distribution Po| x(0|x).
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2.4.4 APPLICATIONS OF DECISION THEORY TO ESTIMATION

Theorem 2.4.1 Under squared error loss

the Bayes rule for estimating 0 is
&M:QB:E@me%:/ﬁmXWxMQ
that is, the posterior expectation.

Theorem 2.4.2 Under absolute error loss

the Bayes rule for estimating 0 is the solution of

6(x) 1
| paxtoian = 5

—00

that is, the posterior median.

2.4.5 BAYESIAN HYPOTHESIS TESTING

37

To mimic the Likelihood Ratio testing procedure outlined in previous sections. For two hypotheses Hy

and H; define
O[QZP{HQ‘X:.T] OélzP{Hl‘X:l']

For example,
mmxzﬂ:/mmmwe
R

where R is some region of ©. Typically, the quantity

P [Ho|X = z]
P [H|X = z]

(the posterior odds on Hp) is examined.

Example 2.4.1 To test two simple hypothesis

H() . 0:00
Hl . 0:01

define the prior probabilities of Hy and Hjas py and p; respectively. Then, by Bayes Theorem

fxo(;01)p1
P[H|X =]  fxp(@;00)po+ fxp(x;00)p1  fxpe(a;01)p1
P[Ho|X =] fx10(x;500)po ~ fxje(a;600)po
fxio(z;00)po + fxjo(;601)p1
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More generally, two hypotheses or models can be compared via the observed marginal likelihood that
appears in (2.4.11), that is if

fx(x; Model 1) _ ff§<1|)9 (25 01) po, (01)dby
fx (x; Model 0) f f§?|)6 (;60) po, (60) db

is greater than one we would favour Model 1 (with likelihood f§<1|)9 and prior py,) over Model 0 (with

likelihood fg(O')e and prior pg, ).



