M2S1 : EXERCISE SHEET 7 : SOLUTIONS

1. Key is to find the i.i.d random variables X_{1}, \ldots, X_{n} such that

$$
X=\sum_{i=1}^{n} X_{i}
$$

and then to use the Central Limit Theorem result for large n
$Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n \sigma^{2}}} \rightarrow Z \sim \operatorname{Normal}(0,1)$
so that $X=\sum_{i=1}^{n} X_{i} \sim \operatorname{Normal}\left(n \mu, n \sigma^{2}\right)$ approximately where $\mu=\mathrm{E}_{f_{X}}\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}_{f_{X}}\left[X_{i}\right]$
(i) $X \sim \operatorname{Binomial}(n, \theta) \Longrightarrow X=\sum_{i=1}^{n} X_{i}$ where $X_{i} \sim \operatorname{Bernoulli}(\theta)$ so that $\mu=\mathrm{E}_{f_{X}}\left[X_{i}\right]=\theta$ and $\sigma^{2}=\operatorname{Var}_{f_{X}}\left[X_{i}\right]=\theta(1-\theta)$ and hence

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \theta}{\sqrt{n \theta(1-\theta)}} \sim \operatorname{Normal}(0,1) \Longrightarrow X \sim \operatorname{Normal}(n \theta, n \theta(1-\theta)) \text { approximately }
$$

(ii) $X \sim \operatorname{Poisson}(\lambda) \Longrightarrow X=\sum_{i=1}^{n} X_{i}$ where $X_{i} \sim \operatorname{Poisson}(\lambda / n)$ so that $\mu=\mathrm{E}_{f_{X}}\left[X_{i}\right]=\lambda / n$ and $\sigma^{2}=\operatorname{Var}_{f_{X}}\left[X_{i}\right]=\lambda / n$ and hence

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \frac{\lambda}{n}}{\sqrt{n(\lambda / n)}}=\frac{\sum_{i=1}^{n} X_{i}-\lambda}{\sqrt{\lambda}} \sim \operatorname{Normal}(0,1) \Longrightarrow X \sim \operatorname{Normal}(\lambda, \lambda) \text { approximately }
$$

Note that this uses the result that the sum of independent Poisson variables also has a Poisson distribution (proved using mgfs), and also note that this is in agreement with the mgf limit result for the "standardized" Poisson example given in lectures.
(iii) $X \sim \operatorname{NegBinomial}(n, \theta) \Longrightarrow X=\sum_{i=1}^{n} X_{i}$ where $X_{i} \sim \operatorname{Geometric}(\theta)$ so that $\mu=\mathrm{E}_{f_{X}}\left[X_{i}\right]=1 / \theta$ and $\sigma^{2}=\operatorname{Var}_{f_{X}}\left[X_{i}\right]=(1-\theta) / \theta^{2}$ and hence

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \frac{1}{\theta}}{\sqrt{n\left((1-\theta) / \theta^{2}\right)}} \sim \operatorname{Normal}(0,1) \Longrightarrow X \sim \operatorname{Normal}\left(\frac{n}{\theta}, \frac{n(1-\theta)}{\theta^{2}}\right) \text { approximately }
$$

(iv) $X \sim \operatorname{Gamma}(\alpha, \beta) \Longrightarrow X=\sum_{i=1}^{n} X_{i}$ where $X_{i} \sim \operatorname{Gamma}\left(\frac{\alpha}{n}, \beta\right)$ so that $\mu=\mathrm{E}_{f_{X}}\left[X_{i}\right]=\frac{\alpha}{n \beta}$ and $\sigma^{2}=\operatorname{Var}_{f_{X}}\left[X_{i}\right]=\frac{\alpha}{n \beta^{2}}$ and hence

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \frac{\alpha}{n \beta}}{\sqrt{n \alpha /\left(n \beta^{2}\right)}}=\frac{\sum_{i=1}^{n} X_{i}-\frac{\alpha}{\beta}}{\sqrt{\alpha / \beta^{2}}} \sim \operatorname{Normal}(0,1) \Longrightarrow X \sim \operatorname{Normal}\left(\frac{\alpha}{\beta}, \frac{\alpha}{\beta^{2}}\right) \text { approximately }
$$

This is essentially the mgf limit result for the "standardized" Gamma example given in lectures in the special case $\beta=1$.
2. $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ so in the limit as $n \rightarrow \infty$ we have the limit for fixed y as

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=y^{n} \rightarrow \begin{cases}0 & y<1 \\ 1 & y \geq 1\end{cases}
$$

that is, a step function with single step of size 1 at $y=1$. Hence the limiting random variable Y is a discrete variable with $P[Y=1]=1$, that is, the limiting distribution is degenerate at 1 . For $Z_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ so in the limit as $n \rightarrow \infty$ we have the limit for fixed z as

$$
F_{Z_{n}}(z)=1-\left\{1-F_{X}(z)\right\}^{n}=1-(1-z)^{n} \rightarrow \begin{cases}0 & z \leq 0 \\ 1 & z>0\end{cases}
$$

that is, a step function with single step of size 1 at $z=0$. Hence the limiting random variable Z is a discrete variable with $P[Z=0]=1$, that is, the limiting distribution is degenerate at 0 . Note here that the limiting function is not a cdf as it is not right-continuous, but that the limiting distribution does still exist - the ordinary definition of convergence in distribution only refers to pointwise convergence at points of continuity of the limit function, and here is limit function is not continuous at zero.

Note that these results are intuitively reasonable as, as the sample size gets increasingly large, we will obtain a random variable arbitrarily close to each end of the range. Note also that these results describe convergence in distribution, but also we have for $1>\varepsilon>0$

$$
\begin{aligned}
& \mathrm{P}\left[\left|Y_{n}-1\right|<\varepsilon\right]=\mathrm{P}\left[1-Y_{n}<\varepsilon\right]=\mathrm{P}\left[1-\varepsilon<Y_{n}\right]=1-\mathrm{P}\left[Y_{n}<1-\varepsilon\right]=1-\varepsilon^{n} \rightarrow 1 \\
& \mathrm{P}\left[\left|Z_{n}-0\right|<\varepsilon\right]=\mathrm{P}\left[Z_{n}<\varepsilon\right]=1-(1-\varepsilon)^{n} \rightarrow 1
\end{aligned}
$$

so we also have convergence in probability of Y_{n} to 1 and of Z_{n} to 1
3. $Z_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ so

$$
F_{Z_{n}}(z)=1-\left\{1-F_{X}(z)\right\}^{n}=1-\left(1-\left(1-\frac{1}{z}\right)\right)^{n}=1-\frac{1}{z^{n}} \quad z>1
$$

and so, in the limit as $n \rightarrow \infty$ we have the limit for fixed z as

$$
F_{Z_{n}}(z) \rightarrow \begin{cases}0 & z \leq 1 \\ 1 & z>1\end{cases}
$$

that is, a step function with single step of size 1 at $z=1$. Hence the limiting random variable Z is a discrete variable with

$$
P[Z=1]=1
$$

that is, the limiting distribution is degenerate at 1. Again, the limiting function is not a cdf as it not right continuous, but this does not affect out conclusion, as the limit function is not continuous at 1.

Now if $U_{n}=Z_{n}^{n}$, we have from first principles that for $u>1$

$$
F_{U_{n}}(u)=\mathrm{P}\left[U_{n} \leq u\right]=\mathrm{P}\left[Z_{n}^{n} \leq u\right]=\mathrm{P}\left[Z_{n} \leq u^{1 / n}\right]=1-\frac{1}{\left(u^{1 / n}\right)^{n}}=1-\frac{1}{u}
$$

which is a valid cdf, but which does not depend on n. Hence the limiting distribution of U_{n} is precisely

$$
F_{U}(u)=1-\frac{1}{u} \quad u>1
$$

4. $\quad Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ so

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=\left(\frac{1}{1+e^{-y}}\right)^{n} \quad y \in \mathbb{R}
$$

and so, in the limit as $n \rightarrow \infty$ we have the limit for fixed y as

$$
F_{Y_{n}}(y) \rightarrow 0 \quad \text { for all } y
$$

Hence there is no limiting distribution.

If $U_{n}=Y_{n}-\log n$, we have from first principles that for $u>-\log n$

$$
F_{U_{n}}(u)=\mathrm{P}\left[U_{n} \leq u\right]=\mathrm{P}\left[Y_{n}-\log n \leq u\right]=\mathrm{P}\left[Y_{n} \leq u+\log n\right]=F_{Y_{n}}(u+\log n)=\left(\frac{1}{1+e^{-u-\log n}}\right)^{n}
$$

so that

$$
F_{U_{n}}(u)=\left(\frac{1}{1+\frac{e^{-u}}{n}}\right)^{n}=\left(1+\frac{e^{-u}}{n}\right)^{-n} \rightarrow \exp \left\{-e^{-u}\right\} \quad \text { as } n \rightarrow \infty
$$

which is a valid cdf. Hence the limiting distribution is

$$
F_{U}(u)=\exp \left\{-e^{-u}\right\} \quad u \in \mathbb{R}
$$

5. $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ so

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=\left(\frac{\lambda y}{1+\lambda y}\right)^{n} \quad y>0
$$

and so, in the limit as $n \rightarrow \infty$ we have the limit for fixed y as

$$
F_{Y_{n}}(y) \rightarrow 0 \quad \text { for all } y
$$

Hence there is no limiting distribution.
$Z_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ so in the limit as $n \rightarrow \infty$ we have the limit for fixed $z>0$ as

$$
F_{Z_{n}}(z)=1-\left\{1-F_{X}(z)\right\}^{n}=1-\left(1-\left(1-\frac{1}{1+\lambda z}\right)\right)^{n}=1-\frac{1}{(1+\lambda z)^{n}} \rightarrow \begin{cases}0 & z \leq 0 \\ 1 & z>0\end{cases}
$$

that is, a step function with single step of size 1 at $z=0$. Hence the limiting random variable Z is a discrete variable with $\mathrm{P}[Z=0]=1$ that is, the limiting distribution is degenerate at 0 . Again, the limiting function is not a cdf as it not right continuous, but this does not affect out conclusion, as the limit function is not continuous at 0 .

If $U_{n}=Y_{n} / n$, we have from first principles that for $u>0$

$$
F_{U_{n}}(u)=\mathrm{P}\left[U_{n} \leq u\right]=\mathrm{P}\left[Y_{n} / n \leq u\right]=\mathrm{P}\left[Y_{n} \leq n u\right]=F_{Y_{n}}(n u)=\left(\frac{\lambda n u}{1+\lambda n u}\right)^{n}
$$

so that

$$
F_{U_{n}}(u)=\left(\frac{\lambda n u}{1+\lambda n u}\right)^{n}=\left(1+\frac{1}{n \lambda u}\right)^{-n} \rightarrow \exp \left\{-\frac{1}{\lambda u}\right\} \quad \text { as } n \rightarrow \infty
$$

which is a valid cdf. Hence the limiting distribution is

$$
F_{U}(u)=\exp \left\{-\frac{1}{\lambda u}\right\} \quad u>0
$$

If $V_{n}=n Z_{n}$, we have from first principles that for $u>0$

$$
F_{V_{n}}(v)=\mathrm{P}\left[V_{n} \leq v\right]=\mathrm{P}\left[n Z_{n} \leq v\right]=\mathrm{P}\left[Z_{n} \leq v / n\right]=F_{Z_{n}}(v / n)=1-\left(\frac{1}{1+\frac{\lambda v}{n}}\right)^{n}
$$

so that

$$
F_{V_{n}}(v)=1-\left(1+\frac{\lambda v}{n}\right)^{-n}=1-\left(1+\frac{\lambda v}{n}\right)^{-n} \rightarrow 1-\exp \{-\lambda v\} \quad \text { as } n \rightarrow \infty
$$

which is a valid cdf. Hence the limiting distribution is

$$
F_{V}(v)=1-\exp \{-\lambda v\} \quad v>0
$$

Hence the limiting random variable $V \sim \operatorname{Exponential}(\lambda)$.
$Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ so

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=\left(1-e^{-\lambda y}\right)^{n} \quad y>0
$$

6. $\quad X_{i} \sim \operatorname{Poisson}(\lambda)$ so $\sum_{i=1}^{n} X_{i} \sim \operatorname{Poisson}(n \lambda)$ by mgfs and hence (by Q1 result) using the Central Limit Theorem,

$$
\sum_{i=1}^{n} X_{i} \sim \operatorname{Normal}(n \lambda, n \lambda) \quad \text { approximately }
$$

and hence

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim \operatorname{Normal}\left(\lambda, \frac{\lambda}{n}\right) \quad \text { approximately }
$$

and hence, for $\varepsilon>0$

$$
\mathrm{P}[|\bar{X}-\lambda|<\varepsilon]=\mathrm{P}[\lambda-\varepsilon<\bar{X}<\lambda+\varepsilon] \approx \Phi\left(\frac{\varepsilon}{\sqrt{\lambda / n}}\right)-\Phi\left(\frac{-\varepsilon}{\sqrt{\lambda / n}}\right) \rightarrow 1
$$

as $n \rightarrow \infty$. Hence, \bar{X} converges in probability to λ

$$
\bar{X} \xrightarrow{p} \lambda
$$

Now, if $T_{n}=\exp \left\{-M_{n}\right\}$, then for $\varepsilon>0$ we have

$$
P\left[\left|T_{n}-e^{-\lambda}\right|<\varepsilon\right]=P\left[e^{-\lambda}-\varepsilon<T_{n}<e^{-\lambda}+\varepsilon\right]=P\left[-\log \left(e^{-\lambda}+\varepsilon\right)<M_{n}<-\log \left(e^{-\lambda}-\varepsilon\right)\right]
$$

and hence

$$
P\left[\left|T_{n}-e^{-\lambda}\right|<\varepsilon\right]=\approx \Phi\left(\frac{-\log \left(e^{-\lambda}-\varepsilon\right)-\lambda}{\sqrt{\lambda / n}}\right)-\Phi\left(\frac{-\log \left(e^{-\lambda}+\varepsilon\right)-\lambda}{\sqrt{\lambda / n}}\right) \rightarrow 1
$$

as $n \rightarrow \infty$. Hence, T_{n} converges in probability to $e^{-\lambda}$.

