## M2S1 : EXERCISE SHEET 8 : SOLUTIONS

1. As $X_{1}, \ldots, X_{n} \sim \operatorname{Poisson}(\lambda)$, and given that $T_{1}=\bar{X}$, then using elementary properties of expectations, we have

$$
E_{f_{T_{1}}}\left[T_{1}\right]=\frac{1}{n} \sum_{i=1}^{n} E_{f_{X_{i}}}\left[X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \lambda=\lambda
$$

so that $T_{1}$ is an unbiased estimator of $\lambda$. Furthermore

$$
\begin{aligned}
T_{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2}-\frac{1}{(n-1)} \sum_{i=1}^{n}(\bar{X})^{2}=\frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2}-\frac{1}{(n-1)} \sum_{i=1}^{n}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2} \\
& =\frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n^{2}(n-1)} \sum_{i=1}^{n}\left(\sum_{i=1}^{n} X_{i}\right)^{2}=\frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n(n-1)}\left(\sum_{i=1}^{n} X_{i}\right)^{2}
\end{aligned}
$$

From properties of expectations, variances, and the Poisson distribution,

$$
E_{f_{X}}\left[X^{2}\right]=\operatorname{Var}_{f_{X}}[X]+\left\{E_{f_{X}}[X]\right\}^{2}=\lambda+\lambda^{2}=\lambda(\lambda+1)
$$

Now, from properties of independent Poisson random variables $Y_{n}=\sum_{i=1}^{n} X_{i} \sim \operatorname{Poisson}(n \lambda)$ so therefore, taking expectations in the above

$$
\begin{aligned}
E_{f_{T_{2}}}\left[T_{2}\right] & =\frac{1}{n-1} \sum_{i=1}^{n} E_{f_{X_{i}}}\left[X_{i}^{2}\right]-\frac{1}{n(n-1)} E_{f_{Y_{n}}}\left[Y_{n}^{2}\right]=\frac{1}{n-1} \sum_{i=1}^{n} \lambda(\lambda+1)-\frac{1}{n(n-1)} n \lambda(n \lambda+1) \\
& =\frac{n}{n-1} \lambda(\lambda+1)-\frac{1}{n-1} \lambda(n \lambda+1)=\frac{1}{n-1}[n \lambda(\lambda+1)-\lambda(n \lambda+1)]=\lambda
\end{aligned}
$$

2. From the theorem in lectures, and by properties of the Gamma distribution, we can write

$$
V_{n}=\frac{(n-1) s_{n}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} \equiv \operatorname{Gamma}\left(\frac{n-1}{2}, \frac{1}{2}\right) \Longrightarrow V_{n}=\sum_{i=1}^{n} X_{i}
$$

where $X_{i} \sim \chi_{1}^{2} \equiv \operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)$, so that, using the Gamma expectation and variance results

$$
\mathrm{E}_{f_{X_{i}}}\left[X_{i}\right]=\frac{1 / 2}{1 / 2}=1=\mu \quad \operatorname{Var}_{f_{X_{i}}}\left[X_{i}\right]=\frac{1 / 2}{(1 / 2)^{2}}=2=\sigma^{2}
$$

say. Hence, by the Central Limit Theorem,

$$
\frac{V_{n}-(n-1) \mu}{\sqrt{(n-1) \sigma^{2}}}=\frac{V_{n}-(n-1)}{\sqrt{2(n-1)}} \xrightarrow{d} Z \sim N(0,1)
$$

Hence, substituting in the definition for $V_{n}$,

$$
\frac{\frac{(n-1) s_{n}^{2}}{\sigma^{2}}-(n-1)}{\sqrt{2(n-1)}}=\frac{\sqrt{n-1}\left(s_{n}^{2}-\sigma^{2}\right)}{\sigma^{2} \sqrt{2}} \stackrel{d}{\longrightarrow} Z \sim N(0,1)
$$

and finally, by a location/scale transformation to $Z_{n}=\sigma^{2}+\frac{\sigma^{2} \sqrt{2}}{\sqrt{n-1}} Z$, we have

$$
s_{n}^{2} \xrightarrow{d} Z_{n} \sim N\left(\sigma^{2}, \frac{2 \sigma^{4}}{n-1}\right)
$$

3. $X_{1}, \ldots, X_{n} \sim \operatorname{Gamma}(\alpha, \beta)$ so that $\mathrm{E}_{f_{X_{i}}}\left[X_{i}\right]=\alpha / \beta$ and $\operatorname{Var}_{f_{X_{i}}}\left[X_{i}\right]=\alpha / \beta^{2}$ so that

$$
E_{f_{X_{i}}}\left[X_{i}^{2}\right]=\operatorname{Var}_{f_{X_{i}}}\left[X_{i}\right]+\left\{\mathrm{E}_{f_{X_{i}}}\left[X_{i}\right]\right\}^{2}=\frac{\alpha}{\beta^{2}}+\left(\frac{\alpha}{\beta}\right)^{2}=\frac{\alpha(\alpha+1)}{\beta^{2}}
$$

Hence for the method of moments estimators $\hat{\alpha}_{M M}$ and $\hat{\beta}_{M M}$, need to solve the following:
FIRST MOMENT $\quad$ Solve $\quad \frac{1}{n} \sum_{i=1}^{n} x_{i}=\bar{x}=\frac{\alpha}{\beta}$
SECOND MOMENT $\quad$ Solve $\quad \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}=(\bar{x})^{2}+S^{2}=\frac{\alpha(\alpha+1)}{\beta^{2}}$

$$
\text { where } S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}
$$

Elementary algebra gives

$$
\hat{\alpha}_{M M}=\frac{(\bar{x})^{2}}{S^{2}} \quad \hat{\beta}_{M M}=\frac{\bar{x}}{S^{2}}
$$

5. (i) For $\theta>0$

STEP 1

$$
L(\theta)=\prod_{i=1}^{n} f_{X}\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \theta x_{i}^{\theta-1}=\theta^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta-1}
$$

STEP 2

$$
\log L(\theta)=n \log \theta+(\theta-1) \sum_{i=1}^{n} \log x_{i}
$$

STEP $3 \quad \frac{d}{d \theta}\{\log L(\theta)\} \quad=\frac{n}{\theta}+\sum_{i=1}^{n} \log x_{i}=0 \quad \Longrightarrow \quad \hat{\theta}_{M L}=-n / \sum_{i=1}^{n} \log x_{i}$
STEP $4 \quad \frac{d^{2}}{d \theta^{2}}\{\log L(\theta)\} \quad=-\frac{n}{\theta^{2}}<0 \quad$ for all $\theta$
Hence

$$
\text { ESTIMATE : } \hat{\theta}_{M L}=-\frac{n}{\sum_{i=1}^{n} \log x_{i}} \quad \text { ESTIMATOR: }-\frac{n}{\sum_{i=1}^{n} \log X_{i}}
$$

(ii) For $\theta>0$

STEP 1

$$
L(\theta)=\prod_{i=1}^{n} f_{X}\left(x_{i} ; \theta\right)=\prod_{i=1}^{n}(\theta+1) x_{i}^{-(\theta+2)}=(\theta+1)^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{-(\theta+2)}
$$

STEP 2

$$
\log L(\theta)=n \log (\theta+1)-(\theta+2) \sum_{i=1}^{n} \log x_{i}
$$

STEP 3

$$
\frac{d}{d \theta}\{\log L(\theta)\} \quad=\frac{n}{\theta+1}-\sum_{i=1}^{n} \log x_{i}=0 \quad \Longrightarrow \quad \hat{\theta}_{M L}=n / \sum_{i=1}^{n} \log x_{i}-1
$$

STEP 4

$$
\frac{d^{2}}{d \theta^{2}}\{\log L(\theta)\}=-\frac{n}{(\theta+1)^{2}}<0 \quad \text { for all } \theta
$$

Hence

$$
\text { ESTIMATE }: \hat{\theta}_{M L}=\frac{n}{\sum_{i=1}^{n} \log x_{i}}-1 \quad \quad \text { ESTIMATOR: }=\frac{n}{\sum_{i=1}^{n} \log x_{i}}-1
$$

(iii) For $\theta>0$

STEP 1

$$
L(\theta)=\prod_{i=1}^{n} f_{X}\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \theta^{2} x_{i} \exp \left\{-\theta x_{i}\right\}=\theta^{2 n}\left(\prod_{i=1}^{n} x_{i}\right) \exp \left\{-\theta \sum_{i=1}^{n} x_{i}\right\}
$$

STEP 2

$$
\log L(\theta)=2 n \log \theta+\sum_{i=1}^{n} \log x_{i}-\theta \sum_{i=1}^{n} x_{i}
$$

STEP 3

$$
\frac{d}{d \theta}\{\log L(\theta)\} \quad=\frac{2 n}{\theta}-\sum_{i=1}^{n} x_{i}=0 \quad \Longrightarrow \quad \hat{\theta}_{M L}=\frac{2 n}{\sum_{i=1}^{n} x_{i}}
$$

STEP $4 \quad \frac{d^{2}}{d \theta^{2}}\{\log L(\theta)\} \quad=-\frac{2 n}{\theta^{2}}<0 \quad$ for all $\theta$
Hence

$$
\text { ESTIMATE : } \hat{\theta}_{M L}=\frac{2 n}{\sum_{i=1}^{n} x_{i}} \quad \text { ESTIMATOR: }=\frac{2 n}{\sum_{i=1}^{n} X_{i}}
$$

(iv) Because of the constraint in the pdf that $x \leq \theta$

STEP 1

$$
L(\theta) \quad \prod_{i=1}^{n} f_{X}\left(x_{i} ; \theta\right)= \begin{cases}\prod_{i=1}^{n} 2 \theta^{2} x_{i}^{-3}=2^{n} \theta^{2 n}\left(\prod_{i=1}^{n} x_{i}^{-3}\right) & \theta \leq x_{1}, \ldots, x_{n} \\ 0 & \text { otherwise }\end{cases}
$$

STEP $2 \quad \log L(\theta)=n \log 2+2 n \log \theta-3 \sum_{i=1}^{n} \log x_{i}$
At this point we note that the likelihood is monotonically increasing in $\theta$, and hence the likelihood is maximized when $\theta$ is as large as possible but so that the constraint $\theta \leq x_{1}, \ldots, x_{n}$ is still satisfied, hence

$$
\text { ESTIMATE }: \hat{\theta}_{M L}=\min \left\{x_{1}, \ldots, x_{n}\right\} \quad \text { ESTIMATOR: } \min \left\{X_{1}, \ldots, X_{n}\right\}
$$

(v) For $\theta>0$

STEP 1

$$
L(\theta)=\prod_{i=1}^{n} f_{X}\left(x_{i} ; \theta\right)=\prod_{i=1}^{n}\left(\frac{\theta}{2}\right) \exp \left\{-\theta\left|x_{i}\right|\right\}=2^{-n} \theta^{n} \exp \left\{-\theta \sum_{i=1}^{n}\left|x_{i}\right|\right\}
$$

STEP 2

$$
\log L(\theta)=-n \log 2+n \log \theta-\theta \sum_{i=1}^{n}\left|x_{i}\right|
$$

STEP 3

$$
\frac{d}{d \theta}\{\log L(\theta)\} \quad=\frac{n}{\theta}-\sum_{i=1}^{n}\left|x_{i}\right|=0 \quad \Longrightarrow \quad \hat{\theta}_{M L}=\frac{n}{\sum_{i=1}^{n}\left|x_{i}\right|}
$$

STEP $4 \quad \frac{d^{2}}{d \theta^{2}}\{\log L(\theta)\} \quad=-\frac{n}{\theta^{2}}<0 \quad$ for all $\theta$
Hence

$$
\text { ESTIMATE : } \hat{\theta}_{M L}=\frac{n}{\sum_{i=1}^{n}\left|x_{i}\right|} \quad \text { ESTIMATOR }: \frac{n}{\sum_{i=1}^{n}\left|x_{i}\right|}
$$

(vi) Because of the constraint in the pdf that $\theta_{1} \leq x \leq \theta_{2}$

STEP 1

$$
L\left(\theta_{1}, \theta_{2}\right) \quad \prod_{i=1}^{n} f_{X}\left(x_{i} ; \theta\right)= \begin{cases}\prod_{i=1}^{n} \frac{1}{\left(\theta_{2}-\theta_{1}\right)}=\frac{1}{\left(\theta_{2}-\theta_{1}\right)^{n}} & \theta_{1} \leq x_{1}, \ldots, x_{n} \leq \theta_{2} \\ 0 & \text { otherwise }\end{cases}
$$

STEP $2 \log L\left(\theta_{1}, \theta_{2}\right)=-n \log \left(\theta_{2}-\theta_{1}\right)$
At this point we note that the likelihood is monotonically increasing in $\theta_{1}$ and monotonically decreasing in $\theta_{2}$, and hence the likelihood is maximized when $\theta_{1}$ is as large as possible and when $\theta_{2}$ is as small as possible, but so that the constraint $\theta_{1} \leq x_{1}, \ldots, x_{n} \leq \theta_{2}$ (and $\theta_{2} \geq \theta_{1}$ ) is still satisfied, hence

$$
\begin{array}{lll}
\hat{\theta}_{1 M L} & =\min \left\{x_{1}, \ldots, x_{n}\right\} \\
\text { ESTIMATE }: & \theta_{1} & \min \left\{X_{1}, \ldots, X_{n}\right\} \\
\hat{\theta}_{2 M L} & =\max \left\{x_{1}, \ldots, x_{n}\right\}
\end{array} \quad \text { ESTIMATOR: } \begin{aligned}
& \\
&
\end{aligned} \quad \theta_{2} \quad \max \left\{X_{1}, \ldots, X_{n}\right\}
$$

(vii) Noting the constraint in the pdf that $x \geq \theta_{2}$, we have

STEP 1

$$
L\left(\theta_{1}, \theta_{2}\right)=\prod_{i=1}^{n} f_{X}\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \theta_{1} \theta_{2}^{\theta_{1}} x_{i}^{-\left(\theta_{1}+1\right)}=\theta_{1}^{n} \theta_{2}^{n \theta_{1}}\left(\prod_{i=1}^{n} x_{i}\right)^{-\left(\theta_{1}+1\right)}
$$

$$
0 \leq x_{1}, \ldots, x_{n} \leq \theta_{2}
$$

STEP 2

$$
\log L\left(\theta_{1}, \theta_{2}\right)=n \log \theta_{1}+n \theta_{1} \log \theta_{2}-\left(\theta_{1}+1\right) \sum_{i=1}^{n} \log x_{i}
$$

STEP 3

$$
\begin{gathered}
\frac{\partial}{\partial \theta_{1}}\left\{\log L\left(\theta_{1}, \theta_{2}\right)\right\} \quad=\frac{n}{\theta_{1}}+n \log \theta_{2}-\sum_{i=1}^{n} \log x_{i}=0 \\
\Longrightarrow \quad \hat{\theta}_{1 M L}=\frac{n}{\sum_{i=1}^{n} \log x_{i}-n \log \hat{\theta}_{2 M L}} \\
\frac{\partial}{\partial \theta_{2}}\left\{\log L\left(\theta_{1}, \theta_{2}\right)\right\} \quad=\frac{n \theta_{1}}{\theta_{2}}
\end{gathered}
$$

The second of the partial derivative equations indicates again that the maximum of the likelihood occurs when $\theta_{2}$ is as large as possible, that is, when $\hat{\theta}_{2 M L}=\min \left\{x_{1}, \ldots, x_{n}\right\}$.Hence

$$
\hat{\theta}_{1 M L}=\frac{n}{\left[\sum_{i=1}^{n} \log x_{i}-n \log \left\{\min \left\{x_{1}, \ldots, x_{n}\right\}\right\}\right]}
$$

ESTIMATES

$$
\hat{\theta}_{2 M L}=\min \left\{x_{1}, \ldots, x_{n}\right\}
$$

$$
\theta_{1} \frac{n}{\left[\sum_{i=1}^{n} \log x_{i}-n \log \left\{\min \left\{X_{1}, \ldots, X_{n}\right\}\right\}\right]}
$$

ESTIMATORS:

$$
\theta_{2} \min \left\{X_{1}, \ldots, X_{n}\right\}
$$

5. Follow the four step procedure that can be summarized as follows: for an observed random sample $x_{1}, \ldots, x_{n}$ from a distribution represented by mass/density function $f_{X}(x ; \theta)$

STEP 1 : Form the likelihood function $L(\theta)$

$$
L(\theta)=\prod_{i=1}^{n} f_{X}\left(x_{i} ; \theta\right)
$$

STEP 2 Take (natural) $\log$ to obtain $\log L(\theta)$
STEP 3: Find the value of $\theta$ at which $\log L(\theta)$ (and hence $L(\theta)$ ) is maximized within the parameter space $\Theta$ by differentiation

STEP 4: Check the maximum value has been found.
Formally, we define the maximum likelihood estimate of $\theta, \hat{\theta}_{M L}$, as

$$
\hat{\theta}_{M L}=\underset{\theta}{\arg \max } L(\theta)
$$

Hence, for the Poisson $(\lambda)$ case

STEP 1

$$
L(\lambda)=\prod_{i=1}^{n} f_{X}\left(x_{i} ; \lambda\right)=\prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{x_{i}}}{x_{i}!}=\frac{e^{-n \lambda} \lambda_{i=1}^{n} x_{i}}{\left(\prod_{i=1}^{n} x_{i}!\right)}
$$

STEP 2

$$
\log L(\lambda)=-\sum_{i=1}^{n} \log x_{i}!-n \lambda+\left(\sum_{i=1}^{n} x_{i}\right) \log \lambda
$$

STEP $3 \quad \frac{d}{d \lambda}\{\log L(\lambda)\} \quad=-n+\left(\sum_{i=1}^{n} x_{i}\right) \frac{1}{\lambda}=0 \quad \Longrightarrow \quad \hat{\lambda}_{M L}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\bar{x}$

STEP 4

$$
\frac{d^{2}}{d \lambda^{2}}\{\log L(\lambda)\} \quad=-\left(\sum_{i=1}^{n} x_{i}\right) \frac{1}{\lambda^{2}}<0 \quad \text { for all } \lambda
$$

Therefore

$$
\text { ESTIMATE : } \hat{\lambda}_{M L}=\bar{x} \quad \text { ESTIMATOR: } \bar{X}
$$

and from question 1 on this sheet, we know that if $T_{1}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ then $E_{f_{T_{1}}}\left[T_{1}\right]=\lambda$ and $T_{1}$ is unbiased. Now, if

$$
\tau=\tau(\lambda)=e^{-\lambda} \quad \text { so that } \quad \lambda=-\log \tau
$$

and we can reformulate the likelihood in terms of $\tau$, giving

$$
\log L(\tau)=-\sum_{i=1}^{n} \log x_{i}!+n \log \tau+\left(\sum_{i=1}^{n} x_{i}\right) \log (-\log \tau)
$$

and

$$
\frac{d}{d \lambda}\{\log L(\tau)\}=\frac{\left(\sum_{i=1}^{n} x_{i}\right)}{-\tau \log \tau}+\frac{n}{\tau}=0 \Longrightarrow \quad \hat{\tau}_{M L}=\exp \left\{-\frac{1}{n} \sum_{i=1}^{n} x_{i}\right\}=\exp \{-\bar{x}\}
$$

which can be shown to be the value that maximizes the likelihood, so that

$$
\hat{\tau}_{M L}(\lambda)=\tau\left(\hat{\lambda}_{M L}\right)
$$

6. Noting the constraint in the pdf that $x \geq \eta$, we have

STEP 1

$$
L(\lambda, \eta)=\prod_{i=1}^{n} f_{X}\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \lambda \exp \left\{-\lambda\left(x_{i}-\eta\right)\right\}=\lambda^{n} \exp \left\{-\lambda \sum_{i=1}^{n}\left(x_{i}-\eta\right)\right\}
$$

$\eta \leq x_{1}, \ldots, x_{n}$, zero otherwise
STEP 2

$$
\log L(\lambda, \eta)=n \log \lambda-\lambda \sum_{i=1}^{n}\left(x_{i}-\eta\right)=n \log \lambda-\lambda \sum_{i=1}^{n} x_{i}+n \lambda \eta
$$

STEP 3

$$
\begin{aligned}
\frac{\partial}{\partial \lambda}\{\log L(\lambda, \eta)\} & =\frac{n}{\lambda}+\sum_{i=1}^{n} x_{i}-n \eta=0 \quad \Longrightarrow \quad \hat{\lambda}_{M L}=\frac{n}{\sum_{i=1}^{n} x_{i}-n \hat{\eta}} \\
\frac{\partial}{\partial \eta}\{\log L(\lambda, \eta)\} & =n \lambda
\end{aligned}
$$

The second of the partial derivative equations indicates again that the maximum of the likelihood occurs when $\eta$ is as large as possible, that is, when $\hat{\eta}=\min \left\{x_{1}, \ldots, x_{n}\right\}$.Hence

$$
\hat{\lambda}_{M L}=\frac{n}{\sum_{i=1}^{n} x_{i}-n \min \left\{x_{1}, \ldots, x_{n}\right\}}=\frac{n}{\sum_{i=1}^{n}\left(x_{i}-\min \left\{x_{1}, \ldots, x_{n}\right\}\right)}
$$

ESTIMATES

## ESTIMATORS:

$$
\eta \min \left\{X_{1}, \ldots, X_{n}\right\}
$$

7. $X_{1}, \ldots, X_{n} \sim \operatorname{Exponential}(1 / \theta)$ so that $\mathrm{E}_{f_{X_{i}}}\left[X_{i}\right]=\theta$ and hence, using standard mgf techniques, we have

$$
X=\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}\left(n, \frac{1}{\theta}\right) \quad \Longrightarrow \quad E_{f_{X}}[X]=\frac{n}{\frac{1}{\theta}}=n \theta
$$

so that if $T_{1}=\bar{X}=\frac{1}{n} X$ then

$$
E_{f_{T_{1}}}\left[T_{1}\right]=\frac{1}{n} n \theta=\theta
$$

and hence $T_{1}$ is an unbiased estimator of $\theta$.
Now if $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$, then previous order statistics results give that

$$
F_{Y_{1}}(y)=1-\left\{1-F_{X}(y)\right\}^{n}=1-\left\{1-\left(1-e^{-y / \theta}\right)\right\}^{n}=1-e^{-n y / \theta} \quad y>0
$$

so that $Y_{1} \sim$ Exponential $\left(\frac{n}{\theta}\right)$. Hence if $T_{2}=n Y_{1}$ then

$$
E_{f_{Y_{1}}}\left[Y_{1}\right]=\frac{\theta}{n} \quad \therefore \quad E_{f_{T_{2}}}\left[T_{2}\right]=n \frac{\theta}{n}=\theta
$$

and hence $T_{2}$ is an unbiased estimator of $\theta$.

$$
f_{X}(x)=\frac{1}{2} \quad \theta-1 \leq x \leq \theta+1 \quad F_{X}(x)=\frac{x-(\theta-1)}{2}=\frac{x-\theta+1}{2} \quad \theta-1 \leq x \leq \theta+1
$$

$\mathrm{E}_{f_{X_{i}}}\left[X_{i}\right]=\theta$ (by integration, or by noting that the pdf is constant and hence symmetric about $\theta$ ) and hence, using standard expectation techniques, we have that if $T_{1}=\bar{X}$

$$
\mathrm{E}_{f_{T_{1}}}\left[T_{1}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}_{f_{X_{i}}}\left[X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \theta=\frac{1}{n} n \theta=\theta
$$

and hence $T_{1}$ is an unbiased estimator of $\theta$.
Now if $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$, then previous order statistics results give that

$$
f_{Y_{1}}(y)=n f_{X}(y)\left\{1-F_{X}(y)\right\}^{n-1}=n \frac{1}{2}\left\{1-\frac{y-(\theta-1)}{2}\right\}^{n-1}=\frac{n}{2}\left\{\frac{1+\theta-y}{2}\right\}^{n-1} \quad \theta-1 \leq y \leq \theta+1
$$

and

$$
f_{Y_{n}}(y)=n f_{X}(y)\left\{F_{X}(y)\right\}^{n-1}=n \frac{1}{2}\left\{\frac{y-(\theta-1)}{2}\right\}^{n-1}=\frac{n}{2}\left\{\frac{1-\theta+y}{2}\right\}^{n-1} \quad \theta-1 \leq y \leq \theta+1
$$

For the expectations,

$$
\begin{aligned}
\mathrm{E}_{f_{Y_{1}}}\left[Y_{1}\right] & =\int_{\theta-1}^{\theta+1} y \frac{n}{2}\left\{\frac{1+\theta-y}{2}\right\}^{n-1} d y \\
& =\frac{n}{2} \int_{0}^{1}((1+\theta)-2 t) t^{n-1} 2 d t \quad \text { setting } t=(1+\theta-y) / 2 \therefore y=(1+\theta)-2 t \\
& =(1+\theta) \int_{0}^{1} n t^{n-1} d t-2 n \int_{0}^{1} t^{n} d t \\
& =(1+\theta)-\frac{2 n}{n+1}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{E}_{f_{Y_{n}}}\left[Y_{n}\right] & =\int_{\theta-1}^{\theta+1} y \frac{n}{2}\left\{\frac{1-\theta+y}{2}\right\}^{n-1} d y \\
& =\frac{n}{2} \int_{0}^{1}(2 t-(1-\theta)) t^{n-1} 2 d t \quad \text { setting } t=(1-\theta+y) / 2 \therefore y=2 t-(1-\theta) \\
& =2 \int_{0}^{1} n t^{n} d t-(1-\theta) \int_{0}^{1} n t^{n-1} d t \\
& =\frac{2 n}{n+1}-(1-\theta)
\end{aligned}
$$

so that if $M=\left(Y_{1}+Y_{n}\right) / 2$ then by properties of expectations

$$
\mathrm{E}_{f_{M}}[M]=\frac{1}{2} \mathrm{E}_{f_{Y_{1}}}\left[Y_{1}\right]+\frac{1}{2} \mathrm{E}_{f_{Y_{n}}}\left[Y_{n}\right]=\left[\frac{1}{2}(1+\theta)-\frac{n}{n+1}\right]+\left[\frac{n}{n+1}-\frac{1}{2}(1-\theta)\right]=\theta
$$

and hence $M$ is an unbiased estimator for $\theta$
9. (i) For $\lambda>0$

STEP 1

$$
L(\lambda)=\prod_{i=1}^{n} f_{X}\left(x_{i} ; \lambda\right)=\prod_{i=1}^{n} \frac{\lambda^{2}}{\Gamma(2)} x_{i} \exp \left\{-\lambda x_{i}\right\}=\frac{\lambda^{2 n}}{\{\Gamma(2)\}^{n}}\left(\prod_{i=1}^{n} x_{i}\right) \exp \left\{-\lambda \sum_{i=1}^{n} x_{i}\right\}
$$

STEP $2 \quad \log L(\lambda)=2 n \log \lambda-n \log \Gamma(2)+\sum_{i=1}^{n} \log x_{i}-\lambda \sum_{i=1}^{n} x_{i}$
STEP $3 \frac{d}{d \theta}\{\log L(\lambda)\}=\frac{2 n}{\lambda}-\sum_{i=1}^{n} x_{i}=0 \quad \Longrightarrow \quad \hat{\lambda}_{M L}=\frac{2 n}{\sum_{i=1}^{n} x_{i}}$
STEP $4 \frac{d^{2}}{d \theta^{2}}\{\log L(\lambda)\}=-\frac{2 n}{\lambda^{2}}<0 \quad$ at $\lambda=\hat{\lambda}_{M L}$
Hence the estimator is $2 n /\left(\sum_{i=1}^{n} X_{i}\right)$
(ii) The result from q. 4 can be generalized so that for any function $\tau=\tau(\lambda)$

$$
\hat{\tau}_{M L}(\lambda)=\tau\left(\hat{\lambda}_{M L}\right)
$$

which is referred to as the invariance property of maximum likelihood estimators. Thus we must have that the ML estimator of $\tau=1 / \lambda$ is

$$
T=\frac{1}{2 n} \sum_{i=1}^{n} X_{i}
$$

Now, using mgfs, it is straightforward to show that

$$
\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(2 n, \lambda) \quad \therefore \quad T=\frac{1}{2 n} \sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(2 n, 2 n \lambda)
$$

so that

$$
\mathrm{E}_{f_{T}}[T]=\frac{2 n}{2 n \lambda}=\frac{1}{\lambda} \quad \operatorname{Var}_{f_{T}}[T]=\frac{2 n}{(2 n \lambda)^{2}}=\frac{1}{2 n \lambda^{2}} \quad \mathrm{E}_{f_{T}}\left[T^{2}\right]=\frac{1}{2 n \lambda^{2}}+\left(\frac{1}{\lambda}\right)^{2}=\frac{2 n+1}{2 n \lambda^{2}}
$$

(iii) Using the Central Limit Theorem we have that

$$
\frac{\sum_{i=1}^{n} X_{i}-\frac{2 n}{\lambda}}{\sqrt{\frac{2 n}{\lambda^{2}}}} \xrightarrow{d} Z \sim N(0,1)
$$

so that, dividing through by $2 n$

$$
\frac{T-\frac{1}{\lambda}}{\sqrt{\frac{1}{2 n \lambda^{2}}}} \xrightarrow{d} Z \sim N(0,1)
$$

and hence, approximately

$$
T \sim N\left(\frac{1}{\lambda}, \frac{1}{2 n \lambda^{2}}\right)
$$

and as $n \longrightarrow \infty$ then variance tends to zero, and hence for $\varepsilon>0$

$$
\mathrm{P}\left[\left|T-\frac{1}{\lambda}\right|<\varepsilon\right] \longrightarrow 1 \therefore T \xrightarrow{p} \frac{1}{\lambda}
$$

