M2S1 : EXERCISE SHEET 4 : SOLUTIONS

1 (a) To calculate the mgf

$$
\begin{aligned}
M_{Z}(t) & =E_{f_{Z}}\left[e^{t Z}\right]=\int_{-\infty}^{\infty} e^{z t} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{z^{2}}{2}\right\} d z=e^{t^{2} / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{(z-t)^{2}}{2}\right\} d z \\
& =e^{t^{2} / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{u^{2}}{2}\right\} d u=e^{t^{2} / 2}
\end{aligned}
$$

completing the square in z, and then setting $u=z-t$, as the integrand is a pdf.
Now, using the transformation theorem for univariate, $1-1$ transformations we have $X=\mu+\frac{1}{\lambda} Z \Longleftrightarrow$ $Z=\lambda(X-\mu)$, so

$$
f_{X}(x)=f_{Z}(\lambda(x-\mu)) \lambda=\frac{\lambda}{\sqrt{2 \pi}} \exp \left\{-\frac{\lambda^{2}}{2}(x-\mu)^{2}\right\} \quad x \in \mathbb{R}
$$

To calculate the mgf of X, use the expectation result given in lectures

$$
M_{X}(t)=E_{f_{Z}}\left[e^{t(\mu+Z / \lambda)}\right]=e^{\mu t} M_{Z}(t / \lambda)=\exp \left\{\mu t+\frac{t^{2}}{2 \lambda^{2}}\right\}
$$

The expectation of X is

$$
\begin{aligned}
E_{f_{X}}[X] & =\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{-\infty}^{\infty} x\left(\frac{\lambda^{2}}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\lambda^{2}}{2}(x-\mu)^{2}\right\} d x \\
& =\int_{-\infty}^{\infty}\left(\mu+t \lambda^{-1}\right)\left(\frac{\lambda^{2}}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{t^{2}}{2}\right\} \lambda^{-1} d t \quad t=\lambda(x-\mu) \\
& =\mu \int_{-\infty}^{\infty}\left(\frac{1}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{t^{2}}{2}\right\} d t+\lambda^{-1} \int_{-\infty}^{\infty} t\left(\frac{1}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{t^{2}}{2}\right\} d t \\
& =\mu
\end{aligned}
$$

as the first integral is 1 , and the second integral is zero, as the integrand is an ODD function about zero. Hence

$$
E_{f_{X}}[X]=\mu
$$

and note that it is generally true that if a pdf is symmetric about a particular value, then that value is the expectation (if the expectation integral is finite). Alternately, could use the mgf result that says

$$
E_{f_{X}}[X]=\frac{d}{d s}\left\{M_{X}(s)\right\}_{s=0}=M_{X}^{(1)}(0)
$$

say, so that

$$
E_{f_{X}}[X]=\frac{d}{d s}\left\{\exp \left\{\mu s+\frac{s^{2}}{2 \lambda^{2}}\right\}\right\}_{s=0}=\left\{\left(\mu+\frac{s}{\lambda^{2}}\right) \exp \left\{\mu s+\frac{s^{2}}{2 \lambda^{2}}\right\}\right\}_{s=0}=\mu
$$

The expectation of $g(X)=e^{X}$ is

$$
\begin{aligned}
E_{f_{X}}[g(X)] & =\int_{-\infty}^{\infty} g(x) f_{X}(x) d x=\int_{-\infty}^{\infty} e^{x}\left(\frac{\lambda^{2}}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\lambda^{2}}{2}(x-\mu)^{2}\right\} d x \\
& =\int_{-\infty}^{\infty} \exp \left\{\mu+t \lambda^{-1}\right\}\left(\frac{\lambda^{2}}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{t^{2}}{2}\right\} \lambda^{-1} d t \quad \text { setting } t=\lambda(x-\mu) \\
& =\left(\frac{1}{2 \pi}\right)^{1 / 2} \int_{-\infty}^{\infty} \exp \left\{\mu+t \lambda^{-1}-\frac{t^{2}}{2}\right\} d t=\left(\frac{1}{2 \pi}\right)^{1 / 2} \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2}\left(t^{2}-2 t \lambda^{-1}-2 \mu\right)\right\} d t
\end{aligned}
$$

Completing the square in the exponent, we have

$$
\left(t^{2}-2 t \lambda^{-1}-2 \mu\right)=\left(t-\lambda^{-1}\right)^{2}-\left(2 \mu+\lambda^{-2}\right)
$$

and hence

$$
\begin{aligned}
E_{f_{X}}[g(X)] & =\left(\frac{1}{2 \pi}\right)^{1 / 2} \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2}\left(t-\lambda^{-1}\right)^{2}+\left(\mu+\frac{1}{2 \lambda^{2}}\right)\right\} d t \\
& =\exp \left\{\mu+\frac{1}{2 \lambda^{2}}\right\} \int_{-\infty}^{\infty}\left(\frac{1}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{1}{2}\left(t-\lambda^{-1}\right)^{2}\right\} d t=\exp \left\{\mu+\frac{1}{2 \lambda^{2}}\right\}
\end{aligned}
$$

as the integral is equal to 1 , as it is the integral of a pdf for all choices of λ.
(b) If $Y=e^{X}$, so $\mathbb{Y}=\mathbb{R}^{+}$, and from first principles we have
$F_{Y}(y)=\mathrm{P}[Y \leq y]=\mathrm{P}\left[e^{X} \leq y\right]=\mathrm{P}[X \leq \log y]=F_{X}(\log y) \quad \Longrightarrow \quad f_{Y}(y)=f_{X}(\log y) \frac{1}{y} \quad y>0$
Note that the function $g(t)=e^{t}$ is a monotone increasing function, with $g^{-1}(t)=\log t$, so that we can use the general result directly, that is

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) J(y) \quad \text { where } \quad J(y)=\left|\frac{d}{d t}\left\{g^{-1}(t)\right\}_{t=y}\right|=\left|\frac{d}{d t}\{\log t\}_{t=y}\right|=\frac{1}{y}
$$

Hence

$$
f_{Y}(y)=\frac{1}{y}\left(\frac{\lambda^{2}}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\lambda^{2}}{2}(\log y-\mu)^{2}\right\} \quad y>0
$$

For the expectation, we have from first principles

$$
\begin{aligned}
E_{f_{Y}}[Y] & =\int_{0}^{\infty} y f_{Y}(y) d y=\int_{-\infty}^{\infty} y \frac{1}{y}\left(\frac{\lambda^{2}}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\lambda}{2}(\log y-\mu)^{2}\right\} d y \\
& =\int_{-\infty}^{\infty}\left(\frac{\lambda^{2}}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\lambda^{2}}{2}(t-\mu)^{2}\right\} e^{t} d t=\exp \left\{\mu+\frac{1}{2 \lambda^{2}}\right\}
\end{aligned}
$$

where $t=\log y$, as the integral is precisely the one carried out above. This illustrates the transformation/expectation result that, if $Y=g(X)$, then

$$
E_{f_{Y}}[Y]=E_{f_{X}}[g(X)]
$$

(c) If $T=Z^{2}$, then from first principles

$$
\begin{aligned}
F_{T}(t) & =P[T \leq t]=P\left[Z^{2} \leq t\right]=P[-\sqrt{t} \leq Z \leq \sqrt{t}] \\
\Longrightarrow f_{T}(t) & =\frac{1}{2 \sqrt{t}}\left[f_{Z}(\sqrt{t})+f_{Z}(-\sqrt{t})\right]=\frac{1}{\sqrt{2 \pi}} t^{-1 / 2} \exp \left\{-\frac{t}{2}\right\} \quad t>0
\end{aligned}
$$

and hence

$$
\begin{aligned}
M_{T}(t) & =E_{f_{T}}\left[e^{t T}\right]=\int_{-\infty}^{\infty} e^{t x} f_{T}(x) d x=\int_{-\infty}^{\infty} e^{t x} \frac{1}{\sqrt{2 \pi x}} \exp \left\{-\frac{x}{2}\right\} d x=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi x}} \exp \left\{-\frac{(1-2 t) x}{2}\right\} d x \\
& =\left(\frac{1}{1-2 t}\right)^{1 / 2} \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi y}} \exp \left\{-\frac{y}{2}\right\} d y=\left(\frac{1}{1-2 t}\right)^{1 / 2}
\end{aligned}
$$

where $y=(1-2 t) x$, as the integrand is a pdf.
2. By definition of mgfs for discrete variables, we can deduce immediately that, as

$$
M_{X}(t)=\sum_{x=-\infty}^{\infty} e^{t x} f_{X}(x)
$$

$P[X=x]$ is just the coefficient of $e^{t x}$ in the expression for M_{X}, and hence $P[X=1]=1 / 8$, $P[X=2]=1 / 4$ and $P[X=3]=5 / 8$. Also, we have $E_{f_{X}}\left[X^{r}\right]=M_{X}^{(r)}(0)$, so that

$$
\begin{aligned}
E_{f_{X}}[X] & =M_{X}^{(1)}(0)=\frac{1}{8}+2 \frac{1}{4}+3 \frac{5}{8}=\frac{5}{2} \quad E_{f_{X}}\left[X^{2}\right]=M_{X}^{(2)}(0)=\frac{1}{8}+4 \frac{1}{4}+9 \frac{5}{8}=\frac{27}{4} \\
\Longrightarrow \operatorname{Var}_{f_{X}}[X] & =E_{f_{X}}\left[X^{2}\right]-\left\{E_{f_{X}}[X]\right\}^{2}=\frac{1}{2}
\end{aligned}
$$

3. Can identify that $X \sim \operatorname{Binomial}(n, \theta)$, but in any case,

$$
\begin{aligned}
M_{X}(t) & =\left(1-\theta+\theta e^{t}\right)^{n}=\left(1+\left(e^{t}-1\right) \theta\right)^{n}=\left(1+\theta\left(t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\ldots\right)\right)^{n} \\
& =\sum_{r=0}^{n}\binom{n}{r} \theta^{r}\left(t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\ldots\right)^{r}
\end{aligned}
$$

and from the mgf definition $E_{f_{X}}\left[X^{r}\right]$ is r ! times the coefficient of t^{r}. Difficult to identify this general term, but can easily identify the coefficient of t as $n \theta=E_{f_{X}}[X]$, and the coefficient of t^{2} as $n \theta+n(n-1) \theta^{2}=E_{f_{X}}\left[X^{2}\right]$ etc.
4. For this pdf,

$$
\begin{aligned}
M_{X}(t) & =\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x=\int_{-2}^{\infty} e^{t x} e^{-(x+2)} d x=e^{-2} \int_{-2}^{\infty} e^{-(1-t) x} d x \\
& =\frac{e^{-2}}{1-t} \int_{-2(1-t)}^{\infty} e^{-y} d y=\frac{e^{-2}}{1-t}\left[-e^{-y}\right]_{-2(1-t)}^{\infty}=\frac{e^{-2 t}}{1-t} \quad t<1
\end{aligned}
$$

Now

$$
M_{X}^{(1)}(t)=\frac{e^{-2 t}}{(1-t)^{2}}(2 t-1) \quad M_{X}^{(2)}(t)=\frac{e^{-2 t}}{(1-t)^{3}}\left[1+(2 t-1)^{2}\right]
$$

so that $M_{X}^{(1)}(0)=-1=E_{f_{X}}[X]$ and $M_{X}^{(2)}(0)=2=E_{f_{X}}\left[X^{2}\right] \Longrightarrow \operatorname{Var}_{f_{X}}[X]=1$
5. We have $K_{X}(t)=\log M_{X}(t)$, hence

$$
K_{X}^{(1)}(t)=\frac{d}{d s}\left\{K_{X}(t)\right\}_{s=t}=\frac{d}{d s}\left\{\log M_{X}(t)\right\}_{s=t}=\frac{M_{X}^{(1)}(t)}{M_{X}(t)} \Longrightarrow K_{X}^{(1)}(0)=\frac{M_{X}^{(1)}(0)}{M_{X}(0)}=E_{f_{X}}[X]
$$

as $M_{X}(0)=1$. Similarly

$$
K_{X}^{(2)}(t)=\frac{M_{X}(t) M_{X}^{(2)}(t)-\left\{M_{X}^{(1)}(t)\right\}^{2}}{\left\{M_{X}(t)\right\}^{2}}
$$

and hence

$$
K_{X}^{(2)}(0)=\frac{M_{X}(0) M_{X}^{(2)}(0)-\left\{M_{X}^{(1)}(0)\right\}^{2}}{\left\{M_{X}(0)\right\}^{2}}=E_{f_{X}}\left[X^{2}\right]-\left\{E_{f_{X}}[X]\right\}^{2}
$$

and hence $K_{X}^{(2)}(0)=\operatorname{Var}_{f_{X}}[X]$
6. Easy to see that $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$, with $\mathbb{X}^{(2)}=\mathbb{X} \times \mathbb{Y}$, so X and Y are independent, where

$$
f_{X}(x)=\sqrt{c} \frac{2^{x}}{x!} \quad f_{Y}(y)=\sqrt{c} \frac{2^{y}}{y!} \quad \text { and } \quad \sum_{x=0}^{\infty} f_{X}(x)=1 \Longrightarrow \sqrt{c}=e^{-2}
$$

(marginal mass functions must have identical forms as joint mass function is symmetric in x and y) as the summation is identical to the power series expansion of e^{z} at $z=2$ if $\sqrt{c}=e^{-2}$.
7. $F_{X, Y}$ is continuous and non decreasing in x and y, and

$$
\lim _{x \longrightarrow-\infty} F_{X, Y}(x, y)=\lim _{y \longrightarrow-\infty} F_{X, Y}(x, y)=0 \quad \lim _{x, y \longrightarrow \infty} F_{X, Y}(x, y)=1
$$

so $F_{X, Y}$ is a valid cdf, and

$$
f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial t_{1} \partial t_{2}}\left\{F_{X, Y}\left(t_{1}, t_{2}\right)\right\}_{t_{1}=x, t_{2}=y}=\frac{e^{-x}}{\pi\left(1+y^{2}\right)}=f_{X}(x) f_{Y}(y)
$$

so as $\mathbb{X}^{(2)}=\mathbb{R}^{+} \times \mathbb{R}, X$ and Y are independent.
8. (i) If $\mathbb{X}^{(2)}=(0,1) \times(0,1)$ is the (joint) range of vector random variable (X, Y). We have

$$
f_{X, Y}(x, y)=c x(1-y) \quad 0<x<1,0<y<1
$$

so that

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \text { and } \quad \mathbb{X}^{(2)}=\mathbb{X} \times \mathbb{Y}
$$

where \mathbb{X} and \mathbb{Y} are the ranges of X and Y respectively, and

$$
\begin{equation*}
f_{X}(x)=c_{1} x \quad \text { and } \quad f_{Y}(y)=c_{2}(1-y) \tag{1}
\end{equation*}
$$

for some constants satisfying $c_{1} c_{2}=c$. Hence, the two conditions for independence are satisfied in (2), and X and Y are independent.
(ii) We must have

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1 \therefore c^{-1}=\int_{0}^{1} \int_{0}^{1} x(1-y) d x d y=1
$$

and as

$$
\int_{0}^{1} \int_{0}^{1} x(1-y) d x d y=\left\{\int_{0}^{1} x d x\right\}\left\{\int_{0}^{1}(1-y) d y\right\}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}
$$

we have $c=4$.
(iii) We have $A=\{(x, y): 0<x<y<1\}$, and hence, recalling that the joint density is only non-zero when $x<y$, we first fix a y and integrate $d x$ on the range $(0, y)$, and then integrate $d y$ on the range $(0,1)$, that is

$$
\begin{aligned}
P[X<Y] & =\int_{A} \int f_{X, Y}(x, y) d x d y=\int_{0}^{1}\left\{\int_{0}^{y} 4 x(1-y) d x\right\} d y=\int_{0}^{1}\left\{\int_{0}^{y} x d x\right\} 4(1-y) d y \\
& =\int_{0}^{1} 2 y^{2}(1-y) d y=\left[\frac{2}{3} y^{3}-\frac{1}{2} y^{4}\right]_{0}^{1}=\frac{1}{6}
\end{aligned}
$$

9. The joint pdf of X and Y is given by

$$
f_{X . Y}(x, y)=24 x y \quad x>0, y>0, x+y<1
$$

and zero otherwise, the marginal pdf f_{X} is given by

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{0}^{1-x} 24 x y d y=24 x\left[\frac{y^{2}}{2}\right]_{0}^{1-x} \\
& =12 x(1-x)^{2} \quad 0<x<1
\end{aligned}
$$

as the integrand is only non-zero when $0<x+y<1 \Longrightarrow 0<y<1-x$ for fixed x
10. First sketch the support of the density; this will make it clear that the boundaries of the support are different for $0<y \leq 1$ and $y>1$. The marginals are given by

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{1 / x}^{x} \frac{1}{2 x^{2} y} d y=\frac{1}{2 x^{2}}(\log x-\log (1 / x))=\frac{\log x}{x^{2}} \quad 1 \leq x \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x= \begin{cases}\int_{1 / y}^{\infty} \frac{1}{2 x^{2} y} d x=\frac{1}{2} & 0 \leq y \leq 1 \\
\int_{y}^{\infty} \frac{1}{2 x^{2} y} d x=\frac{1}{2 y^{2}} & 1 \leq y\end{cases}
\end{aligned}
$$

Conditionals:

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}= \begin{cases}\frac{1}{x^{2} y} & 1 / y \leq x \text { if } 0 \leq y \leq 1 \\
\frac{y}{x^{2}} & y \leq x \text { if } 1 \leq y\end{cases} \\
& f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{1}{2 y \log x} \quad 1 / x \leq y \leq x \text { if } x \geq 1
\end{aligned}
$$

Marginal expectation of Y;

$$
E_{f_{Y}}[Y]=\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{0}^{1} \frac{y}{2} d y+\int_{1}^{\infty} \frac{1}{2 y} d y=\infty
$$

as the second integral is divergent.

